高中数学导数的概念、运算及其几何意义练习题.doc

合集下载

高中数学导数知识点归纳总结与例题

高中数学导数知识点归纳总结与例题

资料收集于网络,如有侵权请联系网站删除导数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.§14. 导数知识要点导数的概念导数的几何意义、物理意义常见函数的导数导导数的运算数导数的运算法则函数的单调性导数的应用函数的极值函数的最值1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处xx)y?f(x x00有增量,则函数值也引起相应的增量;比值x?y)(x?x)?f?y?f(x?00f(x??x)?f(x)y?00称为函数在点到之间的平均变化率;如果极限x x?x?)xy?f(?00?x?xf(x??x)?f(x)?y00存在,则称函数在点处可导,并把这个极限叫做x)?f(xy?limlim0xx??0?x?x?0?f(x??x)?f(x)?y'''00. =在记作处的导数,或,即)(xff)(xx)(xy?f|y?limlim000x?x?x?x00??x?0x?注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.x?x?'的定义域为,则与关系为②以知函数定义域为,. )fx(y?B?A)(xy?fBABA2. 函数在点处连续与点处可导的关系:)xf(?y xx00⑴函数在点处连续是在点处可导的必要不充分条件. )f(xy?xx)fy?(x00可以证明,如果在点处可导,那么点处连续. xx)fy?xy?f()(x00事实上,令,则相当于.0x??x?xx??x?x00于是)]xf(?()(fx?x?fx)[?x?xf?xflim()lim(?)lim0000x?x?x?0?x?00只供学习与交流.资料收集于网络,如有侵权请联系网站删除f(x??x)?f(x)f(x??x)?f(x)'0000(x)?0?f(x)?f(x).?lim[f??x?f(x)]?lim?lim?limf(x)?00000x??x0?0?x?0??x?x?0?x. 处可导,是不成立的处连续,那么在点⑵如果点xx)xf(y?y?f(x)00y?|x|?时,例:在点处连续,但在点处不可导,因为0,当>0?xx?0|x?|f(x)x??00 x??xy??y?y,故;当. <0时,不存在x?lim1?1??xx??x?0??x.②可导的偶函数函数其导函数为奇函数注:①可导的奇函数函数其导函数为偶函数. 导数的几何意义:3.处的切线的斜率,在点函数在点处的导数的几何意义就是曲线x))f(xf()xy?f(x)(x,y?00'为程切线的斜率是方,处也就是说,曲线在点P的切线)fx())fxy?f(x),(x(00').?x?fx()(xy?y00 4. 求导数的四则运算法则:'''''''vu(u?v)??)??...fx(x)?f((x)f?y?f(x)?(x)?...?f(x)?y?f n2211n'''''''cvv?cvu?(cv)??(uv)c?vuv?(为常数)c'''u?vuvu???)(v?0??2vv??.必须是可导函数注:①v,u差、则它们的和、差、积、商必可导;若两个函数均不可导,②若两个函数可导,则它们和、.积、商不一定不可导22处均不可导,但它们和在例如:设,,则)(xf(x),g0x??)?cosx2sinx?(gx?f(x) xx.在处均可导0?x?)g(xf(x)?xx?cossin''''''??或5. 复合函数的求导法则:u??yy)f((u)f(x(x))?xxux. 复合函数的求导法则可推广到多个中间变量的情形 6. 函数单调性:'为则如果>0,⑴函数单调性的判定方法:设函数在某个区间内可导,)fx()?f(y?fx)(xy'. 为减函数<0,则增函数;如果)(xf)(xy?f ⑵常数的判定方法;'.=0,则如果函数在区间内恒有为常数)fx()y?f(?fx)(xyI3上并不是(x)递增的充分条件,但不是必要条件,如在是注:①f x?2y)??,xf() 0??()递减的充分非必f,同样(x是f,有一个点例外即x 都有=0时(x)= 00) xf()0 f(x.要条件)()(在其余各点均为正(或负),那么如果②一般地,fx在某区间内有限个点处为零,fx 只供学习与交流.请联系网站删除资料收集于网络,如有侵权. 在该区间上仍旧是单调增加(或单调减少)的是函数,则(极值是在附近所有的点,都有<7. 极值的判别方法:x)(x)f(x)xff(f(x)000的极大值,极小值同理)在点处连续时,当函数x)(xf0''是极大值;<0附近的左侧①如果在,那么>0,右侧))(ffx(xx)xf(00''.是极小值>0②如果在附近的左侧,那么<0,右侧)(xff)(xx)xf(00'①此外,函数不=0点两侧导数异号,而不是. 也就是说是极值点的充分条件是)fx(xx00 ②当然,极值是一个局部概念,极值点的大小关系是不确可导的点也可能是函数的极值点..定的,即有可能极大值比极小值小(函数在某一点附近的点不同)'对于可导函. =0. 但反过来不一定成立注①:若点是可导函数的极值点,则)(xfx)xf(0. 是极值点的必要条件是若函数在该点可导,则导数值为零数,其一点x0'3.不是极值点=0例如:函数,但,使)(xfx?(x)y?f0x?0x?.,在点②例如:函数处不可导,但点是函数的极小值点0x?0?x|y|xx)??f(极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进8.. 行比较.注:函数的极值点一定有意义9. 几种常见的函数导数:1''xcos(sinx)?'?)(arcsinxI.(为常数)C0C?2x?111n?n'''nx(x?)x)sin??(cosx?)?(arccosx ()R?n2x1?111'(arctanx)?''II. e?(logx?)log)(lnx aa2x?1xx1x'xx'x'e)(e?aaa)ln?(??x)(arccot 21x?求导的常见方法:III.(x?a)(x?a)...(x?a)1n12'.①常用结论:②形如或两?y)ax?a)...(x?(y?x?a)(?|)(ln|x n12(x?b)(x?b)...(x?b)x n12边同取自然对数,可转化求代数和形式.xx取自然对数之后可变形为这类函数,如③无理函数或形如,对两边xyy?x?xlny?xln'y1''xx x?xlnxyyxy?xx?ln??y?ln???.导数中的切线问题求导可得yx只供学习与交流.资料收集于网络,如有侵权请联系网站删除例题1:已知切点,求曲线的切线方程32在点处的切线方程为(曲线)1x?y?x?31)?(1,例题2:已知斜率,求曲线的切线方程2的切线方程是(的平行的抛物线与直线)x?y04?x?y?2注意:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为,bx?y?2?22,又因为,得,得,故选D.代入xy?0??2x?bx1????0b例题3:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.3上的点的切线方程.求过曲线x?x?2y1)?(1,例题4:已知过曲线外一点,求切线方程1求过点且与曲线相切的直线方程.0)(2,?y x3,过点已知函数作曲线的切线,求此切线方程.练习题:xy??x3)xf,A(016)y?( 只供学习与交流.资料收集于网络,如有侵权请联系网站删除看看几个高考题x??1,1?y处的切线方程为在点(2009全国卷Ⅱ)曲线1.2x?12f(x)?g(x)?xy?g(x)(1,g(1))处的切线方程为,曲线2010江西卷)设函数在点2.(y?2x?1y?f(x)(1,f(1))处切线的斜率为,则曲线在点x1?2xy?xe?。

人教A版高中数学选择性必修第二册课后习题 第五章 一元函数的导数及其应用 导数的概念及其几何意义

人教A版高中数学选择性必修第二册课后习题 第五章 一元函数的导数及其应用 导数的概念及其几何意义

5.1.2 导数的概念及其几何意义A 级必备知识基础练1.函数f(的值为( ) A.3B.2C.1D.42.若函数f(x)=16x 2,则f'(-3)的值等于( ) A.32B.1C.-1D.-123.若曲线y=f(x)在点(x 0,f(x 0))处的切线方程为5x-y+1=0,则( ) A.f'(x 0)>0 B.f'(x 0)<0 C.f'(x 0)=0D.f'(x 0)不存在4.已知f(x)=-23x 2,若f'(a)=13,则a 的值等于( ) A.-14B.14C.-49D.345.(多选题)曲线y=9x在点P 处的切线的倾斜角为3π4,则点P 的坐标可能为( ) A.(3,3) B.(-3,-3) C.(9,1)D.(1,9)6.(多选题)已知函数f(x)和g(x)在区间[a,b]上的图象如图所示,则下列说法正确的是( )A.f(x)在[a,b]上的平均变化率等于g(x)在[a,b]上的平均变化率B.f(x)在[a,b]上的平均变化率小于g(x)在[a,b]上的平均变化率C.对于任意x0∈(a,b),函数f(x)在x=x0处的瞬时变化率总大于函数g(x)在x=x0处的瞬时变化率D.存在x0∈(a,b),使得函数f(x)在x=x0处的瞬时变化率小于函数g(x)在x=x0处的瞬时变化率7.函数y=f(x)=x2在x=1处的瞬时变化率是.在点(1,0)处的切线的倾斜角等于.8.曲线y=1-1xB级关键能力提升练9.(多选题)为抑制房价过快上涨,政府出台了一系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地为尽快实现稳定房价,提出多种方案,其中之一就是在规定的时间T内完成房产供应量任务Q.已知房产供应量Q与时间t的函数关系如图所示,则在以下四种房产供应方案中,在时间[0,T]内供应率(单位时间的供应量)不逐步提高的是( )10.利用导数的定义求函数y=f(x)=√x+2在x=2处的导数.11.已知曲线y=x2.(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点P(3,5)的切线方程.5.1.2 导数的概念及其几何意义1.B 由已知得m 2-1-(12-1)m-1=3,∴m+1=3,∴m=2.2.C f'(-3)=limΔx→0f (-3+Δx)-f(-3)Δx=limΔx→016Δx-1=-1.3.A 由切线方程可以看出其斜率是5,又曲线在该点处的切线的斜率就是函数在该点处的导数,所以A正确.4.A 由导数的定义得f'(x)=limΔx→0-23(x+Δx)2-(-23x2)x+Δx-x=limΔx→0-43xΔx-23(Δx)2Δx=lim Δx→0(-43x-23Δx)=-43x,因此f'(a)=-43a=13,则a=-14.5.AB 由导数定义得y'=limΔx→09x+Δx-9xΔx=limΔx→0-9x(x+Δx)=-9x2,设P(x0,y0),则由导数的几何意义可得-9x02=tan3π4=-1,解得x0=±3,从而y0=±3,即点P的坐标为(3,3)或(-3,-3).6.AD ∵f(x)在[a,b]上的平均变化率是f(b)-f(a)b-a,g(x)在[a,b]上的平均变化率是g(b)-g(a)b-a ,又f(b)=g(b),f(a)=g(a),∴f(b)-f(a)b-a=g(b)-g(a)b-a,故A正确,B错误;易知函数f(x)在x=x0处的瞬时变化率是函数f(x)在x=x0处的导数,即函数f(x)的图象在该点处的切线的斜率,同理可得,函数g(x)在x=x0处的瞬时变化率是函数g(x)在x=x0处的导数,即函数g(x)的图象在该点处的切线的斜率,由题中图象可知,当x0∈(a,b)时,函数f(x)的图象在x=x0处切线的斜率有可能大于g(x)的图象在x=x0处切线的斜率,也有可能小于g(x)在x=x0处切线的斜率,故C错误,D正确.故选AD.7.2 ∵y=f(x)=x2,∴在ΔyΔx =(1+Δx)2-12Δx=limΔx→0(2+Δx)=2.8.π4经验证,点(1,0)在曲线上.因为y'|(1-11+Δx)-0Δx=limΔx→011+Δx=1,所以曲线在该点处的切线的斜率等于1,故切线的倾斜角等于π4.9.ACD10.解∵Δy=√(2+Δx)+2−√2+2=√4+Δx-2,ΔyΔx =√4+Δx-2Δx=(√4+Δx-2)(√4+Δx+2)Δx(√4+Δx+2)=√4+Δx+2,∴f'(2)=limΔx→0ΔyΔx=limΔx→√4+Δx+2=14.11.解(1)设切点为((x0+Δx)2-x02Δx=lim Δx→0x02+2x0·Δx+(Δx)2-x02Δx=2x0,∴y'|x=1=2.∴曲线在点P(1,1)处的切线方程为y-1=2(x-1),即2x-y-1=0.(2)点P(3,5)不在曲线y=x2上,设切点为A(x0,y0),由(1)知,y'|x=x=2x0,∴切线方程为y-y0=2x0(x-x0).由P(3,5)在所求直线上,得5-y0=2x0(3-x0), ①再由A(x0,y0)在曲线y=x2上,得y0=x02, ②联立①②得x0=1或x0=5.从而当切点为(1,1)时,切线的斜率为k1=2x0=2,此时切线方程为y-1=2(x-1),即2x-y-1=0.当切点为(5,25)时,切线的斜率为k2=2x0=10,此时切线方程为y-25=10(x-5),即10x-y-25=0.综上所述,过点P(3,5)且与曲线y=x2相切的直线方程为2x-y-1=0或10x-y-25=0.。

高中数学导数知识点归纳的总结及例题(word文档物超所值)

高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(

函数)(x f 有1个极大值点,1个极小值点
y。

高中导数的概念与计算练习题带答案

高中导数的概念与计算练习题带答案

导数概念与计算421 若函数 f(x) ax bx c ,满足 f '⑴ 2,贝y f'( 1)()A .1 B . 2C . 2D . 02•已知点P 在曲线f(x) x 4 x 上,曲线在点P 处的切线平行于直线 3x y 0,则点P 的 坐标为( )A . (0,0)B . (1,1)C . (0,1)D . (1,0)3.已知f(x)xln x ,若 f '(x o )2,则 x o ()2In 2 D . In2A . eB . eC .24.曲线y er 在点 A(0,1)处的切线斜率为()A . 1B . 2C . e 1D .-e5.设 f o (x)sin x , f'x)f o '(x) , f 2(x) f 1 '(x),…,f n 1(x) f n '(x) , n N ,则 f 2013(X )等于()A . sin xB . si nxC . cosxD . cosx 6.已知函数f (x)的勺导函数为f '(x),且满足 f(x :)2xf '(1) Inx ,则 f'(1)()A . eB . 1C . 1D . e7.曲线y Inx 在与x 轴交点的切线方程为_______________________ &过原点作曲线y e x 的切线,则切点的坐标为 _______________ ,切线的斜率为 9•求下列函数的导数,并尽量把导数变形为因式的积或商的形式:(3) f (x) x [ax 2 ln(1 x)2(5) yxe 1 cosx(1) f (x) ax 12ln xx(2) f(x)xe 21 ax(4) y xcosx sin x(6) y10. 已知函数 f(x) In(x 1) x .(I)求f (x)的单调区间;11. 设函数f(x) ax -,曲线y f(x)在点(2, f(2))处的切线方程为x(I)求f (x)的解析式;(n)证明:曲线 y f (x)上任一点处的切线与直线x 0和直线 面积为定值,并求此定值.12. 设函数 f(x) x 2 e x xe x .(I)求f (x)的单调区间;(n)若当x [ 2,2]时,不等式f (x) m 恒成立,求实数 m 的取值范围.(n)求证:当 x1时,1In(x 1) x .x 17x 4y 12 0 .y x 所围成的三角形无忧教育假期培训导数作业1答案 导数概念与计算• •• X0= 1,将其代入f (x )中可得 P (1,0).3.已知 f (x) xlnx ,若 f '(x 。

高二数学下学期导数的概念、运算及导数的几何意义专题复习卷(基础篇)(江苏等八省新高考专用)(解析版)

高二数学下学期导数的概念、运算及导数的几何意义专题复习卷(基础篇)(江苏等八省新高考专用)(解析版)

2020-2021学年高二数学下学期专题专题强化训练试卷一(基础篇)导数的概念、运算及导数的几何意义一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y=在点4x =处的导数是( ) A .18 B .18-C .116D .116-【答案】D【解析】∵12y x-==, ∴3212y x -'=-,∴3324111422216x y --==-⨯=-⨯=-',故选:D .2.已知函数()cos sin f x x x x =-,则2f π⎛⎫' ⎪⎝⎭的值为( )A .2π B .2π-C .1-D .π-【答案】B【解析】因为()cos sin f x x x x =-所以()()cos cos cos cos sin cos sin f x x x x x x x x x x x x '''=+-=--=- 所以sin 2222f ππππ⎛⎫'=-=-⎪⎝⎭,故选:B 3.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+ B .72y x =+ C .4y x =- D .2y x =-【答案】D【解析】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-;当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-;故选:D.4.曲线在点()(),P e f e 处的切线经过点()1,1--,则a 的值为( ) A .1 B .2C .eD .2e【答案】C【解析】因为()ln f x a x =,所以()´af x x=,故()´afe e =,又()f e a =, 所以曲线()ln f x a x =在点()(),P e f e 处的切线方程为()y aa x e e-=-,又该切线过点()1,1--,所以1aa a e--=--,解得a e =,故选:C 。

高考数学专题复习《导数的概念、意义及运算》知识梳理及典型例题讲解课件(含答案)

高考数学专题复习《导数的概念、意义及运算》知识梳理及典型例题讲解课件(含答案)
考点二 导数的几何意义
命题角度1 导数的几何意义
例2 若点 是函数 图象上任意一点,直线 为点 处的切线,则直线 斜率的范围是( )
A. B. C. D.

变式2 已知函数 , .若曲线 在点 处的切线与直线 垂直,则 的值为___.
命题角度2 求切线方程
切线的斜率
自主评价:4. 函数 <m></m> 在点 <m></m> 处的切线方程为( )A. <m></m> B. <m></m> C. <m></m> D. <m>
C
(4)导函数的概念: 当 时, 是一个唯一确定的数,这样,当 变化时, 就是 的函数,我们称它为 的________(简称______). 的导函数有时也记作 ,即 <m></m> .
复合函数
【常用结论】
3.导数的两条性质
(1)奇函数的导数是偶函数,偶函数的导数是奇函数.
(2)可导函数 的导数为 ,若 为增函数,则 的图象是下凹的;反之,若 为减函数,则 的图象是上凸的.
考点一 求导运算
例1 求下列函数的导数:
(1) ;
解:因为 ,所以 .
(2) ;
(2)导数的概念: 如果当 时,平均变化率 无限趋近于一个确定的值,即 有极限,则称 在 处______,并把这个确定的值叫做 在 处的导数(也称为____________),记作_______或 ,即 .
可导
瞬时变化率
练1:设函数,则A. B. C. D.

(3) 在平面直角坐标系 中,点 在曲线 上,且该曲线在点 处的切线经过点 ( 为自然对数的底数),则点 的坐标是______.

导数的概念及运算专题练习(含参考答案)

导数的概念及运算专题练习(含参考答案)

数学 导数的概念及运算1.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=03.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .84.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .45.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B .2 C .22D .36.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________.7.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.8.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.1.(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A .⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-23.(2019·云南第一次统考)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.4.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.5.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.【参考答案】1.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2=( )A .-3π2B .-1π2C .-3πD .-1π解析:选C .因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C .由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.3.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7.所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14.又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.4.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B .由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1B .2C .22D .3解析:选B .因为定义域为(0,+∞),令y ′=2x -1x =1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 6.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________.解析:由题意知,y ′=2x ,所以曲线在点(1,0)处的切线斜率k =y ′|x =1=2,故所求切线方程为y -0=2(x -1),即y =2x -2. 答案:y =2x -27.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e8.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x ,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x -1),令x =0,得y =1.答案:19.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32. (2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1, 所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, 所以x 0=-2,所以y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13.所以直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, 所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.1.(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A .⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x (x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x 2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D.因为f ′(x )=1x ,所以直线l 的斜率为k =f ′(1)=1, 又f (1)=0,所以切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 3.(2019·云南第一次统考)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4.答案:44.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1 k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)5.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,① y 1=-x 21+92x 1-4,② -2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去). 所以k =12.(2)过P 点作切线的垂线, 其方程为y =-2x +5.④ 将④代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4. 6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a , 因为f ′(-1)=0, 所以3a -6-6a =0, 所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线, 则设切点为(x 0,3x 20+6x 0+12). 因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11, ①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, 所以y =f (x )与y =g (x )的公切线是y =9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

高考数学专题《导数的概念、运算及导数的几何意义》习题含答案解析

高考数学专题《导数的概念、运算及导数的几何意义》习题含答案解析

专题4.1 导数的概念、运算及导数的几何意义1.(2021·浙江高三其他模拟)函数312x y +=在0x =处的导数是( )A .6ln 2B .2ln 2C .6D .2【答案】A 【解析】利用符合函数的求导法则()()()()()()f g x '''f g x g x =⋅,求出312x y +=的导函数为3131'223322x x y ln ln ++=⋅⋅=⋅,代入x =0,即可求出函数在x =0处的导数.【详解】312x y +=的导函数为3131'223322x x y ln ln ++=⋅⋅=⋅,故当x =0时,'62y ln =.故选:A2.(2021·黑龙江哈尔滨市·哈师大附中高三月考(文))曲线2cos sin y x x =+在(,2)π-处的切线方程为()A .20x y π-+-=B .20x y π--+=C .20x y π++-=D .20x y π+-+=【答案】D 【解析】先求得导函数,根据切点求得斜线的斜率,再由点斜式即可求得方程.【详解】'2sin cos y x x=-+当x π=时,2sin cos 1k ππ=-+=-所以在点(),2π-处的切线方程,由点斜式可得()21y x π+=-⨯- 化简可得20x y π+-+=故选:D练基础3.(2021·全国高三其他模拟(理))曲线12sin()2x y e x π-=-在点(1,1)-处的切线方程为( )A .0x y -=B .10ex y e --+=C .10ex y e ---=D .20x y --=【答案】D 【解析】根据切点和斜率求得切线方程.【详解】因为12sin()2x y ex π-=-,所以1cos()2x y e x ππ-'=-,当1x =时,1y '=,所以曲线12sin()2x y e x π-=-在点(1,1)-处的切线的斜率1k =,所以所求切线方程为11y x +=-,即20x y --=.故选:D4.(2021·山西高三三模(理))已知a R ∈,设函数()ln 1f x ax x =-+的图象在点(1,(1))f 处的切线为l ,则l 过定点( )A .(0,2)B .(1,0)C .(1,1)a +D .(,1)e 【答案】A 【解析】根据导数几何意义求出切线方程,化成斜截式,即可求解【详解】由()1()ln 1'f x ax x f x a x=-+⇒=-,()'11f a =-,()11f a =+,故过(1,(1))f 处的切线方程为:()()()11+112y a x a a x =--+=-+,故l 过定点(0,2)故选:A5.(2021·云南曲靖一中高三其他模拟(理))设曲线()xf x ae b =+和曲线()cos2xg x c π=+在它们的公共点()0,2M 处有相同的切线,则b c a +-的值为( )A .0B .πC .2-D .3【答案】D 【解析】利用导数的几何意义可知()()00f g '=',可求得a ;根据()0,2M 为两曲线公共点可构造方程求得,b c ,代入可得结果.【详解】()x f x ae '= ,()sin22xg x ππ'=-,()0f a '∴=,()00g '=,0a ∴=,又()0,2M 为()f x 与()g x 公共点,()02f b ∴==,()012g c =+=,解得:1c =,2103b c a ∴+-=+-=.故选:D.6.(2021·重庆高三其他模拟)曲线()ln f x ax x x =-在点()()1,1f 处的切线与直线0x y +=垂直,则a =()A .1-B .0C .1D .2【答案】D 【解析】求得()f x 的导数,可得切线的斜率,由两直线垂直的条件,可得a 的方程,解方程可得所求值.【详解】解:()f x ax xlnx =-的导数为()1f x a lnx '=--,可得在点()()1,1f 处的切线的斜率为()11k f a '==-,由切线与直线0x y +=垂直,可得11a -=,解得2a =,故选:D .7.(2021·重庆八中高三其他模拟)已知定义在()0,∞+上的函数()f x 满足ln a fx x =-,若曲线()y f x =在点()()1,1P f 处的切线斜率为2,则()1f =( )A .1B .1-C .0D .2【答案】C 【解析】先由换元法求出()f x 的解析式,然后求导,利用导数的几何意义先求出a 的值,然后可得出()1f 的值.【详解】设t =,则()22ln t f t t a =-,()22at tf t '=-.由()2212a f =-=',解得0a =,从而()10f a =-=,故选: C .8.(2018·全国高考真题(理))设函数f (x )=x 3+(a ―1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0 , 0)处的切线方程为( )A .y =―2xB .y =―xC .y =2xD .y =x 【答案】D【解析】分析:利用奇函数偶此项系数为零求得a =1,进而得到f (x )的解析式,再对f (x )求导得出切线的斜率k ,进而求得切线方程.详解:因为函数f (x )是奇函数,所以a ―1=0,解得a =1,所以f (x )=x 3+x ,f′(x )=3x 2+1,所以f′(0)=1,f (0)=0,所以曲线y =f (x )在点(0,0)处的切线方程为y ―f (0)=f′(0)x ,化简可得y =x ,故选D.9.(2021·河南洛阳市·高三其他模拟(理))设曲线2xy x =-在点()3,3处的切线与直线10ax y ++=平行,则a 等于( )A .12B .2C .12-D .2-【答案】B 【解析】利用导数求出曲线 2xy x =-在点()3,3处的切线的斜率,利用两直线平行可得出实数a 的值.【详解】对函数2x y x =-求导得()()222222x x y x x --'==---,由已知条件可得32x a y ='-==-,所以,2a =.故选:B.10.(2020·河北高三其他模拟(文))已知曲线()xax e f x x =+在点()()0,0f 处的切线斜率为2,则a =___________.【答案】1【解析】求导数,由导数的几何意义,可得切线的斜率,解方程即可求解.【详解】解:()xax e f x x =+的导数为()()1xf x a x e =++',可得曲线()xax e f x x =+在点()()0,0f 处的切线斜率为12a +=,解得1a =.故答案为:1.1.(2021·浙江金华市·高三三模)已知点P在曲线y =θ为曲线在点P 处的切线的倾斜角,则θ的取值范围是( )A .0,3π⎛⎤ ⎥⎝⎦B .,32ππ⎡⎫⎪⎢⎣⎭C .2,23ππ⎛⎤⎥⎝⎦D .2,3ππ⎡⎫⎪⎢⎣⎭【答案】D 【解析】首先根据导数的几何意义求得切线斜率的取值范围,再根据倾斜角与斜率之间的关系求得倾斜角的取值范围.【详解】因为y ==',由于124xxe e ++≥,所以[y ∈',根据导数的几何意义可知:tan [θ∈,所以2[,)3πθπ∈,故选:D.练提升2.(2021·四川成都市·石室中学高三三模)已知函数()2xf x ae x =+的图象在点()()1,1M f 处的切线方程是()22y e x b =++,那么ab =( )A .2B .1C .1-D .2-【答案】D 【解析】根据导数的几何意义确定斜率与切点即可求解答案.【详解】因为()2xf x ae x =+,所以()2x f x ae x '=+,因此切线方程的斜率(1)2k f ae '==+,所以有222ae e +=+,得2a =,又切点在切线上,可得切点坐标为(1,22)e b ++,将切点代入()f x 中,有(1)2122f e e b =+=++,得1b =-,所以2ab =-.故选:D.3.(2021·四川成都市·成都七中高三月考(文))已知直线l 为曲线sin cos y x x x =+在2x π=处的切线,则在直线l 上方的点是( )A .,12π⎛⎫⎪⎝⎭B .()2,0C .(),1π-D .()1,π-【答案】C 【解析】利用导数的几何意义求得切线的方程,进而判定点与切线的位置关系即可.【详解】'cos cos sin 2cos sin y x x x x x x x =+-=-,22x y ππ==-',又 当2x π=时,1y =,所以切线的方程为122y x ππ⎛⎫=--+ ⎪⎝⎭,对于A,当2x π=时,1y =,故点,12π⎛⎫⎪⎝⎭在切线上;对于B,当2x =时,2921π11 3.2502244y πππππ⎛⎫=--+=-++>-++=-> ⎪⎝⎭,故点()2,0在切线下方;对于C,当x π=时,2π91111,2512244y πππ⎛⎫=--+=-+<-+=-<- ⎪⎝⎭,故点(),1π-在切线上方;对于D,当x =1时,211122242y ππππππ⎛⎫=--+=-++>->- ⎪⎝⎭,故点()1,π-在切线下方.故选:C.4.(2021·甘肃高三二模(理))已知函数()ln f x x x =,()2g x x ax =+()a ∈R ,若经过点()0,1A -存在一条直线l 与()f x 图象和()g x 图象都相切,则a =( )A .0B .-1C .3D .-1或3【答案】D 【解析】先求得过()0,1A -且于()f x 相切的切线方程,然后与()()2g x x ax a =+∈R 联立,由0∆=求解.【详解】设直线l 与()ln f x x x =相切的切点为(),ln m m m ,由()ln f x x x =的导数为()1ln f x x '=+,可得切线的斜率为1ln m +,则切线的方程为()()ln 1ln y m m m x m -=+-,将()0,1A -代入切线的方程可得()()1ln 1ln 0m m m m --=+-,解得1m =,则切线l 的方程为1y x =-,联立21y x y x ax=-⎧⎨=+⎩,可得()2110x a x +-+=,由()2140a ∆=--=,解得1a =-或3,故选:D .5.(2021·安徽省泗县第一中学高三其他模拟(理))若点P 是曲线2ln 1y x x =--上任意一点,则点P 到直线3y x =-的最小距离为( )A .1BCD .2【答案】C 【解析】由已知可知曲线2ln 1y x x =--在点P 处的切线与直线3y x =-平行,利用导数求出点P 的坐标,利用点到直线的距离公式可求得结果.【详解】因为点P 是曲线2ln 1y x x =--任意一点,所以当点P 处的切线和直线3y x =-平行时,点P 到直线的3y x =-的距离最小,因为直线3y x =-的斜率等于1,曲线2ln 1y x x =--的导数12y x x'=-,令1y '=,可得1x =或12x =-(舍去),所以在曲线2ln 1y x x =--与直线3y x =-平行的切线经过的切点坐标为()1,0,所以点P 到直线3y x =-的最小距离为d .故选:C.6.(2021·安徽省舒城中学高三三模(理))若函数()ln f x x x =+与2()1x mg x x -=-的图象有一条公共切线,且该公共切线与直线21y x =+平行,则实数m =( )A .178B .176C .174D .172【答案】A 【解析】设函数()ln f x x x =+图象上切点为00(,)x y ,求出函数的导函数,根据0()2f x '=求出切点坐标与切线方程,设函数()21x m g x x -=-的图象上的切点为11(,)x y 1(1)x ≠,根据1()2g x '=,得到211244m x x =-+,再由1112211x mx x --=-,即可求出1x ,从而得解;【详解】解:设函数()ln f x x x =+图象上切点为00(,)x y ,因为1()1f x x'=+,所以001()12f x x '=+=,得01x =, 所以00()(1)1y f x f ===,所以切线方程为12(1)y x -=-,即21y x =-,设函数()21x mg x x -=-的图象上的切点为11(,)x y 1(1)x ≠,因为222(1)(2)2()(1)(1)x x m m g x x x ----'==--,所以1212()2(1)m g x x -'==-,即211244m x x =-+,又11111221()1x m y x g x x -=-==-,即211251m x x =-+-,所以221111244251x x x x -+=-+-,即2114950x x -+=,解得154x =或11x =(舍),所以25517244448m ⎛⎫=⨯-⨯+= ⎪⎝⎭.故选:A7.(2021·全国高三其他模拟)已知直线y =2x 与函数f (x )=﹣2lnx +xe x +m 的图象相切,则m =_________.【答案】2ln 4-+【解析】设出切点()00000,2ln ,0xx x x e m x -++>,根据切线方程的几何意义,得到()00000002ln 2212x x x x e m x x e x ⎧-++=⎪-⎨++=⎪⎩,解方程组即可.【详解】因为()2ln xf x x xe m =-++,所以()()21x f x x e x-'=++设切点为()00000,2ln ,0xx x x e m x -++>,所以切线的斜率为()()000021x k f x x e x -'==++又因为切线方程为y =2x ,因此()00000002ln 2212x x x x e m x x e x ⎧-++=⎪-⎨++=⎪⎩,由()000212x x e x -++=,得()000210x x e x ⎛⎫+-= ⎪⎝⎭,因为010x +≠,所以02x ex =,又00ln 2ln x x =-,所以()000022ln 2ln 2ln x x m x x -+⋅+=-,得2ln 4m =-+.故答案为:2ln 4-+.8.(2021·黑龙江佳木斯市·佳木斯一中高三三模(理))若两曲线y =x 2+1与y =a ln x +1存在公切线,则正实数a 的取值范围是_________.【答案】(0,2e ]【解析】设公切线与曲线y =x 2+1和y =a ln x +1的交点分别为(x 1,x 12+1),(x 2,a ln x 2+1),其中x 2>0,然后分别求出切线方程,对应系数相等,可以得到122122111a x x x a nx a⎧=⎪⎨⎪-=+-⎩,然后转化为﹣2224a x =a ln x 2﹣a ,,然后参变分离得到a =4x 2﹣4x 2ln x ,进而构造函数求值域即可.【详解】解:设公切线与曲线y =x 2+1和y =a ln x +1的交点分别为(x 1,x 12+1),(x 2,a ln x 2+1),其中x 2>0,对于y =x 2+1,y ′=2x ,所以与曲线y =x 2+1相切的切线方程为:y ﹣(x 12+1)=2x 1(x ﹣x 1),即y =2x 1x ﹣x 12+1,对于y =a ln x +1,y ′=ax,所以与曲线y =a ln x +1相切的切线方程为y ﹣(a ln x 2+1)=2a x (x ﹣x 2),即y =2ax x ﹣a +1+a ln x 2,所以122122111a x x x a nx a⎧=⎪⎨⎪-=+-⎩,即有﹣2224a x =a ln x 2﹣a ,由a >0,可得a =4x 2﹣4x 2ln x ,记f (x )=4x 2﹣4x 2ln x (x >0),f ′(x )=8x ﹣4x ﹣8x ln x =4x (1﹣2ln x ),当x时,f ′(x )>0,即f (x )在(0x时,f ′(x )<0,即f (x ),+∞)上单调递减,所以f (x )max =f)=2e ,又x →0时,f (x )→0,x →+∞时,f (x )→﹣∞,所以0<a ≤2e .故答案为:(0,2e ].9.(2021·湖南永州市·高三其他模拟)已知函数()2ln f x x x =+,点P 为函数()f x 图象上一动点,则P 到直线34y x =-距离的最小值为___________.(注ln 20.69≈)【解析】求出导函数,利用导数的几何意义求出切线与已知直线平行时切点坐标,然后转化为求点到直线的距离即可求解.【详解】解:()12f x x x'=+,()0x >,与直线34y x =-平行的切线斜率132k x x ==+,解得1x =或12x =,当1x =时,()11f =,即切点为()1,1,此时点P 到直线34y x =-的距离为d 当12x =时,11ln 224f ⎛⎫=- ⎪⎝⎭,即切点为11,ln 224⎛⎫- ⎪⎝⎭,此时点P 到直线34y x =-的距离为d =>10.(2021·湖北荆州市·荆州中学高三其他模拟)已知1P ,2P 是曲线:2|ln |C y x =上的两点,分别以1P ,2P 为切点作曲线C 的切线1l ,2l ,且12l l ⊥,切线1l 交y 轴于A 点,切线2l 交y 轴于B 点,则线段AB 的长度为___________.【答案】44ln 2-【解析】由两切线垂直可知,1P ,2P 两点必分别位于该函数的两段上,故可设出切点坐标111222(,),(,)P x y P x y ,表示出两条切线方程,根据两切线垂直,可得124x x =,又两切线分别与y 轴交于1(0,22ln )A x -,2(0,22ln )B x -+,则可求出44ln 2AB =-.【详解】曲线2ln ,01:2ln ,1x x C y x x -<<⎧=⎨≥⎩ ,则2,012,1x x y x x⎧-<<⎪⎪=⎨'⎪≥⎪⎩,设111222(,),(,)P x y P x y ,两切线斜率分别为1k ,2k ,由12l l ⊥得121k k =-,则不妨设1201,1x x <<³,111(,2ln )P x x \-,112k x =-,11112:2ln ()l y x x x x +=--,令0x =,得1(0,22ln )A x -222(,2ln )P x x ,222k x =,22222:2ln ()l y x x x x -=-,令0x =,得2(0,22ln )B x -+由121k k =-,即12221x x -×=-,得124x x =,则1242ln()44ln 2AB x x =-=-.故答案为:44ln 2-.1.(2021·全国高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a<B .e a b <C .0e ba <<D .0e ab <<【答案】D【解析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;练真题解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【详解】在曲线x y e =上任取一点(),t P t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()tt y e e x t -=-,即()1t t y e x t e =+-,由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()t f t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D.2.(2020·全国高考真题(理))函数的图像在点处的切线方程为()A .B .C .D .【答案】B【解析】,,,,因此,所求切线的方程为,即.故选:B.3.(2020·全国高考真题(理))若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D【解析】43()2f x x x =-(1(1))f ,21y x =--21y x =-+23y x =-21y x =+()432f x x x =- ()3246f x x x '∴=-()11f ∴=-()12f '=-()121y x +=--21y x =-+设直线l在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k =,设直线l的方程为)0y x x -=-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D.4.(2020·全国高考真题(文))设函数.若,则a =_________.【答案】1【解析】由函数的解析式可得:,则:,据此可得:,整理可得:,解得:.故答案为:.5.(2019·全国高考真题(文))曲线在点处的切线方程为___________.【答案】.【解析】所以,所以,曲线在点处的切线方程为,即.6.(2020·全国高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.e ()xf x x a =+(1)4e f '=()()()()()221x xx e x a e e x a f x x a x a +-+-'==++()()()()12211111e a aef a a ⨯+-'==++()241ae e a =+2210a a -+=1a =123()e x y x x =+(0,0)30x y -=/223(21)3()3(31),x x x y x e x x e x x e =+++=++/0|3x k y ===23()e x y x x =+(0,0)3y x =30x y -=【答案】2y x=【解析】设切线的切点坐标为001(,),ln 1,1x y y x x y x =++'=+,00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2),所求的切线方程为22(1)y x -=-,即2y x =.故答案为:2y x =.。

第01讲 导数的概念及其意义、导数的运算(十二大题型)2025年高考数学一轮复习讲练测

第01讲 导数的概念及其意义、导数的运算(十二大题型)2025年高考数学一轮复习讲练测

(0 +ℎ)−(0 −ℎ)
(, ),则 lim

ℎ→0

A.′ 0
B.2′ 0
C.−2 ′ 0
D.0
【答案】B
0 +ℎ − 0 −ℎ
【解析】由题意知, lim

ℎ→0
0 +ℎ − 0 −ℎ
ℎ→0 0 +ℎ − 0 −ℎ
= 2lim
故选:B
= 2′ 0 .
变化率为( )
3
A.
300
cm/s

3
B.
3
300
cm/s

C.
150
cm/s

3
D.
150
cm/s

【答案】C
2
1
1
【解析】设注入溶液的时间为(单位:s)时,溶液的高为ℎcm,则 π ⋅ ℎ
3
5
因为ℎ′ =
1 3 150
,所以当
3 π 2
= π时,ℎ′ =
1 3 150
3
π3
即圆锥容器内的液体高度的瞬时变化率为
1
【解析】() = ′(1) −1 − (0) + 2 2 ⇒ ′() = ′(1) −1 − (0) +
令 = 1得: (0) = 1
() =
′(1) −1
−+
1 2

2
⇒ (0) = ′(1) −1 = 1 ⇔ ′(1) =
1
得:() = − + 2 2
则 ′ (0) = 1且(0) = 0,即切线的斜率为 = 1,切点坐标为(0,0),
所以切线方程为 = .

2023年新高考数学一轮复习4-1 导数的概念、运算及导数的几何意义(真题测试)含详解

2023年新高考数学一轮复习4-1 导数的概念、运算及导数的几何意义(真题测试)含详解

专题4.1 导数的概念、运算及导数的几何意义(真题测试)一、单选题1. (2021·四川省叙永第一中学校高三阶段练习)对于以下四个函数:①y x =;②2y x ;③3y x =;④1y x=.在区间[]1,2上函数的平均变化率最大的是( ) A .①B .②C .③D .④2.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+3.(2006·安徽·高考真题(理))若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 4.(2019·全国·高考真题(文))曲线y =2sin x +cos x 在点(π,–1)处的切线方程为( ) A .10x y --π-= B .2210x y --π-= C .2210x y +-π+=D .10x y +-π+=5.(2016·山东·高考真题(文))若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x =B .ln y x =C .x y e =D .3y x =6.(2018·全国·高考真题(文))设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.(2016·四川·高考真题(文))设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P­2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)8.(2022·四川省内江市第六中学模拟预测(文))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( )A .e 2B .eCD .2e二、多选题9.(2022·黑龙江·哈尔滨三中高二阶段练习)近两年为抑制房价过快上涨,政府出台了一系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中一项就是在规定的时间T 内完成房产供应量任务S .已知房产供应量S 与时间t 的函数关系如图所示,则在以下各种房产供应方案中,在时间[]0,T 内供应效率(单位时间的供应量)不是..逐步提高的( ) A . B .C .D .10.(2022·吉林·长春市第二实验中学高二期中)若曲线()sin 1f x x x =-在πx =处的切线与直线210ax y ++=互相垂直,则( )A .()sin cos f x x x x '=-B .()sin cos f x x x x '=+C .()ππf '=-D .2πa =-11.(2022·广东·二模)吹气球时,记气球的半径r 与体积V 之间的函数关系为r (V ),()r V '为r (V )的导函数.已知r (V )在03V ≤≤上的图象如图所示,若1203V V <≤≤,则下列结论正确的是( )A.()()()()10211021r r r r --<-- B .()()'1'2r r > C .()()121222r V r V V V r ++⎛⎫< ⎪⎝⎭D .存在()012,V V V ∈,使得()()()21021r V r V r V V V --'=12.(2022·全国·高三专题练习)已知0,0a b >>,直线y x a =+与曲线1e 21x y b -=-+相切,则下列不等式成立的是( )A .18ab ≤B .218a b+≤C D .3a b +≤三、填空题13.(2015·天津·高考真题(文))已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为_________.14.(2015·全国·高考真题(文))已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=________.15.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 16.(2012·浙江·高考真题(文))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________. 四、解答题17.(2022·浙江·高三专题练习)已知()f x '是一次函数,()()()2212x f x x f x '--=,求()f x 的解析式.18.(2021·全国·高三专题练习)已知曲线313y x =.求该曲线的过点82,3P ⎛⎫ ⎪⎝⎭的切线方程.19.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限. (1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.20.(2011·陕西·高考真题(理))如图,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P ,再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1P ,1Q ;2P ,2Q ;;n P ,n Q 记k P 点的坐标为(,0)k x (1,2,,k n =)(1)试求k x 与1k x -的关系(2k n ≤≤) (2)求1122n n PQ P Q P Q +++21.(2022·四川·绵阳中学实验学校模拟预测(文))已知曲线()()()211ln ,2f x x x x ax b a b =+--+∈R 在1x =处的切线经过坐标原点.(1)求b 的值;(2)若()0f x ≤,求a 的取值范围.22.(2020·北京·高考真题)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.专题4.1 导数的概念、运算及导数的几何意义(真题测试)一、单选题1. (2021·四川省叙永第一中学校高三阶段练习)对于以下四个函数:①y x =;①2y x ;①3y x =;①1y x=.在区间[]1,2上函数的平均变化率最大的是( ) A .① B .②C .③D .④【答案】C 【解析】 【分析】分析求出四个函数的平均变化率,然后比较即可. 【详解】①21121y x ∆-==∆-,②41321y x ∆-==∆-,③81721y x ∆-==∆-,④1112212y x -∆==-∆-. 故选:C .2.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】 【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-, 因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B.3.(2006·安徽·高考真题(理))若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 【答案】A 【解析】【详解】与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A4.(2019·全国·高考真题(文))曲线y =2sin x +cos x 在点(π,–1)处的切线方程为( ) A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+=【答案】C 【解析】 【分析】先判定点(,1)π-是否为切点,再利用导数的几何意义求解. 【详解】当x π=时,2sin cos 1y =π+π=-,即点(,1)π-在曲线2sin cos y x x =+上.2cos sin ,y x x '=-2cos sin 2,x y πππ=∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .5.(2016·山东·高考真题(文))若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x = B .ln y x = C .x y e = D .3y x =【答案】A 【解析】 【分析】若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案. 【详解】解:函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直, 则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1, 当y =sin x 时,y ′=cos x ,满足条件;当y =lnx 时,y ′1x=>0恒成立,不满足条件;当y =ex 时,y ′=ex >0恒成立,不满足条件;当y =x 3时,y ′=3x 2>0恒成立,不满足条件; 故选A .6.(2018·全国·高考真题(文))设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =【答案】D 【解析】 【详解】分析:利用奇函数偶次项系数为零求得1a =,进而得到()f x 的解析式,再对()f x 求导得出切线的斜率k ,进而求得切线方程.详解:因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以3()f x x x =+,2()31x f 'x =+, 所以'(0)1,(0)0f f ==,所以曲线()y f x =在点(0,0)处的切线方程为(0)'(0)y f f x -=, 化简可得y x =,故选D.7.(2016·四川·高考真题(文))设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P­2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A .(0,1) B .(0,2) C .(0,+∞) D .(1,+∞)【答案】A 【解析】 【详解】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A . 8.(2022·四川省内江市第六中学模拟预测(文))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( ) A .e 2B .e CD .2e【答案】B 【解析】 【分析】分别设公切线与()21f x x =+和:()2ln 1C g x a x =+的切点()211,1x x +,()22,2ln 1x a x +,根据导数的几何意义列式,再化简可得2222222ln a x x x =-,再求导分析22()22ln (0)h x x x x x =-⋅>的最大值即可【详解】()2f x x '=,()2a g x x'=,设公切线与()21f x x =+的图象切于点()211,1x x +,与曲线:()2ln 1C g x a x =+切于点()22,2ln 1x a x +,∴()()2221211221212ln 1122ln 2a x x a a x x x x x x x x +-+-===--,故12a x x =,所以212211212ln 2x x x x x x x -=-,∴122222ln x x x x =-⋅,∵12a x x =,故2222222ln a x x x =-,设22()22ln (0)h x x x x x =-⋅>,则()2(12ln )h x x x '=-,∴()h x在上递增,在)+∞上递减,∴max ()e h x h ==, ∴实数a 的最大值为e 故选:B. 二、多选题9.(2022·黑龙江·哈尔滨三中高二阶段练习)近两年为抑制房价过快上涨,政府出台了一系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中一项就是在规定的时间T 内完成房产供应量任务S .已知房产供应量S 与时间t 的函数关系如图所示,则在以下各种房产供应方案中,在时间[]0,T 内供应效率(单位时间的供应量)不是..逐步提高的( )A . B .C .D .【答案】ACD 【解析】 【分析】根据变化率的知识,结合曲线在某点处导数的几何意义,可得结果. 【详解】单位时间的供应量逐步提高时,供应量的增长速度越来越快,图象上切线的斜率随着自变量的增加会越来越大,则曲线是上升的,且越来越陡,故函数的图象应一直下凹的.则选项B 满足条件,所以在时间[0,T ]内供应效率(单位时间的供应量)不是逐步提高的是ACD 选项, 故选:ACD.10.(2022·吉林·长春市第二实验中学高二期中)若曲线()sin 1f x x x =-在πx =处的切线与直线210ax y ++=互相垂直,则( )A .()sin cos f x x x x '=-B .()sin cos f x x x x '=+C .()ππf '=-D .2πa =-【答案】BCD 【解析】 【分析】由已知,选项A 、选项B ,可根据给出的曲线解析式直接求导做出判断,选项C ,可将πx =带入求解出的()f x '中进行求解判断,选项D ,根据求解出的()πf '结合直线方程的斜率,利用在πx =处的切线与直线互相垂直即可列出等量关系,求解出a 的值.【详解】选项A ,已知曲线()sin 1f x x x =-,所以()sin cos f x x x x '=+,故该选项错误; 选项B ,已知曲线()sin 1f x x x =-,所以()sin cos f x x x x '=+,故该选项正确;选项C ,因为()sin cos f x x x x '=+,所以()πsin ππcos πf '=+0ππ=-=-,故该选项正确;选项D ,直线210ax y ++=的斜率为2a-,而()ππf '=-,由已知,曲线()sin 1f x x x =-在πx =处的切线与直线210ax y ++=互相垂直,所以(π)12a--=-,所以2πa =-,该选项正确; 故选:BCD.11.(2022·广东·二模)吹气球时,记气球的半径r 与体积V 之间的函数关系为r (V ),()r V '为r (V )的导函数.已知r (V )在03V ≤≤上的图象如图所示,若1203V V <≤≤,则下列结论正确的是( )A .()()()()10211021r r r r --<-- B .()()'1'2r r > C .()()121222r V r V V V r ++⎛⎫< ⎪⎝⎭D .存在()012,V V V ∈,使得()()()21021r V r V r V V V --'=【答案】BD 【解析】 【分析】 A :设()()()()1021tan ,tan =1021r r r r αθ--=--,由图得αθ>,所以该选项错误; B:根据图象和导数的几何意义得()()12r r '>',所以该选项正确; C:设120,3,V V == 3(3)()22r r >,所以该选项错误;D:结合图象和导数的几何意义可以判断该选项正确. 【详解】 解:A :设()()()()1021tan ,tan =1021r r r r αθ--=--,由图得αθ>,所以tan tan ,αθ>所以()()()()10211021r r r r -->--,所以该选项错误;B:由图得图象上点的切线的斜率越来越小,根据导数的几何意义得()()12r r '>',所以该选项正确;C:设()()1212123(3)=(0,3,),2222r V r V V V r r V V r ++⎛⎫= ⎪⎝⎭==∴,因为3()(0)2r r ->3(3)(),2r r -所以3(3)()22r r >,所以该选项错误; D:()()2121r V r V V V --表示1122(,()),(,())A V r V B V r V 两点之间的斜率,()0r V '表示00(,())C V r V 处切线的斜率,由于()012,V V V ∈,所以可以平移直线AB 使之和曲线相切,切点就是点C ,所以该选项正确. 故选:BD12.(2022·全国·高三专题练习)已知0,0a b >>,直线y x a =+与曲线1e 21x y b -=-+相切,则下列不等式成立的是( ) A .18ab ≤B .218a b+≤C D .3a b +≤【答案】AC 【解析】 【分析】利用导数的几何意义,求出a ,b 的关系,再结合均值不等式逐项分析、计算并判断作答. 【详解】设直线y x a =+与曲线1e 21x y b -=-+相切的切点为00(,)x y , 由1e 21x y b -=-+求导得:1e x y -'=,则有01e 1x -=,解得01x =, 因此,0122y a b =+=-,即21a b +=,而0,0a b >>,对于A ,211212()2228a b ab a b +=⋅⋅≤=,当且仅当122a b ==时取“=”,A 正确;对于B ,21214(2)()448b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,即122a b ==时取“=”,B 不正确;对于C ,因22332(2)222a a b b a b +=+++=+=,则有232≤,=4a b =时取“=”,由214a b a b+=⎧⎨=⎩得21,36a b ==,所以当21,36a b ==时,max C 正确; 对于D ,由21a b +=,0,0a b >>得,102b <<,11(,1)2a b b +=-∈,而函数3x y =在R 上单调递增,33a b +<,D 不正确. 故选:AC 三、填空题13.(2015·天津·高考真题(文))已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为_________. 【答案】3 【解析】'()ln f x a x a =+,所以'(1)3f a ==.14.(2015·全国·高考真题(文))已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=________. 【答案】8 【解析】 【详解】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.15.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 【答案】2y x = 【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可. 【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =.16.(2012·浙江·高考真题(文))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________. 【答案】94【解析】 【详解】试题分析:由新定义可知,直线与曲线相离,圆的圆心到直线的距离为,此时直线与圆相离,根据新定义可知,曲线到直线的距离为,对函数求导得,令,故曲线在处的切线方程为,即,于是曲线到直线的距离为,则有,解得或,当时,直线与曲线相交,不合乎题意;当时,直线与曲线相离,合乎题意.综上所述,.四、解答题17.(2022·浙江·高三专题练习)已知()f x '是一次函数,()()()2212x f x x f x '--=,求()f x 的解析式.【答案】()2442f x x x =++【解析】 【分析】分析可知,函数()f x 为二次函数,可设()()20f x ax bx c a =++≠,根据导数的运算法则结合已知条件可得出关于a 、b 、c 的方程组,解出这三个未知数的值,即可得出函数()f x 的解析式. 【详解】由()f x '为一次函数可知()f x 为二次函数.设()()20f x ax bx c a =++≠,则()2f x ax b '=+.所以,()()()()()()222212212x f x x f x x ax b x ax bx c '--=+--++=,即()()2220a b x b c x c -+-+-=,所以,02020a b b c c -=⎧⎪-=⎨⎪-=⎩,解得442a b c =⎧⎪=⎨⎪=⎩,因此,()2442f x x x =++.18.(2021·全国·高三专题练习)已知曲线313y x =.求该曲线的过点82,3P ⎛⎫⎪⎝⎭的切线方程.【答案】123160x y --=或3320x y -+=. 【解析】 【分析】设出曲线过P 点的切线方程的切点坐标,把切点的横坐标代入到导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P 的坐标带入到切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可. 【详解】解:设切点坐标为()00,x y ,切点在曲线上,∴在点()00,x y 处切线的斜率为020x x k y x =='=.∴切线方程为()2000y y x x x -=-.又切线过点82,3P ⎛⎫ ⎪⎝⎭,且切点()00,x y 在曲线313y x =上()200030082,31,3y x x y x ⎧-=-⎪⎪∴⎨⎪=⎪⎩整理得3200340x x -+=,即()()200210x x -+=,解得02x =或01x =-.∴当02x =,083y =,即切线斜率为4时,切线的方程为123160x y --=;当01x =-,031y =-,即切线斜率为1时,切线的方程为3320x y -+=.综上,所求切线方程为123160x y --=或3320x y -+=.19.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限. (1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程. 【答案】(1)(1,4)--; (2)4170x y ++=. 【解析】 【分析】(1)设点000(,)P x y ,求出给定函数的导数,再利用导数的几何意义,列式计算作答. (2)求出直线l 的斜率,由(1)的结论结合直线的点斜式方程求解作答. (1)由32y x x =+-求导得:231y x '=+,设切点000(,)P x y ,而点0P 在第三象限,即000,0x y <<,依题意,20314x +=,解得:01x =-,此时,04y =-,显然点(1,4)--不在直线410x y --=上,所以切点0P 的坐标为(1,4)--. (2)直线1l l ⊥,而1l 的斜率为4,则直线l 的斜率为14-,又l 过切点0P (1,4)--,于是得直线l 的方程为14(1)4y x +=-+,即4170x y ++=,所以直线l 的方程为:4170x y ++=.20.(2011·陕西·高考真题(理))如图,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P ,再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1P ,1Q ;2P ,2Q ;;n P ,n Q 记k P 点的坐标为(,0)k x (1,2,,k n =)(1)试求k x 与1k x -的关系(2k n ≤≤)(2)求1122n n PQ P Q P Q +++【答案】(1)11k k x x -=-()2k n ≤≤(2)11ne e e --- 【解析】 【详解】(1)根据函数的导数求切线方程,然后再求切线与x 轴的交点坐标;(2)尝试求出通项n n P Q 的表达式,然后再求和.(1)设点1k P -的坐标是1(,0)k x -,∵x y e =,∴x y e '=, ∴111(,)k x k k Q x e---,在点111(,)k x k k Q x e ---处的切线方程是111()k k x x k y e e x x ----=-,令0y =,则11k k x x -=-(2k n ).(2)∵10x =,11k k x x --=-,∴(1)k x k =--,∴(1)k x k k k PQ e e--==,于是有 112233n n PQ PQ PQ P Q ++++12(1)1111n k e e e ee -------=++++=-11ne e e --=-, 即112233n n PQ PQ PQ P Q ++++11ne e e --=-.21.(2022·四川·绵阳中学实验学校模拟预测(文))已知曲线()()()211ln ,2f x x x x ax b a b =+--+∈R 在1x =处的切线经过坐标原点.(1)求b 的值; (2)若()0f x ≤,求a 的取值范围. 【答案】(1)32b = (2)[)1,+∞【解析】 【分析】(1)利用导数的几何意义可求得()f x 在1x =处的切线方程,代入坐标原点即可求得b ;(2)采用分离变量的方式可得()1131ln 22a g x x x x x ⎛⎫≥=+-+ ⎪⎝⎭,利用导数可求得()g x 单调性,由此可得()max 1g x =,进而得到a 的取值范围.(1)()1ln x f x x x a x+'=+--,()11f a '∴=-,又()112f a b =--+,()f x ∴在1x =处的切线为:()()1112y a b a x ++-=--,又该切线过原点,112a b a ∴+-=-+,解得:32b =.(2)由(1)得:()()2131ln 22f x x x x ax =+--+,()f x 定义域为()0,∞+;若()0f x ≤恒成立,则1131ln 22a x x x x ⎛⎫≥+-+ ⎪⎝⎭;令()1131ln 22g x x x x x ⎛⎫=+-+ ⎪⎝⎭,则()222ln 212x x x g x x--+-'=; 令()22ln 21h x x x x =--+-,则()()221x x h x x-+'=-;210x x -+>恒成立,()0h x '∴<,()h x ∴在()0,∞+上单调递减,又()10h =,∴当()0,1x ∈时,()0h x '>;当()1,x ∈+∞时,()0h x '<;()g x ∴在()0,1上单调递增,在()1,+∞上单调递减,()()max 131122g x g ∴==-+=,1a ∴≥,即a 的取值范围为[)1,+∞.22.(2020·北京·高考真题)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程; (Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)[方法一]:导数法显然0t ≠,因为()y f x =在点()2,12t t -处的切线方程为:()()2122y t t x t --=--, 令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t+-+-= 222223(4)(12)3(2)(2)(12)44t t t t t t t -+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()S t 在()0,2上递减,在()2,+∞上递增, 所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. [方法二]【最优解】:换元加导数法 ()()2222121121()12(0)2|2|4||t t S t t t t t ++=⋅⋅+=⋅≠.因为()S t 为偶函数,不妨设0t >,221()4S t =⋅,令a =2,0t a a =>.令412()a g a a +=,则面积为21[()]4S g a =,只需求出412()a g a a+=的最小值.34422412312()a a a a g a a a ⋅---='=()()()222223223(2a a a a a a a-++==.因为0a >,所以令()0g a '=,得a = 随着a 的变化,(),()g a g a '的变化情况如下表:所以min [()]g a g ===所以当a =2t =时,2min 1[()]324S t =⨯=. 因为[()]S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==. 综上,当2t =±时,()S t 的最小值为32. [方法三]:多元均值不等式法同方法二,只需求出412()(0)a g a a a +=>的最小值.令4312444()a g a a a a a a +==+++≥=当且仅当34a a=,即a =所以当a =2t =时,2min 1[()]324S t =⨯=.因为()S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==.综上,当2t =±时,()S t 的最小值为32. [方法四]:两次使用基本不等式法同方法一得到()()()()()22222222222121241646464()41616324||444tt t t S t t t t t t ++++++=≥==+++≥=+++ ,下同方法一. 【整体点评】(Ⅱ)的方法一直接对面积函数求导数,方法二利用换元方法,简化了运算,确定为最优解;方法三在方法二换元的基础上,利用多元均值不等式求得最小值,运算较为简洁;方法四两次使用基本不等式,所有知识最少,配凑巧妙,技巧性较高.60。

(完整版)导数的几何意义(基础练习题)

(完整版)导数的几何意义(基础练习题)

导数的几何意义(1)1.设f(x)=1x,则limx→af x-f ax-a等于( )A.-1aB.2aC.-1a2D.1a22.在曲线y=x2上切线倾斜角为π4的点是( )A.(0,0) B.(2,4)C.(14,116) D.(12,14)3.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( )A.1 B.1 2C.-12D.-14.若曲线y=h(x)在点P(a,h(a))处切线方程为2x+y+1=0,则( )A.h′(a)<0 B.h′(a)>0C.h′(a)=0 D.h′(a)的符号不定5.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t之间的函数关系为s=18t2,则当t=2时,此木块在水平方向的瞬时速度为( )A. 2B. 1C.12D.146.函数f (x )=-2x 2+3在点(0,3)处的导数是________.7.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________.8.设曲线y =x 2在点P 处的切线斜率为3,则点P 的坐标为________.9.已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程.10.求双曲线y =1x 在点(12,2)处的切线的斜率,并写出切线方程.导数的几何意义(2)1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在2.函数在处的切线斜率为( ) A .0 B 。

1 C 。

2 D 。

33.曲线y =12x 2-2在点⎝ ⎛⎭⎪⎫1,-32处切线的倾斜角为( )A .1B.π4 C.54πD .-π44.在曲线y =x 2上切线的倾斜角为π4的点是( ) A .(0,0) B .(2,4) C.⎝ ⎛⎭⎪⎫14,116D.⎝ ⎛⎭⎪⎫12,14 5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) A .2 B .-1 C .1D .-26.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x轴斜交7.函数在点处的导数的几何意义是__________________________________________________;曲线在点P处的切线方程为是_____________________________________________.8.已知函数f(x)=x2+3,则f(x)在(2,f(2))处的切线方程为_________________________9.求过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程10.若曲线f(x)=ax3+3x2+2在x=-1处的切线斜率为4,求a的值。

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。

北师大版高中数学选修1-1导数的概念及其几何意义导数的概念同步练习

北师大版高中数学选修1-1导数的概念及其几何意义导数的概念同步练习

高中数学学习材料金戈铁骑整理制作导数的概念及其几何意义 导数的概念 同步练习 一,选择题:1.已知函数f(x)=2x+5,当x 从2变化到4时,函数的平均变化率是( )A 、 2B 、 4C 、 2D 、 -22.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 、 7米/秒B 、6米/秒C 、 5米/秒D 、 8米/秒 4.32()32f x ax x =++,若(1)4f '-=,则a 的值等于( )A .319B .316C .313D .310 5.如果()f x 为偶函数,且导数()f x 存在,则()0f '的值为 ( )A .2B .1C .0D .-16、根据导数的定义,)(1'x f 等于( ) A. 01010)()(lim1x x x f x f x --→ B.x x f x f x ∆-→∆)()(lim 010 C.x x f x x f x ∆-∆+→∆)()(lim 110 D.x x f x x f x ∆-∆+→)()(lim 1101 7、 物体作直线运动的方程为)(t s s =,则10)4('=s 表示的意义是( )(A )经过4s 后物体向前走了10m (B )物体在前4s 内的平均速度为10m/s(C )物体在第4s 内向前走了10m (D )物体在第4s 时的瞬时速度为10m/s8、某人拉动一个物体前进,他所做的功W (J )是时间t (s )的函数t t t t W W 166)(23+-==,则他在时刻s t 2=时的功率为( )(A )4s J / (B )16s J / (C )5s J / (D )8s J /9、一辆汽车从停止时开始加速行驶,并且在5秒内速度)/(s m v 与时间t (s )的关系近似表示为t t t f v 10)(2+-==,则汽车在时刻1=t 秒时的加速度为( )(A )9s m / (B )92/s m (C )82/s m (D )72/s m10、 若函数x x x f +-=2)(的图像上一点)2,1(--及邻近一点)2,1(y x ∆+-∆+-,则=∆∆xy ( ) (A )3 (B )2)(3x x ∆-∆ (C )2)(3x ∆- (D )x ∆-311、若函数)(x f 对于任意x ,有3'4)(x x f =,1)1(-=f ,则此函数为( )(A )1)(4+=x x f (B )2)(4-=x x f(C )1)(4-=x x f (D )2)(4+=x x f12、已知函数63)(23-+=x ax x f ,若4)1('=-f ,则实数a 的值为( )(A )319 (B )316 (C )313 (D )310 二,填空题: 13、一质点运动方程为2t s =,则质点在4=t 时的瞬时速度为 。

(完整版)导数的概念及其几何意义同步练习题(学生版)

(完整版)导数的概念及其几何意义同步练习题(学生版)

导数的概念及其几何意义同步练习题一、选择题1. 21y x =+在(1,2)内的平均变化率为( )A .3B .2C .1D .02. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆ 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为( )A.f (x 0+⊿x )B.f (x 0)+⊿xC. f (x 0)•⊿xD. f (x 0+⊿x )- f (x 0)4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则等于( ) A.4 B.4x C.4+2⊿x D.4+2(⊿x )2 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( )A. 3Δt +6B. -3Δt +6C. 3Δt -6D. -3Δt -66.若函数y =f (x )在x 0处可导,则000()()lim h f x h f x h的值( ) A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 都无关7. 函数y =x +1x在x =1处的导数是( ) A.2 B.1 C.0 D.-18.设函数f (x )=,则()()lim x a f x f a x a等于( ) A.1a B.2a C.21a D.21a 9. 下列各式中正确的是( )A. y ′|x =x 0=li m Δx →0 f (x -Δx )-f (x 0)ΔxB. y ′|x =x 0=li m Δx →0 f (x 0+Δx )+f (x 0)ΔxC. f ′(x 0)=li m Δx →0 f (x 0-Δx )-f (x 0)ΔxD. f ′(x )=li m Δx →0 f (x 0)-f (x 0-Δx )Δx10. 设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx等于( ) A. f ′(1) B. 不存在 C. 13f ′(1) D. 以上都不对 11. 设函数f (x )=ax +4,若f ′(1)=2,则a 等于( )A. 2B. -2C. 3D. 不确定12. 已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t =2时的速度为( ) A. 194 B. 174 C. 154 D. 13413.曲线y=2x 2+1在点P (-1,3)处的切线方程是( )A.y =-4x -1B.y =-4x -7C.y =4x -1D.y =4x -714.过点(-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是( )A.y =2x -1B.y =2x +1C.y =2x +4 D .y =2x -415. 下面四个命题:①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线;②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在;③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在;④曲线的切线和曲线有且只有一个公共点.其中,真命题个数是( )A. 0B. 1C. 2D. 316. 函数y =f (x )的导函数f ′(x 0)图像如图所示,则在y =f (x )的图像上A 、B 的对应点附近,有( )A. A 处下降,B 处上升B. A 处上升,B 处下降C. A 处下降,B 处下降D. A 处上升,B 处上升17. 曲线y =2x 2上有一点A (2,8),则点A 处的切线斜率为( )A.4B. 16C. 8D. 218. 曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A. y =3x -4B. y =-3x +2C. y =-4x +3D. y =4x -5 19.一直线运动的物体,从时间t 到t +Δt 时,物体的位移为Δs ,那么lim Δx →0 Δs Δt为( ) A .在t 时刻该物体的瞬时速度 B .当时间为Δt 时物体的瞬时速度C .从时间t 到t +Δt 时物体的平均速度D .以上说法均错误20. (2012·宝鸡检测)已知函数f (x )=x 3-x 在x =2处的导数为f ′(2)=11,则( )A .f ′(2)是函数f (x )=x 3-x 在x =2时对应的函数值B .f ′(2)是曲线f (x )=x 3-x 在点x =2处的割线斜率C .f ′(2)是函数f (x )=x 3-x 在x =2时的平均变化率D .f ′(2)是曲线f (x )=x 3-x 在点x =2处的切线的斜率21.已知函数y =f (x )的图像如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定22.(2012·上饶检测)函数y =3x 2在x =1处的导数为( )A .2B .3C .6D .1223.设f (x )=ax +4,若f ′(1)=2,则a 等于( )A .2B .-2C .3D .-324.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12D .-1 25.已知曲线y =x 24的一条切线斜率为12,则切点的横坐标为 ( ) A .1 B .2 C .3 D .426.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( ) A .at 0 B .-at 0 C.12at 0 D .2at 0 二、填空题27. 在曲线y =x 2+1的图像上取一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx为__ __. 28. 若质点M 按规律s =2t 2-2运动,则在一小段时间[2,2+Δt ]内,相应的平均速度_ .29.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=__ __. 30.曲线y =f (x )=2x -x 3在点(1,1)处的切线方程为________.31.函数y =x 2在x =________处的导数值等于其函数值.32. (2012·南昌调研)若一物体的运动方程为s =3t 2+2,求此物体在t =1时的瞬时速度是 .33.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是___ _.34.函数f (x )=3x 2-4x 在x =-1处的导数是 .三、解答题35. 已知函数f (x )=2x 2+3x -5.(1)求当x 1=4,且Δx =1时,函数增量Δy 和平均变化率Δy Δx; (2)求当x 1=4,且Δx =0.1时,函数增量Δy 和平均变化率Δy Δx; (3)求当x 1=4,且Δx =0.01时,函数增量Δy 和平均变化率Δy Δx;36. 已知自由落体的运动方程为s =12gt 2,求: (1)落体在t 0到t 0+Δt 这段时间内的平均速度;(2)落体在t 0时的瞬时速度;(3)落体在t 0=2 s 到t 1=2.1 s 这段时间内的平均速度;(4)落体在t =2 s 时的瞬时速度.37. 求等边双曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2处的切线的斜率,并写出切线方程.38. 在曲线y =x 2上过哪一点的切线,(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角.39.已知抛物线f (x )=ax 2+bx -7过点(1,1),且过此点的切线方程为4x -y -3=0,求a ,b 的值.40. (2012·榆林调研)已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83。

1、导数的运算及几何意义(有答案)

1、导数的运算及几何意义(有答案)
答案:(e,e)
2、若函数f(x)=ex+ae-x的导函数是奇函数,并且曲线y=f(x)的一条切线的斜率是 ,则切点的横坐标是.
【答案】ln2
角度三:求参数的值
3、已知f(x)=lnx,g(x)= x2+mx+ (m<0),直线l与函数f(x),g(x)的图象都相切,且与f(x)图象的切点为(1,f(1)),则m的值为()
即y′= .
(6) (7)
例2:【湖北省重点中学2015届高三上学期第三次月考试题】已知函数 的导数为 ,且满足关系式 ,则 的值等于()
A. B.2 C. D.
【答案】C.
:
例3:【河南许昌平顶山新乡三市2015届10月高三第一次调研】设 是定义在 上的奇函数,且 ,当 时,有 恒成立,则不等式 的解集是
(3)y′= ′= =- .
(4)y=xsin cos ;(5)y=ln(2x-5).
(4)∵y=xsin cos = xsin(4x+π)=- xsin 4x,∴y′=- sin 4x- x·4cos 4x=- sin 4x-2xcos 4x.
(5)令u=2x-5,y=lnu,
则y′=(lnu)′u′= ·2= ,
二、导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:
1、已知切点A(x0,f(x0))求斜率k,即求该点处的导数值:k=f′(x0);
2、已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k;
3、已知过某点M(x1,f(x1))(不是切点)的切线斜率为k时,常需设出切点A(x0,f(x0)),利用k= 求解.
【答案】
【解析】试题分析:因为 ,设切点为 ,则 , ,
所以过原点作曲线 的切线方程为 即 .

高中数学导数的几何意义综合测试题(附答案)

高中数学导数的几何意义综合测试题(附答案)

高中数学导数的几何意义综合测试题(附答案)高中数学导数的几何意义综合测试题(附答案)选修2-2 1.1 第3课时导数的几何意义一、选择题1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么()A.f(x0)>0 B.f(x0)<0C.f(x0)=0 D.f(x0)不存在[答案] B[解析] 切线x+2y-3=0的斜率k=-12,即f(x0)=-12<0.故应选B.2.曲线y=12x2-2在点1,-32处切线的倾斜角为() A.1 B.4C.54 D.-4[答案] B[解析] ∵y=limx0 [12(x+x)2-2]-(12x2-2)x=limx0 (x+12x)=x切线的斜率k=y|x=1=1.切线的倾斜角为4,故应选B.3.在曲线y=x2上切线的倾斜角为4的点是()A.(0,0) B.(2,4)C.14,116D.12,14[答案] D[解析] 由导数的几何意义知B正确,故应选B.7.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)及f(5)分别为()A.3,3 B.3,-1C.-1,3 D.-1,-1[答案] B[解析] 由题意易得:f(5)=-5+8=3,f(5)=-1,故应选B.8.曲线f(x)=x3+x-2在P点处的切线平行于直线y=4x -1,则P点的坐标为()A.(1,0)或(-1,-4) B.(0,1)C.(-1,0) D.(1,4)[答案] A[解析] ∵f(x)=x3+x-2,设xP=x0,y=3x20x+3x0(x)2+(x)3+x,yx=3x20+1+3x0(x)+(x)2,f(x0)=3x20+1,又k=4,3x20+1=4,x20=1.x0=1,故P(1,0)或(-1,-4),故应选A.9.设点P是曲线y=x3-3x+23上的任意一点,P点处的切线倾斜角为,则的取值范围为()A.0,23B.0,56C.23D.2,56[答案] A[解析] 设P(x0,y0),∵f(x)=limx0 (x+x)3-3(x+x)+23-x3+3x-23x=3x2-3,切线的斜率k=3x20-3,tan=3x20-3-3.0,23.故应选A.10.(2019福州高二期末)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为[0,4],则点P横坐标的取值范围为()A.[-1,-12] B.[-1,0]C.[0,1] D.[12,1][答案] A[解析] 考查导数的几何意义.∵y=2x+2,且切线倾斜角[0,4],切线的斜率k满足01,即02x+21,-1-12.二、填空题11.已知函数f(x)=x2+3,则f(x)在(2,f(2))处的切线方程为________.[答案] 4x-y-1=0[解析] ∵f(x)=x2+3,x0=2f(2)=7,y=f(2+x)-f(2)=4x+(x)2yx=4+x.limx0 yx=4.即f(2)=4.又切线过(2,7)点,所以f(x)在(2,f(2))处的切线方程为y -7=4(x-2)即4x-y-1=0.12.若函数f(x)=x-1x,则它与x轴交点处的切线的方程为________.[答案] y=2(x-1)或y=2(x+1)[解析] 由f(x)=x-1x=0得x=1,即与x轴交点坐标为(1,0)或(-1,0).∵f(x)=limx0 (x+x)-1x+x-x+1xx=limx0 1+1x(x+x)=1+1x2.切线的斜率k=1+11=2.切线的方程为y=2(x-1)或y=2(x+1).13.曲线C在点P(x0,y0)处有切线l,则直线l与曲线C 的公共点有________个.[答案] 至少一[解析] 由切线的定义,直线l与曲线在P(x0,y0)处相切,但也可能与曲线其他部分有公共点,故虽然相切,但直线与曲线公共点至少一个.14.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为________.[答案] 3x-y-11=0[解析] 设切点P(x0,y0),则过P(x0,y0)的切线斜率为,它是x0的函数,求出其最小值.设切点为P(x0,y0),过点P的切线斜率k==3x20+6x0+6=3(x0+1)2+3.当x0=-1时k有最小值3,此时P的坐标为(-1,-14),其切线方程为3x-y-11=0.三、解答题15.求曲线y=1x-x上一点P4,-74处的切线方程.[解析] y=limx0 1x+x-1x-(x+x-x)x=limx0 -xx(x+x)-xx+x+xx=limx0 -1x(x+x)-1x+x+x=-1x2-12x .y|x=4=-116-14=-516,曲线在点P4,-74处的切线方程为:y+74=-516(x-4).即5x+16y+8=0.16.已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.(1)求使直线l和y=f(x)相切且以P为切点的直线方程;(2)求使直线l和y=f(x)相切且切点异于点P的直线方程y =g(x).[解析] (1)y=limx0 (x+x)3-3(x+x)-3x3+3xx=3x2-3.则过点P且以P(1,-2)为切点的直线的斜率k1=f(1)=0,所求直线方程为y=-2.(2)设切点坐标为(x0,x30-3x0),则直线l的斜率k2=f(x0)=3x20-3,直线l的方程为y-(x30-3x0)=(3x20-3)(x-x0)又直线l过点P(1,-2),-2-(x30-3x0)=(3x20-3)(1-x0),x30-3x0+2=(3x20-3)(x0-1),解得x0=1(舍去)或x0=-12.故所求直线斜率k=3x20-3=-94,于是:y-(-2)=-94(x-1),即y=-94x+14.17.求证:函数y=x+1x图象上的各点处的切线斜率小于1.[解析] y=limx0 f(x+x)-f(x)x=limx0 x+x+1x+x-x+1xx=limx0 xx(x+x)-x(x+x)xx=limx0 (x+x)x-1(x+x)x=x2-1x2=1-1x2<1,y=x+1x图象上的各点处的切线斜率小于1.18.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1l2.(1)求直线l2的方程;(2)求由直线l1、l2和x轴所围成的三角形的面积.[解析] (1)y|x=1=limx0 (1+x)2+(1+x)-2-(12+1-2)x=3,所以l1的方程为:y=3(x-1),即y=3x-3.设l2过曲线y=x2+x-2上的点B(b,b2+b-2),y|x=b=limx0 (b+x)2+(b+x)-2-(b2+b-2)x=2b+1,所以l2的方程为:y-(b2+b-2)=(2b+1)(x-b),即y=(2b+1)x-b2-2.因为l1l2,所以3(2b+1)=-1,所以b=-23,所以l2的方程为:y=-13x-229.(2)由y=3x-3,y=-13x-229,得x=16,y=-52,即l1与l2的交点坐标为16,-52.又l1,l2与x轴交点坐标分别为(1,0),-223,0.所以所求三角形面积S=12-521+223=12512.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的概念、运算及其几何意义
1.已知物体做自由落体运动的方程为s s(t) 1 gt 2 , 若t 无限趋近于0 时,
s(1 t) s(1) 无限趋近于
2
9.8m / s ,那么正确的说法是()
t
A.9.8m/ s是在 0~ 1s 这一段时间内的平均速度
B.9.8m/ s是在 1~( 1+ t )s这段时间内的速度
C.9.8m/ s是物体从 1s 到( 1+ t )s这段时间内的平均速度
D.9.8m/ s是物体在t 1s 这一时刻的瞬时速度 .
2.已知函数f’(x) = 3x2 , 则 f (x) 的值一定是()
A. x 3+x
B.x 3
C. x 3+c (c 为常数 )
D. 3x+c (c 为常数 )
3.若函数f(x)=x2+b x+c的图象的顶点在第四象限,则函数 f / (x) 的图象是()
y
y y
y
o x o x o x o
A B
C D
4. 下列求导数运算错误的是()
..
A.(x2013c)2013x 2012(c为常数)
B.(x2lnx)2xlnx x
C. (cosx
)xsinx cosx D . (3x) 3x ln 3 x x 2
5. . 已知曲线的一条切线的斜率为,则切点的横坐标为
A. 2 B. 3 C . D . 1 6.函数 y=(2x - 3) 2的导数为函数 y= e- x的导数为
7. 若函数f ( x)满足,f ( x) 1 x3 f (1) x2 x, 则 f (1) 的值
3
x
8. 曲线y
x 2
在点(- 1,- 1)处的切线方程为
9. 已知函数 f ( x) ln( x 1)
1 a
f ( x) 在点 (1, f (1)) ax ,若曲线 y
x 1
处的切线与直线 l : y 2x 1平行,
则 a 的值
参考答案
A 组基础达标
选择题 :
填空题 : 1. 2012,-2012,-503,2024;
提示 : lim f (1
x) f (1) = f / (1)
x
x
lim f (1
x)
f (1) =- lim f (1 x
x
x 0
lim f (1) f (1
x) = - 1
lim
f (1
x 0
4 x 4
x
lim f (1 2 x) f (1)
f (1
x
= 2 lim
x
x
2012 ; x)
f (1) = - f / (1) - 2012 x
x) f (1) = - 1 f / (1) -503
x 4 2 x) f (1) =2 f / (1) 2048 2 x
(∵
x → 0,则 2 x → 0)
2. 8x - 12 , - e -x
3.
提示: f (1)为常数, f ’ (x)=x 2- 2 f (1) x -1, 令x=1则
f (1) =1- 2 f (1) -1,解得 f (1)=0
B 组能力过关
选择题:
A 填空题: 3
提示: f ’ (x) =
1 - a + a
,∵ y f (x) 在点 (1, f (1)) 处的切线
x 1
(x
1)2

直线 l : y2x
1 平行,而直线 l : y 2x 1的斜率为-2,∴ f ’
( 1 ) =-2
f ’(1)=1
- a+
(1
a =-2,解得 a =3.
1 1 1)2。

相关文档
最新文档