相似三角形全章教案资料
27.2相似三角形(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。
三角形教案相似三角形教案
三角形教案相似三角形教案一、教学目标:1.知识目标:了解相似三角形的定义及性质,掌握相似三角形的判定方法。
2.技能目标:能够判断两个三角形是否相似,能够应用相似三角形的性质解决问题。
3.情感目标:培养学生对几何知识的兴趣,培养学生观察和分析问题的能力。
二、教学重点和难点:1.重点:物理教学方法的运用,培养学生的观察和分析能力。
2.难点:判定两个三角形是否相似的方法,相似三角形的性质的应用。
三、教学过程:1.导入(10分钟)教师带领学生复习角度平分线的性质,并通过一个小问题引出相似三角形的概念。
2.展示与导入(10分钟)教师在板书中画出两个相似三角形,并让学生观察两个相似三角形之间的关系,引导学生发现相似三角形的性质,即对应角相等,对应边成比例。
3.学习与讨论(30分钟)教师引导学生通过观察两个图形,判断它们是否相似,并找出相似的理由。
学生在小组合作讨论,共同解决问题。
学生学会判定两个三角形是否相似的方法:(1)三边成比例;(2)两边成比例且夹角相等;(3)两角相等且夹边成比例。
4.拓展与巩固(30分钟)教师撰写一些关于相似三角形的练习题,学生在小组内完成,然后进行讨论,最后全班共同讨论,学生通过练习巩固所学的知识。
5.归纳总结(10分钟)教师带领学生进行总结,总结相似三角形的判定方法和相似三角形的性质。
6.课堂作业(10分钟)布置课后作业:完成相似三角形的练习题,课后复习本节课的内容。
四、板书设计:相似三角形定义:对应角相等,对应边成比例。
判定方法:三边成比例,两边成比例且夹角相等,两角相等且夹边成比例。
五、教学反思:通过本节课的教学,学生明确了相似三角形的定义及判定方法。
通过观察和分析两个相似三角形的性质,学生培养了观察和分析问题的能力。
然而,在教学中还存在着一些问题。
比如,教师在引导学生判断两个三角形是否相似时,应该引导学生根据“对应角相等,对应边成比例”的原则进行判断,而不是直接告诉学生判定的答案。
相似三角形教案
相似三角形教案标题:相似三角形教案【教学目标】1. 了解相似三角形的定义和性质。
2. 能够判断两个三角形是否相似。
3. 掌握相似三角形的比例关系及其在解决实际问题中的应用。
4. 培养学生的逻辑思维和推理能力。
【教学准备】1. 教学工具:投影仪、黑板、白板、谱恩平等视觉辅助工具。
2. 教学资源:相似三角形的定义和定理说明、示例题和练习题。
【教学过程】一、导入(5分钟)1. 利用谱恩平或平面图片展示一组相似三角形,引发学生对相似三角形的兴趣,并启发学生探讨相似三角形的特点。
2. 提出问题:在哪些情况下可以认为两个三角形是相似的?二、理论讲解(15分钟)1. 结合黑板和白板上的图形、公式或教材内容,引导学生理解相似三角形的定义和相似条件。
2. 通过讲解相似三角形的性质,包括对应角相等、对应边成比例,加深学生对相似三角形的理解。
三、示例演练(20分钟)1. 给出若干个三角形,要求学生判断它们是否相似,并解释判断的依据。
2. 根据已知条件,要求学生计算相似三角形的比例关系,帮助学生理解相似三角形的特点。
3. 在计算过程中引导学生思考,让学生总结相似三角形的关键点,加深对概念的理解。
四、拓展应用(15分钟)1. 制作一些与实际生活相关的相似三角形问题,让学生运用所学内容解决问题。
2. 引导学生思考如何利用相似三角形解决实际问题,如距离或高度的测量等。
五、小结与展望(5分钟)1. 对本堂课的内容进行总结,强调相似三角形的重要性和应用价值。
2. 展望下一节课的内容,引导学生继续学习并巩固相似三角形的知识。
【教学总结】通过本节课的学习,学生应该对相似三角形的定义、性质和应用有一定的认识和理解。
同时,通过实例演练和拓展应用的形式,培养学生的主动思考和解决问题的能力。
在下一节课中,需要进一步加深学生对相似三角形的理解并进行更多的实际问题应用训练。
相似三角形教案
相似三角形教案相似三角形教案一、教学目标1. 理解相似三角形的定义和性质。
2. 学会寻找相似三角形,并利用相似三角形的性质解决问题。
3. 培养学生的观察、分析和推理能力。
二、教学重点和难点1. 理解相似三角形的概念和性质。
2. 寻找相似三角形,并利用相似三角形的性质解决问题。
三、教学内容和过程安排1. 引入教师通过示意图向学生介绍相似三角形的概念,让学生理解相似三角形的定义和性质。
2. 转换与探索教师给出几对相似三角形,让学生通过观察和比较,找出它们相似的特点和规律,并总结相似三角形的判定条件。
3. 性质归纳教师引导学生总结相似三角形的性质,如对应角相等、对应边成比例等,并提供一些练习题供学生练习。
4. 应用与拓展教师出示一些实际问题,让学生利用相似三角形的性质解决问题,并引导学生思考相似三角形在实际生活中的应用。
四、教学方法1. 教师讲解法:通过讲解相似三角形的概念和性质,引导学生理解和掌握相关知识。
2. 案例分析法:通过分析实际问题的解题过程,让学生理解相似三角形的应用。
3. 合作学习法:让学生分组讨论和解答问题,通过合作学习提高学生的思维能力和团队合作能力。
五、教学评价和反思通过本节课的学习,学生能够理解相似三角形的概念和性质,能够寻找相似三角形并利用相似三角形的性质解决问题。
教师可以通过练习题和课堂讨论来评价学生的学习情况。
在反思中,教师可以思考教学中的不足之处,为今后的教学改进提供参考。
六、拓展延伸1. 学生可以使用几何绘图软件或尺规作图工具来练习寻找相似三角形。
2. 学生可以通过实际观察和测量来寻找相似三角形,并验证相似三角形的性质。
3. 学生可以进一步学习相似三角形的应用,如计算高度、测量距离等。
相似三角形的判定数学教学教案5篇
相似三角形的判定数学教学教案5篇相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在△ABC和△中,, .问:△ABC和△是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或 .问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在△ABC边AB(或延长线)上,截取,过D作DE∥BC交AC于E.“作相似.证全等”.(2)在△ABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,∽ .例1 已知和中,,, .求证:∽ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:∽∽ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即∽△∽△.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。
相似三角形教案完美版
面积比与边长比关系
1 2
面积比性质
相似三角形的面积比等于对应边长的平方比,即 如果AB/A'B' = k,则S△ABC/S△A'B'C' = k^2。
面积比推论
如果两个三角形的面积比已知,可以通过求边长 比来进一步确定这两个三角形的相似关系。
3
应用
在解决与相似三角形有关的问题时,可以通过面 积比和边长比的关系来建立方程或不等式,从而 找到问题的解决方案。
三角形的边、角、顶点、高、中线、 角平分线等。
三角形全等条件
全等三角形的定义
能够完全重合的两个三角形。
全等三角形的性质
全等三角形的对应边相等,对应角相等。
全等三角形的判定条件
SSS(三边全等)、SAS(两边和夹角全等)、ASA(两角和夹边全等)、AAS(两角和 一非夹边全等)和HL(直角边斜边定理)。
推论
如果两个三角形有两个对 应的角分别相等,则这两 个三角形相似。
对应边成比例性质
定义
当两个三角形的对应边成比例时,这两个三角形 相似。
性质
相似三角形的对应边成比例,即如果AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
推论
如果两个三角形有两边对应成比例,且夹角相等 ,则这两个三角形相似。
相似多边形概念
01
02
03
相似多边形的定义
两个多边形的对应角相等 ,对应边成比例,则这两比值 。
相似多边形的性质
相似多边形的对应角相等 ,对应边成比例,面积比 等于相似比的平方。
03
第27章相似三角形全章教案(共10份)
授课时间:年月日第周星期撰稿:赖庆益审核:李明课时序号一、课前导学:学生自学课本24-27页内容,并完成下列问题.1.观察下图的两个画面,他们的形状、大小有什么关系?象这样,我们把相同的叫做相似图形.【注意】两个图形相似,其中一个图形可以看作由另一个图形得到.2.两个边数相同的多边形,如果它们的角,边成比例,那么这两个多边形叫做相似多边形,相似多边形对应边的比叫做.3.如图,下面右边的四个图形中,与左边的图形相似的是()二、合作、交流、展示:1.相似图形、相似多边形、相似比的意义;相似比为1时,相似的两个图形有什么关系?2.相似多边形有哪些性质?相似多边形的对应角,对应边的比(对应边).3.如何判别两个多边形相似?对应角,且对应边的比的两个多边形的两个多边形相似.4.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的与另两条线段的相等,年级九年级课题27.1图形的相似课型新授教学目标知识技能1.理解并掌握两个图形相似的概念;了解相似比、成比例线段的概念;2.掌握相似多边形的性质;会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行简单的计算.过程方法经历相似性质的探究过程,培养学生的观察、分析的能力.情感态度激发学生学习数学的兴趣,感受成功的喜悦.教学重点相似图形的概念;相似多边形的性质与判别.教学难点相似多边形的性质进行相关的计算,相似多边形的判别.教法导学案学法探究、合作教学媒体多媒体FE HGD CBA如dcb a =(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位; (2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d 成比例,记作dcb a =或a:b=c:d ; 5.例题: 例题1.下列说法正确的是( )A .所有的平行四边形都相似B .所有的矩形都相似C .所有的菱形都相似D .所有的正方形都相似 例题2例1、如图,四边形ABCD 和EFGH 相似, 求角βα和的大小和EH 的长度.例3.如图矩形草坪长20m,宽10m,沿草坪四周有1m 宽的环形小路,小路内外边缘所成的矩形EFGH 和矩形ABCD 是否相似?三、巩固与应用: 1.课本第25、27页练习2.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A .3个 B .4个 C .5个 D .6个3.已知边形ABCD 和四边形A 1B 1C 1D 1相似,四边形ABCD 的最长边和最短边的长分别是10cm 和4cm ,如果四边形A 1B 1C 1D 1的最短边的长是6cm ,那么四边形A 1B 1C 1D 1中最长的边长是多少?4.已知四边形ABCD 与四边形A 1B 1C 1D 1相似,且A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,若四边形ABCD 的周长为40,求四边形ABCD 的各边的长5.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.6.如图,一个矩形ABCD 的长AD= a cm ,宽AB= b cm ,E 、F 分别是AD 、BC 的中点,连接E 、F ,所得新矩形ABFE 与原矩形ABCD 相似,求a:b 的值.四、小结::1. 相似多边形的意义; 2相似多边形的性质五、作业:必做:P27练习T1、2、3、4、. 选做:《作业精编》相应练习.六、反思:授课时间: 年 月 日 第 周 星 期 撰稿;李明 审稿:赖小华 课时序号一、课前导学:学生自学课本第29-31 页内容,并完成下列问题1.三个角分别对应 ,三条边对应 的两个三角形是相似三角形.A A '∠=∠,B B '∠=∠,C C '∠=∠2. 【实验探究1】:如图1,任意画两条直线1l , 2l ,再画三条与1l , 2l 相交的平行线3l ,4l ,5l 分别量度3l , 4l ,5l 在1l 上截得的两条线段AB, BC 和在2l , 上截得的两条线段DE, EF 的长度, :AB BC 与:DE EF 相等吗?任意平移5l , 再量度AB, BC, DE, EF的长度, :ABBC 与:DE EF 还相等吗?【归纳】平行线分线段成比例定理:两条直线被一组_______线所截,所得的对应..线段 .2. 【实验探究2】如果把图中1l,2l两条直线相交,交点A 刚落到3l ,4l 上,如图2、年级 九年级 课题 27.2.1相似三角形的判定(1) 课型 新授教 学 目 标知识 技能1. 掌握相似三角形的定义,掌握平行线分线段成比例定理和推论,能应用定理及推论解题. 2. 掌握相似三角形判定的预备定理,能运用它判定两个三角形相似. 过程方法经历定理的探索过程,培养观察、分析、探究、归纳能力。
相似三角形的判定教案模板
相似三角形的判定教案模板教案能够展现出教师在备课中的思维过程,并且显示出教师对课标、教材、学生的理解和把握的水平以及运用有关教育理论和教学原则组织教学活动的能力。
下面是给大家整理的相似三角形的判定教案5篇,希望大家能有所收获!相似三角形的判定教案1掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2. 自学反馈学生独立完成后集体订正①如果两个三角形的三组边对应成比例,那么这两个三角形. ②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似. ③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答. 判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,ACAB≠≠IJHJBC,所以他们不相似. HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似. 注意对应关系,可类比全等三角形中找对应边和对应角的方法.活动1 小组讨论例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A,ACAB3∴△ADE∽△ABC. DEAE=. BCAC4又∵DE= cm,342∴3=, BC3∴∴BC=2 cm. 运用相似三角形可以进行边的计算. 活动2 跟踪训练(独立完成后展示学习成果) 1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE 相似,则BF长为多少?在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形. 2.如图所示,DE∥FG∥BC,图中共有相似三角形( )A.1对B.2对C.3对D.4对按照一定的顺序去寻找相似三角形. 活动3 课堂小结学生试述:这节课你学到了些什么?相似三角形的判定教案2相似三角形的判定1.两个三角形的两个角对应相等2.两边对应成比例,且夹角相等3.三边对应成比例4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
数学教案三角形相似的判定(优秀3篇)
数学教案三角形相似的判定(优秀3篇)知识结构本文范文为朋友们整理了3篇《数学教案三角形相似的判定》,可以帮助到您,就是本文范文我最大的乐趣哦。
角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。
2.继续渗透和培养学生对类比数学思想的认识和理解。
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4.通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。
应让学生对此有所了解。
定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B 成对应点,对应边分别是斜边和一条直角边。
相似三角形的教案
相似三角形的教案【篇一:《相似三角形》教学设计】《相似三角形》教学设计教学设计说明一、教材分析本节“相似三角形”是北师大版实验教材八年级下册第四章第五节的内容,在此之前学生已经学习了相似多边形,知道了相似多边形的本质特征,为学习本节内容做了铺垫。
本节课旨在由一般到特殊引出相似三角形的概念,并应用这一概念解决一些实际问题,为下一步学习相似三角形的判定定理做感性和理性的准备,因此本节课具有承前启后的联系和纽带作用。
同时本节内容的教学对整章学习掌握起着奠基作用,也为学生今后在学习和生活中更好的用数学作准备,因而它在本章的学习中占有重要地位。
二.设计理念:1.指导思想:本节课是关于相似三角形概念的教学,课本内容较少,如何使知识容量、思维容量尽可能饱和,有效培养学生的创新能力,是设计本节课的指导思想。
2. 设计思路:①.为了使学生能较顺利地在教师的引导下进行先学,在复习相似多边形的基础上,由一般到特殊引出相似三角形的定义,并能在具体情景中深入理解,认识相似三角形的本质并应用它来解决问题。
借助练习,通过合作探究,独立思考来完成本课的目标②.整堂课设置问题,层层深入,给学生充分的思考时间,使学生感受到了自己是课堂的主人,让学生在亲身实践中去体验、去感悟,一切的新知识都是由学生自己发现。
教师只是引导和帮助学生去探索,而没有把现有的知识灌输给学生。
③.根据《数学课程标准》所提出的先进教学理念,用教材教,而不是教教材,让课堂由学生主导,充分发挥学生的主体作用,结合初中生的认知特点,本节课力求形成“创设问题情景→构建模型→合作探究→实践应用”的模式,在重视双基的同时,更关注知识的形成过程。
三.教学目标知识与技能目标:使学生了解两个三角形相似的概念,学会利用相似三角形解决一些实际问题,在实际应用中加深对相似三角形的认识和理解。
培养学生的抽象思维能力和解决实际问题的能力。
过程与方法目标:在相似三角形概念及性质的学习过程中,引导学生对问题观察、分析、归纳、猜想,养成良好的思维习惯。
(完整版)相似三角形的性质和判定教案
个性化教学设计方案教师姓名吴其明学生姓名填写时间5月9 学科年级教材版本第章(单元)第节阶段□观察期□维护期课时计划第( 3 )课时共()课时课程名称相似三角形判定与性质个性化学习教学目标掌握相似三角形的概念、性质及判定方法,能够灵活应用相似三角形的性质和判定方法方法解决实际问题。
教学重点相似三角形的性质及判定方法。
教学难点相似三角形的性质和判定方法方法的应用教学过程一、归纳导入(呈现知识)1、相似三角形的概念(1)对应角相等,对应边成比例的三角形,叫做相似三角形。
相似用符号“∽”表示,读作“相似于”。
(2)相似三角形对应角相等,对应边成比例。
(3)相似三角形对应边的比叫做相似比(或相似系数)。
(4)全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例。
(5)相似三角形的等价关系①反身性:对于任一ABC∆有ABC∆∽ABC∆。
②对称性:若ABC∆∽'''CBA∆,则'''CBA∆∽ABC∆。
③传递性:若ABC∆∽CBA'∆'',且CBA'∆''∽CBA''''''∆,则ABC∆∽CBA''''''∆。
2、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
相似三角形的判定数学教学教案(10篇)
相似三角形的判定数学教学教案(10篇)《相似三角形》数学教案篇一教学目标:1、了解相似三角形的概念,会表示两个三角形相似。
2、能运用相似三角形的概念判断两个三角形相似。
3、理解“相似三角形的对应角相等,对应边成比例”的性质。
重点和难点:1、本节教学的重点是相似三角形的概念2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。
知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形。
2、相似三角形的对应角相等,对应边成比例。
3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,它的相似比是1。
2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。
3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。
教学过程一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。
以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。
那么将一个三角形作相似变换后所得的像与原像称为相似三角形二、合作学习,探索新知1、合作学习如图1,在方格纸内先任意画一个☆ABC,然后画出☆ABC经某一相似变换(如放大或缩小若干倍)后得到像☆A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。
问题讨论1:☆A ′B ′C ′与☆ABC对应角之间有什么关系?问题讨论2:☆A ′B ′C ′与☆ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例。
2、由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“☆”来表示,读作“相似于”如☆A ′B ′C ′与☆ABC相似,记做“☆A ′B ′C ′☆☆ABC ” 。
注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上(3)定义的几何语言表述:A B C A ′B ′C ′相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。
【人教版】九年级下册数学《相似》全章教案
27.1 图形的相似(第 1 课时)【学习目标】1.经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.2.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.3.能根据相似比进行有关计算.【自学指导】第一节1.相似三角形的定义及记法三角对应相等,三边对应成比例的两个三角形叫做相似三角形.如△ ABC与△ DEF相似,记作△ ABC∽△ DEF。
A与 D,D注意:其中对应顶点要写在对应位置,如AB 与 E,C与 F 相对应. AB∶DE等于相似比.2.想一想B C E F如果△ ABC∽△ DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?3.议一议(1)两个全等三角形一定相似吗?为什么?(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?归纳:【典例分析】例 1:有一块呈三角形形状的草坪,其中一边的长是 20m,在这个草坪的图纸上,这条边长 5cm,其他两边的长都是 3.5cm,求该草坪其他两边的实际长度.(14m)例 2:如图,已知△ ABC∽△ ADE,AE=50cm,EC=30cm,BC=70cm,∠ BAC=45°,∠ACB=40°,求(1)∠AED和∠ ADE的度数;(2)DE的长.5.想一想:在例 2 的条件下,图中有哪些线段成比例?练习:等腰直角三角形 ABC与等腰直角三角形 A′B′C′相似,相似比为 3∶1,已知斜边 AB=5cm,求△ A′B′C′斜边A′B′上的高.(第 2 课时)【自学指导】第二节1、相似多边形的定义:两个多边形大小不等,但各角,各边这样的两个相似多边形叫做相似多边形。
注意:与相似三角形的定义的不同点。
2、叫做相似比。
3、判断:( 1)各角都对应相等的两个多边形是相似多边形。
三角形教案相似三角形教案(4篇)
三角形教案相似三角形教案(4篇)如何写三角形教案一(1)回忆任意角、象限角与轴线角的概念.(2)回忆锐角三角函数的定义,有了任意角之后,原来三角函数的定义有局限性,需要对其重新定义,以适用于任意的三角函数.(3)除了锐角的三角函数外,在其它学科中有没有接触到一些特别角的三角函数值?(意图是让学生说出)重新定义的原则有哪些?①和谐的原则,新定义应当包含以前的定义,即当角为锐角时,其定义应与前面的三角形边的比值等价.由此可以确定,新的定义仍应是比值的形式;②传承的原则,新定义应保存旧定义中的一些做法,如可以同样在角的终边上任取一点来定义,且所得结果应与所取点的位置无关.③相容的原则,新定义不能与一些熟识的结论相冲突.如当角为钝角时,其余弦值应为负值.由此可知,新的三角函数的定义应保证所得三角函数值有正负之分;④自然的原则,新定义不能出来得很惊奇,要让人承受必需顺其自然,可在我们前面争论的象限角的根底上进展,换句话说,教师在给出一个任意角的时候,就可以将角直接放在直角坐标系下,由于前面已争论过象限角.按上述几个原则让学生自主探究.如何写三角形教案二(一)教材分析:“三角形的熟悉”是小学数学苏教版国标教材第八册第三单元第一课时的内容。
在此之前,学生已经学习了角,初步熟悉了三角形,但对三角形的三边关系未曾探究,本课将重点引导学生探究三角形的三边关系,理解任意二边之和大于第三边。
教材中,例1让学生在现实情境中找出三角形,并用不同的材料、不同的方法做一个三角形,从而唤起学生的已有阅历,进一步抽象出图形,形成三角形的初步概念。
例2让学生任意选三根小棒围一个三角形,在操作中体会和发觉三角形任意两边之和大于第三边。
“想想做做”安排了不同层次、不同形式的练习,让学生准时稳固所学的学问,并感受数学学问的有用价值。
学好这局部内容,不仅可以从形的方面加深对四周事物的理解,进展学生的空间观念,可以在动手操作、探究规律等方面进展学生的思维和解决实际问题的力量,同时也为学习其他平面图形和立体图形积存学问阅历。
《相似三角形》教案
相似三角形教案教案概述本教案旨在帮助学生理解相似三角形的概念和性质,并能应用相似三角形的相关定理解决实际问题。
通过多种教学方法,如示例演示、实例分析和练习题,让学生在探究中理解相似三角形的特点和判定条件,提高他们的问题解决和分析能力。
教学目标1.了解相似三角形的定义和性质。
2.掌握相似三角形的判定条件。
3.能够应用相似三角形的定理解决实际问题。
教学内容1.相似三角形的定义–两个三角形对应的角相等(对应角相等)。
–对应边成比例(对应边成比例)。
2.相似三角形的判定条件–AA(角-角)相似判定法:若两个三角形的两个角对角相等,则它们相似。
–SA(边-角-边)相似判定法:若两个三角形的一个角对另一个三角形的一个角相等,并且两个三角形的两个单角的角内对应两边成比例,则它们相似。
–SSS(边-边-边)相似判定法:若两个三角形的三边成比例,则它们相似。
3.相似三角形的应用–利用相似三角形的性质解决角度和长度相关的实际问题。
–利用相似三角形的性质计算未知边长、高度和面积等。
教学步骤第一步:引入概念通过引导学生观察两个相似三角形的性质,引出相似三角形的定义,即对应角相等和对应边成比例。
第二步:探究相似三角形的判定条件1.AA相似判定法:介绍AA相似的概念,并通过示例演示和实例分析方法,让学生理解AA相似的判定条件和应用。
2.SA相似判定法:介绍SA相似的概念,并通过实例分析方法,让学生理解SA相似的判定条件和应用。
3.SSS相似判定法:介绍SSS相似的概念,并通过实例分析方法,让学生理解SSS相似的判定条件和应用。
第三步:应用相似三角形解决实际问题通过实际问题的练习题,让学生运用相似三角形的性质进行计算和分析,培养他们的问题解决和思维能力。
教学资源1.相关课本教材。
2.相似三角形示例图。
3.相似三角形练习题。
教学评估1.教师观察学生对相似三角形概念的理解程度,及时给予指导和解答疑惑。
2.针对练习题进行作业批改和解析,了解学生在应用相似三角形解决实际问题的能力。
相似三角形教学设计(共8篇)
相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。
六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
相似三角形优秀教案 相似三角形教案
相似三角形优秀教案相似三角形教案相似三角形教案(好)一、知识概述(一)相似三角形1、对应角相等,对应边成比例的两个三角形,叫做相似三角形.温馨提示:①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例,其应用广泛.2、相似三角形对应边的比叫做相似比.温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.温馨提示:①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理(1):两角对应相等,两三角形相似.判定定理(2):两边对应成比例且夹角相等,两三角形相似.判定定理(3):三边对应成比例,两三角形相似.温馨提示:①有平行线时,用上节学习的预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等. 2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.温馨提示:①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛.③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.(三)三角形的重心1、三角形三条中线的交点叫做三角形的重心.2、三角形的重心与顶点的距离等于它与对边中点的距离的两倍.二、重点难点疑点突破1、寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:(1)“平行线型”相似三角形,基本图形见上节图.“见平行,想相似”是解这类题的基本思路;(2)“相交线型”相似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“旋转型”相似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可看成把第一个图中的△AD E绕点A旋转某一角度而形成的.温馨提示:从基本图形入手能较顺利地找到解决问题的思路和方法,能帮助我们尽快地找到添加的辅助线.以上“平行线型”是常见的,这类相似三角形的对应元素有较明显的顺序,“相交线型”识图较困难,解题时要注意从复杂图形中分解或添加辅助线构造出基本图形.三、解题方法技巧点拨1、寻找相似三角形的个数例1、(吉林)将两块完全相同的等腰直角三角形摆成如图的样子,假设图形中所有点、线都在同一平面内,回答下列问题:(1)图中共有多少个三角形?把它们一一写出来;(2)图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来.分析:(1)在△ABC内,有五个三角形,加上△ABC与△AFG,共有七个三角形.(2)这是依据相似三角形判定定理来解决的计数问题.由于“不包括全等”,图中还剩五个非直角三角形,考虑到题设中两个三角形摆放的随意性,∠1不一定等于∠2,而∠B=∠C=45°,∠3、∠4都为钝角,又排除△ABD与△ACE相似,还剩三个三角形,这三个三角形相似.解:(1)共有七个三角形,它们是△ABD、△ABE、△ADE、△ADC、△AEC、△ABC 与△AFG.(2)有相似三角形,它们是△ABE∽△DAE,△DAE∽△DCA,△ABE∽△DCA(或△ABE∽△DAE∽△DCA).点拨:①解决这类计数问题,一定要依据图形与定理,全面、周密思考,做到不重不漏,这类题有利于发散思维的培养和创新意识的形成;②有兴趣的同学可继续探索一下本题中BD、DE、EC三条线段有何关系?2、画符合要求的相似三角形例2、(上海)在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画出一个△A1B1C1,使得△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在单位正方形的顶点上.(1)(2)分析:设单位正方形的边长为1,则△ABC的三边为,从而根据相似三角形判定定理2或3可画△A1B1C1,易得点拨:在4×4的正方形方格中,满足题设的△A1B1C1只能画出以上三个,若正方形方格数不加限制,则和△ABC相似且不全等的三角形可以画无数个.3、相似三角形的判定例3、(1)如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC;(2)如图,正方形ABCD中,E是BC的中点,DF=3CF,写出图中所有相似三角形,并证明.分析:(1)根据题设,观察图形易见,DE、EF、FD分别是△AOB、△BOC、△COA的中位线,利用三角形的中位线性质可证△DEF与△ABC的三边对应成比例;(2)由于正方形的四条边相等,且BE=CE,DF=3CF,设出正方形边长后,图中所有线段都能求出,故可从三边是否成比例判定哪些三角形相似.点拨:①第(1)题,若点O在△ABC外,其他条件不变,结论仍成立;②第(2)题也可用判定定理2,先证△ABE∽△ECF,得出∠AEF=90°后,再证其中任意三角形与△AEF相似,显然,以上证法较简便.4、直角三角形相似的判定例4、求证:若一个直角三角形的一条直角边和斜边上的高与另一个直角三角形的一条直角边和斜边上的高成比例,那么这两个直角三角形相似.已知:如图,Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,CD、C′D′分别是两个三角形斜边上的高,且CD︰C′D′=AC︰A′C′.求证:△ABC∽△A′B′C′.分析:判定直角三角形相似的方法除使用一般三角形的判定方法外,还可使用“斜边和一直角边对应成比例的两直角三角形相似”这一定理.证明△ABC∽△A′B′C′,只要再证一锐角对应相等即可.证明:∵CD、C′D′分别是△ABC、△A′B′C′的高,∴△ACD、△A′C′D′是直角三角形.5、三角形重心问题例5、已知△ABC的重心G到BC边上的距离为5,那么BC边上的高为()A.5 B.12C.10 D.15解析:因为G为△ABC的重心,所以DG︰DA=1︰3,因为GE⊥BC,AF⊥BC,所以GE∥AF,所以GE︰AF=DG︰DA=1︰3,因为GE=5,所以AF=15.6、相似三角形的综合运用例6、如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.分析:(1)△ADF与△EDB都是直角三角形,要证它们相似,只要再找一个角对应相等即可;(2)注意到CD是斜边AB的中线,AD=BD=CD,由结论(1)不难得出结论(2).证明:(1)∵DF⊥AB,∴∠ADF=∠BDE=90°,又∵∠F+∠A=∠B+∠A,∴∠F=∠B,∴△ADF∽△EDB.(2)由(1)得,∴AD·BD=DE·DF.又∵CD是Rt△ABC斜边上的中线,∴AD=BD=CD.故CD2=DE·DF.点拨:本题综合考查了直角三角形的性质与相似三角形的判定等.这是一道阶梯型问题,第(2)题根据(1)得出有关比例式,然后使用“等线代换”使问题简捷获证.其实第(2)题也可这样思考:把它转化为比例式,证明这三条线段所在的△CDE∽△FDC.请同学们完成这一证明.例7、如图,AD是△ABC的角平分线,BE⊥AD于E,CF⊥AD于F.求证:.分析:待证式中的四条线段不是在两个三角形中,无法直接根据两个三角形相似得出,需要插入一个“中间比”,由题设易证△ABE∽△ACF,△BDE∽△CDF,从中不难找到这个中间比.证明:∵AD是△ABC的角平分线,∴∠1=∠2.∵BE⊥AD,CF⊥AD,∴∠3=∠4=90°,∴△ABE∽△ACF,点拨:①当无法直接由两个三角形相似得出结论中的比例式时,一般可寻找“中间比”帮忙;例8、如图,在正方形ABCD中,M、N分别是AB、BC上的点,BM=BN,BP⊥MC 于点P.求证:(1)△PBN∽△PCD;(2)PN⊥PD.分析:要证PN⊥PD,即证∠DPN=90°,由已知∠BPC=90°,而∠BPC与∠DPN有公共部分∠CPN,因此只要证明∠4=∠5即可.这就必须先证明出结论(1).在△PBN 与△PCD中,易证∠1=∠3,以下只要证明夹∠1、∠3的两边对应成比例.证明:(1)在正方形ABCD中,AB∥CD,∠ABC=90°.∵BP⊥MC,∴△PBM∽△PCB.点拨:要注意观察出图中存在的“母子相似三角形”基本图形,从而充分利用它得出∠1=∠2及△PBM∽△PCB等重要结论相似三角形教案相似三角形教案①回忆两个三角形相似的概念,巩固两个三角形相似的性质与判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例线段(1)教学目标:1.理解比例的基本性质。
2.能根据比例的基本性质求比值。
3.能根据条件写出比例式或进行比例式的简单变形。
教学重点、难点:教学重点:比例的基本性质教学难点:例2根据条件判断一个比例式是否成立,不仅要运用比例的基本性质,还要运用等式的性质等方法是本节教学的难点。
>知识要点:1.如果两个数的比值与另两个数的比值相等,那么这四个数成比例。
、b 、c 、d 四个实数成比例,可表示成a:b =c:d 或a b =cd ,其中b 、c 叫做内项,a 、d 叫做外项。
3.基本性质:a b =cd <=>ad =bc(a 、b 、c 、d 都不为零) 重要方法:1.判断四个数a 、b 、c 、d 是否成比例,方法1:计算a:b 和c:d 的值是否相等;方法2:计算ad 和bc 的值是否相等,(利用ad =bc 推出a b =cd )-2.“a c =b d <=>a b =cd ”的比例式之间的变换是抓住实质ad =bc 。
3.记住一些常用的结论: a b =c d =>a +b b =c +d d ,a b =a +cb +d。
教学过程:一、复习引入1、举例说明生活中大量存在形状相同,但大小不同的图形。
如:照片、放电影中的底片中的图与银幕的象、不同大小的国旗、两把不同大小都含有30°角的三角尺等。
2、美丽的蝴蝶身长与双翅展开后的长度之比约为.一些长方形的画框,宽与长之比也设计成,许多美丽的形状都与这个比值有关。
你知道这个比值的来历吗% 说明学习本章节的重要意义。
3.如何求两个数的比值 二、自学新课,探究结论 阅读思考题(1)什么是两个数的比2与—3的比;—4与6 的比。
如何表示其比值相等吗用小学学过的方法可说成为什么可写成什么形式(2)比与比例有什么区别(3) 用字母a,b,c,d 表示数,上述四个数成比例可写成怎样的形式你知道内项、外项和第四比例项的概念吗回答(1)2:(—3)=—23 ;—4:6=—46 =—23 ;2—3 =—46 ,2,—3,—4,6四个数成比例。
注意四个数字的书写顺序(2)比是一个值;比例是一个等式。
(3)a:b=c:d a b =cd ,a,d 叫做比例外项,b,c 叫做比例内项,d ,叫做a,b,c 的第四比例项。
注意这里的字母是泛指,概念只与位置有关,第四比例项必须描述清楚是谁的第四比例项。
补充练习:①指出x y =ef 的比例内项、比例外项及第四比例项。
②求3,4,5的第四比例项。
P96做一做1,2%(2答案:等式a b =c d 的两边同乘以bd ,可由a b =cd 推出ad =bc 。
反过来等式ad =bc 两边同除以bd ,即可由ad =bc 推出a b =cd )比例的基本性质:基本性质:a b =cd <=>ad =bc(a 、b 、c 、d 都不为零) 两内项之积等于两外项之积。
说明:由a b =c d =>ad =bc 的形式是唯一的,而由ad =bc=>a b =cd 的形式不唯一,有8个不同的比例式。
可以补充,但不出现更比定理的名称。
三、模仿与应用例1:根据下列条件,求a:b 的值。
(1)2a =3b ;(2) a 5 =b4比例的基本性质直接运用,其中第2小题两次运用了性质,初学时易差错,要求学生重视对变形结果的检验,即变形后是否仍然满足“两内项之积等于两外项之积”。
%例2:已知a b =cd ,判断下列比例式是否成立,并说明理由。
(1)a +b b =c +d d ;(2)a b =a +c b +d分析:(1)比较条件和结论的形式得到解题思路; (2)采用设比值较为简单。
这两个小题反映了在比例式的变形中的两种常用方法:一是利用等式的基本性质;二是设比值。
课堂练习:P97课内练习、作业题、条件活动(学生板演) 补充练习:(1)已知:x :(x+1)=(1—x):3,求x 。
(2)若2x-3y x+y =12 ,求yx 。
《(3) 若a +b b =65 ,求ab ,a -b b (4)若x 2-3xy+2y 2=0,求y(5)已知x 2 =y 3 =z 4 求2x+3y-z z+2y-3x ,x+y+zx (6)已知x:y:z=4:5:7,求235x y z z++,x y y z++(7)a :b :c=1:3:5 且a+2b —c=8求a 、b 、c (8)已知x :y=3:4,x :z=2:3,求x :y :Z 的值。
(9)若25a c e b d f ===,求a c b d --,234234a c e b d f +-+-(10)y+z x =z+x y =x+yz =k,求k 的值(两种情况)。
;(11)已知在△ABC 中,D 、E 分别是AB 、AC 上的点,AB =12,AE =6,EC =4,且AD DB =AEEC .求AD 的长。
(12)已知1, 2 ,2三个数,请你再添上一个数,写出一个比例式。
(13)操场上有一群学生在玩游戏,其中男生与女生的人数比例是3:2,后来又有6名女同学参加进来,此时女生与女生人数的比为5:4,求原来各有多少男生和女生四、课堂小结1.比例的概念,比例的基本性质;2.判断四个数成比例的基本方法;3.比例式变形的常用方法:(1)利用等式性质;(2)设比值。
五、作业:见作业本 %六、教后感比例线段(2)教学目标:1.了解两条线段的比和比例线段的概念;2.能根据条件写出比例线段;3.回运用比例线段解决简单的实际问题。
教学重点、难点教学重点:比例线段的概念。
\教学难点:例3要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点。
知识要点:1.两条线段的长度的比叫做两条线段的比。
2.四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即a b =cd ,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。
重要提示:1.用方程思想寻找几何图形中四条线段成比例是常用方法。
2.四条线段成比例可以解决一些实际问题,如地图上的某两地之间的距离。
教学过程 }一、复习引入1.列举四个数成比例,并写出比例式,指出比例内项、外项、第四比例项。
2.说出比例的基本性质。
由ad =bc 可推出哪些比例式3.练习:(1)若3x =4y ,求x y 、xx -y 、x -2y x +y 的值。
(2)若a +b a =53 ,求a -2bb 的值。
(3)x:y:z =2:3:4,求x -y +z2x +3y -z的值。
(4)已知a:b:c =3:4:5,且2a +3b -4c =-1,求2a -3b +4c 的值。
(5)已知线段AB =15cm ,CD =20cm 。
求AB:CD 的值。
?(6)完成P98网格问题。
(问题建立在相似变换基础上,可复习相似变换) 二、设置问题,探究新课如何定义两线段的比呢什么是比例线段在同一长度单位下,a,b,两线段长度的比叫做这两线段的比。
记为a :b 或ab注意:(1)两线段是几何图形,可用它的长度比来确定;(2)度量线段的长,单位多种,但求比值必需在同一长度单位下比值一定是正数,比值与采用的长度单位无关。
(3)表示方式与数字的比表示类同,但它也可以表示为AB:CD.比例线段:一般地,四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 比,即a b =cd ,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。
(老教材定义:如果四条线段的长度成比例,那么这四条线段叫做成比例线段,简称比例线段) {完成P99做一做 三、模仿与应用例题:已知线段a=10mm ,b=6cm ,c=2cm ,d=3cm.问:这四条线段是否成比例为什么 答:这四条线段成比例 ∵a=10mm=1cm ∴a c =12 ,d b =36 =12∴a c =db ,即线段a 、c 、d 、b 是成比例线段。
想一想:是否还可以写出其他几组成比例的线段.;反思:判断四条线段是否成比例的方法有两种:(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等。
(2)查看是否有两条线段的积等于其余两条线段的积。
例3如图,在Rt △ABC 中,CD 是斜边AB 上的高。
请找出一组比例线段,并说明理由。
分析:(1)根据比例基本性质,要判断四条线段是否成比例,只要采取什么方法(看其中两条线段的乘积是否等于另两条线段的乘积)(2)已知条件中有三角形的高,我们通常可以把高与什么知识联系起来 (3)根据三角形的面积公式,你能得到一个怎样的等式根据所得 ` 的等式可以写出怎样的比例式。
例4如图,是我国台湾省的几个城市的位置图,问基隆市在高雄市的哪一个方向到高雄市的实际距离A B C D注意:要设实际距离为s ;求角度时要注意方位。
解:从图上量出高雄市到基隆市的距离约35mm,设实际距离为s ,则 3519000000s =359000000s ∴=⨯=0(mm) 即s =315(km) 答:如果量得图中28α∠=︒,我们还能确定基隆市在高雄市的北偏东28︒的315km 处。
&课堂练习:P99课内练习、P100作业题(学生板演) 补充练习:1.已知线段a =30mm ,b =2cm ,c =45 cm ,d =12mm ,试判断a 、b 、c 、d 是否成比例线段。
2.已知a 、b 、c 、d 是比例线段,其中a =6cm ,b =8cm ,c =24cm,则线段d 的长度是多上 3.已知三角形三条边之比为a :b :c=2:3:4,三角形的周长为18cm ,求各边的长。
4.已知AB 两地的实际距离是60km ,画在图上的距离A 1B 1是6cm ,求这幅图的比例尺。
5.现在有一棵很高的古树,欲测出它的高度,但又不能爬到树尖上去直接测量,你有什么好的方法吗【类题:相同时刻的物高与影长成比例。
如果一电视塔在地面上影长为180m ,同一时刻高为2m 的竹竿的影长为3m ,那么电视塔的高是多少6.如图,已知AD ,CE 是△ABC 中BC 、AB 上的高线,求证:AD :CE=AB :BC7.如图,在Rt △ABC 中,CD ⊥AB ,DE ⊥AC,请找出一组比例线段,并说明理由。
8.如图,已知32AD AE DB EC ==,求,,AB EC ABDB AE AD 9.育美中学请张工程师设计学校的矩形花坛的平面图,这个花坛长为20m ,宽为12m 。
(1)在比例尺为1:100的平面图上,这个矩形花坛的长和宽各是多少 (2)在平面图上,这个花坛的长和宽的比是多少 (3)花坛长和宽实际比是多少 !(4)你发现这两个比有什么关系 四、课堂小结1.两条线段的比及比例线段的概念;2.方程思想的体现;3.比例线段在实际问题中的应用。