2019-2020学年高中数学 映射函数教案 新人教版必修1.doc

合集下载

高中数学教案函数映射

高中数学教案函数映射

高中数学教案函数映射
教学目标:
1. 了解函数的定义和基本性质;
2. 熟练掌握函数的表示方法以及函数图像的绘制方法;
3. 能够分析函数的性质,如定义域、值域、奇偶性等;
4. 理解函数之间的映射关系,能够应用函数进行问题求解。

教学内容:
1. 函数的定义和性质;
2. 函数的表示方法和图像绘制;
3. 函数的性质分析;
4. 函数之间的映射关系。

教学过程:
一、引入:
1. 通过实际生活中的例子引入函数的概念,让学生了解函数在现实中的应用;
2. 引导学生思考函数的定义,并讨论函数和非函数的区别。

二、讲解:
1. 讲解函数的定义和基本性质,包括定义域、值域、奇偶性等;
2. 教授函数的表示方法和绘制函数图像的技巧;
3. 分析函数的性质,让学生掌握如何根据函数的表达式确定其性质。

三、练习:
1. 给学生一些简单的函数,让他们分析函数的性质并绘制函数图像;
2. 给学生一些应用题目,让他们应用函数进行求解;
3. 给学生一些函数间的映射关系,让他们进行比较和分析。

四、总结:
1. 总结函数的定义和性质;
2. 引导学生思考函数在生活中的应用,并展示一些相关实例。

五、拓展:
1. 给学生更复杂的函数问题,让他们深入理解函数的概念;
2. 引导学生思考函数之间的复合和反函数的概念。

教学反思:
通过本节课的教学,学生应该能够掌握函数的基本概念和性质,能够应用函数进行问题求解,并理解函数之间的映射关系。

同时,也要引导学生在学习中多思考、多实践,掌握更深层次的数学知识。

2019-2020学年高考数学 专题 映射复习教学案.doc

2019-2020学年高考数学 专题 映射复习教学案.doc

2019-2020学年高考数学专题映射复习教学案学情分析:高一学生已经学习了集合和函数两部分内容,初步具备了简单逻辑思维和抽象概括能力,同时,也存在着思维不够严谨,对抽象问题的理解存在障碍等问题。

因此,在教学中,教师采用了探究教学法,从实际生活出发,师生互动,使学生获得感性知识,从而建立映射的概念.教学目标:知识与技能:(1)会结合简单的“箭头图”,了解生活中不同的对应关系(2)了解映射的概念及表示方法(3)对于不同的对应,会判断哪些是映射(4)了解映射与函数的联系与区别过程与方法:(1)重视基础知识的教学、基本技能的训练和能力的培养(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力情感、态度、价值观:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生实事求是的学习态度和勇于创新的精神教学重点:映射概念的引入.教学难点:如何从各种不同的对应中归纳出映射的定义.教学方法:师生互动探究.教学过程:一、情境引入问题1 看到同学们,感觉很亲切,我先自我介绍下,我姓李,叫李海军,大家说这个名字好不好?其实名字是无所谓好坏的,它只是一个代号,但是确实很重要,当一个人的名字确定以后,那么这个人与名字之间就存在一种对应关系.在座的同学都有名字吧?有没有哪位同学没有名字的,请举手。

当然,有的同学可能还有小名。

试想:如果没有名字,会怎样?学校没有了名字,老师、同学都没有名字了,想一想,多么的混乱.名字如此的重要,今天这节课我们就从名字谈起.问题2 如果把若干人组成的集合记为A,名字组成的集合记作B,那么人与名字之间就存在一种对应关系,请大家思考,它们存在怎样的对应关系?哪位同学说一说.有可能是一个人对应一个名字,还有其它情形吗?有些人有同一个名字,还有吗?还有的人有多个名字,还有吗?问题3 从元素的对应关系来看,以上几种对应关系各有什么特点?一个元素对应一个元素,一个元素对应多个元素,多个元素对应一个元素一个元素对应0个元素,多个元素对应多个元素.问题4 在现实生活中,与之类似的对应有哪些?你能分别举例吗?给大家2分钟讨论一下:如:①一个学生对应一张桌子(一对一)②多位同学住在同一小区(多对一)③一个人有很多件衣服(一对多)④有的人有一个老婆,有的人没有(一对0)⑤运动会报名:一个人可以报多个项目,多个人也可以报一个项目.(多对多)问题5 以上,针对不同的对应,大家举了很多有趣的例子,我们都很感兴趣.就拿名字来说,国家为了方便交流与管理,规定对于到了法定年龄的公民,必须办理居民身份证,而每个人的身份证上只能有一个名字,与以上哪种对应是符合的?一个人对应一个名字,多个人对应一个名字我们把这两种对应称为单值对应,它反应的是两个非空集合之间的一种对应关系.你能说一说这两种对应各有什么特点吗?对于A中的每一个元素,在集合B中都有唯一的元素与之对应.数学上把这两种对应称为映射,问题6 你能用自己的语言叙述一下映射的定义吗?二、数学建构(1)映射:一般地,设A,B是两个非空的集合,如果按照某种对应法则f,对于A中的每一个元素,在集合B中都有唯一的元素与之对应,那么这样的单值对应,叫做从集合A到集合B的映射,记为f:A→B.问题7 你认为在映射的定义中,有哪些关键的词呢?(2)非空集合 A中的每一个元素 B中的唯一元素从A到B f:A→B问题8 同学们对于映射的定义是不是感到很熟悉?函数是如何定义的?与映射有什么区别?(3)函数:非空数集三要素:定义域、对应法则、值域映射:非空集合 A、f、B大家能举一些映射的例子吗?问题9 如果给大家一些对应,你能找出那些是映射吗?请看例1(1)多对多(2)一对无(3)一对多(4)多对一(5)多对一(6)多对一(7)一对一(4)(5)(6)(7)是从的映射到B A .问题10 从例1中,你能总结出判断映射的方法吗?映射:多对一、一对一,.中可以有剩余中不能有剩余,B A 问题11 请同学们思考,那些对应是从的映射?到A B (2)(7)哪些又既是从的映射到B A 又是从的映射呢?到A B 只有(7),一对一的映射,这说明映射是有方向的. 映射具有方向性.以上是从“形”的方面研究了映射,下面再从数量关系上找一找.例2 下列各组对应中,哪些是从集合A 到集合B 的映射?.12,,)1(+→==x x f R B R A :对应法则.,,)2(的倒数:对应法则x x f R B R A →==[).:,,,0)3(的平方根对应法则x x f R B A →=+∞=.2,,)4(2-→==x x f R B R A :对应法则.)5(面积的集合为所有三角形的成的集合,是平面内所有三角形组B A问题12 在以上的对应中,哪些对应是函数呢? (1)(4)问题13 (5)为什么不是函数?你能总结一下函数与映射的关系吗? (3)函数与映射的关系:函数是一种特殊的映射. 四、课后练习书本47页练习1,2,3,4 五、课堂小结本节课我们学习了哪些知识点? 板书设计。

2019-2020年高中数学 第一教时 映射教案 新人教A版必修1

2019-2020年高中数学 第一教时 映射教案 新人教A版必修1

教材:映射目的:要求学生了解映射和一一映射的概念,为今后在此基础上对函数概念的理解打下基础。

过程:一、复习:以前遇到过的有关“对应”的例子 1看电影时,电影票与座位之间存在者一一对应的关系。

2 对任意实数a ,数轴上都有唯一的一点A 与此相对应。

3 坐标平面内任意一点A 都有唯一的有序数对(x, y )和它对应。

4任意一个三角形,都有唯一的确定的面积与此相对应。

二、提出课题:一种特殊的对应:映射(1) (2) (3) (4) 引导观察,分析以上三个实例。

注意讲清以下几点:1.先讲清对应法则:然后,根据法则,对于集合A 中的每一个元素,在集合B 中都有一个(或几个)元素与此相对应。

2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④) 3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。

4.注意映射是有方向性的。

5.符号:f : AB 集合A 到集合B 的映射。

6.讲解:象与原象定义。

再举例:1A ={1,2,3,4} B ={3,4,5,6,7,8,9} 法则:乘2加1 是映射 2A =N + B ={0,1} 法则:B 中的元素x 除以2得的余数 是映射 3A =ZB =N * 法则:求绝对值 不是映射(A 中没有象) 4A ={0,1,2,4}B ={0,1,4,9,64} 法则:f :a b =(a1)2是映射三、一一映射观察上面的例图(2) 得出两个特点: 1对于集合A 中的不同元素,在集合B 中有不同的象 (单射) 2集合B 中的每一个元素都是集合A 中的每一个元素的象 (满射) 即集合B 中的每一个元素都有原象。

结论:(见P 48) 从而得出一一映射的定义。

例一:A ={a ,b ,c ,d } B ={m ,n ,p ,q } 它是一一映射例二:P 48例三:看上面的图例(2)、(3)、(4)及例1、2、4辨析为什么不是一一映射。

四、练习 P 49五、作业 P 49—50 习题2.1《教学与测试》 P 33—34第16课教材:集合的概念A B A BA BA B 3 3 2 2 1 1 30 45 60 90 12322211 12 23 3开平方 求平方a b c dm n p qA Bf目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

高中数学:1.2.1《映射的概念》教案(新人教A版必修1)

高中数学:1.2.1《映射的概念》教案(新人教A版必修1)

1.2.1 映射的概念教学目标: 1.知识与技能了解映射的概念,掌握象、原象等概念及其简单应用。

2.过程与方法学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

3.情感、态度与价值观树立数学应用的观点,培养学习良好的思维品质。

教学重点:映射的概念。

教学难点:映射的概念。

教学过程: 一、复习引入:1、在初中我们已学过一些对应的例子:(学生思考、讨论、回答) ①看电影时,电影票与座位之间存在者一一对应的关系 ②对任意实数a ,数轴上都有唯一的一点A 与此相对应③坐标平面内任意一点A 都有唯一的有序数对(x, y)和它对应 2、函数的概念本节我们将学习一种特殊的对应—映射。

二、讲解新课:看下面的例子:设A ,B 分别是两个集合,为简明起见,设A ,B 分别是两个有限集求平方B B说明:(2)(3)(4)这三个对应的共同特点是:对于左边集合A 中的任何一个元素,在右边集合B 中都有唯一的元素和它对应映射:设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射 记作:B A f →:象、原象:给定一个集合A 到集合B 的映射,且B b A a ∈∈,,如果元素a 和元素b 对应,则元素b 叫做元素a 的象,元素a 叫做元素b 的原象关键字词:(学生思考、讨论、回答,教师整理、强调) ①“A 到B ”:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射,A 到B 是求平方,B 到A 则是开平方,因此映射是有序的; ②“任一”:就是说对集合A 中任何一个元素,集合B 中都有元素和它对应,这是映射的存在性;③“唯一”:对于集合A 中的任何一个元素,集合B 中都是唯一的元素和它对应,这是映射的唯一性;④“在集合B 中”:也就是说A 中元素的象必在集合B 中,这是映射的封闭性. 指出:根据定义,(2)(3)(4)这三个对应都是集合A 到集合B 的映射;注意到其中(2)(4)是一对一,(3)是多对一 思考:(1)为什么不是集合A 到集合B 的映射? 回答:对于(1),在集合A 中的每一个元素,在集合B 中都有两个元素与之相对应,因此,(1)不是集合A 到集合B 的映射思考:如果从对应来说,什么样的对应才是一个映射? 一对一,多对一是映射但一对多显然不是映射 辨析:①任意性:映射中的两个集合A,B 可以是数集、点集或由图形组成的集合等;②有序性:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射; ③存在性:映射中集合A 的每一个元素在集合B 中都有它的象; ④唯一性:映射中集合A 的任一元素在集合B 中的象是唯一的;⑤封闭性:映射中集合A 的任一元素的象都必须是B 中的元素,不要求B 中的每一个元素都有原象,即A 中元素的象集是B 的子集.映射三要素:集合A 、B 以及对应法则f ,缺一不可; 三、例题讲解例1 判断下列对应是否映射?有没有对应法则?a eb fc gd (是) (不是) 例2下列各组映射是否同一映射?a e e eb b fc c g 例3A (1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则12:+→x x f(2)设}1,0{,*==B N A ,对应法则得的余数除以2:x x f →(3)N A =,}2,1,0{=B ,除所得的余数被3:x x f →(4)设}41,31,21,1{},4,3,2,1{==Y X 取倒数x x f →: (5)N B N x x x A =∈>=},,2|{,的最大质数小于x x f →:四、练习:1.设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A 中的元素x 按照对应法则“乘2加1”和集合B 中的元素2x+1对应.这个对应是不是映射?(是)2.设A=N*,B={0,1},集合A 中的元素x 按照对应法则“x 除以2得的余数”和集合B 中的元素对应.这个对应是不是映射?(不是(A 中没有象))3.A=Z ,B=N*,集合A 中的元素x 按照对应法则“求绝对值”和集合B 中的元素对应.这个对应是不是映射? (是)4.A={0,1,2,4},B={0,1,4,9,64},集合A 中的元素x 按照对应法则“f :a τ b=(a -1)2”和集合B 中的元素对应.这个对应是不是映射? (是)5.在从集合A 到集合B 的映射中,下列说法哪一个是正确的? (A )B 中的某一个元素b 的原象可能不止一个;(B )A 中的某一个元素a 的象可能不止一个(C )A 中的两个不同元素所对应的象必不相同; (D )B 中的两个不同元素的原象可能相同 6.下面哪一个说法正确?(A )对于任意两个集合A 与B ,都可以建立一个从集合A 到集合B 的映射 (B )对于两个无限集合A 与B ,一定不能建立一个从集合A 到集合B 的映射(C )如果集合A 中只有一个元素,B 为任一非空集合,那么从集合A 到集合B 只能建立一个映射(D )如果集合B 只有一个元素,A 为任一非空集合,则从集合A 到集合B 只能建立一个映射7.集合A=N ,B={m|m=1212+-n n ,n ∈N},f :x →y=1212+-x x ,x ∈A ,y ∈B.请计算在f 作用下,象119,1311的原象分别是多少.( 5,6 )。

人教版高中数学必修1映射教案

人教版高中数学必修1映射教案

§2.1.2 一一映射[教学目的]使学生了解一一映射的概念;会判断一些简单对应是否是一一映射.[重点难点]重点:一一映射的概念;难点:判断所给对应是否是一一映射.[教学设想]1.教法:直观演示、引导发现法;2.学法:启发学生观察、思考、分析和讨论;3.课时:1课时.[教学过程]一、复习引入⒈复习从集合A到集合B的映射的概念.然后指出以下两点:⑴映射是特殊的对应,它的特点是:在集合A中的任一元素在集合B中有唯一的元素与它对应;⑵对集合B中的元素,在集合A中可以有几个元素和它对应,即对集合B中的元素,在集合A中的原象没有提出个数上的限定.⒉问题引入:如果f是集合A到B的映射,B中任一元素在A中原象的个数可能有几种情况,举例说明.答:有三种情况:⑴集合B中的某一元素在A中没有原象(如图1);⑵集合B中的任何一个元素在A中都有一个原象(如图2);⑶集合B中的某一元素在A中有两个或两个以上的原象(如图3).f a在B,在A答:就是找出由b求a的对应法则.易知它们的对应法则分别是:“除以2”,“减3”和“开方”.我们记B→A的对应法则为g.再问:g:B→A是不是从B到A的映射,为什么?答:图2中的g:B→A是映射;图1、图3中的g:B→A不是映射.小结:对任一个f:A→B的映射来说,由B到A的对应g都存在,但对应g 有的是映射,有的不是映射.可见要使对应g成为映射,必须对原来的f提出更多的条件.引导学生分析图1、图3两种情况:图1中,g不是映射的原因是因为B中存在元素“5”,它在A中没有原象.图3中,g不是映射的原因是因为B中的元素“1”和“4”,它们在A中有两个原象.从而得出结论:如果f:A→B是映射,要使g:B→A成为映射,必须排除这两种情况,而对映射提出更多的条件.为了排除这两种情况,映射f 还应满足什么条件呢?⑴B 中任何一个元素在A 中都有原象;⑵B 中任何一个元素在A 中都有唯一的原象,换句话说,A 中的不同元素在B 中有不同的象. 我们把满足上述两个条件的映射f :A →B 叫做一一映射.二、学习、讲解新课⒈ 一一映射的概念设A ,B 是两个集合,f :A →B 是从集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射.所以,一一映射是特殊的映射,而且如果f :A →B 是一一映射,那么g :B →A 是映射.⒉ 一一映射的判断⑴有限集合例1 集合A 的元素是a ,集合B 的元素是b ,判断下面的映射是不是从A 到B 的一一映射,为什么?①② 解:①是从A 到B 的一一映射,因它符合定义;②不是,因为它不满足定义中的“对于集合A 中的不同元素在B 中有不同的象”这一条.问:如何作最小的改动,使上述①中的一一映射变为非一一映射?答:只要将B 的元素改成有两个相同,或再加进一个元素,就可使①中的一一映射变为非一一映射.⑵无限集合例2 设M={…,-3,-2,-1,0,1,2,3,…},N={0,1,2,3,…},f 是从M 到N 的对应:x →y=|x|.这个对应是不是映射?是不是一一映射?为什么?答:这个对应是映射,因它满足映射的定义;但它不是一一映射,因为M 中不同的元素在N 中有相同的象.例3 f :R →CR(R-),x →y=x2是不是一一映射,为什么?在对应法则不变的情况下,怎样改动一下,就可以使它成为一一映射?解:f :R →CR(R-),x →y=x2是映射,但不是一一映射,因为R 中的不同元素(如2,-2)在集合CR(R-)中有不同的象(如4).如果将原象集合R 改为CR(R-),则f :CR(R-)→CR(R-),x →y=x2是从CR(R-)到 CR(R-)的一一映射.⑶生活中的例子例4 A={苍梧一中的学生},B={苍梧一中学生的年龄},f :A →B ,a →a 的年龄,是不是从A 到B 的一一映射,为什么?解:不是一一映射,因为不同的学生年龄会相同.⒊目标检测⑴课本P49练习:3.⑵已知A={1,2,3,4},B={2,4,6,8},写出一个A到B上的一一映射.⑶已知A={1,2,3,4},B={1,3,5,7,9},则对应f:A→B,x→y=2x+1,x∈A,y∈B是否是A到B 上的一一映射,为什么?若不是,在不改变对应法则的前提下,把它改写成一个A到B上的一一映射.解:⑴图2-1⑵、⑶、⑷都是集合A到集合B的映射,其中⑵是A到B上的一一映射.⑵ f:A→B,x→y=2x,x∈A,y∈B就是A到B上的一个一一映射.⑶ f:A→B,x→y=2x+1,x∈A,y∈B是A到B上的映射,但不是一一映射;只要将集合B中的元素1去掉,其他条件不变,则它就是一个A到B上的一一映射.三、小结1.一一映射是一种特殊的映射.若一个映射同时满足:⑴A中的不同元素在B中有不同的象;⑵B中任何一个元素在A中都有原象,则这个映射就是一一映射.2. 在映射f:A→B中,若象集合C≠B,则此映射不是一一映射,也就是说,C=B是一一映射的必要条件.3. 如果f:A→B是一一映射,那么g:B→A是映射.四、布置作业(一)复习:课本内容,熟悉巩固有关概念.(二)书面:课本P50习题2.1:3;练习册P24 B组:2.答案:课本P50习题2.1:3:⑴是映射.因为对于左边集合的每一个元素,右边集合都有唯一的元素和它对应;但不是一一映射,因为集合A中不同元素a1,a4有相同的象b1,B中的元素b2在A中没有原象.⑵是映射,理由同第⑴题;是一一映射,因为对于左边集合的不同元素,在右边集合中有不同的象,而且右边集合中每一元素都有原象.⑶不是映射.因为对于左边集合的元素a2,右边集合有两个元素b1,b3和它对应(不唯一).⑷是映射,理由同第⑴题;但不是一一映射,因为对于集合B的元素b5,在集合A中没有原象.练习册P24 B组2:已知A=R,B={y|y∈R,且y≥1},x∈A,对应法则f:x→y=x2-2x+2.问:f:A→B是A到B的映射吗?是一一映射吗?若不是,如何改动集合A(集合B和对应法则不变),使之成为一一映射.解:是映射,但不是一一映射,因为y=(x-1)2+1的对称轴是x=1,所以,若将集合A改为{x|x≥1,x∈R}(或{x|x≤1,x∈R})时,A到B的对应f:x→y=x2-2x+2就是一一映射了.(三)思考题:练习册P24 B组3:设A={1,2,3,m},B={4,7,n4,n2+3n},m,n∈N,a∈A,b∈B,“f:a→b=pa+q”是从A到B的一一映射,又1的象是4,7的原象是2,试求p,q,m,n的值.解:由1→4,2→7得,4=p+q,7=2p+q,解得p=3,q=1;又由f是一一映射,得3→n4且m→n2+3n,或3→n2+3n且m→n4,即n4=3p+q=10且n2+3n=mp+q=3m+1,或n2+3n=3p+q=10且n4= mp+q=3m+1,亦即n4=10且n2+3n=3m+1---①,或n2+3n=10且n4=3m+1---②,∵m,n∈N, ∴①无解;解②得m=5,n=2.∴p=3,q=1, m=5,n=2.(四)预习:课本P50-53 2.2函数.。

高中数学映射与函数 讲学案人教版必修一A

高中数学映射与函数 讲学案人教版必修一A

映射与函数讲学案
a.观察下列对应
{1,4,9}
A=, {3,2,1,1,2,3}
B=---,对应法则:开平方;
{3,2,1,1,2,3}
A=---,{1,4,9}
B=,对应法则:平方;
{30,45,60} A=︒︒︒,
231
{1,,,}
222
B=
, 对应法则:求正弦;
(对每个对应都要强调对应法则,集合顺序)
问题1:这三个对应的共同特点是什么?
这三个对应的共同特点是:对于左边集合A中的任何一个元素,按照某种对应法则ƒ,在右边集合B中都有唯一的元素和它对应。

b.映射的定义
一般地,设A、B是两个集合,如果按照某种对应法则ƒ,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包
括集合A、B及A到B的对应法则f)叫做集合A到集合B的映射。

记作:f:A
→B
c.象,原象的概念
给定一个集合A到集合B的映射,且a∈A,b∈B。

如果在对应法则f的作用下,元素a和元素b对应,则元素b叫做元素a(在f下)的象,元素a叫做
元素b(在f下)的原象。

注意:(1)映射有三个要素:两个集合,一种对应法则,缺一不可;
(2)A,B可以是数集,也可以是点集或其它集合。

这两个集合具有先后顺序:符号“f:A→B”表示A到B的映射,符号“f:B→A”表示B到A的映射,两者是不同的;
由此有:。

2019—2020年最新高中数学苏教版必修一2.3《映射的概念》教学设计(教案).doc

2019—2020年最新高中数学苏教版必修一2.3《映射的概念》教学设计(教案).doc

§2.3 映射的概念课时目标 1.了解映射的概念.2.了解函数与映射的区别与联系.1.一般地,设A、B是两个非空集合,如果按某种对应法则f,对于A中的________元素,在B中都有______的元素与之对应,那么,这样的__________叫做集合A到集合B的映射,记作________.2.映射与函数由映射的定义可以看出,映射是______概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A,B必须是__________.一、填空题1.设f:A→B是从集合A到集合B的映射,则下面说法正确的是________.(填序号)①A中的每一个元素在B中必有元素与之对应;②B中每一个元素在A中必有元素与之对应;③A中的一个元素在B中可以有多个元素与之对应;④A中不同元素在B中对应的元素必不同.2.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列能表示从P到Q的映射的是________.(填序号)①f:x→y=12x;②f:x→y=13x;③f:x→y=23x;④f:x→y=x.3.下列集合A到集合B的对应中,不能构成映射的是________.(填序号)4.下列集合A,B及对应法则能构成函数的是________.(填序号)①A=B=R,f(x)=|x|;②A=B=R,f(x)=1 x ;③A={1,2,3},B={4,5,6,7},f(x)=x+3;④A={x|x>0},B={1},f(x)=x0.5.给出下列两个集合之间的对应法则,回答问题:①A={你们班的同学},B={体重},f:每个同学对应自己的体重;②M={1,2,3,4},N={2,4,6,8},f:n=2m,n∈N,m∈M;③M=R,N={x|x≥0},f:y=x4;④A={中国,日本,美国,英国},B={北京,东京,华盛顿,伦敦},f:对于集合A中的每一个国家,在集合B 中都有一个首都与它对应.上述四个对应中映射的个数为______,函数的个数为______.6.集合A={1,2,3},B={3,4},从A到B的映射f满足f(3)=3,则这样的映射共有________个.7.设A=Z,B={x|x=2n+1,n∈Z},C=R,且从A到B的映射是x→2x-1,从B到C的映射是y→12y+1,则经过两次映射,A中元素1在C中的对应的元素为________.8.设f,g都是由A到A的映射,其对应法则如下表:映射f的对应法则如下:映射g的对应法则如下:则f[g(1)]的值为________.9.已知f是从集合M到N的映射,其中M={a,b,c},N={-3,0,3},则满足f(a)+f(b)+f(c)=0的映射f的个数是________.二、解答题10.设f:A→B是集合A到集合B的映射,其中A={正实数},B=R,f:x→x2-2x-1,求A中元素1+2在B 中的对应元素和B中元素-1在A中的对应元素.11.已知A={1,2,3,m},B={4,7,n4,n2+3n},其中m,n∈N*.若x∈A,y∈B,有对应法则f:x→y=px+q是从集合A到集合B的一个映射,且f(1)=4,f(2)=7,试求p,q,m,n的值.能力提升12.已知集合A=R,B={(x,y)|x,y∈R},f:A→B是从A 到B 的映射,f :x →(x +1,x 2+1),求A 中元素2在B 中的对应元素和B 中元素⎝ ⎛⎭⎪⎫32,54在A 中的对应元素.13.在下列对应法则中,哪些对应法则是集合A 到集合B 的映射?哪些不是.(1)A ={0,1,2,3},B ={1,2,3,4},对应法则f :“加1”; (2)A =(0,+∞),B =R ,对应法则f :“求平方根”; (3)A =N ,B =N ,对应法则f :“3倍”; (4)A =R ,B =R ,对应法则f :“求绝对值”; (5)A =R ,B =R ,对应法则f :“求倒数”.1.映射中的两个集合A 和B 可以是数集、点集或由图形组成的集合等,映射是有方向的,A 到B 的映射与B 到A 的映射往往是不一样的.2.对应、映射、函数三个概念既有区别又有联系,在了解映射概念的基础上,深刻理解函数是一种特殊的映射,而映射又是一种特殊的对应.3.判断一个对应是否是映射,主要看第一个集合A中的每一个元素在对应法则下是否都有对应元素,若有,再看对应元素是否唯一,若惟一则这个对应就是映射.2.1.4 映射的概念知识梳理1.每一个惟一单值对应f:A→B 2.函数非空数集作业设计1.①2.①②④解析如果从P到Q能表示一个映射,根据映射的定义,对P中的任一元素,按照对应法则f在Q中有惟一元素和它对应,选项③中,当x=4时,y=23×4=83∉Q.3.①②③解析①、②中的元素2没有对应的元素;③中1的对应有两个;只有④满足映射的定义.4.①③④解析 在②中f(0)无意义,即A 中的数0在B 中找不到和它对应的数.5.4 2解析 ①、②、③、④都是映射;②、③是函数. 6.4解析 由于要求f(3)=3,因此只需考虑剩下两个元素的对应元素的问题,总共有如图所示的4种可能.7.13解析 A 中元素1在B 中对应的元素为2×1-1=1,而1在C 中对应的元素为12×1+1=13.8.1解析 ∵g(1)=4,∴f[g(1)]=f(4)=1.9.7解析⎩⎪⎨⎪⎧f a 3,f b 0,fc3,⎩⎪⎨⎪⎧f a 3,f b 0,fc3,⎩⎪⎨⎪⎧f a 3,f b 3,fc0,f(a)=f(b)=f(c)=0. 10.解 当x =1+2时,x 2-2x -1=(1+2)2-2×(1+2)-1=0,所以1+2的对应元素是0.当x 2-2x -1=-1时,x =0或x =2. 因为0∉A ,所以-1的对应元素是2. 11.解 由f(1)=4,f(2)=7,列方程组:⎩⎪⎨⎪⎧ p +q =42p +q =7⇒⎩⎪⎨⎪⎧p =3q =1. 故对应法则为f :x →y =3x +1.由此判断出A 中元素3的对应值是n 4或n 2+3n.若n 4=10,因为n ∈N *,不可能成立,所以n 2+3n =10,解得n =2(舍去不满足要求的负值).又当集合A 中的元素m 的对应元素是n 4时,即3m +1=16,解得m =5.当集合A 中的元素m 的对应元素是n 2+3n 时,即3m +1=10,解得m =3.由元素互异性知,舍去m =3.故p =3,q =1,m =5,n =2. 12.解 将x =2代入对应法则,可求出其在B 中的对应元素(2+1,3).由⎩⎪⎨⎪⎧x +1=32,x 2+1=54,得x =12.所以2在B 中的对应元素为(2+1,3),⎝ ⎛⎭⎪⎫32,54在A 中对应元素为12. 13.解 (1)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有唯一的一个元素与之对应,显然,对应法则f 是A 到B 的映射.(2)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有两个元素与之对应,显然对应法则f 不是A 到B 的映射.(3)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有唯一的元素与之对应,故对应法则f 是从A 到B 的映射.(4)中集合A 中的每一个元素通过对应法则f 作用后,在集合B 中都有唯一的元素与之对应,故对应法则f 是从A 到B 的映射.(5)当x =0∈A ,1x无意义,故对应法则f 不是从A 到B 的映射.。

2019-2020学年高中数学《2.1.3 映射与函数》教案 新人教B版必修1.doc

2019-2020学年高中数学《2.1.3 映射与函数》教案 新人教B版必修1.doc

2019-2020学年高中数学《2.1.3 映射与函数》教案 新人教B 版必修1【预习】教材第34~37页,了解: 1、映射的定义。

2、区间的概念。

第二部分 走进课堂【复 习】1、初中函数的定义2、高中函数的定义。

【探索新知】一、映射的定义 例子:1、{}是平面内三角形x x A |=,{}是平面内的圆x x |B= :f 画三角形的外接圆。

2、{}是平面内三角形x x A |=,R =B:f 求三角形的面积。

3、{}是平面内的点P P A |=,{}R y R x y x ∈∈=,|)B ,( :f 在平面直角坐标系下找点P 的坐标。

4、{}是我们班级内的学生x x A |= {}是我们班级内的椅子x x |B = :f 每位同学坐一把椅子。

下列例子是映射吗?B f:取倒数 (1) (2)f:开平方 Bf:平方Bf:乘2f:平方B二、区间的概念请在下列空白处填写集合的区间表示。

①{}b x a x <<|__________ ②{}b x a x ≤≤|___________③{}b x a x <≤|__________ ④{}b x a x ≤<|__________⑤{}a x x >| __________ ⑥{}a x x ≥| ____________ ⑦{}a x x <| __________ ⑧{}a x x ≤| _____________ 三、注意)(a f 的意义例1、已知253)(2+-=x x x f ,求)3(f ,)2(-f ,)1(+a f例2、已知18)(+=x x f ,x x x g +=2)(求))((x g f ,)2)((+x g f ,))((x f g ,)20)3((-f g例3、已知)(x f =⎪⎩⎪⎨⎧+--10122x x 000<=>x x x ,求)1)1((-f f , )3)2((+-f f例4、已知⎩⎨⎧++=)1(12)(x f x x f 11<≥x x ,求)2(-f例5、已知19)(+=x x f ,2)(x x g =,)2)(())((-=x f g x g f ,求x例6、已知⎩⎨⎧-=2)1(2)(x xx f 11<≥x x(1)若4)(0=x f ,求0x(2)若4)(0≥x f ,求0x 的取值范围。

高中数学映射函数教案新人教版必修1

高中数学映射函数教案新人教版必修1

映射 函数一、教学目标1.映射,一一映射 2.函数二、考点、热点回顾 1.映射、一一映射(1)集合A 到集合B 的映射有三个要素,即集合A 、集合B 和对应法则f .其中集合A 和集合是有先后顺序的,因为一般情况下A 到B 的映射和B 到A 的映射是不同的映射.而对于集合A 和集合B 的元素是什么,映射的定义未对此作具体要求,它们的元素可以是数,可以是点,也可以是其他对象.(2)一个对应要满足下面两个条件才能称为集合A 到集合B 的映射:①集合A 中的每一个...元素(一个不漏地)在集合B 中都有象(但集合B 中的每一个元素不一定都有原象);②集合A 中的每一个元素在集合B 中的象只有唯一..的一个(集合B 中的元素在集合A 中的原象可能不止一个).也就是说,图1和图2所示的两种对应不能称为映射.(3)对于上述映射,如果加上一个条件,要求集合B 中的每一个元素在集合A 中都有原象,则这样的映射称为“集合A 到集合B 上.的映射”.如果在此基础上再加上一个条件,要求集合B 中的每一个元素在集合A 中的原象只有唯一的一个,则这样的映射称为“集合A 到集合B 上的一一..映射”.例1 如图3,集合A={1、2、3、4、5},B={a 、b 、c 、d 、e }.判断下列对应中,(1)哪些是集合A 到集合B 的映射;(2)哪些是集合A 到集合B 上的映射;(3)哪些是集合A 到集合B 上的一一映射.图31 2 3 4 5 a b c d e A ① 1 2 3 4 5 abcdeB A ② 1 2 3 4 5 a b c d e ③1 2 3 4 5 a b c d e B A ④A B × × × × × × × × 图1 A B × × × × × × × × 图2 f 1f 2例2 已知集合A={30≤≤x x },B={10≤≤y y }.判断下列各对应f 是否是集合A 到集合B 的映射?一一映射?并说明理由. (1)f :x y x 31=→; (2) f :x y x 41=→;(3) f :2)2(-=→x y x ; (4)f :291x y x =→;(5)f :2)1(41-=→x y x2.函数(1)函数的定义.在初中学过的函数概念是从运动变化的角度出发,用变量来定义的,习惯上称为传统定义.传统定义由研究变量的物理意义而产生,反映了两个变量之间变化的相依关系.由于受变量物理意义的限制,对某些函数难以进行研究,因为有些函数从物理的角度不好解释.因此高中学习函数时重新引进了用映射刻划函数的近代定义,它更具有一般性.当然,两种定义的本质是一样的. 集合A 到集合B 的映射f :B A →要成为函数,还必须满足两个条件:①集合A 、B 都是非空集合;②集合A 、B 都是数的集合.其中集合A 就是函数的定义域,而集合B 不一定是值域.一般地说,值域C 是集合B 的子集,即B C⊆.(若集合B C =,则这个映射就成为集合A 到集合B 上的映射).(2)函数的三要素.定义域A ,值域C 和定义域A 到值域C 的对应法则f,构成了函数的三个要素.当且仅当这三个要素完全相同时,两个函数才是同一个函数. 在判断两个函数是否同一函数时,主要观察它们的定义域和对应法则是否相同. (3)区间设a 、R b ∈,且b a <.用闭区间[b a ,]表示集合{b x a x ≤≤},用开区间),(b a 表示集合{b x a x <<},用半开半闭区间],(b a 表示集合{b x a x ≤<},用半开半闭区间),[b a 表示集合{b x a x <≤}.(4)函数的表示法.函数常用的表示法有:解析法,列表法及图像法,三种表示法各有其长处. 要搞清符号)(x f 和)(a f (a 为常数)的区别.一般情况下,)(x f 是一个随自变量x 的变化而变化的变量,而)(a f 是当自变量a x =时函数的值,是一个确定的量.与初中接触到的函数不一样,这里的函数可以是在不同区间中(或不同条件下)表达式不同的分段函数,因此函数的图像也不一定是一条平滑曲线,它可能是一些孤立的点,一些线段,或一些曲线. 例3 判断下列各对函数是否是同一个函数,并说明理由. (1) 2)(x x f = , 2)()(x x g = ;(2).)(33x x f = , x x g =)( ;(3)11)(2+-=x x x f , 1)(-=x x g ; (4)1)(-=x x f , ⎩⎨⎧<->-=);1(,1),1(,1)(x x x x x g (5)2)(x x f = , x x g =)( ;(6) 21)(x x f -= , 21)(t t g -= .例4 已知32)(-=x x f , 12)(2+=x x g ,求 )]([x g f 和 )]([x f g .例5 (1)已知=)(x f ⎪⎩⎪⎨⎧-,12,2,02x求)2(f ,)1(-f ,)]0([f f ,)]22([-f f ; (2)已知 ⎪⎪⎩⎪⎪⎨⎧≥-<<--≤+=),2(,23),21(,),1(,32)(2x x x x x x x g 且3)(=t g , 求t .例6 (1)画出函数342+-=x x y 的图像;(2)画出函数342+-=x x y 的图像;(3)已知函数)(x f y =的图像如图4,写出)(x f 的解析式.(x > 0), (x = 0),(x < 0),例7 求下列函数的定义域: (1) 2312+-=x x y; (2)xy 21211++= ;(3)7522--=x x y .例8 已知函数)(x f y =的定义域为[-1,2],求函数)1()1()(-++=x f x f x g 的定义域.例9 (1)已知11)11(2-=+xx f ,求)(x f ;(2)已知函数)(x f 的定义域是),0()0,(∞-∞Y ,且x xf x f 4)1(2)(3=+,求)(x f ;(3)已知32)2(+=-x x f ,求)(x f .例10 设⎩⎨⎧≥<-=),0(,,1),0(,1)(x x x f 画出函数)1(-=x f y 的图像.(快速五分钟,稳准建奇功)1.设f是从集合A 到集合B 的映射,下列四个说法:①集合A 中的每一个元素在集合B 中都有象;②集合B 中的每一个元素在集合A 中都有原象;③集合A 中不同的元素在集合B 中的象也不同;④集合B 中不同的元素在集合A 中的原象也不同,其中正确的是 ( )A .①和②B .②和③C .③和④D .①和④2.已知集合A={}60≤≤x x ,B={}30≤≤y y ,则下列对应关系f 中,不能看成是从集合A 到集合B 的映射的是 ( )A .f :x y x 21=→ B .f :x y x 31=→C .f:x y x =→D .f:x y x 61=→3.下列三个命题:①函数是从定义域到值域的一一映射;②函数的定义域和值域可能是数集,也可能不是数集;③函数的定义域和值域都不能是空集.其中真命题是 ( )A .①B .②C .③D .①和③4.下列各组函数:①2)(+=x x f ,44)(2++=x x x g ;②11)(2+-=x x x f ,1)(-=x x g ;③x x f =)(,xx x g =)(;④1)(+=x x f ,⎩⎨⎧<--≥+=)0(,1)0(,1)(x x x x x g .其中)(x f 和)(x g 表示同一个函数的是 ( )A .①B .①和②C .③D .④5.函数xx y -=1的定义域是 ( )A .),0()0,(+∞-∞YB .),1()1,0()0,(+∞-∞Y YC .)0,1()1,(---∞YD .)0,(-∞6.已知函数)(x f 的定义域是)1,0(,则函数)1(2-x f 的定义域为 ( )A .)2,1( B .)2,1()1,2(Y --C .)0,1(-D .)1,0()0,1(Y - 7.已知),(y x 在映射f 下的象是)2,2(y x y x -+,则)3,1(在f下的原象是 。

高一数学映射(新编2019教材)

高一数学映射(新编2019教材)
集合B={9,0,4,1,5},对应关系是: 集合A中的每一个数,在集合B中都有一个其 对应的平方数.
;中药祛痘 / 中药祛痘 ;
评逆击 以思天戒 一名乞冀加 勒以桃豹为魏郡太守以抚之 聪回军而南 当有刺客起于京师 中书令王波上《玄玺颂》以美之 陛下再立储宫 段末波初统其国 多有附者 徙陈川部众五千馀户于广宗 都水使者支当等固谏 幽闲淑令 生遣将军郭权率鲜卑涉璝部众二万为前锋距之 吾及晋之清平 坚以西域
将军 吾将以汝为奴 靳明率平阳之众奔于刘曜 君似奸人 自长安赴之 草付臣又土王咸阳 珍宝 孤实惧焉 睹危亡之隙 进封中山王 代金行之后 次于枋头 尽俘其众 汝为德未充而怀是非 弥等未至 生怒 劲士风集 冯莫 斩步都等三百馀人 愁思堆 闵字永曾 为兰所败 聪墓 季龙既惜朗 中大夫傅彪 赤
牛奋靷谓赤奋若 且可称居摄赵天王 西门 遣将谢艾逆击 虑腹背之患者 负盟之甚 司隶部人奔于冀州二十万户 分遣诸将攻中山 时生侍健疾 翰虑成本国之害 苻洪 彭超陷盱眙 三分而一 遣使献捷京师 都督 天罗既张 屡有战功 欲斩泰以速降之 不过太宗二郡地耳 并录尚书事 一则疑吾与毖谲而覆之
正阳神朔 长安大街 征诸宗室皆进封郡王 抽剑击之 专总朝政 郊祀其祖洪以配天 自非京城内外 此国家之事 遂送暐于坚 复何疑哉 力足制之者 而年年降罚 诚非圣君仁后所忍为也 中州之人 遣使称藩于季龙 臣请击之 大赦境内 苻郎 有惮敌之意 翰领精骑为奇兵 深得王臣之体 菁勒兵入东宫 所以
一旦败亡者 我尚如是 公卿已下子孙并遣受业 白兔 阳裕慕容皝 冀否终有泰 历代垂美 徙降人二万馀户于襄国 陈己过深重 南越而已哉 司马崔悦等封其府库 天赞我也 孤惟事君之体当资舜求瞽瞍之义 故东宫谪卒高力等万馀人当戍凉州 大赦境内 卿家骨肉相残 勒统步骑四万人自宣阳门 秩二千石

2019-2020年高中数学 2.1.1.2映射与函数教学设计 新人教B版必修1

2019-2020年高中数学 2.1.1.2映射与函数教学设计 新人教B版必修1

2019-2020年高中数学 2.1.1.2映射与函数教学设计新人教B版必修1教学分析课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.三维目标1.了解映射的概念及表示方法,会利用映射的概念来判断“对应关系”是否是映射.2.感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的认识.重点难点教学重点:映射的概念,映射与函数关系.教学难点:理解映射的概念.课时安排1课时教学过程导入新课思路1.复习初中常见的对应关系.1.对于任何一个实数a,数轴上都有唯一的点P和它对应.2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应.3.对于任意一个三角形,都有唯一确定的面积和它对应.4.某影院的某场电影的每一张电影票有唯一确定的坐位与它对应.5.函数的概念.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).思路2.前面学习了函数的概念是:一般地,设A,B是两个非空数集,如果按照某种对应法则f,对于集合A中的每个元素x,在集合B中都有唯一的元素y和它对应.(1)对于任意一个实数,在数轴上都有唯一的点与之对应.(2)班级里的每一位同学在教室内都有唯一的坐位与之对应.(3)对于任意的三角形,都有唯一确定的面积与之对应.那么这些对应又有什么特点呢?这种对应称为映射.引出课题.推进新课新知探究提出问题①给出以下对应关系:这三个对应关系有什么共同特点?②阅读教材例4、例5、例6,请给出映射的定义.③“有一个且仅有一个”是什么意思?④函数与映射有什么关系?⑤图中第1个映射与其他映射有何特点?讨论结果:①集合A、B均为非空集合,并且集合A中的元素在集合B中都有唯一的元素与之对应.②一般地,设A,B是两个非空的集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.这时,称y是x在映射f的作用下的象,记作f(x).于是y=f(x),x称作y的原象.映射f也可记为:f:A→B,x→f(x).其中A叫做映射f的定义域,由所有象f(x)构成的集合叫做映射f的值域,通常记作f(A).③包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思,即是一对一或多对一.④函数是特殊的映射,映射是函数的推广.⑤B中任一元素在A中有唯一的原象,这种映射称为一一映射.应用示例思路1例1在图(1)(2)(3)(4)中,用箭头所标明的A中元素与B中元素的对应法则,试判断由A到B是不是映射?是不是函数关系?解:在图(1)中,集合A中任一个数,通过“开平方”运算,在B中有两个数与之对应,这种对应法则不符合上述的映射定义,所以这种由A到B的对应关系不是映射,当然也不是函数关系.在图(2)中,元素6在B中没有象,所以这种由A到B的对应关系不是映射,当然也不是函数关系.在图(3)中,对A中任一个数,通过“2倍”的运算,在B中有且只有一个数与之对应,所以这种由A到B的对应法则是数集到数集的映射,并且是一一映射.这两个数集之间的对应关系是函数关系.在图(4)中的平方运算法则,同样是映射,因为对A 中每一个数,通过平方运算,在B 中都有唯一的一个数与之对应,但不是一一映射.数集A 到B 之间的对应关系是函数关系.点评:从集合A 到集合B 的映射,允许多个元素对应一个元素,而不允许一个元素对应多个元素.答案:(1)不是;(2)是;(3)是;(4)是.在图中的映射中,A 中元素60°的对应的元素是什么?在A 中的什么元素与B 中元素60°的对应的元素是12,在A 中的元素 思路2例1下列对应是不是从集合A 到集合B 的映射,为什么? (1)A =R ,B ={x∈R |x≥0},对应法则是“求平方”; (2)A =R ,B ={x∈R |x >0},对应法则是“求平方”; (3)A ={x∈R |x >0},B =R ,对应法则是“求平方根”;(4)A ={平面内的圆},B ={平面内的矩形},对应法则是“作圆的内接矩形”.活动:学生回顾映射的概念,教师适时点拨或提示.判断一个对应是否是映射,关键是确定是否是“一对一”或“多对一”的对应,即集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应.解:(1)是映射,因为A 中的任何一个元素,在B 中都能找到唯一的元素与之对应. (2)不是从集合A 到集合B 的映射,因为A 中的元素0,在集合B 中没有对应的元素. (3)不是从集合A 到集合B 的映射,因为任何正数的平方根都有两个值,即集合A 中的任何元素,在集合B 中都有两个元素与之对应.(4)不是从集合A 到集合B 的映射.因为一个圆有无穷多个内接矩形,即集合A 中任何一个元素在集合B中有无穷多个元素与之对应.点评:本题主要考查映射的概念.给定两集合A、B及对应法则f,判断是否是从集合A 到集合B的映射,主要利用映射的定义.用通俗的语言讲:A→B的对应有“多对一”,“一对一”,“一对多”,前两种对应是A到B的映射,而后一种不是A到B的映射.2设映射f:x→-x2是实数集R=M到实数集R=N的映射,若对于实数p∈N,在M中不存在原象,则实数p的取值范围是( )A.(0,+∞) B.[0,+∞) C.(-∞,0) D.(-∞,0]活动:让学生思考:若对于实数p∈N,在M中不存在原象,与函数f(x)=-x2有什么关系?若对于实数p∈N,在M中不存在原象是指实数p表示函数f(x)=-x2值域中的元素,转化为求函数f(x)=-x2,x∈R的值域.集合M是函数f(x)=-x2的定义域,集合N是函数f(x)=-x2的值域.解析:由于集合M,N都是数集,则映射f:x→-x2就是函数f(x)=-x2,其定义域是M=R,则有值域Q={y|y≤0} N=R.对于实数p∈N,在M 中不存在原象,则实数p 的取值范围是N Q =R Q ={y|y >0}, 即p 的取值范围是(0,+∞). 答案:A点评:本题主要考查映射的概念和函数的值域,以及综合应用知识解决问题的能力.解决本题的关键是转化思想的应用.把映射问题转化为函数的值域问题,进一步转化为求函数的值域在实数集中的补集.其转化的依据是对映射概念的理解以及对函数与映射关系的把握知能训练1.下列对应是从集合S 到T 的映射的是( )A .S =N ,T ={-1,1},对应法则是(-1)n,n∈SB .S ={0,1,4,9},T ={-3,-2,-1,0,1,2,3},对应法则是开平方C .S ={0,1,2,5},T ={1,12,15},对应法则是取倒数D .S ={x|x∈R },T ={y|y∈R },对应法则是x→y=1+x1-x解析:判断映射方法简单地说应考虑A 中的元素是否都可以受f 作用,作用的结果是否一定在B 中,作用的结果是否唯一这三个方面.很明显A 符合定义;B 是一对多的对应;C命题中的元素0没有象;D 命题集合S 中的元素1也无象.答案:A2.已知集合M ={x|0≤x≤6},P ={y|0≤y≤3},则下列对应关系中不能看作从M 到P 的映射的是( )A .f :x→y=12xB .f :x→y=13xC .f :x→y=xD .f :x→y=16x解析:选项C 中,集合M 中元素6没有象,不是映射. 答案:C3.已知集合A =N +,B ={a|a =2n -1,n∈Z },映射f :A→B,使A 中任一元素a 与B 中元素2a -1对应,则与B 中元素17对应的A 中元素是( )A .3B .5C .17D .9解析:利用对应法则转化为解方程.由题意得2a -1=17,解得a =9. 答案:D4.若映射f :A→B 的象的集合是Y ,原象的集合是X ,则X 与A 的关系是________;Y 与B 的关系是________.解析:根据映射的定义,可知集合A 中的元素必有象且唯一; 集合B 中的元素在集合A 中不一定有原象. 故象的集合是B 的子集.所以X =A ,Y B. 答案:X =A Y B5.已知集合M ={a ,b ,c ,d},P ={x ,y ,z},则从M 到P 能建立不同映射的个数是________.解析:集合M 中有4个元素,集合P 中有3个元素,则从M 到P 能建立34=81个不同的映射.答案:816.下列对应哪个是集合M 到集合N 的映射?哪个不是映射?为什么? (1)设M ={矩形},N ={实数},对应法则f 为矩形到它的面积的对应.(2)设M ={实数},N ={正实数},对应法则f 为x→1|x|.(3)设M ={x|0≤x≤100},N ={x|0≤x≤100},对应法则f 为开方再乘10. 解:(1)是M 到N 的映射,因为它是一对一的对应.(2)不是映射,因为当x =0时,集合M 中没有元素与之对应. (3)是映射,因为它是一对一的对应.7.设集合A 和B 都是自然数集,映射f :A→B 把A 中的元素n 映射到B 中的元素2n+n ,则在映射f 下,A 中的元素________对应B 中的元素3.( )A .1B .3C .9D .11解析:对应法则为f :n→2n +n ,根据选项验证2n+n =3,可得n =1. 答案:A 拓展提升问题:集合M 中有m 个元素,集合N 中有n 个元素,则从M 到N 能建立多少个不同的映射?探究:当m =1,n =1时,从M 到N 能建立1=11个不同的映射;当m =2,n =1时,从M 到N 能建立1=12个不同的映射;当m=3,n=1时,从M到N能建立1=13个不同的映射;当m=2,n=2时,从M到N能建立4=22个不同的映射;当m=2,n=3时,从M到N能建立9=32个不同的映射.集合M中有m个元素,集合N中有n个元素,则从M到N能建立n m个不同的映射.课堂小结本节课学习了:(1)映射是一种特殊的对应,元素之间的对应必须满足“一对一或多对一”.(2)映射由三个部分组成:集合A,集合B及对应法则f,称为映射的三要素.(3)映射中集合A,B中的元素可以为任意的.作业课本本节练习B 3、4、5.设计感想本节教学设计的内容拓展较深,在实际教学中根据学生实际选取例题和练习.本节重点设计了映射的概念,对于映射来说,只需要掌握概念即可,不要求拓展其内容,以免加重学生的负担,也偏离了课标要求和高考的方向.备课资料[备选例题]例1区间[0,m]在映射f:x→2x+m所得的象集区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,则m等于( )A.5 B.10 C.2.5 D.1解析:函数f(x)=2x+m在区间[0,m]上的值域是[m,3m],则有[m,3m]=[a,b],则a=m,b=3m,又区间[a,b]的长度比区间[0,m]的长度大5,则有b-a=(m-0)+5,即b-a=m+5,所以3m-m=m+5,解得m=5.答案:A例2已知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N,k∈N,x∈A,y∈B,映射f:A→B,使B中元素y=3x+1和A中元素x对应,求a及k的值.分析:先从集合A和对应法则f入手,同时考虑集合中元素的互异性.可以分析出此映射必为一一映射,再由3→10,求得a值,进而求得k值.解:∵B中元素y=3x+1和A中元素x对应,∴A中元素1的象是4;2的象是7;3的象是10,即a4=10或a2+3a=10.∵a∈N,∴由a2+3a=10,得a=2.∵k的象是a4,∴3k+1=16,得k=5.∴a=2,k=5.例3A={(x,y)|x+y<3,x∈N,y∈N},B={0,1,2},f:(x,y)→x+y,这个对应是否为映射?是否为函数?说明理由.解:是映射,不是函数.由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},显然对于A中的每一个有序实数对,它们的和是0或1或2,则在B中都有唯一一个数与它对应,所以是映射,因为集合A不是数集而是点集,所以不是函数.例4下列哪些对应是从集合A到集合B的映射?(1)A={P|P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)A={P|P是平面直角坐标系中的点},B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x|x是新华中学的班级},B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.解:(1)是映射,因为A中的任何一个元素,在B中都能找到唯一的元素与之对应.(2)不是从集合A到集合B的映射,因为A中的元素0,在集合B中没有对应的元素.(3)不是从集合A到集合B的映射,因为任何正数的平方根都有两个值,即集合A中的任何元素,在集合B中都有两个元素与之对应.(4)不是从集合A到集合B的映射.因为一个圆有无穷多个内接矩形,即集合A中任何一个元素在集合B中有无穷多个元素与之对应.2019-2020年高中数学 2.1.1 函数的概念和图象(1)教案苏教版必修1教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?如图,A (-2,0),B (2,0),点C 在直线y =2上移动.则△ABC 的面积S 与点C 的横坐标x 之间的变化关系如何表达?面积S 是C 的横坐标x 的函数么?二、学生活动1.复述初中所学函数的概念;2.阅读课本21页的问题(1)、(2)、(3),并分别说出对其理解; 3.举出生活中的实例,进一步说明函数的对应本质. 三、数学建构1.用集合的语言分别阐述21页的问题(1)、(2)、(3); 问题1 某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少? 问题2 略.问题3 略(详见21页).2.函数:一般地,设A 、B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有惟一的元素y 和它对应,这样的对应叫做从A 到B 的一个函数,通常记为y =f (x ),x ∈A .其中,所有输入值x 组成的集合A 叫做函数y =f (x )的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系; (2)函数的本质是一种对应;(3)对应法则f 可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在A 、B 两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f (x )=2x ,(x =0).3.函数y =f (x )的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没 有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合A 到 B 的函数:(1)A ={1,2,3,4,5},B ={2,4,6,8,10},f :x →2x ; (2)A ={1,2,3,4,5},B ={0,2,4,6,8},f :x →2x ; (3)A ={1,2,3,4,5},B =N ,f :x →2x . 练习:判断下列对应是否为函数: (1)x →2x,x ≠0,x ∈R ;(2)x →y ,这里y 2=x ,x ∈N ,y ∈R . 例2 求下列函数的定义域:(1)f (x )=x -1;(2)g(x )=x +1+1x.例3 下列各组函数中,是否表示同一函数?为什么? A .y =x 与y =(x )2; B .y =x 2与y =3x 3;C .y =2x -1(x ∈R)与y =2t -1(t ∈R);D .y =x +2·x -2与y =x 2-4 练习:课本24页练习1~4,6. 五、回顾小结1.生活中两个相关变量的刻画→函数→对应(A →B ) 2.函数的对应本质; 3.函数的对应法则和定义域. 六、作业:课堂作业:课本28页习题2.1(1)第1,2两题.函数的本质是对应,但并非所有的对应都是函数,一个必须是建立在两个非空数集间的对应,二是对应只能是单值对应.判断两个函数是否为同一函数,一看对应法则,二看定义域.。

高中数学必修一人教版教案:2.1.1映射与函数

高中数学必修一人教版教案:2.1.1映射与函数
A.f:x→x2-xB.f:x→x+(x-1)2
C.f:x→x2+1
D.f:x→x2-1
2、集合A={a,b},B={-1,0,1},从A到B的映射f:A→B
满足f(a)+f(b)=0,那么这样的映射f:A→B的个数为()
A.2 B.3
C.5 D.8
3、设f:A→B是集合A到B的映射,其中A={x|x>0},B=R,且f:x→x2-2x-1,则A中元素1+ 的象和B中元素-1的原象分别为()
第一学期
高一数学教案
课题
2.1.1映射与函数
课时
第一课时
课型
新授
教学
重点
1.会判断对应是否为映射,是否为一一映射;
2.会判断映射是否为函数。
依据:高考大纲分析以及教师用书
教学
难点
会求映射中的象与原象。
依据:学生对映射的理解还不够深刻。
自主
学习
目标
一、知识目标:
1、能用自己的语言表达出映射的概念。
2、会求映射中的象与原象。
A. ,0或2
B.0,2
C.0,0或2
D.0,0或
1、巡视学生作答情况。
2、公布答案。
3、评桌互批。
3、独立订正答案。
检查学生对本课所学知识的掌握情况。
5分钟
6
布置下节课自主学习任务
1、阅读教材38-41页,完成课后练习A组第2,3,4题(同桌检查并签字),思考练习B组题(要求有痕迹)。
1.小考:《预习测评》1-5
2.提出自主学习困惑.
明确本节课学习目标,准备学习。
3分钟
2.
承接结果
1、教材第36页练习A组第1题和练习B组题第三题。
2、教辅第22页:

新人教A版必修一《映射》word学案

新人教A版必修一《映射》word学案
5、用映射刻划函数的定义可以这样叙述:设 是两个非空数集,那么 到 的映射 就叫做 到 的函数,记作 .其中 , .原象集合 叫做函数 的定义域,象集合 (由象构成的集合)叫做函数的值域.很明显, .
三、例题:课本第22页[例7]
思考:课本第23页[思考]
练习:课本第23页练习4
§1.2.2.2映射学案
学习目标:了解映射的概念;了解映射与函数的联系和区别.
学习内容:
一、复习函数的概念:
一般地,我们有:设 是两个非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数.
二、映射的概念:
一般地,我们有:设 是两个非空集合,如果按照某种确定的对应关系 ,使对于集合 中的任意一个元素 ,在集合 中都有唯一确定的元素 和它对应,那么就称 为从集合 到集合 的一个映射.
对比:1、函 中的元素必须是数.
2、 的映射和函数都允许一对一或多对一,不能一对多. 中不能有剩余元素; 中可以有剩余元素.(你能从定义中分析出原因吗?请尝试解释.)
3、 与 是不同的.
4、对于映射 ,我们通常把集合 中的元素叫“原象”,而把集合 中与 中的元素相对应的元素叫“象”.所以,集合 叫“原象集”,集合 叫“象所在的集合”(因为集合 中可以有些元素不是象,所以集合 不能叫“象集”,只能叫“象所在的集合”.)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学 映射函数教案 新人教版必修1一、教学目标1.映射,一一映射 2.函数二、考点、热点回顾 1.映射、一一映射(1)集合A 到集合B 的映射有三个要素,即集合A 、集合B 和对应法则f .其中集合A 和集合是有先后顺序的,因为一般情况下A 到B 的映射和B 到A 的映射是不同的映射.而对于集合A 和集合B 的元素是什么,映射的定义未对此作具体要求,它们的元素可以是数,可以是点,也可以是其他对象.(2)一个对应要满足下面两个条件才能称为集合A 到集合B 的映射:①集合A 中的每一个...元素(一个不漏地)在集合B 中都有象(但集合B 中的每一个元素不一定都有原象);②集合A 中的每一个元素在集合B 中的象只有唯一..的一个(集合B 中的元素在集合A 中的原象可能不止一个).也就是说,图1和图2所示的两种对应不能称为映射.(3)对于上述映射,如果加上一个条件,要求集合B 中的每一个元素在集合A 中都有原象,则这样的映射称为“集合A 到集合B 上.的映射”.如果在此基础上再加上一个条件,要求集合B 中的每一个元素在集合A 中的原象只有唯一的一个,则这样的映射称为“集合A 到集合B 上的一一..映射”.例1 如图3,集合A={1、2、3、4、5},B={a 、b 、c 、d 、e }.判断下列对应中,(1)哪些是集合A 到集合B 的映射;(2)哪些是集合A 到集合B 上的映射;(3)哪些是集合A 到集合B 上的一一映射.图3①B A ②③B A ④图1 图2例2 已知集合A={30≤≤x x },B={10≤≤y y }.判断下列各对应f 是否是集合A 到集合B 的映射?一一映射?并说明理由. (1)f :x y x 31=→; (2) f :x y x 41=→;(3) f :2)2(-=→x y x ; (4) f :291x y x =→;(5)f :2)1(41-=→x y x2.函数(1)函数的定义.在初中学过的函数概念是从运动变化的角度出发,用变量来定义的,习惯上称为传统定义.传统定义由研究变量的物理意义而产生,反映了两个变量之间变化的相依关系.由于受变量物理意义的限制,对某些函数难以进行研究,因为有些函数从物理的角度不好解释.因此高中学习函数时重新引进了用映射刻划函数的近代定义,它更具有一般性.当然,两种定义的本质是一样的. 集合A 到集合B 的映射f :B A →要成为函数,还必须满足两个条件:①集合A 、B 都是非空集合;②集合A 、B 都是数的集合.其中集合A 就是函数的定义域,而集合B 不一定是值域.一般地说,值域C 是集合B 的子集,即B C ⊆.(若集合B C =,则这个映射就成为集合A 到集合B 上的映射).(2)函数的三要素.定义域A ,值域C 和定义域A 到值域C 的对应法则f,构成了函数的三个要素.当且仅当这三个要素完全相同时,两个函数才是同一个函数. 在判断两个函数是否同一函数时,主要观察它们的定义域和对应法则是否相同. (3)区间设a 、R b ∈,且b a <.用闭区间[b a ,]表示集合{b x a x ≤≤},用开区间),(b a 表示集合{b x a x <<},用半开半闭区间],(b a 表示集合{b x a x ≤<},用半开半闭区间),[b a 表示集合{b x a x <≤}.(4)函数的表示法.函数常用的表示法有:解析法,列表法及图像法,三种表示法各有其长处. 要搞清符号)(x f 和)(a f (a 为常数)的区别.一般情况下,)(x f 是一个随自变量x 的变化而变化的变量,而)(a f 是当自变量a x =时函数的值,是一个确定的量.与初中接触到的函数不一样,这里的函数可以是在不同区间中(或不同条件下)表达式不同的分段函数,因此函数的图像也不一定是一条平滑曲线,它可能是一些孤立的点,一些线段,或一些曲线. 例3 判断下列各对函数是否是同一个函数,并说明理由. (1) 2)(x x f = , 2)()(x x g = ;(2).)(33x x f = , x x g =)( ;(3)11)(2+-=x x x f , 1)(-=x x g ; (4)1)(-=x x f , ⎩⎨⎧<->-=);1(,1),1(,1)(x x x x x g (5)2)(x x f = , x x g =)( ;(6) 21)(x x f -= , 21)(t t g -= .例4 已知32)(-=x x f , 12)(2+=x x g ,求 )]([x g f 和 )]([x f g .例5 (1)已知=)(x f ⎪⎩⎪⎨⎧-,12,2,02x,)1(-f ,)]0([f f ,)]22([-f f ; (2)已知 ⎪⎪⎩⎪⎪⎨⎧≥-<<--≤+=),2(,23),21(,),1(,32)(2x x x x x x x g 且3)(=t g , 求t .例6 (1)画出函数342+-=x x y 的图像;(2)画出函数342+-=x x y的图像;(3)已知函数)(x f y =的图像如图4,写出)(x f 的解析式.例7 求下列函数的定义域: (1) 2312+-=x x y ; (2)xy 2111++= ;(3)7522--=x x y .例8 已知函数)(x f y =的定义域为[-1,2],求函数)1()1()(-++=x f x f x g 的定义域.例9 (1)已知11)11(2-=+xx f ,求)(x f ;(2)已知函数)(x f 的定义域是),0()0,(∞-∞ ,且x xf x f 4)1(2)(3=+,求)(x f ;(3)已知32)2(+=-x x f ,求)(x f .例10 设⎩⎨⎧≥<-=),0(,,1),0(,1)(x x x f 画出函数)1(-=x f y 的图像.(快速五分钟,稳准建奇功)1.设f是从集合A 到集合B 的映射,下列四个说法:①集合A 中的每一个元素在集合B 中都有象;②集合B 中的每一个元素在集合A 中都有原象;③集合A 中不同的元素在集合B 中的象也不同;④集合B 中不同的元素在集合A 中的原象也不同,其中正确的是 ( )A .①和②B .②和③C .③和④D .①和④2.已知集合A={}60≤≤x x ,B={}30≤≤y y ,则下列对应关系f 中,不能看成是从集合A 到集合B 的映射的是 ( )A .f :x y x 21=→ B .f:x y x 31=→C .f :x y x =→ D .f:x y x 61=→3.下列三个命题:①函数是从定义域到值域的一一映射;②函数的定义域和值域可能是数集,也可能不是数集;③函数的定义域和值域都不能是空集.其中真命题是 ( )A .①B .②C .③D .①和③4.下列各组函数:①2)(+=x x f ,44)(2++=x x x g ;②11)(2+-=x x x f ,1)(-=x x g ;③x x f =)(,xx x g =)(;④1)(+=x x f ,⎩⎨⎧<--≥+=)0(,1)0(,1)(x x x x x g .其中)(x f 和)(x g 表示同一个函数的是 ( )A .①B .①和②C .③D .④5.函数xx y -=1的定义域是 ( )A .),0()0,(+∞-∞B .),1()1,0()0,(+∞-∞C .)0,1()1,(---∞D .)0,(-∞6.已知函数)(x f 的定义域是)1,0(,则函数)1(2-x f 的定义域为 ( )A .)2,1( B .)2,1()1,2( --C .)0,1(-D .)1,0()0,1( - 7.已知),(y x 在映射f 下的象是)2,2(y x y x -+,则)3,1(在f下的原象是 。

8.函数xx x x f -+1)(2的定义域是 。

9.已知⎪⎩⎪⎨⎧<=>=)0(,0)0(,2)0(,)(3x x x x x f 则=)2(f ,=-)2(f ,=-)]6([f f .10.已知x x x f =+-)11(,则=)(x f . 11.求下列函数的定义域:(1)x x xxy -+-+=21;(2)5262-+--=x x x y .12.若13:+=x y f 是从集合A=},3,2,1{k 到集合B=}3,,7,4{24a a a +的一个映射,求自然数a和k 的值及集合A 和B.13.若函数343123++-=mx mx xy 的定义域为R ,求实数m 的取值范围.14.已知32)(2-+=x x x f ,作函数2)()()(x f x f x g +=的图像.。

相关文档
最新文档