矩阵与行列式知识梳理
矩阵与行列式解析矩阵与行列式的性质与运算规律
矩阵与行列式解析矩阵与行列式的性质与运算规律矩阵和行列式是线性代数中重要的概念和工具。
它们在数学、物理、工程等领域都有广泛的应用。
本文将详细解析矩阵与行列式的性质和运算规律。
一、矩阵的性质与运算规律1. 矩阵的定义矩阵是一个按照长方阵列排列的数。
它由m行n列元素组成,记作A=(a_ij),其中1≤i≤m,1≤j≤n。
矩阵的行数和列数分别称为矩阵的阶数或维数。
2. 矩阵的运算规律2.1 矩阵的加法和减法设A=(a_ij)和B=(b_ij)是两个同阶矩阵,则它们的和C=A+B的定义为C=(c_ij),其中c_ij=a_ij+b_ij。
矩阵的减法定义类似。
2.2 矩阵的数乘设A=(a_ij)是一个矩阵,k是一个数,则kA的定义为kA=(ka_ij),其中ka_ij=ka_ij。
2.3 矩阵的乘法设A=(a_ij)是一个m行n列的矩阵,B=(b_ij)是一个n行p列的矩阵,则它们的乘积C=AB的定义为C=(c_ij),其中c_ij=a_i1b_1j+...+a_inb_nj。
3. 矩阵的性质3.1 矩阵的转置设A=(a_ij)是一个m行n列的矩阵,A的转置记作A^T,定义为A^T=(a_ji)是一个n行m列的矩阵。
3.2 矩阵的逆设A是一个n阶方阵,若存在一个n阶方阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,B为A的逆矩阵。
若A不可逆,则称为奇异矩阵。
3.3 矩阵的行列式矩阵A的行列式记作|A|,行列式是一个标量,它由矩阵元素按一定规则计算而得。
行列式的性质包括行列式的加法性、数乘性、转置性等。
二、行列式的性质与运算规律1. 行列式的定义行列式是一个方阵的特征值之一。
设A=(a_ij)是一个n阶方阵,行列式的定义为|A|=a_11a_22...a_nn-a_11a_23...a_n(n-1)-...-a_1n-1a_2n...a_n。
2. 行列式的运算规律2.1 行列式的数乘若k是数,A是n阶方阵,则kA的行列式等于k的n次方乘以A 的行列式,即|kA|=k^n|A|。
行列式矩阵知识点
一、行列式
1.行列式的定义
用n2个元素a ij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;
(2)展开式共有n!项,其中符号正负各半;
2.行列式的计算
一阶|α|=α行列式,二、三阶行列式有对角线法则;
N阶(n =3)行列式的计算:降阶法
定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况
上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;
(2)行列式值为0的几种情况:
行列式某行(列)元素全为0;
行列式某行(列)的对应元素相同;
行列式某行(列)的元素对应成比例;
奇数阶的反对称行列式。
总复习-1矩阵与行列式
I 矩阵、行列式一、矩阵的概念及其初等变换 矩阵概念矩阵与行列式的区别:矩阵(数表)行列式(数)记号:1111n m n m a a a a ⎛⎫⎪⎪ ⎪⎝⎭m n A ⨯ ()ij m n a ⨯1111n m nn a a a a n Aij na 化简:1111m n m n a a a a ⎛⎫⎪⎪ ⎪→⎝⎭1111nm nn a a a a =矩阵的初等变换理论定义:(看书) 结论一对任一m n ⨯矩阵A ,设()R A r =,有1,11,1000000000110r n r r rn m n c c c c A A ++⨯⎛⎫⎪ ⎪ ⎪−−−→ ⎪⎪ ⎪ ⎪ ⎪⎝⎭行变(的行最简形矩阵)应用1 高斯消元法解线性方程组增广矩阵A −−−→行变行最简形矩阵(可直接写出解)应用2 列摆行变法判定向量组的线性相关性及求最大无关组、秩和线性表示式1,1111,12100(,,,)(,,,)0000000011,,r n r r r n r n r n c c c c J J εαααε+++⎛⎫⎪⎪ ⎪−−−→=⎪ ⎪⎪⎪⎪⎝⎭行变设则12,,,n ααα 与11,,,,,r r n J J εε+ 有相同的线性相关性。
应用3 行初等变换法求逆矩阵A -1、A -1B1(,)(,)A E E A -−−−→行变1(,)(,)A B E A B -−−−→行变结论二对任一m n ⨯矩阵A ,设()R A r =,有000r m n E A A ⨯⎛⎫−−−−→ ⎪⎝⎭列行变和变(的相抵标准形)应用1 初等变换法求矩阵的秩(可作列变)应用2 标准形思路:,,000rEA P Q P Q ⎛⎫= ⎪⎝⎭其中是可逆矩阵. 结论三 初等变换与初等矩阵的转化关系:箭号等号关系(“左行右列”)二、矩阵的运算加法、数乘、乘法、转置 关于矩阵乘法,注意:(1) 矩阵乘法与数的乘法不同之处不满足交换律AB BA ≠222()2A B A AB B +≠++ 22()()A B A B A B -≠+- ()k k k AB A B ≠注意:,A B 设均为方阵,则错误!未找到引用源。
矩阵与行列式知识点
矩阵与行列式知识点矩阵和行列式是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。
本文将介绍矩阵和行列式的基本定义与性质,以及它们在实际问题中的应用。
一、矩阵的定义与性质矩阵是由一些数按照矩形排列而成的表格。
我们用$m\timesn$表示一个矩阵,其中$m$代表矩阵的行数,$n$代表矩阵的列数。
一个矩阵的元素通常用小写字母(如$a_{ij}$)表示,其中$i$表示元素所在的行数,$j$表示元素所在的列数。
矩阵的转置是指行和列互换,转置后的矩阵用$A^T$表示。
矩阵可以进行一些基本的运算,如矩阵的加法和数乘。
对于两个相同维数的矩阵$A$和$B$,它们的加法定义为$A+B$,即将对应位置的元素相加得到新的矩阵。
对于一个矩阵$A$和一个标量$c$,它们的数乘定义为$cA$,即将矩阵$A$中的每个元素都乘以$c$得到新的矩阵。
矩阵的乘法是指两个矩阵相乘得到一个新的矩阵。
对于一个$m\times n$的矩阵$A$和一个$n\times p$的矩阵$B$,它们的乘积$AB$是一个$m\times p$的矩阵。
矩阵相乘的条件是第一个矩阵的列数等于第二个矩阵的行数。
二、行列式的定义与性质行列式是一个与方阵相关的标量值。
对于一个$n\times n$的方阵$A$,我们用$|A|$表示它的行列式。
行列式的计算主要依靠代数余子式和代数余子式矩阵。
对于方阵$A$的元素$a_{ij}$,它的代数余子式$M_{ij}$是去掉$a_{ij}$所在的行和列后的余下元素的行列式,即由$n-1$阶子方阵组成。
代数余子式矩阵$A^*$是由方阵$A$的每个元素的代数余子式按照一定的规则排布而成的矩阵。
行列式的计算方法有很多,包括拉普拉斯展开法、行列式按行展开法等。
其中,拉普拉斯展开法是最常用的方法,即选择方阵的任意一行或一列展开,并用代数余子式乘以对应元素后进行求和。
行列式具有很多重要的性质,如行列式的性质对换、行列式的性质正交等。
矩阵和行列式复习知识点汇总
矩阵和行列式复习知识点汇总一、矩阵的定义和运算:1.矩阵是一个按照矩形排列的数字集合。
一个m×n的矩阵有m行和n列。
2. 矩阵的元素通常用小写字母表示,如a_ij表示矩阵A的第i行第j列的元素。
3.矩阵的加法:若A和B是同型矩阵,则它们的和A+B也是同型矩阵,且相加的结果为对应位置的元素之和。
4.矩阵的数乘:若A是一个矩阵,k是一个标量,则kA是一个矩阵,且每个元素都乘以k。
5. 矩阵的乘法:若A是一个m×n的矩阵,B是一个n×p的矩阵,则AB是一个m×p的矩阵,其中C_ij等于A的第i行与B的第j列对应元素的乘积之和。
二、矩阵的特殊类型:1.零矩阵:所有元素都为0的矩阵。
2.对角矩阵:主对角线上元素以外的其他元素均为0的矩阵。
3.单位矩阵:主对角线上元素都为1,其他元素为0的对角矩阵。
4.转置矩阵:将矩阵A的行和列互换得到的矩阵,记作A^T。
5.逆矩阵:对于一个n阶方阵A,如果存在一个矩阵B使得AB=BA=I (其中I为单位矩阵),则称B为A的逆矩阵,记作A^(-1)。
只有非奇异矩阵才有逆矩阵。
三、行列式的定义和性质:1. 行列式是一个与方阵相关的标量值。
一个n阶方阵A的行列式通常用det(A)或,A,表示。
2. 二阶方阵A的行列式可表示为:det(A) = a11 * a22 - a12 *a213.计算三阶及以上行列式时,可利用代数余子式和拉普拉斯展开公式。
4.行列式的性质:a) 若A的其中一行(列)的元素全为0,则det(A) = 0。
b) 若A的两行(列)互换,则det(A)的符号会变化。
c) 若A的其中一行(列)的元素都乘以常数k,则det(kA) = k^n * det(A)。
d) 若A的两行(列)相等,则det(A) = 0。
e)若A的其中一行(列)的元素都乘以常数k,再加到另一行(列)上,对应行列式的值不变。
四、矩阵的行列式和逆矩阵:1. 对于一个n阶方阵A,若其行列式不为0(即det(A) ≠ 0),则A是一个非奇异矩阵,有逆矩阵A^(-1)。
矩阵和行列式知识要点
矩阵和行列式知识要点一、矩阵(Matrix)1.定义矩阵是按照一定规则排列的数(或变量)的矩形阵列。
一般用大写字母表示,如A、B,其元素用小写字母表示并用下标表示元素的位置。
2.类型根据矩阵的元素可以分为实矩阵(元素为实数)、复矩阵(元素为复数)、数值矩阵(元素为纯数值而不是变量)等。
3.运算(1)矩阵的加法:对应元素相加。
(2)矩阵的数乘:矩阵的每个元素乘以相同的数。
(3)矩阵的乘法:矩阵A的列数等于矩阵B的行数时,A乘以B的结果是一个新的矩阵C,C的第i行第j列的元素是A的第i行与B的第j列元素的乘积之和。
4.逆矩阵如果一个方阵A存在逆矩阵A-1,使得A与A-1相乘等于单位矩阵I,即A·A-1=I,那么称A为可逆矩阵或非奇异矩阵,A-1为A的逆矩阵。
5.矩阵的转置将一个矩阵的行变为同序数的列,列变为同序数的行,得到的新矩阵称为原矩阵的转置矩阵。
二、行列式(Determinant)1.定义行列式是一个表示线性变换对坐标的拉伸或者压缩程度的标量值。
一般用竖线“,,”或者方括号“[]”表示。
2.性质(1)行列式的值等于其转置矩阵的值。
(2)行列式对换两行(列)变号。
(3)行列式中如果有两行(列)相同,则行列式的值为0。
(4)行列式其中一行(列)的元素都是两数之和,行列式的值可以分开计算。
3.行列式的计算方法(1)拉普拉斯展开法:取行(列)进行展开,将问题逐步转化为计算较小规模的子行列式。
(2)数学归纳法:将行列式的展开按照第一行(列)来进行,用递归的方法逐步减小行列式的规模。
4.逆矩阵与行列式的关系若矩阵A可逆,则A的逆矩阵A-1的值等于A的行列式的倒数,即A-1=1/,A。
三、矩阵和行列式的应用1.线性方程组2.线性变换矩阵可以表示线性变换,通过矩阵与向量的乘法,可以实现向量的旋转、缩放等操作。
3.特征值和特征向量矩阵的特征值和特征向量是矩阵在线性变换下的固有性质,通过计算矩阵的特征值和特征向量,可以得到矩阵的重要信息,如对称矩阵的主对角线元素就是其特征值。
矩阵与行列式
矩阵与行列式矩阵与行列式是线性代数中的重要概念,广泛应用于数学、物理、经济等多个领域。
本文将介绍矩阵和行列式的定义、性质以及它们之间的关系。
一、矩阵的定义与性质1.1 矩阵的定义矩阵是一个二维的数组,由 m 行 n 列元素组成。
通常我们用大写字母表示矩阵,如 A = [a_ij]。
其中,a_ij 表示矩阵 A 的第 i 行第 j 列的元素。
1.2 矩阵的运算矩阵可以进行加法、减法和数乘等运算。
设 A 和 B 是同型矩阵,即具有相同的行数和列数,则有以下运算规则:- 矩阵加法:A + B = [a_ij] + [b_ij] = [a_ij + b_ij]- 矩阵减法:A - B = [a_ij] - [b_ij] = [a_ij - b_ij]- 数乘:kA = k[a_ij] = [ka_ij],其中 k 是标量。
1.3 矩阵的乘法矩阵的乘法是矩阵运算中的重要部分。
设 A 是 m × n 的矩阵,B 是n × p 的矩阵,则它们的乘积 C = AB 是一个 m × p 的矩阵,且满足以下定义:- C 的第 i 行第 j 列元素 c_ij 可通过将 A 的第 i 行与 B 的第 j 列对应位置的元素进行乘法运算,并求和得到。
二、行列式的定义与性质2.1 行列式的定义行列式是一个多项式,用于表示一个方阵的性质。
一个 n × n 的方阵 A 的行列式记作 |A| 或 det(A)。
对于 2 × 2 的方阵 A = [[a, b], [c, d]],其行列式为 |A| = ad - bc。
对于n > 2 的方阵,行列式的计算可以使用代数余子式或按行(列)展开法进行。
2.2 行列式的性质- 行列式是一个线性运算:对于任意一个 n × n 的方阵 A,如果将某一行(列)的元素按比例加(减)到另一行(列),则行列式的值也会按相同比例变换。
- 互换行(列)会改变行列式的符号:如果交换方阵 A 的两行(列),行列式的值会变为原值的相反数。
线性代数矩阵行列式向量知识点总结
线性代数第一章:行列式1.排列:任意两数字先大后小为一个逆序;一组无序数组逆序个数为奇数就是奇排列;反之为偶排列。
且一个数组任意两个数字调换,则奇偶调换。
排列决定行列式某一项的正负,若行标按标准次序,则列标的逆序数是奇数此项为负。
n n np p p p p p r a a a D ....)1(21)2121...(-∑=,每一项是n 个元素的乘积,每个元素取自不同的行不同的列。
行列式展开共有n!项,一半正,一半负。
注意:λλλλnD ....21=为矩阵的特征值2.nnnnnna a a a a a a a a ...... (221122211211)= 11,212)1(11,22111211..)1(................n n n n n n n na a a a a a a a a ----=3.行列式的性质:(1)行列式与其转置行列式值相等;(所以行的性质也是列的性质)(2)交换两行对应元素,行列式值变号。
(3)任意两行对应元素相等,成比例行列式值为0。
(4)例:nx yx nc ya dm bx dc b a nm c yx a dm c bx a nd m c yb x a +++=+++++=++++(5)把某行的k 倍加到另一行对应元素,行列式值不变。
4.余子式ij M :去掉第i 行第j 列剩下的元素构成行列式的值。
代数余子式ij j i ij M A +-=)1(5.定理,行列式某行的代数余子式×另一行的对应元素值为0。
6.范德蒙德行列式)....)...()()()...()((.........................1. (1112242311312113121)12232221321x x x x x x x x x x x x x x x x x x x x x x x x n n n nn n n nn ------==---- 例:240)32)(12)(13)(12)(13)(11(842149112311111184212793111111111=--+-+-----=----=----7.,00,0()0)in n i n n D A X b x D DA X D R n D n ⨯⨯==≠=≠==<。
大学数学易考知识点线性代数中的矩阵与行列式
大学数学易考知识点线性代数中的矩阵与行列式大学数学易考知识点:线性代数中的矩阵与行列式在大学数学中,线性代数是一门重要的基础课程,其中矩阵与行列式是其核心内容之一。
掌握了矩阵与行列式的基本概念和操作方法,对于理解和应用线性代数具有极大的帮助。
本文将介绍线性代数中矩阵与行列式的相关知识点,帮助理清概念、加深理解,并为后续的学习奠定基础。
一、矩阵的基本概念与运算1. 矩阵的定义矩阵是一个由m行n列的数字按一定顺序排成的一个矩形阵列。
其常用表示形式为:A = [aij]m×n = |a11 a12 .. a1n||a21 a22 .. a2n||... ... .. ... ||am1 am2 .. amn|其中,a_ij表示矩阵A中第i行第j列的元素。
2. 矩阵的运算(1)矩阵的加法:若A = [aij]m×n,B = [bij]m×n为两个m×n矩阵,则矩阵A与B的和为C = [cij]m×n,其中cij = aij + bij。
(2)矩阵的数乘:若A = [aij]m×n为一个m×n矩阵,k为任意实数,则kA = [kaij]m×n。
(3)矩阵的乘法:若A = [aij]m×p为一个m×p矩阵,B = [bij]p×n为一个p×n矩阵,则矩阵A与B的乘积为C = [cij]m×n,其中cij =∑(k=1→p) aikbkj。
二、行列式的基本概念与性质1. 行列式的定义行列式是一个与矩阵相关的数。
对于一个n阶方阵A = [aij]n×n,其行列式记为|A|或det(A),定义为:|A| = ∑(s∈Sn) (sgn(s)·a1s(1)·a2s(2)·...·ans(n))其中,Sn为全排列的集合,sgn(s)为排列s的逆序数的(-1)^k次方。
矩阵与行列式
矩阵与行列式矩阵与行列式是线性代数中两个重要的概念,它们在各个领域中都起到了重要的作用。
本文将从基本定义、性质和应用角度综述矩阵与行列式的相关内容。
1. 矩阵的定义和基本性质1.1 矩阵的定义矩阵是由m行n列元素排列成的矩形阵列。
在数学中,一般用大写字母表示矩阵,如A、B等。
矩阵A用小写字母a_ij表示其中第i 行第j列的元素。
例如,A = [a_ij] = [a_11, a_12, ..., a_1n; a_21, a_22, ..., a_2n; ..., a_m1, a_m2, ..., a_mn]。
1.2 矩阵的基本性质- 矩阵加法和减法:两个相同维度的矩阵可以进行加法和减法运算,结果仍为相同维度的矩阵。
- 矩阵乘法:矩阵乘法满足结合律和分配律。
若A为m×n阶矩阵,B为n×p阶矩阵,则它们的乘积C=AB为m×p阶矩阵,其中c_ij 表示矩阵A的第i行与矩阵B的第j列的内积。
- 矩阵转置:将矩阵A的行转换为列,列转换为行,得到的新矩阵称为A的转置矩阵,记作A^T。
2. 行列式的定义和基本性质2.1 行列式的定义行列式是一个用于描述线性方程组性质的特征数。
设A = [a_ij]为n阶矩阵,其行列式记作det(A)或|A|,定义为行列式等于n阶排列的代数和。
即,det(A) = Σ(-1)^P(i1,i2,...,in)*a_1i1*a_2i2*...*a_nin,其中P(i1,i2,...,in)表示排列(i1,i2,...,in)的逆序数。
2.2 行列式的基本性质- 行列式的性质一:行列式与转置矩阵的关系。
det(A^T) =det(A)。
- 行列式的性质二:行列式与初等行变换的关系。
若矩阵A经过初等行变换得到矩阵B,则det(B) = r*det(A),其中r为初等行变换的乘积常数。
- 行列式的性质三:交换行列式的两行(列)值变号,行列式不变。
即交换矩阵的两行或两列,行列式值不变。
矩阵和行列式知识要点
矩阵和行列式知识要点一、矩阵的定义与基本运算:1.矩阵的定义:矩阵是一个按照矩阵元素排列形成的矩形阵列。
通常用大写字母表示,如A。
2.矩阵的元素:矩阵中的每个数称为矩阵的元素,用小写字母表示,如a。
3.矩阵的维数:矩阵的行数和列数称为矩阵的维数。
若一个矩阵有m 行n列,称为m×n阶矩阵。
4.矩阵的运算:a.矩阵的加法:如果两个矩阵A和B的维数相同,则它们可以相加,A+B的结果是一个与A和B维数相同的矩阵,即对应元素相加。
b.矩阵的数乘:如果一个矩阵A乘以一个数k,那么结果是一个与A 维数相同的矩阵,即将A的每个元素乘以k。
c.矩阵的乘法:如果两个矩阵A和B可以相乘,那么它们的乘积AB 的结果是一个新的矩阵,其行数等于A的行数,列数等于B的列数。
矩阵乘法不满足交换律。
二、行列式的定义与性质:1.行列式的定义:对于一个n×n的矩阵,将它的元素按照一定的规则排列成一个方阵,方阵元素的排列称为一个排列,用行列式表示。
行列式实际上是对矩阵的一种性质的一种数学描述。
2.行列式的计算:a.二阶行列式:二阶行列式即2×2阶矩阵的行列式。
b. 三阶行列式:三阶行列式即3×3阶矩阵的行列式。
可以利用“Sarrus法则”进行计算。
c. n阶行列式:n阶行列式可以利用定义展开、代数余子式、Laplace定理等方法进行计算。
3.行列式的性质:a.行列式的性质1:行列式与它的转置行列式相等。
b.行列式的性质2:互换行列式的两行(两列),行列式变号。
c.行列式的性质3:若行(列)中有零元素,则行列式的值为0。
d.行列式的性质4:若行(列)的其中一元素可被另一行(列)的元素表示,则行列式的值为0。
e.行列式的性质5:行列式中有两行(两列)完全相同,则行列式的值为0。
三、逆矩阵与可逆矩阵:1.逆矩阵的定义:对于一个n×n的矩阵A,如果存在一个n×n的矩阵B,使得AB=BA=I(单位矩阵),则A称为可逆矩阵,B称为A的逆矩阵,且B=A^(-1)。
矩阵与行列式的基本知识
矩阵与行列式的基本知识矩阵与行列式是线性代数中的重要概念和工具,广泛应用于数学、物理、计算机科学等各个领域。
本文将介绍矩阵与行列式的基本知识,包括定义、性质以及它们在实际问题中的应用。
一、矩阵的定义和性质矩阵是由m行n列元素排列成的一个矩形数表。
常用的表示方法是用大写字母表示矩阵,例如A, B, C等。
一个矩阵可以用一个m×n的数表表示,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵中的每个元素可以是实数、复数或者其他数域中的元素。
矩阵中的元素可以用小写字母表示,例如a11, a12等。
矩阵中的元素按照行和列的顺序排列,例如矩阵A可以表示为:A = [a11 a12 a13][a21 a22 a23][a31 a32 a33]矩阵的运算包括矩阵加法、矩阵乘法以及数乘等。
矩阵加法的定义是对应元素相加,即若A和B是同型矩阵,则它们的和A + B的定义是一个矩阵,其中的每个元素是A和B中对应元素的和。
矩阵乘法的定义是第一个矩阵的行与第二个矩阵的列的对应元素相乘并求和。
若A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积AB的定义是一个m×p的矩阵,其中的每个元素由矩阵A的第i行和矩阵B的第j列的对应元素相乘并求和。
矩阵具有一些重要的性质,例如矩阵的转置、逆矩阵和对称矩阵等。
矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
矩阵的逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。
对于方阵(行数等于列数的矩阵),若存在逆矩阵,则称该矩阵是可逆的。
二、行列式的定义和性质行列式是一个与矩阵相关的数值。
对于一个n阶方阵,它的行列式可以用|A|表示。
行列式的定义是一个关于矩阵元素的表达式。
|a11 a12 ... a1n||a21 a22 ... a2n||... ... ... ...||an1 an2 ... ann|一个2阶方阵A的行列式可以表示为:|A| = a11 * a22 - a12 * a21行列式可以用于判断矩阵的某些性质,例如矩阵的可逆性和线性方程组的解的情况。
(完整版)矩阵和行列式复习知识点
|
a2(ka1+1)= a1 - a2 ≠ 0 ,∴有唯一解。
{
‒2
x = ‒1
1
= ‒1
12. 当 a≠1 时方程组的解为 = 0
1
2 =a b -a b =a (ka +1)1 2 2 1
1
2
|
|
|
|
|
|
|
三阶行列式可以按照其任意一行或列展开成该行或列元素与其对应的代数余子式的乘积之
和。
【三元线性方程组】
设三元一次方程组
{
{
1 + 1 + 1 = 1
2 + 2 + 2 = 2
3 + 3 + 3 = 3,其中 x、y、z 是未知数,通过加减消元化简为
所有可能的值中,最大的是
|
____ 。
1
2
3
⋯
9. 在 n 行 n 列矩阵
[
aij (i, j 1, 2 , n)
2
3
4
⋯
1
⋯
⋯
⋯
⋯
⋯
‒1
1
⋯
‒2
1
2
⋯
‒ 1 中,记位于第 i 行第 j 列的数为
]
。当 n 9 时, a11 a22 a33 a99 _____
(2017 上海数学)关于 x、y 的二元一次方程组
D为
.
。
2
3. (2015 上海数学)若线性方程组的增广矩阵为 0
[
c1-c2=
3
1
1
x=3
2 解为 = 5,则
矩阵与行列式
第一章 矩阵与行列式释疑解惑 1. 关于矩阵的概念:最难理解的是:矩阵它是一个“数表”,应当整体地去看它,不要与行列式实际上仅是一个用特殊形式定义的数的概念相混淆;只有这样,才不会把用中括号或小括号所表示的矩阵如a c b d ⎛⎫ ⎪⎝⎭写成两边各划一竖线的行列式如a c b d ,或把行列式写成矩阵等。
还要注意,矩阵可有(1)m ≥行和(1)n ≥列,不一定m n =;但行列式只有n 行n 列。
n 阶行列式是2n 个数(元素)按特定法则对应的一个值,它可看成n 阶方阵 111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 的所有元素保持原位置而将两边的括号换成两竖线时由行列式定义确定的一个新的对象:特定的一个数值,记作det A 、A 或n D ,即111det nij k k k A A a a A ====∑(如二阶方阵a d A b c ⎛⎫= ⎪⎝⎭所对应的行列式是这样一个新的对象:a d ac bd b c =-)。
也正因为于此,必须注意二者的本质区别,如当A 为n 阶方阵时,不可把A λ与A λ等同起来,而是n A A λλ=,等等。
2. 关于矩阵的运算:矩阵的加(减)法只对同形矩阵有意义;数λ乘矩阵m n A ⨯是用数λ乘矩阵m n A ⨯中每一个元素得到的新的m n ⨯矩阵;二矩阵相乘与前述这两种线性运算有着实质上的不同,它不仅要求左矩阵的列数等于右矩阵的行数,而且积的元素有其特定的算法(即所谓行乘列),乘法的性质与前者的性质更有质的不同(如交换律与消去律不成立),对此要特别加以注意,也不要与数的乘法的性质相混淆。
3. 关于逆阵:逆阵是由线性变换引入的,它可只由AB E =来定义(A 与B 互为逆阵),这是应用的基础。
要记住方阵可逆的充要条件为0A ≠以及关系式*AA A E =,二者有着重要与广泛的应用。
要弄清A 的伴随方阵是矩阵()ij A a =的各元素代数余子式为元素的矩阵的转置,否则会出错。
线性代数知识点梳理:行列式与矩阵运算
线性代数知识点梳理:行列式与矩阵运算线性代数是数学的一个重要分支,对于理解和解决现实世界中的问题具有重要意义。
在学习线性代数的过程中,行列式与矩阵运算是其中的重要组成部分。
本文将对行列式与矩阵运算的相关知识点进行梳理,帮助读者深入理解这一内容。
行列式的概念与性质行列式是一个数学工具,用于描述线性方程组的解的性质。
在代数学中,一个n阶方阵的行列式是一个确定的值,它是通过方阵中元素的线性组合而得到的。
行列式的计算方法有很多,比如拉普拉斯定理,莱布尼茨展开式等。
行列式的符号通常用竖线“| |”表示,如|A|表示矩阵A的行列式。
行列式具有一些重要的性质,例如:1.互换行(列):如果行(列)互换,行列式取相反数。
2.行(列)成比例:如果矩阵的某一行(列)是另一行(列)的k倍,行列式的值也将乘以k。
3.行(列)相加:如果把矩阵的某一行(列)乘以k后加到另一行(列)上,行列式的值不变。
4.三角矩阵:上(下)三角矩阵行列式等于主对角线元素的乘积。
通过这些性质,我们可以简化行列式的计算,并在求解线性方程组等问题中应用行列式的性质。
矩阵运算与特殊矩阵矩阵是线性代数中另一个重要的概念,它是数字或符号排成若干行和若干列的矩形阵列。
矩阵可以进行加法、数乘、乘法等运算,这些运算有着重要的数学性质。
矩阵的加法和数乘运算是比较简单的,矩阵之间的加法就是对应元素相加,数乘就是矩阵中的每个元素都乘以相同的数。
矩阵的乘法是比较复杂的,矩阵乘法遵循结合律并不满足交换律。
特殊的矩阵包括对称矩阵、反对称矩阵、单位矩阵等。
对称矩阵是转置矩阵等于自身的矩阵,反对称矩阵是转置矩阵的相反数,单位矩阵是对角元素为1,其他元素为0的矩阵。
这些特殊矩阵在数学和物理领域中有着重要的应用。
行列式与矩阵之间的关系行列式与矩阵之间有着密切的联系。
通过矩阵的初等变换,我们可以改变行列式的取值,从而简化行列式的求解。
矩阵的逆也与行列式有关,方阵可逆当且仅当其行列式不等于0。
高中数学矩阵与行列式
高中数学矩阵与行列式矩阵与行列式是高中数学中重要的内容,它们在代数和几何中有广泛应用。
本文将从基本定义、运算性质、逆矩阵和行列式的应用等方面来探讨矩阵与行列式的知识。
一、矩阵的基本定义矩阵是由$m$行$n$列的数表所组成,用$A=(a_{ij})_{m \timesn}$表示,其中$a_{ij}$表示矩阵$A$的第$i$行、第$j$列的元素。
根据矩阵的定义,可以将矩阵分为行矩阵、列矩阵和方阵等。
二、矩阵的运算性质矩阵的运算包括加法、数乘和乘法等,下面将对这些运算性质做详细介绍。
1. 矩阵的加法设$A=(a_{ij})_{m \times n}$和$B=(b_{ij})_{m \times n}$是两个$m\times n$的矩阵,它们的和$A+B$定义为$(a_{ij}+b_{ij})_{m \times n}$,即将对应位置的元素相加得到新的矩阵。
2. 矩阵的数乘设$A=(a_{ij})_{m \times n}$是一个$m \times n$的矩阵,$k$是一个实数,那么$kA$定义为$(ka_{ij})_{m \times n}$,即将矩阵$A$中的每个元素乘以$k$得到新的矩阵。
3. 矩阵的乘法设$A=(a_{ij})_{m \times s}$和$B=(b_{ij})_{s \times n}$是两个矩阵,它们的乘积$AB$是一个$m \times n$的矩阵,定义为$(c_{ij})_{m \times n}$,其中$c_{ij}=\sum_{k=1}^{s}a_{ik}b_{kj}$。
即矩阵$A$的第$i$行与矩阵$B$的第$j$列相乘并求和得到新矩阵$AB$的第$i$行第$j$列的元素。
三、逆矩阵逆矩阵是矩阵的重要概念,对于一个方阵$A$,如果存在一个方阵$B$,使得$AB=BA=I$,其中$I$是单位矩阵,则称$A$是可逆矩阵,$B$是$A$的逆矩阵,记作$A^{-1}$。
逆矩阵具有以下性质:1. 如果矩阵$A$可逆,则其逆矩阵唯一。
矩阵与行列式基础知识-2022年学习资料
怎样求解矩阵方程?-AX=b-因此,有必要了解和学习矩阵和行列-式的相关知识,以便方便的求解矩阵方程。
矩阵的相关概念-相等矩阵-A=4与B=b同型,且-=b,i=1,,7n;j=1,,n-记为A=B.-特殊矩 -零矩阵:如-行矩阵、列矩阵:-6-10--12,-行矩阵、列矩阵也称为向量
对角矩阵:-C1-=diaga11,a22,am)-az称为对角元.-如A-9)=diae2--单位矩阵: =diag1,1,.,1
3.矩阵的数乘-设有一个矩阵A=a,是一个数,那么矩阵-入C11-λ412-入1n-22-M-入am-入m -称为矩阵A与数-的乘积(简称矩阵的数乘,记作入A.-矩阵的线性运算律:加法、数乘。-A+B=B+A-②+B+C=A+B+C-A十O=A-④-A+一A=O-1A=A
4.矩阵的乘法-我们]把矩阵C称为矩阵A与B的乘积,记作C=AB-1.乘法的定义:A=4mxs和B=b,x ,如果AB=C-则矩阵C中每个元素都是A的行,B的列对应元素之积的和。-即-Co=tky ti+aby = aby-i=1,2,L,m;j=1,2,L,n
方程组的矩阵和向量表示形式-aX+a12X3+八+anXn=b-·m个方程n个未知量的线性方程组:-a2x a22x2+A +aanx=b2-M-dmam2X2+anx=b-·向量形式-+X-即xa,+xC&2+∧ xnan=乃-·矩阵形式-即AX=-·若右端向量p=0则-却Ax=0为齐次线性方程组
矩阵与行列式基础知识-介绍
我们常常会碰到一些求解方程的问题:-2X2-3x4=-3x2+4x+7x4=-0-6x2-8x4-能否如一 一次方程一样求解?-ax b-X三
矩阵与行列式的基本概念及应用知识点总结
矩阵与行列式的基本概念及应用知识点总结矩阵(Matrix)是现代数学的重要概念之一,它是由m行n列的数(或变量)按一定规律排列成的矩形阵列。
行列式(Determinant)是矩阵的一个重要性质,用于线性代数中求解方程组、矩阵求逆以及计算特征值等问题。
一、矩阵的基本概念1.1 矩阵的定义矩阵是由m行n列的数(或变量)按一定规律排列成的矩形阵列。
一般用大写字母表示矩阵,如A、B、C等。
矩阵的元素用小写字母表示,如a_ij表示矩阵A的第i行第j列的元素。
1.2 矩阵的运算矩阵的运算包括矩阵的加法、减法、数乘和乘法。
矩阵的加法和减法要求矩阵的行数和列数相等,对应位置上的元素进行相加或相减。
数乘指的是矩阵中的每个元素都乘以一个常数。
矩阵的乘法要求第一个矩阵的列数等于第二个矩阵的行数,乘法结果的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
1.3 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
转置后的矩阵记作A^T,即A的转置。
转置后,原矩阵的行向量变成了新矩阵的列向量,原矩阵的列向量变成了新矩阵的行向量。
二、行列式的基本概念2.1 行列式的定义行列式是一个与矩阵相关的数学运算。
对于一个n阶方阵A,其行列式定义为一个数D,记作|A|或det(A)。
行列式的计算方法有代数余子式法、行列式按行(列)展开法等。
2.2 行列式的性质行列式具有很多重要的性质。
其中包括行列式的可加性、行列式的数乘性、行列式的转置性质等。
这些性质在行列式的计算和应用中起到了重要的作用。
三、矩阵与行列式的应用3.1 解线性方程组矩阵与行列式在解线性方程组中有着广泛的应用。
通过行列式的性质和高斯消元法,可以快速求解线性方程组的解。
3.2 求矩阵的逆行列式的概念在求矩阵的逆中起到了关键的作用。
如果一个n阶矩阵A的行列式不等于零,那么A是可逆的,可以通过行列式的计算求解矩阵的逆。
矩阵的逆在许多应用中都有着重要的地位。
3.3 计算特征值与特征向量矩阵的特征值和特征向量是矩阵理论中的一个重要概念。
矩阵与行列式的应用知识点总结
矩阵与行列式的应用知识点总结矩阵与行列式作为线性代数中的两个重要概念,在数学以及实际应用中有着广泛的应用。
本文将对矩阵与行列式的相关知识点进行总结,以帮助读者更好地理解和应用这些概念。
一、矩阵的基本概念和运算法则1.1 矩阵的定义与表示方法矩阵是由 m 行 n 列的数按一定顺序排列成的矩形阵列。
在数学中,常用大写字母表示矩阵,例如A、B、C,其中A 是一个m×n 的矩阵,即包含 m 行 n 列。
矩阵可以用方括号表示,如 A = [a_ij],其中 a_ij 表示矩阵 A 中第 i行第 j 列的元素。
1.2 矩阵的运算法则矩阵的加法:矩阵 A 和矩阵 B 的和记作 A + B,要求 A 和 B 的行数与列数相等,即同型矩阵,其和的计算是按照对应元素相加的规则进行的。
矩阵的减法:矩阵 A 和矩阵 B 的差记作 A - B,要求 A 和 B 的行数与列数相等,即同型矩阵,其差的计算是按照对应元素相减的规则进行的。
矩阵的数乘:矩阵 A 与一个标量 k 的乘积记作 kA,其计算是将 A的每个元素乘以 k。
矩阵的乘法:矩阵 A 和矩阵 B 的乘积记作 AB,要求 A 的列数等于B 的行数,其计算是按照矩阵乘法的规则进行的。
即 A 的第 i 行与 B 的第 j 列对应元素分别相乘,并求和。
二、行列式的基本概念和性质2.1 行列式的定义与表示方法行列式是由 n×n 的矩阵所构成的特殊数,一般用竖线或两条竖线扩起来表示,如 |A| 或 det(A),其中 A 表示一个 n×n 的矩阵。
2.2 行列式的计算方法二阶行列式:对于二阶行列式 A = |a_ij|,其计算公式为 |A| =a_11a_22 - a_12a_21。
三阶行列式:对于三阶行列式 A = |a_ij|,其计算公式为|A| = a_11a_22a_33 + a_12a_23a_31 + a_13a_21a_32 - a_13a_22a_31 - a_11a_23a_32 - a_12a_21a_33。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵与行列式知识梳理
一、矩阵的概念
1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来):
⎪⎪
⎪
⎪
⎪
⎭
⎫
⎝⎛=mn m m n n a a a a a a a a a A 2
1
22221
11211称为一个m 行n 列的矩阵,简称n m ⨯矩阵,用______表示.
简记为_____.数ij a 称为矩阵的元素.
几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组⎩⎨
⎧=+=+222111c y b x a c y b x a ,则矩阵⎪⎪⎭
⎫
⎝⎛2211
b a
b a 称为该线性方程组的系数矩阵. 矩阵⎪⎪⎭
⎫
⎝⎛22
2
111
c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换:
(1) (2) (3)
4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解.
二、二阶行列式 1 定义:我们用记号
2
2
11b a b a 表示算式1221b a b a -,即
12212
2
11b a b a b a b a -=,记号
2
2
11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式
2
2
11b a b a 的展开式,其计算结果叫做
2
2
11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式
2
2
11b a b a 的元素.
2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积.
3作为判别式的二阶行列式:关于x 、y 的二元一次方程组⎩⎨⎧=+=+222
1
11c y b x a c y b x a ①其中1a 、2a 、
1b 、2b 不全为零,行列式2
2
11b a b a D =
叫做方程组①的系数行列式. 设2
2
11b c b c D x =
,
2
2
11c a c a D y =
.
则当0≠D 时,方程组①有唯一解. 当0=D 且0==y x D D 时,方程组①有无穷多解. 当0=D ,x D 、y D 中至少有一个不为零时,方程组①无解. 三、三阶行列式
1 三阶行列式的定义:把九个数排成三行三列的方阵,用记号3
3
3
222
1
11
c b a c b a c b a ①表示算式 231312123213132321c b a c b a c b a c b a c b a c b a ---++②.我们把记号①叫做三阶行列式,把
记号②叫做三阶行列式①的展开式,212121,,,,,c c b b a a 都叫做三阶行列式①的元素. 2 三阶行列式的展开方法:按对角线展开、按某一行(或一列)展开.
3行列式3
3
3
222
1
11
c b a c b a c b a 中某元素x 位于第i 行第j 列,其代数余子式等于它的余子式乘上j i +-)1(.
4 【结论】三阶行列式等于它的任意一行(或一列)的所有元素与它们各自对应的代数余子式的乘积的和.
如:1111113
3
3
222
1
11
C c B b A a c b a c b a c b a ++=.其中3
3
22
1c b c b
A =,3
3
221c a c a B -
=,
3
3
221b a b a C -
=
【结论】三阶行列式的某一行(或一列)的各元素与另一行(或一列)对应元素的代数余子式的乘积的和等于零.
5关于z y x ,,的三元一次方程组⎪⎩⎪
⎨⎧=++=++=++3333
22221
111d z c y b x a d z c y b x a d z c y b x a 的系数行列式为3
3
3222
111c b a c b a c b a D =,
当0≠D 时,方程组有唯一解. 当0=D 时,方程组无解或无穷多解.
注意:三元一次方程组,当0=D 时,情况复杂,方程组的解不同于二元一次方程组!。