傅里叶变换的基本性质与常用函数的傅里叶变换

合集下载

常用的傅里叶变换+定理+各种变换的规律(推荐)

常用的傅里叶变换+定理+各种变换的规律(推荐)

਼ᰦ F ^g x exp j 2Sf a x ` G f x f a ࠭ᮠ൘オฏѝⲴ⴨〫ˈᑖᶕ仁ฏѝⲴᒣ〫

[ f ( x)] F (P ) ᷍ x0 㬨⤜㸋㒄⭥㬖⧄㭞᷍䋓䇱
[ f ( x r x0 )] exp(r j 2SP x0 ) F (P ) ᷉㠞䄧㾵䐫᷊ [exp p(r j 2SP0 x) f ( x)] F (P P0 ) ᷉㼁䄧㾵䐫᷊
重 要
名称
连续傅里叶变换对 傅里叶变换 F (ω ) 连续时间函数 f (t )
= sinc ( u)
2
结论: 三角形函数的傅里叶变换是 sinc 函数的平方
9
七、符号函数的傅里叶变换
1 F [sgn( x )] = jπ u
二维 留待推算
1 1 F [sgn( x )sgn( y )] = • jπ u jπ v
八、exp[ jπx ] 函数的傅里叶变换 1 F {exp[ jπx ]} = δ ( u − ) 2
3
二、梳状函数的傅里叶变换
F [comb( x )] = comb( u)
普遍型
x F comb = a comb( au) a
结论
comb 函数的
傅里叶变换 仍是
二维情况
x y F comb comb a b = ab comb( au) comb( bv )
= sinc( u)
−1 / 2
∫ exp(− j 2πux )ห้องสมุดไป่ตู้x
a x ≤ 2 其它

rect(x)
F.T.
sinc(u)
5
普遍型
x F rect a

傅里叶变换及其性质

傅里叶变换及其性质

αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分

别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02

4

2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4

(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:

傅里叶变换(1)

傅里叶变换(1)
ℱ 1 F1() F2 () f1(t) f2(t)
1.4.2 对称性质
若 F() =ℱ f (t) 则以 t 为自变量的函数 F(t)
的象函数为 2 f
即 ℱF(t) 2 f
1.4.3 相似性质

1
f
1
2
F (t )
若F() =ℱ f (t) a 0 则

f (at)
t c
解 F () f (t)e jtdt
c e jt dt 2 c e jtdt
c
0
2sin c
0
2c
0
例4 求函数
0 f (t) e t
和傅氏积分表达式.
t 0 ( 0) 的傅氏变换
t0
解 F () f (t)e jt dt ete jtdt
0
e( j)t dt 1 e( jt)
ℱ [ t]=1, ℱ -1[1]= . t
t 1
t t0 与 e jt0 也构成了一个傅氏变换对,即 t t0 e jt0
1.4 傅立叶变换的性质
1.4.1 线性性质
设 F1() =ℱ f1(t) F2 () =ℱ f2(t) , 为常数则
ℱ f1(t) f2 (t) F1() F2 ()
1.4.6 积分性质
若 F () =ℱ f (t)

ℱ [ t f ( )d ] 1 F ()

j
在这里 t
f ( )d
必须满足傅氏积分存在定理的条件,
若不满足,则这个广义积分应改为

[
t
f ( )d ]
1 F () F(0) () j
1.4.7 傅氏变换的卷积与卷积定理

信号与系统3.7.8傅里叶变换的基本性质

信号与系统3.7.8傅里叶变换的基本性质
2.若f(t)是虚函数 令f(t)=jg(t),则:
R()= g(t)sin (t)dt -
X ()= g(t) cos (t)dt -
在这种情况下,R()为奇函数,X()为偶函数,即满足: R()=-R(-) X()=X(-)
而 F() 仍是偶函数,()是奇函数。
第3章 傅里叶变换
此外,无论f(t)为实函数或复函数,都具有以下性质
所以
[F(t)]=2 f(-)
若f(t)是偶函数,式(3 50)变成
[F(t)]=2 f()
(3 50) (3 51)
第3章 傅里叶变换
第3章 傅里叶变换
(二) 线性(叠加性)
若 [fi (t)]=Fi () (i=1,2,...,n),则
n
n
[ aifi (t)]= aiFi ()
i=1
f(at)e dt
令x=at
当a 0
[f(at)]= 1
f(x)e
j x a
dx=
1
F(
)
a
aa
第3章 傅里叶变换
当a 0
[f(at)]= 1

f(x)e
j
x a
dx
a +
=- 1
f(x)e
j
x
a dx=- 1
F(
)
a
aa
综合上述两种情况,便可得到尺度变换特性表达式为
[f(at)]= 1 F( )


在这种情况下,显然
R
X
()= -
()=-
f(t) cos (t)dt
f(t) sin (t)dt

(3-54)
第3章 傅里叶变换

傅里叶变换的性质

傅里叶变换的性质

1 0 1
21 31
即:
T
t
1 e jn1t T n
再求这个级数的傅氏变换
F
1 T n
e
j
n1t
2
T
n
n1
1 n1
n
T t 的频谱函数如图2-25b所示。 F
1
1
0 1
21 31
单位周期冲激序列的傅氏变换仍为周期冲激序列。
9、奇、偶、虚、实性
f t为实函数时, F 的模与幅角、实部与虚部表示形式
-1
0
0
0
/2
0
0
0
/2
例2-5 求如图2.-18所示
f t 的 F 并作图。
f t
A
t
2
2
-A
解 令 f1t Ag t , f t f1tcos0t 0 2 /
图 2 .
F1 ASa / 2
3
4

F
1 2
F1
0
F1
0
A
2
S
a
0 2
Sa
0 2
其中 0 2 /
F1以及 F 如图2-19所示。
a a
特别地,当 a 1 时,得到 其频谱亦为原频谱的折叠,即
f t 的折叠函数 f t ,
f t F 。
尺度特性说明,信号在时域中压缩,频域中就扩展;反 之,信号在时域中扩展,在频域中就一定压缩;即信号 的脉宽与频宽成反比。一般来说时宽有限的信号,其频 宽无限,反之亦然。
可以理解为信号波形压缩(扩展)

F f te jtdt
f
t co std t
j
f tsin tdt

chap1常用函数及其傅立叶变换

chap1常用函数及其傅立叶变换

在空域中 g s(x,y)h (x,y)g (x,y)
所以有:
nm
n
m
g ( x ,y ) n m g ( 2 B x ,2 B y ) s i n c [ 2 B x ( x 2 B x ) ] s i n c [ 2 B y ( y 2 B y ) ]
F(u)
sinc( u ) sinc 2 ( u ) 1 (u u 0 ) 1 / j u comb( u )
函数
函数的定义:
(t ) lim Ne N 2t2 N
(t) lim N rect( Nt ) N
(t) lim N sinc( Nt ) N

则 F . T . g ( x , y ) h ( x , y ) G ( f x ,f y ) H ( f x ,f y )
No
四、常用函数及其傅立叶变换式
矩形函数 rect(
1
x)


1
/
2
0
x 1/2 x 1/2 x 1/2
Sinc函数 sinc( 符号函数 sgn(
则系统称为线性空间不变系统。
对于线性空 间不变系统,叠加积分:
g (x ,y ) f(,)h (x ,y )d d f(x ,y ) h (x ,y )

1.3 二维线性不变系统
二、二维线性不变系统的传递函数 1、空间频率

F(fx,fy) f(x,y)ej2(xx fyy f)dxdy
其中 H (fx ,fy ) F .T . h ( x ,y ) 叫线性空间不变系统的传
递函数
1.3 二维线性不变系统

傅里叶变换的性质以及光学中一些函数的F.T.变换式

傅里叶变换的性质以及光学中一些函数的F.T.变换式

广义Fourier 变换:函数不严格满足存在条件,但是函数可定义另一函数 所组成的序列的极限,序列中的函数有F.T.;对组成序 列的每一个函数进行变换,就产生一个相应的变换序 列,该新序列的极限即为原函数的广义F.T.g ( x, y ) = lim f N ( x, y ) ℑ{ f N ( x, y )} = FN ( f x , f y )N →∞ N →∞lim FN ( f x , f y ) = ℑ{ g ( x, y )} = G ( f x , f y )ℑ{δ ( x, y )}lim ℑ{ N exp(−N π (x + y ))} = limexp(−2 2 2 2 N→∞π ( f x2 + f y 2 )2N→∞N fy ⎫ ⎧ 1 fx 1 2 lim ℑ{ N rect(Nx)rect(Ny)} = lim ⎨N ⋅ sin c( )N ⋅ sin c( )⎬ =1 N→∞ N→∞ N N N ⎭ ⎩ N fy ⎫ ⎧ 1 fx 1 lim ℑ{ N sin c(Nx)sin c(Ny)} = lim ⎨N ⋅ rect( )N ⋅ rect( )⎬ =1 N→∞ N→∞ N N N ⎭ ⎩ N2) =1δ−function Properties 1. 筛选性(定义性质)∞ −∞∫ g ( x)δ ( x − x ) dx = g ( x )0 0δ ( x − x0 ) = 0, x ≠ x02. 尺度缩放性质δ (ax) =3. 偶函数x 1 1 δ ( x), δ (ax − x0 ) = δ ( x − 0 ) a a aδ ( x ) = δ ( − x ) , δ ( − x + x 0 ) = δ ( x − x0 )3. 乘积性质g ( x)δ ( x − x0 ) = g ( x0 )δ ( x − x0 ); xδ ( x − x0 ) = x0δ ( x − x0 )4. 积分性质∞−∞∫ Aδ ( x − x ) dx = A0∞−∞∫ δ ( x − x ) dx = 105. 卷积性质g ( x) ∗ δ ( x − x0 ) = g ( x − x0 )卷积定义∞f ( x) ∗ h( x) =−∞∫ f (a)h(x − a)da反转,平移,相乘,积分卷积在光学中的应用卷积表示一输出,在光学上就表示成像系统的像分 布 ;对于线性空间不变光学系统,其输出的信息可 表示为输入信息g与系统脉冲响应函数h(系统对点 源的响应)的卷积 的响应x0处点源:I 0 Δξ 对应的像强度分布P( xi − x0 )输出像:I i ( xi ) = I 0 Δξ P ( xi ) + I 0 Δξ P( xi − ξ 1 ) +KΔξ → 0:I i ( xi ) = ∫ I 0 (ξ ) P( xi − ξ )d ξ二维:g(x, y)表示物(输入信息); h(x,y)表示系统对点源的响应(点扩散函数、脉冲响应函数)输出=g( x, y ) ∗ h(x,y)卷积的性质1. 符合交换律g ( x,y ) ∗ h( x, y ) = h( x, y ) ∗ g ( x,y )2.函数平移不变性f ( x, y ) ∗ h ( x, y ) = g ( x, y ) ↔ f ( x − x0 , y − y0 ) ∗ h( x, y ) = g ( x − x0 , y − y0 )3. 线性运算(af + bh) ∗ g = af ∗ g + bh ∗ g4.δ函数的卷积f ( x, y )* δ ( x, y ) = f ( x, y )δ 函数与任何函数卷积仅重新产生该函数严格再生 5. 光滑作用脉冲响应函数h是 对光学系统性能的 定量评价。

付立叶变换及其性质

付立叶变换及其性质

傅里叶变换的性质这里主要介绍二维离散傅里叶变换(DFT ,discrete FT )中的几个常用性质(可分离线、周期性和共轭对称性、平移性、旋转性质、卷积与相关定理):可分离性二维离散傅立叶变换DFT 可分离性的基本思想是二维DFT 可分离为两次一维DFT 。

因此可以用通过计算两次一维的FFT 来得到二维快速傅立叶变换FFT 算法 。

根据快速傅里叶变换的计算要求,需要图像的行列数均满足2的n 次,如果不满足,在计算FFT 之前先要对图像补零以满足2的n 次。

一个M 行N 列的二维图像f(x,y),先按行对列变量y 做一次长度为N 的一维离散傅里叶变换,再将计算结果按列向对变量x 做一次长度为M 傅里叶变换就可以得到该图像的傅里叶变换结果,如下式所示:()()()()∑∑-=-=-⎥⎥⎦⎤⎢⎢⎣⎡-=10102exp 2exp ,1,M x N y M ux j N vy j y x f MN v u F ππ 将上式分解开来就是如下两部分,首先得到F(x,v)再由F(x,v)得到F(u,v):∑-=-=-=101...10]/2exp[),(1),(N y N v N vy j y x f N v x F ,,,π∑-=-=-=101,...,1,0,]/2exp[),(1),(N x M v u M ux j v x F M v u F πu=0,1,2,…M-1;v=0,1,2,...N-1计算过程如下图所示:每一行有N 个点,对每一行的一维N 点序列进行离散傅里叶变换得到F(x,u),再对得到F(x,u)按列向对每一列做M 点的离散傅里叶变换,就可以得到二维图像f(x,y)的离散傅里叶变换F(u,v)同样,做傅里叶逆变换时,先对列向做一维傅里叶逆变换,再对行做一维逆傅里叶变换,如下式所示:()()()()∑∑-=-=⎥⎦⎤⎢⎣⎡=10102exp 2exp ,,M u N v M ux j N vy j v u F y x f ππ x=0,1,2,…M-1;y=0,1,2,...N-1周期性和共轭对称性由傅里叶变换的基本性质可以知道,离散信号的频谱具有周期性。

傅立叶变换的性质

傅立叶变换的性质
t
[
1 f (t ) d t ] F ( ) . j 1 f (t ) d t 2π
2


| F ( ) |2 d .

( 直接进入 Parseval 等式举例? )
15
§8.3 傅里叶变换的性质 第 例 设 f ( t ) u( t ) 2 cos 0 t , 求 [ f ( t )]. 八 1 章 解 已知 [ u( t )] π ( ) , j 傅 f ( t ) u( t ) (e j 0t e j 0t ) , 里 又 叶 变 根据线性性质和频移性质有 换 1 1 [ f (t )] π ( 0 ) π ( 0 ) j ( 0 ) j ( 0 )
[ f (t ) ] j [ g( t ) ] ,
[
t
1 f (t ) d t ] F ( ) . j
11
§8.3 傅里叶变换的性质 第 一、基本性质 八 章 6. 帕塞瓦尔(Parseval)等式


1 f (t ) d t 2π
2
| F ( ) |2 d .
7
§8.3 傅里叶变换的性质 第 一、基本性质 八 章 4. 微分性质 傅 性质 若 | t lim f ( t ) 0 , 则 [ f (t ) ] jF ( ) . | 里 叶 证明 由 lim f ( t ) 0 , 有 lim f ( t ) e j t 0 , | t | | t | 变 换 [ f ( t ) ] f ( t ) e j t d t
f (t ) e
j t
j f ( t ) e j t d t

应用高等数学-6.1 傅里叶变换

应用高等数学-6.1  傅里叶变换

例8
试证单位阶跃函数
F () F[(t)] (t)e jt d t e jt 1
t0
显然, (t)与常数1构成了一傅氏变换对,按
逆变换公式有
(t)
F
1[F ()]
1 2π
e
jt
d
由上式可得 e jt d 2π (t)
(6-9)
这是一个关于δ函数的重要公式.
例5 证明:1和 2π ()构成傅氏变换对.
f
(t)
1, 1,
π t 0 0 t π
如何将函数展开为傅里叶级数的三角形式.
解: 由定理6.1可得 0 1,a0 0,an 0 (n 1, 2,L )
bn
1
π
f (t)sin ntdt
π
π2
π
sin ntdt
0
nπ 2 (cos
nt
π
) 0
nπ 2 (1 cos nπ)
nπ 2 [1 (1)n ]
2π ( 0 )
例7 求正弦函数 f (t) sin 0t 的傅氏变换.
解:
F() F[ f (t)]
e
jt
sin
0t
d
t
1 (e j0t e j0t )e jt d t
2 j
1 (e j(0 )t e j(0 )t ) d t
2 j
jπ[ ( 0 ) ( 0 )]
式中当t=0可得重要积分公式
sin
x
d
x
π
0x
2
例4
求单边指数衰减函数
f
(t)
0, et ,
t0 t0
( 0)
的频谱函数、振幅谱、相位谱.

第8章 傅立叶变换

第8章 傅立叶变换

å
-
¥
cneinw0t
cn = F (nw) fT (t )的离散频谱; cn arg cn fT (t )的离散振幅频谱; fT (t )的离散相位频谱; n 蝂 .
若以fT (t )描述某种信号,则cn可以刻画 fT (t )的 频率特征。
§8.1.2 付氏积分与付氏变换
1.傅里叶积分公式
对任何一个非周期函数f(t)都可以看成是由某 个周期函数fT(t)当T时转化而来的. 作周期为T的函数fT(t), 使其在[-T/2,T/2]之内等于 f(t), 在[-T/2,T/2]之外按周期T延拓到整个数轴上, 则T越大, fT(t)与f(t)相等的范围也越大, 这就说明当 T时, 周期函数fT(t)便可转化为f(t), 即有
+?
sin x dx= x
F (w)
w = kpw
ì1 ï 例 求函数 f (t ) = ï í ï0 ï î
t<c t> c
jw t
(c > 0) 的傅氏变换
解 F (w) =
ò
+c - c
+
f (t )e-
dt
+c
-
=

e
- j wt
dt = 2
0
e-
j wt
dt
积分表达式。
F ( w) =

- ?
+
f (t )e
- iwt
d
dt =
d
e
- iwt
e dt = - iw - d
- iwt d
1 - iwd 2d sin dw iwd =(e - e ) = dw iw
1 +? 1 iwt f (t ) = 蝌 F (w)e d w = p 2p 1 + ? 2sin w 2 = 蝌 cos wtd w = p 0 w p 0 F (w)cos wtd w

信号与系统第3章 傅里叶变换

信号与系统第3章  傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2

2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1

傅里叶变换的基本性质与常用函数的傅里叶变换

傅里叶变换的基本性质与常用函数的傅里叶变换
1FoFo
2
f (t)sinot
j FoFo
时域微分
df(t) dt
j F
dnf(t) dtn
n
j F
频域微分
jtf (t)
dF
d
n
jt f(t)
dnF
dn
时域积分
t
f( )d
1
—FF o
j
时域卷积
fi(t)f2(t)
F1F2
乘积与卷积
频域卷积
fl(t) f2(t)
—F1F2
2
t
2t
时域抽样
ftt nTo
精选文档
傅里叶变换的基本性质
性质
时域
频域
时频域对应关系
线性
n
aifi(t)
i1
n
aF()
i 1
线性叠加
对称性
F(t)
2 f()
对称
尺度变换
f(at)
1
口F(一) 囘a
压缩与扩展
f( t)
F()
反褶
时移
f (tto)
F( )ej to
时移与相移
频移
f (t)ej ot
F(o)
调制与频移
f (t)cosot
n
12 n
F
To nT)
抽样与重复
频域抽样
1上2 n
—f t——
0 n0
Fn0
n
相关
R12
R21
FiF2
FiF2
自相关
R
|F|2
常用信号的傅里叶变换表
信号名称
时间函数
频谱函数
单边指数脉冲
eatu t a 0

常用信号的傅里叶变换

常用信号的傅里叶变换
(仅是 ω频移,而非 jω)。
⎧ ⎪⎪
f
(t) cosωct

1 [F( 2


jωc ) +
F(

+
jωc )]

⎨ ⎪ ⎪⎩
f
(t ) sin ωct

1 2j
[F(


jωc )

F(

+
jωc )]
例:已知:1↔ 2πδ(ω) ,则 e− jωct ↔ 2πδ(ω+ ωc )
东南大学 信息科学与工程学院
4. 尺度变换(比例)性质:
f ( at ) ↔ a≠0
1
ω
F( j
|a | a
),
< Bτ = 常数 >
例:
f (at − t0 ) ↔ ?
东南大学 信息科学与工程学院
解:
f
(t)
f
(t−t0 )=g1(t )

F(
jω)e−
jωt0
g1(at)
→ |
1 F( j a|
ω− )e
j
ω at0
a

f (at)=g2 (t)
f (t) →
1
F(
j
ω)
g2
(t
−t0 a

)
1
F
(
j
ω− )e
j
ω a t0
|a| a
|a| a
东南大学 信息科学与工程学院
例:已知 f (t) 的带宽为 B ,求 f (3t − 6) 的带宽。
解: f (3t − 6) 的带宽与 f (3t) 的带宽相等 ( ∵ 延时不改变幅频 )

傅里叶变换的基本概念及基本定理

傅里叶变换的基本概念及基本定理

1、三角傅里叶级数展开 、
满足狄氏条件的函数 g(x) 具有有限周期τ,可以在(-∞,+ ∞)展 为三角傅里叶级数:
a0 ∞ g ( x) = + ∑ (an cos 2πnf 0 x + bn sin 2πnf 0 x), 2 n =1
(n = 0, 1, 2... ), f0 =
1
τ
展开系数
a0 =
f(x,y): 原函数, F(fx,fy): 像函数或频谱函数 积分变换:
F ( x) = ∫ f (α ) K (α , x)dα
−∞
+∞
傅里叶变换的核:
exp(-j2πfx)
变换核
二维傅里叶变换 2-D Fourier Transform 一、定义(续)
由频谱函数求原函数的过程称为傅里叶逆变换:
这就是傅里叶变换和傅里叶逆变换dxfxdffx二维傅里叶变换2dfouriertransform一定义及存在条件函数fxy在整个xy平面上绝对可积且满足狄氏条件有有限个间断点和极值点没有无穷大间断点定义函数为函数fxy的傅里叶变换记作
sinc(x)δ (x-1) = 0 sinc(x)*δ (x-1) = sinc(x-1) tri(x)δ (x + 0.5) = 0.5 δ (x + 0.5) tri(x) * δ (x + 0.5) = tri(x + 0.5)
τ ∫τ

2
τ
2 2
g(x) cos(2πnx)dx =2∫
bn =
τ ∫τ

2
τ
2 2
g ( x) sin( 2πnf 0 x)dx = 0
采用指数傅里叶级数展开,可以使展开系数的表达式统一而简洁。 采用指数傅里叶级数展开,可以使展开系数的表达式统一而简洁。

与傅里叶变换有关的积分结论

与傅里叶变换有关的积分结论

与傅里叶变换有关的积分结论傅里叶变换是数学分析中一个非常重要的工具,可以将一个函数在时域中的表示转换为在频域中的表示。

通过傅里叶变换,我们可以分析一个函数的频谱特性以及它在不同频率上的成分。

傅里叶变换的积分结论是傅里叶变换理论的基础,下面我们将介绍与傅里叶变换有关的一些积分结论。

1.傅里叶变换的定义假设函数f(x)在整个实轴上绝对可积,也就是说f(x)满足条件∫|f(x)|dx < ∞,则f(x)的傅里叶变换F(k)定义为F(k) = ∫f(x)e^(-2πikx)dx,其中k是频率。

2.逆傅里叶变换的定义假设函数F(k)在整个实轴上绝对可积,则F(k)的逆傅里叶变换f(x)定义为f(x) = ∫F(k)e^(2πikx)dk3.傅里叶变换和逆傅里叶变换的关系傅里叶变换和逆傅里叶变换是互逆的,即F(k) = ∫f(x)e^(-2πikx)dxf(x) = ∫F(k)e^(2πikx)dk这意味着对于一个函数f(x),先进行傅里叶变换再进行逆傅里叶变换,可以得到原函数f(x)本身。

4.傅里叶变换的线性性质傅里叶变换具有线性性质,即若a和b为常数,则对于两个函数f(x)和g(x),有以下结论成立:(af + bg)(x)的傅里叶变换等于aF(k) + bG(k),其中F(k)是f(x)的傅里叶变换,G(k)是g(x)的傅里叶变换。

5.傅里叶变换的平移性质对于函数f(x)的傅里叶变换F(k),平移性质指的是:若f(x)的傅里叶变换为F(k),则f(x - a)的傅里叶变换为e^(-2πika)F(k)。

这意味着函数在时域上平移,会导致频域中的相位发生变化,但幅度不变。

6.傅里叶变换的缩放性质对于函数f(ax)的傅里叶变换F(k),缩放性质指的是:若f(ax)的傅里叶变换为F(k),则f(x)的傅里叶变换为(1/a)F(k/a)。

这意味着函数在时域上缩放,会导致频域中的频率发生变化,但幅度不变。

7.傅里叶变换的卷积定理假设函数f(x)和g(x)的傅里叶变换分别为F(k)和G(k),则f(x)和g(x)的卷积f(x)*g(x)的傅里叶变换为F(k)G(k)。

§3-5 傅里叶变换的性质

§3-5 傅里叶变换的性质
FT x(t ) ←⎯→ X ( jΩ )
FT x ( t ) e jΩ 0 t ← ⎯→ X [ j ( Ω − Ω 0 )]
ℱ x ( t ) e jΩ 0 t
{
} = ∫ x (t ) e
−∞


jΩ 0 t
e − j Ω t dt =
−∞

x ( t ) e − j ( Ω − Ω 0 ) t dt
19

X ( jΩ) = X ( jΩ) e jϕ( Ω ) = X R (Ω) + jX I (Ω)
X * ( jΩ) = X ( jΩ) e − jϕ( Ω ) = X R (Ω) − jX I (Ω)
于是
X * (− jΩ) = X (− jΩ) e − jϕ( − Ω ) = X R (−Ω) − jX I (−Ω)
jtx ( t ) e
− jΩ t
dt
dX ( j Ω ) tx ( t ) ← ⎯→ j dΩ
FT
例如: du ( t )
dt
= δ (t )
对应的傅里叶变换
jΩ 1 = j 0 ⋅ πδ ( Ω ) + =1 δ(t ) ←⎯→ jΩ[πδ(Ω) + ] jΩ jΩ
FT
再例如:
1 d [πδ ( Ω ) + ] 1 jΩ FT ′ = jπ δ ( Ω ) − 2 tu ( t ) ← ⎯→ j Ω dΩ
x(t )
1
τ −2 τ 2
τ
X ( jΩ )
t
2π τ
Ω
τ
X ( jt )
x (Ω )

若x(t)是偶对称的,则
FT X ( jt ) ←⎯→ 2πx(Ω)

《傅里叶变换》课件

《傅里叶变换》课件
特点
小波变换具有多尺度分析的特点,能够同时获得 信号在时间和频率域的信息,并且在时频域具有 很好的局部化能力。
应用
在信号处理、图像处理、语音识别等领域广泛应 用。
周期性和共轭对称性
总结词
周期性和共轭对称性是傅里叶变换的重要性质。
详细描述
由于傅里叶变换将时间域的函数映射到频率域,因此频谱具有周期性,即F(ω) = F(ω+2πn),其中n为整数。此 外,频谱还具有共轭对称性,即F*(ω) = F(-ω),这意味着频谱在频率轴上关于原点对称。这些性质在信号处理 、图像处理等领域有着广泛的应用。
线性性质
如果a和b是常数,f(t)和g(t)是可傅里叶变换的函数,那么 a*f(t)+b*g(t)也是可傅里叶变换的,并且其频域表示为 a*F(ω)+b*G(ω)。
时移性质
如果f(t)是可傅里叶变换的,那么f(t+a)也是可傅里叶变换 的,并且其频域表示为F(ω)e^(iωa)。
频移性质
如果f(t)是可傅里叶变换的,那么f(t)e^(iω0t)也是可傅里叶 变换的,并且其频域表示为F(ω-ω0)。
04
傅里叶逆变换
傅里叶逆变换的定义
01
傅里叶逆变换是将频域函数转 换为时域函数的过程。
02
它与傅里叶变换是可逆的,即 给定一个频域函数,通过傅里 叶逆变换可以恢复原始的时域 函数。
03
傅里叶逆变换的公式为:f(t) = ∫F(ω)e^(iωt)dω,其中f(t)是 时域函数,F(ω)是频域函数。
傅里叶逆变换的性质
在图像处理中的应用
图像频域滤波
通过傅里叶变换将图像从空间域 转换到频域,可以在频域中对图 像进行滤波处理,如去除噪声、

傅里叶变换方法

傅里叶变换方法

傅里叶变换方法1. 傅里叶变换的概念傅里叶变换是一种数学工具,用于将一个函数或信号表示为一系列振幅和相位的复指数函数的和。

它可以将时域中的信号转换为频域中的信号,从而揭示出信号包含的频率成分和它们之间的关系。

傅里叶变换方法是由法国数学家约瑟夫·傅里叶在19世纪初提出的,他认为任何周期性函数都可以用一组正弦和余弦函数来表示。

这个思想被广泛应用于物理、工程、计算机科学等领域,成为了现代科学研究中不可或缺的工具。

2. 傅里叶级数与傅里叶变换傅里叶级数是指将一个周期函数表示为正弦和余弦函数的无穷级数。

它在周期性信号处理中得到广泛应用。

对于一个周期为T、连续可积的函数f(t),其傅里叶级数定义如下:f(t)=a02+∑(a n cos(2πnTt)+b n sin(2πnTt))∞n=1其中,a0、a n和b n是系数,可以通过函数f(t)的积分计算得到。

而傅里叶变换则是将非周期函数表示为连续频谱的积分形式。

对于一个连续可积的函数f(t),其傅里叶变换定义如下:F(ω)=∫f∞−∞(t)e−jωt dt其中,ω是频率,F(ω)表示函数f(t)在频率域中的表示。

3. 傅里叶变换的性质傅里叶变换具有许多重要的性质,这些性质使得它成为一种强大而灵活的工具。

以下是一些常见的傅里叶变换性质:•线性性质:傅里叶变换具有线性性质,即对于任意常数a和b以及两个函数f(t)和g(t),有F(af(t)+bg(t))=aF(f(t))+bF(g(t))。

•平移性质:如果将函数在时域上平移,则其在频域上也会相应平移。

具体而言,如果f(t)经过时移得到ℎ(t)=f(t−t0),那么它们的傅里叶变换满足H(ω)=F(ω)e−jωt0。

•尺度性质:如果将函数在时域上进行尺度变换,则其在频域上也会相应进行尺度变换。

具体而言,如果f(t)经过尺度变换得到ℎ(t)=f(at),那么它们的傅里叶变换满足H(ω)=1|a|F(ωa)。

第八章傅氏变换

第八章傅氏变换
2


f
( )e-j d
e jtd
这个公式称为函数f (t)的傅里叶积分公式
• 余弦傅氏积分公式
f (t) 2

0 0
f
( ) cos
d

cost
d
• 正弦傅氏积分公式
f (t) 2

0 0
第八章 傅里叶变换
变换:人们在处理和分析问题时,常常需要将问题进行转化 从另一个角度进行处理分析,数学上称之为变换。
傅里叶变换,由于既能简化计算(化微分方程为代数方程, 化卷积为乘积)又具有非常特殊的物理意义,具有广泛的应 用。(如研究自动控制系统的频率的方法就是建立在这个基 础之上的)
内容简介:我们从周期函数在区间
F() F[ (t)] 1 F 1[1] (t)
• 更一般的有
F () F[ (t t0 )] e- jt0 F 1[e- jt0 ] (t - t0 )
• 故 (t - t0 ) 与 e- jt 构成傅氏变换对
例题见 P121 8.8 8.9 8.10
F f (t t0 ) e jt0 F f (t)
F1 e jt0 F () f (t t0 )
该性质在无线电技术中也称为时移性质。
另:象函数的位移性质
若 F f (t) F() ,则
FF ( 0 ) f (t)e j0 t
像函数的微分性质(像函数的导数)P127

F f (t)=F(), t f (t) dt ,则
d F()=- j Ftf (t) 或 F 1[F()]=- j tf(t)
d
一般地,有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档