控制系统的频率特性
控制工程基础第4章控制系统的频率特性
插值计算可大致确定闭环截止频率为 b
=1.3rad/s。
非单位反馈系统的闭环频率特性
对于非单位反馈系统,其闭环频率特性可
写为
X X
o i
j j
1
G j G j H
j
H
1
j
1
G j H j G j H j
在求取闭环频率特性时,在尼柯尔斯图上画
出 G j H j 的轨迹,由轨迹与M轨线和N轨
频域法是一种工程上广为采用的分析 和综合系统间接方法。另外,除了电路 与频率特性有着密切关系外,在机械工 程中机械振动与频率特性也有着密切的 关系。机械受到一定频率作用力时产生 强迫振动,由于内反馈还会引起自激振 动。机械振动学中的共振频率、频谱密 度、动刚度、抗振稳定性等概念都可归 结为机械系统在频率域中表现的特性。 频域法能简便而清晰地建立这些概念。
如果M=1,由式(4.26)可求得X=-1/2,即为
通过点(-1/2,0)且平行虚轴的直线。
如果M≠1,式(4.26)可化成
X
M M2
2
2
1
Y
2
M2 M 2 1 2
(4.27)
该式就是一个圆的方程,其圆心为
M2
,半径为 M 。如下图。
[
M
2
, 1
j0]
M 2 1
在复平面上,等M轨迹是一族圆,对于给定 的M值,可计算出它的圆心坐标和半径。下 图表示的一族等M圆。由图上可以看出,当 M>1时,随着M的增大M圆的半径减小,最后 收敛于点(-1,j0)。当M<1时,随着M的 减小M圆的半径亦减小,最后收敛于点 ( 0 , j0)。M=1 时 , 其 轨 迹 是 过 点 ( 1/2,j0)且平行于虚轴的直线。
控制系统的频率特性
频率特性是一个复数,有三种表示:
代数式
极坐标式
G j U jV
G( j ) G( j ) G( j ) A( ) ( )
指数式
G( j ) G( j ) e jG ( j ) A( )e j ( )
A G j U 2 V 2
率特性是系统的固有特性,与输入信号无关,
即当输入为非正弦信号时,系统仍然具有自身的频率特性。
频率特性定义为输出量的Fourier变换与输入量
的Fourier变换之比,即
X 0 j G j X i j
频率特性的矢量图
jv V () A () () 0 U () u G(j)
2T 2 1
相频特性 arctan T 一阶惯性环节的幅相频率特性曲 线是一个半圆。
5. 一阶微分环节
频率特性
G j Tj 1
jv
2 45°
幅频特性 A 1 T 2 相频特性 实频特性
∞ ↑ =0 u
arctan T
r为谐振频率
Mr为谐振峰值
r n 1 2 2
M r A max
0.707
1 2 2
2 1 2
7. 二阶微分环节
jv
=0 0 1 u
8. 延迟环节
频率特性
G j e
A 1
jT
1 1 j T
1 TS 1 S j
定义:
A / 1 2T 2 1 稳态输出幅值 A( ) RC网络幅频 2 2 A 输入幅值 1 T 特性
( ) arctan T 稳态输出相位 输入相位 RC网络相频特性
控制工程 第5章 系统的频率特性
频响函数 幅频特性 相频特性
1 G ( j ) 1 j 0.005 1 | G ( j ) | 1 (0.005 )2 0 0.005 ( ) arctan arctan 1 1 arctan(0.005 )
可见:输入信号频率越高,稳态输出幅值衰减越大,相移越大(这正是惯性环节 的频响特性)。
18:10:18
5-1 频率特性
本例题也可以采用第 4 章介绍的求时间响应的方法获 得稳态响应,即利用传递函数求出零状态响应,然后分 解出其中的稳态响应。 而利用频响函数可直接求出稳态 响应。
21
y( t ) L [Y ( s )] 0.555e 200 t
m k f (t)/x (t) f(t)—力
A
f(t) = Asin(ωt)
A B
x(t)—位移 B
0 -A
ωt
υ
单自由度有阻尼振动 x(t) = Bsin(ωt+υ)+瞬态响应 系统力学模型 教材101页图5-2中的标注“υ”不对,应改成“υ/ω”,
18:10:18
或将横坐标标尺改成“ωt”。
5-1 频率特性
相频特性 = 正弦信号稳态响应相角 - 正弦输入信号相角
幅频特性和相频特性合起来描述了系统的频响特 性或频率特性。
18:10:18
13
5-1 频率特性
系统频率特性的获得 解析法 令输入x(t)=x0sin(t),求解微分方程的特解(稳 态解)。可以利用拉氏变换求解;
利用频率响应函数;
实验法
输入正弦信号,测量稳态输出。
18:10:18
5-1 频率特性
利用频率响应函数求频率特性 频率响应函数的定义:对连续线性定常系统,输出 的付立叶变换 C(j) 与输入的付立叶变换 R(j) 之比 ,叫频率响应函数,简称频响函数,也称为正弦传 递函数,记作G(j) 。即
自动控制原理与系统控制系统的频率特性
如图4-6所示。
12
四、惯性环节 传递函数 : G(s) C(s) 1
R(s) Ts 1
频率特性 : G( j) C( j) 1
R( j) jT 1
对数频率特性 : L() 20lg
1
20lg
(T)2 1
(T)2 1
Bode图 : arctanT
▪对数幅频特性L(ω)是一条曲线,逐点描绘很烦琐,通常采用近似的 绘制方法,用两条渐进线近似表示.
(极坐标表示法)
U () jV ()
(直角坐标表示法)
(A指(数表)e示j法 ())
图4-2
A() G(j) U 2 () V 2 ()
() G( j) arctan 1 V () U ()
6
例4-1 写出惯性环节的幅频特性、相频特性和频率特性。
解:惯性环节的传递函数为
G(s) 1 Ts 1
2
• 系统(或环节)输出量与输入量幅值之比为幅值频率特性, 简称幅频特性,它随角频率ω变化,常用M(ω)表示。
A()
A c
A r
• 输出量与输入量的相位差为相位频率特性,简称相频特性,它 也随角频率ω变化,常用φ(ω)表示,
c r
幅频特性和相频特性统称为频率特性,用G( jω)表示
3
频率特性就是线性系统(或环节)在正弦输入信号 作用下稳态时输出相量与输入相量之比。
G (j) G(j) G(j)
A() G(j)
() G(j)
幅频特性是输出量与输入量幅值之比M(ω),描述系统 对不同频率正弦输入信号在稳态时的放大(或衰减) 特性。
相频特性是输出稳态相对于正弦输入信号的相位差 φ(ω),描述系统稳态输出时对不同频率正弦输入信号 在相位上产生的相角迟后(或超前)的特性。
实验四 控制系统频率特性的测试 实验报告
实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。
二.实验装置(1)微型计算机。
(2)自动控制实验教学系统软件。
三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。
这就是所谓“李沙育图形”。
由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。
(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。
(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。
在拐点处有一定的差距,在某些点处也存在较大的误差。
分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。
(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。
(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。
在实验过程中一个频率可同时记录2Xm,2Ym,2y0。
(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。
第四章 控制系统的频率特性PPT课件
1·写出 G ( j w ) 和G( jw)表达式; 2·分别求出 w 0 和 w时的 G ( j w ) ;
3·求乃氏图与实轴的交点,交点可利用 ImG(jw)0或 G(jw)n180o
的关系式求出;
4·求乃氏图与虚轴的交点,交点可利用 ReG(jw)0或 G(jw)n90o
K;
(T 1s1 )(T 2s1 )
K ,T 1,T 20
试概略绘制系统开环幅相曲线。
解:由于惯性环节的角度变化为 ~-900,故该系统开环幅
相曲线中
起点为:
终点为:
系统开环频率特性
A (0)K,
(0)00
A ( ) 0 , ( )2 ( 90) 0 10 80
G (j)K [1 (1 T 1 T T 12 2 2 2) 1 (j (T T 1 22 T 22 ))]
即多环节传递函数的幅频特性是各环节模的乘积,相频特性是各环节 相位角之和。
7
自动控制原理
§4-2频率响应的极 频率响应G(jw)是输入频率w的复变函数,是一种变换,当w从0逐渐增长至
时,G(jw)作为一个矢量,其端点在复平面相对应的轨迹就是频率响
应的极坐标图,亦叫坐做乃标氏图图((Nyq乃uist氏曲线图) )
传递函数G(s)
S=jw
频率特性G(jw)
注:系统频率特性分析法是一种用“稳态”的方法(即输出稳态时 的正弦信号,不考虑过度过程)来分析系统的动态特性(稳,准, 快)
5
自动控制原理
二·频率特性的一些概念
G (jw ) U (w )jV (w )
幅频特性 A (w ) G (jw )[U (w )]2 [V (w )]2
(jw K)(j(wjw1T11)1()j(wjw2T21).1..)...
第六章控制系统的频率特性
S平面上的两点之间的弧线可映射为F平面 的一段弧线:
S平面上的一条闭合的围线可映射为F平面 的一段闭合围线。
条件:S平面上的弧线和围线不经过奇异点
例:对于分式复变函数: 取:
取:
弧线:
s1 : 2 j2
S
-3 -2 s2 :
1
F
F (s1 ) :
4 5
j
2 5
F (s2 ) :1 2
频率特性法: 通过实验对开环对象施加不同频率的正 弦信号,即可获得系统的频率特性(幅 频特性曲线和相频特性曲线),方法简 便; 从频率特性图中分析闭环系统的性能, 分析参数变化对系统瞬态响应的影响。
二、常用的频率特性表示方法
对数频率特性曲线,也称波特图(Bode) 对数幅频特性曲线: 对数相频特性曲线
3.乃奎斯特图顺时针包围原点N圈 4.n、m、N之间存在关系:N = m - n
j
[S ]
j
[F ]
F (s) 1 G0 (s)
[F]平面 → [G]平面: Nyquist图围绕[F]平面原点
的圈数
Nyquist图围绕[G]平面中
[F ]
点的圈数。
[G]
系统在S右半平面闭环特征根的个数m取决 于开环传递函数 的Nyquist曲线围绕
10-1
100
频 率 (rad/sec)
相位:G( ji )
101
0.6 0.4 0.2
0 -0.2 -0.4
乃奎斯特图
G( ji ) G( ji )
Im
-1
-0.5
0
0.5
1
Re
第六章 控制系统的频率特性
第2小节 幅角原理
自动控制原理第5章频率特性
自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。
在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。
本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。
1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。
在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。
频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。
2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。
频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。
对数坐标图上,增益通常以分贝(dB)为单位表示。
3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。
相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。
在相频特性图上,频率通常是以对数坐标表示的。
4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。
它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。
5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。
在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。
对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。
6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。
工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。
常见的设计方法包括校正器设计、分频补偿、频率域设计等。
总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。
频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。
自动控制原理第5章_线性控制系统的频率特性分析法
5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处
控制系统的频率特性分析
【实验名称】控制系统的频率特性分析【实验目的】1) 掌握运用MATLAB 软件绘制控制系统波特图的方法; 2) 掌握MATLAB 软件绘制奈奎斯特图的方法; 3) 利用波特图和奈奎斯特图对控制系统性能进行分析。
【实验仪器】1) PC 机一台 2) MATLAB 软件【实验原理】1. 奈奎斯特稳定判据及稳定裕量(1)奈氏(Nyquist )判据:反馈控制系统稳定的充要条件是奈氏曲线逆时针包围临界点的圈数R 等于开环传递函数右半s 平面的极点数P , 即R=P ;否则闭环系统不稳定, 闭环正实部特征根个数Z 可按下式确定Z=P-R=P-2N (2)稳定裕量利用)()(ωωj H j G 轨迹上两个特殊点的位置来度量相角裕度和增益裕度。
其中)()(ωωj H j G 与单位圆的交点处的频率为c ω(截止频率);)()(ωωj H j G 与负实轴的交点频率为x ω(穿越频率)。
则相角裕度:)(180)()(180c c c j H j G ωϕωωγ+=∠+= 增益裕度:)(1)()(1x x x A j H j G h ωωω==(对数形式:)(lg 20)()(lg 20x x x A j H j G h ωωω-=-= 2. 对数频率稳定判据将系统开环频率特性曲线分为幅频特性和相频特性,分别画在两个坐标上,横轴都用频率ω,纵轴一个用对数幅值和相角,这两条曲线画成的图就是Bode 图,即对数频率特性图。
因为Bode 图与奈氏图有一一对应关系,因此,奈氏稳定判据就可描述为基于Bode 图的对数频率稳定判据:(1)开环系统稳定,即开环系统没有极点在正右半根平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正负穿越次数相等,那么闭环系统就是稳定的,否则是不稳定的。
(2)开环系统不稳定,有P 个极点在正右半平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正穿越次数大于负穿越次数P/2,闭环系统就是稳定的,否则是不稳定的。
控制系统的频率特性
相位的单位采用度或弧度来表示。 ➢对数幅相特性曲线:Nichols图,对数幅相图,复合坐标图
横坐标为相频特性,采用度或弧度来表示。
纵坐标为幅频特性,采用分贝(dB)来表示。
例:一般系统的传递函数和频率特性
G(s)
b0s m a0 s n
b1s m1 a1s n1
j0
系统的输出为
Y (s)
(s
p1 )( s
M (s) p2 )(s
pn )
X s2 2
(s
M (s) p1)(s p2 )(s
pn )
(s
X j)(s
j)
稳定系统
n
Y(s)
Ai
A
A
i1 s pi s j s j
A, A 和Ai (i 1,2,n)
待定系数
n
y(t) Ae jt A e jt Aie pit i 1
G( j) G( j) e j()
G( j) G( j) e j() G( j) e j()
式中:
(
)
G(
j
)
arctg
Im Re
[G( [G(
j j
)] )]
将待定系数 A, A 代入式 ys (t) Ae jt A e jt 中,有:
ys (t)
X 2j
G( j) e j () e jt
采用MATLAB绘制比例环节的极坐标图:
K=1; G=tf([K],[1]); nyquist(G,'*'); axis([-2,2,-2,2]);
X G( j) e j () e jt
2j
X G( j ) e j (t ( )) e j (t ( ))
控制工程基础第4章 控制系统的频率特性
( ) G ( j ) arctanT
As 0, 1) ( gain G ( j ) 1 L( ) 20lg G ( j ) 0
( ) 0
As 1 gain G ( j ) T L( ) 20lg G ( j ) 20 lg(T )
第四章 控制系统的频率特性
4.1 机电系统频率特性的概念及其实验基本方 法 4.2 极坐标图 4.3 对数坐标图 4.4 由频率特性曲线求系统的频率特性 4.5 控制系统的闭环频响
4.1 机电系统频率特性的概念及其实验基本方法
频率响应: 系统对正弦函数输入的问题响应。当输入正弦信号时, 系统的稳态输出也是正弦信号,且其频率与输入信号的 频率相同,其幅值及相角随着输入信号频率的变化而变 化。 当输入为非正弦的周期信号时,可将输入信号利用傅立 叶级数展开成正弦函数叠加的形式,系统的响应也是其 相应正弦函数响应的叠加 输入为非周期信号时也可以将它看作是周期为无穷大的 周期信号
V ( )
相频特性
A( )
( )
U ( )
4.2 极坐标图
Im( )
G ( j n )
Re( )
G ( j 2 )
G ( j1 )
4.2.1 典型环节的乃氏图
k
0
积分环节 比例环节
0
G (s) k G ( j ) k A( ) G ( j ) k
系统开环传递函数为: 100(0.05s+1) G(s)= s(0.1s+1)(0.2s+1) 试绘制其开环对数频率特性图
40 20 1 20lgk 5 10 20
1 -90 -180 -270
5
10
第六章 控制系统的频率特性
第六章 控制系统的频率特性采用频率特性法原因: (1) (2) (3)第一节 频率特性的基本概念一.概念 1.频率响应:指控制系统对正弦输入信号的稳态正弦输出响应。
例:如图所示的机械系统,K 为弹簧刚度系数,单位N/m ,C 是阻尼系数,单位m/s.N,当输入力为正弦信号f(t)=Fsinwt 时,求其位移x(t)的稳态响应解:列写力平衡方程)()()(t f t kx dtt dx C =+其传递函数为:11111)()()(+=+=+==Ts K s KC K K Cs s F s X s Gx (t )tF t f ωsin )(=22)(ωω+=s F s F输出位移)()()(s F s G s X =2232122111ωωω++++=+⋅+=s K s K Ts k s F s KCKTt e T KF T T arctg t T K Ft x -++-+=22221)sin(1)(ωωωωω上式中第一项为稳态分量,第二项为瞬态分量,当时间t 趋向于无穷大时为零。
系统稳态输出为:)](sin[)](sin[)()sin(1)(22ωϕωωϕωωωωω+=+⋅=-+=t X t F A T arctg t T K Ft x其幅值为:2)(11)()(ωωωT K F X A FA X +===相位为:T arctg ωωϕ-=)(从上式的推导可以看出,频率响应是时间响应的一种特例。
正弦输入引起的稳态输出是频率相同的正弦信号,输入输出幅值成比例)(ωA ,相位)(ωϕ都是频率ω的函数,而且与系统的参数c,k 有关。
二 频率特性及其求解方法 1.频率特性:指线性系统或环节在正弦函数作用下,稳态输出与输入幅值比)(ωA 和相位差)(ωϕ随输入频率的变化关系。
用)(ωj G 表示。
)()]([)(Im Im )()()(ωϕωωϕωωωj tj t j eA eF eX t f t x j G ===+2)(11)()(ωωωT K F X j G A +===T arctg j G ωωωϕ-=∠=)()()(ωj G 称为系统的频率特性,其模)(ωA 称为系统的幅频特性,相位差)(ωϕ称为相频特性2.频率特性求解 (1)根据已知系统的微分方程或传递函数,输入用正弦函数代入,求其稳态解,取输出和输入的复数比(2)根据传递函数来求取 (3)通过实验测得令传递函数中的ωj s =则得到频率表达式)(ωj G ,又由于)(ωj G 是一个复变函数,可在复平面上用复数表示,分解为实部和虚部,即:)()()()()(w j e w A w jV w U jw G ϕ=+=)(cos )()(w w A w U ϕ= )(sin )()(w w A w V ϕ=)()()(22w V w U w A += )()()(w U w V arctg w =ϕ例:某闭环系统传递函数为237)(+=s s G ,当输入为)4532sin(71 +t 时,试求系统稳态输出。
控制系统的频率特性
第四章控制系统的频率特性本章要点本章主要介绍自动控制系统频域性能分析方法。
内容包括频率特性的基本概念,典型环节及控制系统Bode图的绘制,用频域法对控制系统性能的分析。
用时域分析法分析系统的性能比较直观,便于人们理解和接受。
但它必须直接或间接地求解控制系统的微分方程,这对高阶系统来说是相当复杂的。
特别是当需要分析某个参数改变对系统性能的影响时,需反复重新计算,而且还无法确切了解参数变化量对系统性能影响的程度。
而频率特性不但可以用图解的方法分析系统的各种性能,而且还能分析有关参数对系统性能的影响,工程上具有很大的实用意义。
第一节频率特性的基本概念一、频率特性的定义频率特性是控制系统的又一种数学模型,它是系统(或元件)对不同频率正弦输入信号的响应特性。
对线性系统,若输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但是输出信号的幅值和相位一般不同于输入量,如图4-1。
若设输入量为r(t)=A r sin(ωt+υr)其输出量为c(t)=A c sin(ωt+υc)若保持输入信号的幅值A r不变,改变输入信号的角频率ω,则输出信号的角频率也变化,并且输出信号的幅值和相位也随之变化。
横坐标表示角频率ω,单位为弧度/秒(rad/s),按lgω均匀分度,但对ω而言是不均匀的,纵坐标表示υ(ω),单位为度(o),均匀分度,如图4-4所示。
图4-3 Bode图坐标系2)对数相频特性υ(ω) υ(ω)为一条-90o 的水平直线。
如图4-5所示。
图4-5 积分环节的Bode图2)对数相频特性υ(ω) υ(ω)为一条90o 的水平直线。
图4-6 理想微分环节的Bode图点,然后用一条光滑曲线与渐近线连接起来,就得到精确曲线。
图4-7 惯性环节的Bode图图4-8 比例微分环节的Bo0de图nω图4-9 振荡环节的Bode图计算表明,在ω=ωn处,当0.4<ξ<0.7时,误差小于3dB,可以不对渐近线进行修正;但当ξ<0.4或ξ>0.7时,误差较大,必须对渐近线进行修正。
控制系统频率特性实验
控制系统频率特性实验控制系统频率特性实验是一种较为常见的控制工程实验,其主要目的是探究不同频率下控制系统的性能表现,同时应用所学知识进行系统频率特性分析和设计。
下面将分为实验目的、实验内容、实验步骤及实验结果几个方面进行详细介绍。
实验目的:1. 探究不同频率下控制系统性能表现2. 进行频率特性分析,并了解控制系统中的稳态误差与阻尼比之间的关系3. 进行频率特性设计,并掌握控制器在频率特性中的应用实验内容:1. 频率响应性能测试2. 获取系统的幅频和相频特性曲线3. 根据幅频曲线分析系统稳态误差,根据相频曲线分析系统阻尼比4. 根据工程实际需要,设计相应的控制器并给出稳态误差和阻尼比的实验结果实验步骤:1. 建立试验系统,包括控制对象和控制器2. 调整测试样本的初始参数,保证系统的稳态3. 绘制系统幅频特性曲线,观察幅频曲线的变化情况并进行分析7. 对实验结果进行统计分析实验结果:通过实验,我们得到了不同频率下控制系统的性能表现,以及系统的幅频和相频特性曲线。
在此基础上,我们可以进行系统频率特性分析,掌握控制器在频率特性中的应用。
通过对幅频曲线的分析,我们可以了解系统的稳态误差情况。
同时可发现,随着频率增大,系统稳态误差逐渐增大,这是由于系统的惯性效应在高频率下更为明显导致的。
在此基础上,我们可以通过设计相应的控制器来减小系统稳态误差。
通过对相频曲线的分析,我们可以了解系统的阻尼比情况。
随着频率增大,我们可以观察到系统阻尼比逐渐降低,这是由于系统越接近临界系统,其阻尼比越小,因此在系统设计中需要注意避免系统过度激励的情况。
总的来说,控制系统频率特性实验是一种重要的控制工程实验,通过实验,我们可以深入了解系统在不同频率下的性能表现,为实际工程中的控制系统设计提供有力的支持和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统常用的数学模型
微分方程
线性定常系统
传递函数
频率特性的特点
频率特性
时域 复数域
频域
(1)频率特性具有明确的物理意义,它可以用实验的方法来确 定,这对于难以列写微分方程式的元部件或系统来说,具有重 要的实际意义。 (2)由于频率响应法主要通过开环频率特性的图形对系统进行 分析,因而具有形象直观和计算量少的特点。 (3)频率响应法不仅适用于线性定常系统,而且还适用于传递 函数不是有理数的纯滞后系统和部分非线性系统的分析。
整理ppt
4
频率特性又称频率响应,它是系统(或元件)对不同 频率正弦输入信号的稳态响应特性。
2.0 1.5 1.0 0.5
0 -0.5 -1.0 -1.5 -2.0
0
0.5 1.0 1.5 2.0 2.5 3.0
线性系统
5 4
3 2
1 0
-1 -2 -3
-4 -5
0 0.5 1.0 1.5 2.0 2.5 3.0
设输入信号为正弦信号 U it=Asint
其拉普拉斯变换为
Ui
s
=
A s2+2
整理ppt
8
则系统输出信号的拉普拉斯变换为
U osG sU isT1 s1s2A ω ω 2 1 A ω 2 T T2s 111A ω 2T2 11 ω 2T2s2 ω ω 21 Tω ω 2T2s2 sω 2
T
作拉普拉斯反变换,得系统的输出信号为
)s j
G(
j)
X 2j
G(j)是一个复数,它可以表示为: G (j)G (j)ej()
G ( j) G ( j) e j ( ) G ( j) e j ( )
式中: () G (j)arc R Im te[[g G G ((jj )) ]]
整理ppt
13
将待定系数 A , A 代入式 ys(t)Aje tAejt 中,有:
uot1Aω 2TT2eT 1t
A 1ω2T2
siω ntcoscoωstsin
AT
1t
eT
A sin t-arcωtgT
12T2
1ω2T2
1ω2T2
T
1
整理ppt
9
系统输出信号的稳态分量为
u ot s s 1 A 2 T 2sit- n arT c A tA g sit n
式中:
待定系数
n
y(t)Ae jt Aejt A iepit i1
稳态输出 ys(t)Aje tAejt
整பைடு நூலகம்ppt
12
式中的待定系数 A , A 可按求留数的方法求得:
A G (s)
X
(sj )s (j
(sj )
)s j
G(
j)
X 2j
A G (s)
X
(sj )s (j
(sj )
y s ( t) 2 X jG (j) e j ( )e j t 2 X jG (j) e j ( )e j t X G( j ) ej(t()) ej(t()) 2j X G( j) sin( t ()) Y sint ()
式中:YXG(j) — 稳态输出的幅值,是的函数。 线性定常系统对正弦输入信号Xsint的稳态输出 Ysin(t+),仍是一个正弦信号。其特点是:
M(s) (sp1)(sp2) (spn)
j0
整理ppt
11
系统的输出为
M (s)
X
Y (s)(sp 1)s(p 2) (sp n)s22
(s p 1 )s( M p (2 s )) (s p n)(sjX )s(j )
稳定系统 Y(s)i n1s Aipi sAjsAj
A ,A和 A i(i1,2, n)
一般线性定常系统,设输入信号为正弦函数,即:
x(t)=Xsint 式中: X—输入信号的振幅;
X(s) G(s) Y(s)
—输入信号的角频率。
其拉氏变换为:
X(s)s2X 2(sj X ) s(j)
一般情况下,传递函数可以写成如下形式:
m
G(s)M N((ss))in0abijss((m n ij))
红色为输入x(t),蓝色为全响应y(t),黑色为稳态响应yss(t)
2
1.5
yss(t)
1
0.5
0
-0.5
-1
-1.5 y(t) x(t)
-2
0
1
2
3
4
5
6
整理ppt
7
6.1.1 引例
引例:如图所示的阻容滤波 RC电路,求其频率特性。
已知该系统的传递函数为
i (t) R ui(t)
C u0(t)
G(s)Uo(s) 1 1 Ui(s) RCs1 Ts1
注意:稳态输出量与输入量的频率相同,仅振幅和相位不同。
整理ppt
5
输x 入 (t)2 c : o 5 t s3( )0
红色为输入x(t),蓝色为全响应y(t),黑色为稳态响应yss(t)
6
yss(t)
4
2
0
x(t)
-2
-4
-6
y(t)
-80
1
2
3
4
5
6
整理ppt
6
输x 入 (t) 2 c: o 2t s 0 3 ()0
A 1
12T2
ar cTtg
12T2
T
1
RC电路的传递函数: G(s)Uo(s) 1 1 Ui(s) RCs1 Ts1
将s=jω代入G(s),可得
G (j) 1 1 ej( ar T c ) tA g()ej( ) jT 1 1 2 T 2
整理ppt
10
6.1.2 频率特性的定义
《控制工程基础》
第6章 控制系统的频率特性
整理ppt
1
本章主要内容: (1)研究控制系统的频率特性及其表示方法, 即研究控制系统的频率响应。 (2)频率特性的极坐标图(Nyquist图)。 (3)频率特性的对数坐标图(Bode图)。
整理ppt
2
6.1 频率特性的基本概念
时域瞬态响应法是分析控制系统的直接方法。 时域瞬态响应法的优点:直观。 时域瞬态响应法的缺点:分析高阶系统非常繁琐。 频率响应是时间响应的特例,是控制系统对正弦输入信号 的稳态响应。频率特性是系统对不同频率正弦输入信号的响应特 性。应用频率特性研究控制系统的经典方法称为频域分析法。 频率特性分析法(频域法) 是利用系统的频率特性来分析 系统性能的方法,研究的问题仍然是系统的稳定性、快速性和准 确性等,是工程上广泛采用的控制系统分析和综合的方法。频率 特性分析法是一种图解的分析方法。不必直接求解系统输出的时 域表达式,可以间接地运用系统的开环频率特性去分析闭环系统 的响应性能,不需要求解系统的闭环特征根。系统的频域指标和 时域指标之间存在着对应关系。频率特性分析中大量使用简洁的 曲线、图表及经验公式,使得控整理制pp系t 统的分析十分方便和直观。3