5应用二元一次方程组——里程碑上的数
5.5应用二元一次方程组--里程碑上的数(教案)
-对于难点三,通过反复练习和讲解,让学生熟悉解方程组的各种技巧。
-对于难点四,通过实际案例的讲解和练习,让学生学会如何将数学解应用于实际问题,并理解其含义。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《应用二元一次方程组--里程碑上的数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过计算两地距离或时间的情况?”比如,计算从家到学校的时间或距离。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索里程碑问题的奥秘。
3.成果展示:每个小组将向全班展示他们讨论成果和实验操作的结果。(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二元一次方程组在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
\[
\begin{cases}
\frac{y}{15} + \frac{y}{10} = 4 \\
\end{cases}
\]
学生在解决这个方程时可能会遇到分数的运算困难,以及如何将总时间与速度的关系正确表达为方程的问题。
在教学过程中,针对这些难点,教师应有意识地通过以下方法帮助学生突破:
-对于难点一,通过实际情境的引入,引导学生观察、分析和抽象问题。
3.培养学生的合作交流能力:在案例分析及练习过程中,鼓励学生进行小组讨论、合作探究,培养学生的团队协作能力和交流表达能力。
5.5 应用二元一次方程组——里程碑上的数(课件)北师大版数学八年级上册
知1-练
解题秘方:设出数位上的数字,利用数位上的数
字表示出数,根据题目中的等量关系
列出方程组.
解决数字问题一定要明确多位数 的书写形式,灵活设未知数.正确用代 数式表示多位数是解题的关键 .
感悟新知
知1-练
解:设原百位数字为x,原三位数去掉百位数字后的两位
数为y,由题意,得ቊ190xy=+yx-=31,00x+y-45,解得ቊxy==349,. 则4×100+39=439. 答:原三位数为439.
解得ቊxy==115200,.
答: 平路和坡路分别有 150 km 和 120 km.
知3-练
3-1.从 A 地 到 B 地,先下坡然后走平路,某人骑自行车 以 12 km/h的速度下坡,然后以9 km/h 的速 度通 过 平路,到 达 B 地共用 55min. 回来时以 8 km/h的 速 度通 过平路,以 4km/h 的速度上坡,回到A 地 共 用 1.5 h,从 A地到 B 地有多少千米?
感悟新知
特别提醒 年龄问题解题口诀:
岁差不会变,同时相加减. 岁数若改变,倍数也改变.
知2-讲
感悟新知
知2-练
例2 父亲给儿子出了一道题,要儿子猜出答案:有一对母
女,5 年前母亲的年龄是女儿年龄的15 倍,15 年后,
母亲的年龄比女儿年龄的2 倍还多6 岁. 那么现在这对
母女的年龄分别是多少?
感悟新知
知3-练
解:设从 A 地到 B 地坡路为 x km,平路为 y km, 根据题意,得18yx2++x49=y=156.550,,解得xy==63., 所以 x+y=9,答:从 A 地到 B 地有 9 km.
课堂小结
应用二元一次方程组 ——里程碑上的数
5.5 应用二元一次方程组 ——里程碑上的数 北师大版八年级数学上册教案
应用二元一次方程组 ——里程碑上的数教学目标1.用二元一次方程组解决“里程碑上的数”这一有趣场景中的数字问题和行程问题。
2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型。
3.归纳出用二元一次方程组解决实际问题的一般步骤。
教学过程教学反思一、学习目标:1.用二元一次方程组解决“里程碑上的数”这一有趣场景中的数字问题和行程问题。
2.进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型。
3.归纳出用二元一次方程组解决实际问题的一般步骤。
二、自学指导:1.自觉思考:(1)小明的爸爸骑着摩托车,载着小明在公路上匀速行驶。
小明在12∶00时看到的里程碑上的数是一个两位数,它的两个数字之和是7;在13∶00时看到的里程碑上的数十位与个位数字与12∶00时看到的正好颠倒了;在14∶00时小明看见里程碑上的数比12∶00时看到的两位数中间多个0.试确定小明12∶00时看到里程碑上的数。
完成下面问题。
①设小明在12∶00时看到的数十位数字是x,个位数字是y,根据题意,你能将12∶00、13∶00、14∶00时小明看见里程碑上的数表示出来吗?②本题的等量关系有哪些?(2)两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。
已知前一个四位数比后一个四位数大2718,求这两个两位数。
①假设较大的两位数为x,较小的两位数为y,在较大的数的右边接着写较小的数,所写的数可表示为;在较大的数左边写上较小的数,所写的数可表示为。
②你能列出怎样的方程组?(3)列二元一次方程组解决实际问题的一般步骤是怎样的?2.小组交流,讨论。
3.教师点评。
三、当堂训练:1.课后习题2.北京和上海能制造同型号电子计算机,除本地使用外,北京支援外地10台,上海可支援外地4台,现在决定给重庆8台,武汉6台,每台运费如表所示。
里程碑上的数
相等关系:1. 12:00看到旳数,两个数字之和是7 2. 旅程差相等
时刻
百位数字 十位数字 个位数字 体现式
12:00
x
13:00
y
14:00
x
0
y
10 x + y
x
10 y + x
y
100 x + y
时刻 百位数字 十位数字 个位数字 体现式
清题中旳未知量,已知量以及等量关系,条理 情景再现 清楚.
2.借助方程组处理实际问题.
填一填:
李刚骑摩托车在公路上高速行驶,上 午7:00时看到里程碑上旳数是一种两位数, 它旳数字之和是9;8:00时看里程碑上旳 两位数与7:00时看到旳个位数和十位数颠 倒了;9:00时看到里程碑上旳数是7:00时 看到旳数旳8倍,李刚在7:00时看到旳数 字是
13:00-14:00: (100 x + y )-( 10 y + x )
旅程差相等:
(10 y + x )-(10 x + y )= (100 x + y )-( 10 y + x )
相等关系:1.12:00看到旳数,两个数字之和是7:
x + y =7 2.旅程差:
12:00-13:00: (10 y + x )-(10 x + y )
2 0
填一填:
李刚骑摩托车在公路上高速行驶,上午7:00时 看到里程碑上旳数是一种两位数,它旳数字之和是9; 8:00时看里程碑上旳两位数与7:00时看到旳个位数 和十位数颠倒了;9:00时看到里程碑上旳数是7:00 时看到旳数旳8倍,李刚在7:00时看到旳数字
是 18
分析:设李刚在7:00看到旳数十位数字是x,个位数 字是y,那么
北师大版数学八年级上册5《应用二元一次方程组——里程碑上的数》说课稿1
北师大版数学八年级上册5《应用二元一次方程组——里程碑上的数》说课稿1一. 教材分析北师大版数学八年级上册5《应用二元一次方程组——里程碑上的数》这一节内容,是在学生已经掌握了二元一次方程组的基础知识上进行进一步的拓展和应用。
通过这一节内容的学习,学生将能够更好地理解和掌握二元一次方程组的应用,提高解决实际问题的能力。
本节课的主要内容是通过实际问题引入二元一次方程组,并通过解方程组的方法求解实际问题。
这些问题涉及到年龄问题、距离问题等,都是与生活实际密切相关的问题。
通过解决这些问题,学生不仅能够巩固和提高二元一次方程组的知识,还能够提高解决实际问题的能力。
二. 学情分析在教学之前,我对学生的学情进行了分析。
根据我的了解,大部分学生对二元一次方程组的基础知识已经有了较好的掌握,能够熟练地列出和求解二元一次方程组。
但是,学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,这就需要我们在教学中进行引导和培养。
同时,学生在解决实际问题时,往往对问题的理解不够深入,解题思路不够清晰。
因此,在教学过程中,我们需要引导学生深入理解问题,明确解题思路,提高解题效率。
三. 说教学目标根据教材内容和学情分析,我制定了以下教学目标:1.知识与技能:使学生能够理解和掌握二元一次方程组的应用,能够通过解方程组的方法求解实际问题。
2.过程与方法:通过解决实际问题,培养学生的数学思维能力和解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极的学习态度和良好的学习习惯。
四. 说教学重难点根据教材内容和学情分析,我确定了以下教学重难点:1.重点:理解和掌握二元一次方程组的应用。
2.难点:如何将实际问题转化为数学问题,以及如何通过解方程组的方法求解实际问题。
五. 说教学方法与手段为了实现教学目标,我采用了以下教学方法与手段:1.情境教学法:通过实际问题引入二元一次方程组,激发学生的学习兴趣和解决问题的欲望。
5.5 应用二元一次方程组——里程碑上的数
速度分别保持和去上学时一致,那么他从学校到家需要的时间是
( D) A.14分钟
B.17分钟
C.18分钟
D.20分钟
11.有两个两位数的和为88,把较小的两位数写在较大的两位数的 右边,得到一个四位数,把较小的两位数写在较大的两位数的左边, 得到另一个四位数,这两个四位数的差为3 564,则较小的两位数为 __2_6___.
7.(4 分)小颖家离学校 1 200 m,其中有一段为上坡路,另一段为下
坡路.她去学校共用了 16 分钟.假设小颖上坡路的平均速度是 3 km/h,
下坡路的平均速度是 5 km/h.若设小颖上坡用了 x 分钟,下坡用了 y 分钟,
根据题意可列方程组为( B )
3x+5y=1 200 A.x+y=16
B.xy
C.100x+10y
D.100x+y
3.(4 分)一个两位数的十位数字与个位数字的和是 8,把这个两位数
加上 18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位
数字为 x,十位数字为 y,所列方程组正确的是( B )
x+y=8 A.xy+18=yx
x+y=8 C.10x+y+18=yx
3x+5y=1.2 C.x+y=16
B.630x+650y=1.2 x+y=16
D.630x+650y=1 200 x+y=16
8.(8 分)学校组织学生乘汽车去自然保护区野营,先以 60 km/h 的速
度走平路,后又以 30 km/h 的速度爬坡,共用了 6.5 h;回校时汽车以 40
km/h 的速度下坡,又以 50 km/h 的速度走平路,共用了 6 h,问平路和坡
6 余 2,则这个两位数是___5_6___.
6.(8 分)有一个三位数,现将左边的数字移到最右边,则比原数小 45,又 已知百位数字的 9 倍比十位和个位组成的两位数小 3,试求原来的三位数.
5应用二元一次方程组——里程碑上的数[精选文档]
x 9
解得
y
4
答:这个两位数是94
【例1】小明爸爸驾着车带着小明在公路上匀速行驶,下 图是小明每隔1 h看到的里程情况.你能确定小明在 12:00时看到的里程碑上的数吗?
是一个两位 数,它的两个 数字之和为7
十位与个位数
字与12:00时
所看到的正好 互换了.
比12:00时看
到的两位数 中间多了个0.
【跟踪训练】
1.小亮和小明做加法游戏,小明在第一个加数的后面多写一
个0, 所得和是242; 小亮在另一个加数的后面多写一个0,
所得和是341;求原来的两个加数分别是多少?
【解析】设第一个加数为x,第二个加数为y. 根据题意得:
10x y 242 x 10y 341
x 21 y 32
2.A、B两地相距36 km,甲从A地步行到B地,乙从B地步行 到A地,两人同时相向出发,4 h后两人相遇,6 h后,甲 剩余的路程是乙剩余路程的2倍,求二人的速度?
A.1.2 km,3.6 km; C.1.6 km,3.2 km.
B.1.8 km,3 km; D.3.2 km,1.6 km.
【解析】选A.设上坡用x时,下坡用y时,据题意得: 6x+12y=4.8, x+y=0.5.
解之得
x=0.2, y=0.3.
0.2 6 1.2,0.312 3.6
2.(巴中·中考)巴广高速公路在5月10日正式通车,从巴 中到广元全长约为126 km.一辆小汽车、一辆货车同时从巴 中、广元两地相向开出,经过45 min相遇,相遇时小汽车比 货车多行6 km,设小汽车和货车的速度分别为x km/h , y km/h,则下列方程组正确的是( )
阳市仙海湖某船家有3艘大船与6艘小船,一次可以载乘客的
【学情分析】5.5应用二元一次方程组-里程碑上的数
【学生的知识技能基础】
七年级时,学生已经学习了一元一次方程及其应用。
本章中,学生又学习了二元一次方程、二元一次方程组、列二元一次方程组解应用题等,能熟练地解二元一次方程组,已初步具备了用方程组刻画实际问题的经验和基础,能正确地分析和理解题意,寻求题中的各种数量关系,具备了继续学习本节内容的知识和能力。
【学生的活动经验基础】
在相关知识的学习过程中,学生已经经历了一些编题活动,同时也具备了一些生活经验,知道列方程解应用题的一些规律、特点和方法,具备了一些解决实际问题的经验和能力。
在以前的数学学习中,学生已经经历很多合作学习的过程,具备了一定的合作学习经验,具备了一定的合作与交流的能力。
5.5 应用二元一次方程组——里程碑上的数.课件+2024—2025学年北师大版数学八年级上册
较小的两位数,得到一个四位数;在较大的两位数的左边写
上较小的两位数,也得到一个四位数.若这两个四位数的和
是5050,设较大的两位数为x,较小的两位数为y,根据题意列
方程组为
− = 10,
(100 + ) + (100 + ) = 5050
.
课
堂
小
结
与
检
测
2.一个两位数,它个位上的数字与十位上的数字的和是10,把
;
图5-5-1
探
究
与
应
用
(3)14:00时小明看到的数可表示为 100x+y ,13:00~14:00间
摩托车行驶的路程是
(100x+y)-(10y+x)
;
(4)12:00~13:00与13:00~14:00两段时间内摩托车的行驶路程
有什么关系?你能列出
相应的方程吗?
图5-5-1
探
究
与
应
用
解:12:00~13:00与13:00~14:00两段时间内摩托车的行驶路程相
探
究
与
应
用
学 方法
列二元一次方程组解数字问题
一般采用间接设未知数法,通常设组成这个多位数的各个数
位上的数字为未知数.如若一个两位数,个Байду номын сангаас数字为a,十位数
字为b,则这个两位数表示为10b+a.
探
究
与
应
用
例2 (教材典题)两个两位数的和是68,在较大的两位数的右
边接着写较小的两位数,得到一个四位数;在较大的两位数
这个两位数的十位上的数字与个位上的数字对调,所得的数
5.5应用二元一次方程组里程碑上的数 课件北师大版数学八年级上册
思考
你能归纳列方程组解决实际问题的一般步骤吗?
1. 审题,找 等量关系
2. 设未知数
3. 列方程组
4. 解方程组
5. 检验
任务三:波浪公路之旅
一段波浪公路开始离结束 2.7千米,其中有几段为上坡路,剩下为下坡 路,开完全程共用 5分钟. 已知汽车上坡时的平均速度是 30 千米/时, 下坡时的平均速度是 60千米/时.问这段波浪公路上、下坡各多少千米?
解方程 组
检验
随堂练习
1. 李刚骑摩托车在公路上匀速行驶,早晨 7:00 时看到里程碑上的数是 一个两位数,它的数字之和为 9;8:00 时看到里程碑上的两位数与 7:00 时看到的个位数字和十位数字互换了;9:00 时看到里程碑上的数是 7:00 时看到的数的 8 倍,李刚在 7:00 时看到的数字为多少?
x
y
新三位数
y
x
表达式 100x + y 10y + x
解:设原三位数百位数字为 x,后两位数字为 y. 得方程组:9x = y - 3 100x + y - 45 = 10y + x
9x = y - 3 化简得,
11x - y= 45
解得: x = 4 y = 39
答:原三位数为 439.
3. 汽车在上坡时速度为 28 km/h,下坡时速度 42 km/h,从甲地到乙
解:设乙队每分钟作业长度为 x m,甲每分钟作业长度为 y m.
据题意得: y=x+50
6x 4( x
50)
,
化简得,
y=x+50 x 100
,
解得:
x=100
y
150
,
因此乙队每分钟作业长度为 100 m,甲每分钟作业长度为150 m.
八年级数学上册《第五章5 应用二元一次方程组——里程碑上的数》讲解与例题
借物喻人蚂蚁作文八篇导读:可敬的蚂蚁我喜欢蚂蚁,不仅喜欢它们的勤劳.团结的性格;最令我敬佩的,是它们在有挣扎求全的精神。
记的有一天,我发先两三只蚂蚁在出房的墙壁上匆匆爬行着。
我一时高兴起,用双手截水,泼在墙上,水流向它们,它们受了惊,四处逃跑。
我在用水泼去,它们被水冲的更远了,还被豆大的水粘着。
这几只可怜的蚂蚁拼命爬了好久才爬出包围着它们的水。
我又泼一些水上去,我想这回它们爬不出来了吧?这几只蚂蚁拼命爬了好久,还是寸步难移。
过了一会儿它们大概是精疲力尽了,就停下来歇息一会儿,又重新挣扎着爬起来。
如此连续几次终余到了没水的地方。
我看着这些脱险的小蚂蚁,看到它们那种不畏困难的精神,我不由想到那些在小挫折面前就底头,甘心失败的人,只觉那些蚂蚁比人还坚强许多。
团结的蚂蚁星期天下午,我在家里无所事事。
我来到院子里,忽然,我的眼睛一亮,地上有一群蚂蚁。
于是,我蹲在地下,好好观察了这群蚂蚁。
只见蚂蚁排着整齐的队伍向前走去,原来它们在运我掉在地上的面包屑。
我拿起一杯水,“哗”的一声把水倒在了几只蚂蚁的身上,沾水的那几只蚂蚁艰难地向前移动,可是没走几步就倒在地上。
正在这时候,几只蚂蚁站在一片树叶上,划着“桨”慢慢地向那两只蚂蚁靠近。
终于,它们把那两只蚂蚁救上了“船”,它们又划着“桨”,慢慢地靠近岸边。
我以为它们要休息好一阵子才能走,可是没想到它们只休息了一二分钟,就继续朝前走去。
我想在做一个实验来证明蚂蚁团结力量大。
我左思右想,终于想出了一个好主意。
我找了一个小石子,拿在手里,悄悄地跟着蚂蚁走,来到蚂蚁的洞口,那是一个米粒大小的洞口。
我把小石子堵在洞口上。
想看看蚂蚁会怎么做?蚂蚁们都把面包屑放在地上,围住小石子,慢慢地把石子抬起来,我仿佛听见蚂蚁在说:“一二,一二,加油呀!”不大一会儿就把石子抬过去了。
它们又把食物背在背上,排着队有秩序的进了洞。
我想:我们人类,为什么连一只小小的蚂蚁都不如呢?如果我们的同学之间,也能像蚂蚁一样团结友爱,遇到困难共同想办法克服,那么,我们的生活会更快乐!勇敢的蚂蚁在动物界里,蚂蚁虽然很小,可是它却可以打败比它们强大几十倍甚至上百倍的动物,这是为什么呢?以前连我自己都不相信,自从我亲身经历过的这件事,让我知道了蚂蚁的厉害。
5.5应用二元一次方程组-里程碑上的数(教案)2021-2022学年北师大版数学八年级上册
4.通过解决实际问题,培养学生运用数学知识解决生活中问题的能力。
本节课主要围绕以下例题进行教学:
(1)小明从A地出发,以每小时5公里的速度骑车去B地,1小时后,小华从A地出发,以每小时6公里的速度骑车追赶小明。问小华出发多少小时后能追上小明?
(2)A、B两地相距100公里,一辆汽车从A地出发,以每小时40公里的速度向B地行驶,同时,一辆摩托车从B地出发,以每小时30公里的速度向A地行驶。问它们多久后相遇?
-举例:在里程碑问题中,学生需要理解速度、时间、距离之间的关系,并能列出相应的方程组。如小明和小华的问题中,设小华追上小明所需时间为t小时,则小明行驶的距离为5(t+1)公里,小华行驶的距离为6t公里,两者相等,即5(t+1)=6t。
2.教学难点
-难点1:理解实际问题中的数量关系,并将其转化为数学模型。学生可能难以从描述中抽象出数学关系,需要通过图示、表格等辅助手段帮助学生理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二元一次方程组的基本概念。二元一次方程组是由两个含有两个未知数的一次方程组成的,它可以用来解决含有两个未知数的线性问题。它在解决实际问题,如相遇问题、购物问题等方面有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用二元一次方程组解决相遇问题,以及它如何帮助我们找到相遇的时间和地点。
5.培养学生合作交流能力,通过小组讨论、问题探究等形式,促进生生互动,共同提高解决实际问题的能力。
三、教学难点与重点
1.教学重点
-理解并掌握二元一次方程组的应用,能够从实际问题中抽象出二元一次方程组。
-学会使用消元法解二元一次方程组,并应用于解决实际问题。
应用二元一次方程组——里程碑上的数课件
——里程碑上的数
知识回顾
储蓄问题
程二
组元
的一
应次
用方
增长率
问题
增(减)量
× 100%
基数
增长(降低)的数量=基数×(1±增
长(降低)率)
增长(降低)率:
利润
× 100%
进价
总利润=总销售额﹣总成本=(售价﹣
进价)×销量
利润率:
销售问题
学习目标
1.能分析复杂问题中的数量关系,建立方程组解决
设他始终保持平路每分钟走 60 m,下坡路每分钟走 80 m,
上坡路每分钟走 40 m,则他从家里到学校需 10 min,从
学校到家里需 15 min.小华家离学校多远?
等量关系:
路程=平均速度×时间
走平路的时间+走下坡路的时间=10 min;
走上坡路的时间+走平路的时间= 15 min.
直接设元法:
的数字为 a,十位上的数字为 b,个位上的数
字为 c,则这个三位数为 100a+10b+c.
2.利用方程组解决数字问题时,一般不直接设
这个数,而是设这个数的数位上的数字,再根
万元.
3.有一个三位数,若将最左边的数字移到最右边,则比
原数小 45,又知原百位数字的 9 倍比由原十位数字和
个位数字组成的两位数(原个位数字仍作为个位数字)小
3,求原三位数.
等量关系:
将最左边的数字移到最右边后得到的数=原数- 45.
9 ×原百位数字=由原十位数字和个位数字组成的两
位数-3.
解:设原百位数字为 x,由原十位数字和个位数字组成
= 45,
5.5 应用二元一次方程组——里程碑上的数
探究新知
5.5 应用二元一次方程组——里程碑上的数
素养考点 1 列二元一次方程组解答数字问题
例 两个两位数的和为68,在较大的两位数的右边接着写较小的 两位数,得到一个四位数; 在较大的两位数的左边写上较小的 两位数,也得到一个四位数.已知前一个四位数比后一个四位数 大2178, 求这两个两位数.
2. 进一步经历和体验列方程组解决实际问题 的过程.
1. 利用二元一次方程解决数字问题和行程问题.
探究新知
5.5 应用二元一次方程组——里程碑上的数
知识点 1 列二元一次方程组解答数字问题
小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是 小明每隔1小时看到的里程情况.你能确定小明在12:00时看到 的里程碑上的数吗?
数比原两位数大9,求原来的两位数.
分析: 用二元一次方程组解决问题的关键是找到两个合 适的等量关系.由于十位数字和个位数字都是未知的, 所以不能直接设所求的两位数.本题中两个等量关系为: 十位数字+个位数字=11,(十位数字×10+个位数字)+ 9=个位数字×10+十位数字.根据这两个等量关系可列 出方程组.
探究新知
5.5 应用二元一次方程组——里程碑上的数
是一个两位数, 它的两个数字
之和为7.
十位与个位数字 与12:00时所看到 的正好互换了.
比12:00时看 到的两位数中 间多了个0.
解:如果设小明在12:00时看到的数的十位数字是x,个位数字是y, 那么根据以上分析,得方程组:
x+y=7 (100x+y)-(10y+x)=(10y+x)-(10x+y) 答:小解明这在个1方2:程00组时,看得到的 xy里程16,碑上的数是16.