数字逻辑实验:组合逻辑电路的设计
数字逻辑实验报告实验
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。
3. 熟悉常用数字逻辑门电路的功能和应用。
4. 提高数字电路实验技能,培养动手能力和团队协作精神。
二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。
数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。
1. 与门:当所有输入端都为高电平时,输出端才为高电平。
2. 或门:当至少有一个输入端为高电平时,输出端为高电平。
3. 非门:将输入端的高电平变为低电平,低电平变为高电平。
4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。
三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。
(2)识别与测试与门、或门、非门、异或门。
(3)观察并记录实验现象,分析实验结果。
2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。
(2)根据真值表列出输入输出关系,画出逻辑电路图。
(3)利用逻辑门电路搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。
(2)根据电路功能,列出状态表和状态方程。
(3)利用触发器搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。
(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。
(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。
2. 实验二:(1)根据实验要求,设计组合逻辑电路。
(2)列出真值表,画出逻辑电路图。
(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。
数字逻辑实验报告:组合逻辑电路设计与实现
安徽师范大学
学院实验报告
专业名称 软件工程
实 验 室
实验课程 数字逻辑
实验名称组合逻辑电路设计与实现
(11)打开实验箱电源开关,合上开关K 、K 、K ,开始调节开关K 、K 、K 、K ,记录数据;
(12)关闭开关K 、K 、K 、K 、K 、K 、K ,关闭电源开关,拆除导线,拔下三个芯片;
实验原始数据记录和处理:
D
C
B
A
Y
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
0
0
(9)将74LS00的第11号孔与74LS00的第10孔相连,将74LS00的第8号孔与实验箱右上角的1号孔相连;
(10)将74LS138的第1号孔与K 相连,74LS138的第2号孔与K 相连,74LS138的第3号孔与K 相连,再将74LS138的第4号孔与K 相连,74LS138的第5号孔与K 相连,74LS138的第6号孔与K 相连;
D
C
B
A
Y
0
0
0
0
0
0
0
0
1
1
0
0
1
0
组合逻辑电路分析与设计实验报告
组合逻辑电路分析与设计实验报告一、实验目的:1. 掌握逻辑设计基本方法2. 能够自己设计简单逻辑电路,并能用VHDL描述3. 理解输出波形和逻辑电路功能之间的关系二、实验设备与器材:1. 实验箱一套(含数字信号发生器、逻辑分析仪等测量设备)2. 电缆若干三、实验原理:组合逻辑电路是指由与或非门等基本逻辑门或它们的数字组合所构成的电路。
对于组合逻辑电路而言,不需要任何时钟信号控制,它的输出不仅能直接受到输入信号的影响,同时还与其输入信号的时序有关,输入信号的任何改变都可能导致输出信号的变化,因此组合逻辑电路的输出总是与它的输入存在着一个确定的逻辑关系。
本实验通过学习与实践,让学生从具体的组合逻辑电路出发,逐步掌握数字逻辑电路设计技术,了解逻辑电路的设计过程,掌握用组合逻辑门件构成数字系统的方法,提高学生设计和分析组合逻辑电路的能力。
四、实验内容及步骤:本实验的基本内容是设计一个可以进行任意二进制数求和的组合逻辑电路,并用VHDL 语言描述该电路。
其主要步骤如下:1. 设计电路的逻辑功能,确定电路所需基本逻辑门电路元件的类型和数量。
2. 画出电路的逻辑图并进行逻辑延迟估算。
3. 利用VHDL语言描述电路功能,并利用仿真软件验证电路设计是否正确。
4. 利用实验箱中的数字信号发生器和逻辑分析仪验证电路设计是否正确。
五、实验结果与分析:我们首先设计了一个可以进行单位位的二进制数求和的电路,即输入两个1位二进制数和一个进位信号,输出一个1位二进制数和一个进位信号。
注意到,当输入的两个二进制数为同等真值时,输出的结果即为原始输入中的异或结果。
当输入的两个二进制数不同时,输出需要加上当前进行计算的进位,同时更新输出进位信号的取值。
我们继续将此电路扩展到多位数的情况。
假设输入两个n位的二进制数a和b,我们需要得到一个(n+1)位的二进制数c,使得c=a+b。
我们需要迭代地对每一位进行计算,并在计算每一位时将其前一位的进位值也列入计算中。
数字电子技术实验-组合逻辑电路设计
学生在使用实验箱时,应注意遵守实验室规定,正确连接电源和信号线, 避免短路和过载等事故发生。
实验工具介绍
实验工具类型
数字电子技术实验中常用的实验工具包括万用表、示波器、信号 发生器和逻辑分析仪等。
实验工具功能
这些工具用于测量电路的各种参数,如电压、电流、波形等,以及 验证电路的功能和性能。
01
02
03
逻辑门
最基本的逻辑元件,如与 门、或门、非门等,用于 实现基本的逻辑运算。
触发器
用于存储一位二进制信息, 具有置位、复位和保持功 能。
寄存器
由多个触发器组成,用于 存储多位二进制信息。
组合逻辑电路的设计方法
列出真值表
根据逻辑功能,列出输入和输 出信号的所有可能取值情况。
写出表达式
根据真值表,列出输出信号的 逻辑表达式。
05 实验结果与分析
实验结果展示
实验结果一
根据给定的逻辑函数表达式,成 功设计了对应的组合逻辑电路, 实现了预期的逻辑功能。
实验结果二
通过仿真软件对所设计的组合逻 辑电路进行了仿真测试,验证了 电路的正确性和稳定性。
实验结果三
在实际硬件平台上搭建了所设计 的组合逻辑电路,经过测试,实 现了预期的逻辑功能,验证了电 路的可实现性。
路图。
确保电路图清晰易懂,标注必要 的说明和标注。
检查电路图的正确性,确保输入 与输出之间的逻辑关系正确无误。
连接电路并测试
根据逻辑电路图,正确连接各 逻辑门和输入输出端口。
检查连接无误后,进行功能测 试,验证电路是否满足设计要 求。
如果测试结果不符合预期,检 查电路连接和设计,并进行必 要的调整和修正。
数字电子技术实验-组合逻辑电路 设计
逻辑电路实验实验报告
一、实验名称逻辑电路实验二、实验目的1. 掌握基本的数字逻辑电路设计方法。
2. 理解并掌握常用的逻辑门及其组合电路。
3. 提高实验操作技能和观察能力。
4. 培养团队协作精神。
三、实验原理数字逻辑电路是构成数字系统的基本单元,主要由逻辑门、触发器等基本元件组成。
逻辑门是数字电路的基本单元,它按照一定的逻辑规则实现基本的逻辑运算。
本实验主要涉及以下逻辑门及其组合电路:1. 与门(AND):当所有输入信号都为高电平时,输出信号才为高电平。
2. 或门(OR):当至少一个输入信号为高电平时,输出信号才为高电平。
3. 非门(NOT):将输入信号取反。
4. 异或门(XOR):当输入信号不同时,输出信号为高电平。
四、实验器材1. 逻辑门实验板2. 逻辑笔3. 万用表4. 逻辑分析仪5. 示波器6. 计时器五、实验内容1. 与门、或门、非门、异或门的逻辑功能测试2. 组合逻辑电路设计3. 电路仿真与验证六、实验步骤1. 与门、或门、非门、异或门的逻辑功能测试(1)按照实验指导书,连接与门、或门、非门、异或门实验板。
(2)使用逻辑笔和万用表,测试各个逻辑门的输入、输出信号。
(3)记录测试结果,与理论值进行对比,分析实验误差。
2. 组合逻辑电路设计(1)根据设计要求,选择合适的逻辑门,绘制电路图。
(2)使用实验板,搭建组合逻辑电路。
(3)测试电路功能,验证设计是否正确。
3. 电路仿真与验证(1)使用逻辑分析仪或示波器,观察电路的输入、输出信号波形。
(2)分析波形,验证电路功能是否符合预期。
七、实验结果与分析1. 与门、或门、非门、异或门的逻辑功能测试实验结果如下:与门:当所有输入信号都为高电平时,输出信号才为高电平。
或门:当至少一个输入信号为高电平时,输出信号才为高电平。
非门:将输入信号取反。
异或门:当输入信号不同时,输出信号为高电平。
2. 组合逻辑电路设计(1)设计一个4位二进制加法器,包括两个输入端(A、B)和两个输出端(S、C)。
数字逻辑电路实验报告
数字逻辑电路实验报告指导老师:班级:学号:姓名:时间:第一次试验一、实验名称:组合逻辑电路设计1二、试验目的:掌握组合逻辑电路的功能测试。
1、验证半加器和全加器的逻辑功能。
2、、学会二进制数的运算规律。
3、试验所用的器件和组件:三、74LS00 3片,型号二输入四“与非”门组件74LS20 1片,型号四输入二“与非”门组件74LS86 1片,型号二输入四“异或”门组件实验设计方案及逻辑图:四、/全减法器,如图所示:1、设计一位全加时做减法运时做加法运算,当M=1M决定的,当M=0 电路做加法还是做减法是由SCin分别为加数、被加数和低位来的进位,、B和算。
当作为全加法器时输入信号A分别为被减数,减数Cin、B和为和数,Co为向上的进位;当作为全减法时输入信号A 为向上位的借位。
S为差,Co和低位来的借位,1)输入/(输出观察表如下:(2)求逻辑函数的最简表达式函数S的卡诺图如下:函数Co的卡诺如下:化简后函数S的最简表达式为:Co的最简表达式为:2(3)逻辑电路图如下所示:、舍入与检测电路的设计:2F1码,用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421为奇偶检测输出信号。
当电路检测到输入的代码大于或F2为“四舍五入”输出信号,的个数为奇数时,电路。
当输入代码中含1F1=1;等于5是,电路的输出其他情况F1=0 F2=0。
该电路的框图如图所示:的输出F2=1,其他情况输出观察表如下:(输入/0 1 0 0 1 01 0 1 0 0 11 1 1 0 0 01 0 1 1 1 11 0 0 1 0 11 0 1 0 0 11 0 0 1 1 01 1 1 0 1 11 0 1 1 0 011111求逻辑函数的最简表达式(2)的卡诺如下:函数F1 F2函数的卡诺图如下:的最简表达式为:化简后函数F2 的最简表达式为:F1)逻辑电路图如下所示;(3课后思考题五、化简包含无关条件的逻辑函数时应注意什么?1、答:当采用最小项之和表达式描述一个包含无关条件的逻辑问题时,函数表达式中,并不影响函数的实际逻辑功能。
数电实验二 组合逻辑电路
实验二 组合逻辑电路一、实验目的1、熟悉组合逻辑电路的一些特点及一般分析、设计方法。
2、熟悉中规模集成电路典型的基本逻辑功能和简单应用设计。
二、实验器材1、直流稳压电源、数字逻辑电路实验箱、万用表、示波器2、74LS00、74LS04、74LS10、74LS20、74LS51、74LS86、74LS138、74LS148、74LS151、 74LS153三、实验内容和步骤 1、组合逻辑电路分析(1)图2-1是用SSI 实现的组合逻辑电路。
74LS51芯片是“与或非”门(CD AB Y +=), 74LS86芯片是“异或”门(B A Y ⊕=)。
建立实验电路,三个输入变量分别用三个 逻辑开关加载数值,两个输出变量的状态分别用两只LED 观察。
观察并记录输出变 量相应的状态变化。
整理结果形成真值表并进行分析,写出输出函数的逻辑表达式, 描述该逻辑电路所实现的逻辑功能。
(2)图2-2和2-3是用MSI 实现的组合逻辑电路。
图2-2中的74LS138芯片是“3-8译码 器”,74LS20芯片是“与非”门(ABCD Y =)图2-3中的74LS153芯片是四选一 数据选择器。
建立实验电路,对两个逻辑电路进行分析,列出真值表,写出函数的逻 辑表达式,描述逻辑电路所实现的功能。
图2-1:SSI 组合逻辑电路图2-2 :MSI 组合逻辑电路(74LS138)2、组合逻辑电路设计(1)SSI 逻辑门电路设计——裁判表决电路举重比赛有三名裁判:一个主裁判A 、两个副裁判B 和C 。
在杠铃是否完全举起裁 决中,最终结果取决于至少两名裁判的裁决,其中必须要有主裁判。
如果最终的裁决 为杠铃举起成功,则输出“有效”指示灯亮,否则杠铃举起失败。
(2)MSI 逻辑器件设计——路灯控制电路用74LS151芯片和逻辑门,设计一个路灯控制电路,要求能够在四个不同的地方都 能任意的开灯和关灯。
四、实验结果、电路分析及电路设计方案1、组合逻辑电路分析 (1)图2-1: 逻辑表达式:)()(11i i i i i i i i i i B A C S B A C B A C ⊕⊕=⊕+=--逻辑功能:实现A i 、B i 、C i-1三个一位二进制数 的加法运算功能,即全加器。
数字逻辑综合实验报告
一、实验目的本次实验旨在通过实际操作,加深对数字逻辑基本原理和设计方法的理解,提高学生在数字电路设计、仿真和调试方面的实践能力。
通过完成以下实验任务,使学生掌握以下技能:1. 理解数字逻辑电路的基本概念和原理。
2. 掌握数字逻辑电路的设计方法和步骤。
3. 学会使用仿真软件进行电路设计和仿真测试。
4. 掌握数字逻辑电路的调试和优化方法。
二、实验内容本次实验主要包含以下三个部分:1. 组合逻辑电路设计:设计一个四位加法器,并使用Logisim软件进行仿真测试。
2. 时序逻辑电路设计:设计一个简单的计数器,并使用Verilog语言进行描述和仿真。
3. 数字逻辑电路综合应用:设计一个简单的数字信号处理器,实现基本的算术运算。
三、实验步骤1. 组合逻辑电路设计(1)分析题目要求,确定设计目标和输入输出关系。
(2)根据输入输出关系,设计四位加法器的逻辑电路。
(3)使用Logisim软件搭建电路,并设置输入信号。
(4)观察仿真结果,验证电路功能是否正确。
2. 时序逻辑电路设计(1)分析题目要求,确定设计目标和状态转移图。
(2)使用Verilog语言描述计数器电路,包括模块定义、输入输出定义、状态定义和状态转移逻辑。
(3)使用仿真软件进行测试,观察电路在不同状态下的输出波形。
3. 数字逻辑电路综合应用(1)分析题目要求,确定设计目标和功能模块。
(2)设计数字信号处理器电路,包括算术运算单元、控制单元和存储单元等。
(3)使用仿真软件进行测试,验证电路能否实现基本算术运算。
四、实验结果与分析1. 组合逻辑电路设计实验结果:通过仿真测试,四位加法器电路功能正常,能够实现两个四位二进制数的加法运算。
分析:在设计过程中,遵循了组合逻辑电路设计的基本原则,确保了电路的正确性。
2. 时序逻辑电路设计实验结果:通过仿真测试,计数器电路功能正常,能够实现从0到9的计数功能。
分析:在设计过程中,正确描述了状态转移图,并使用Verilog语言实现了电路的功能。
组合逻辑电路设计实验报告
组合逻辑电路设计实验报告一、实验目的。
本实验旨在通过设计和实现组合逻辑电路,加深学生对组合逻辑电路原理的理解,提高学生的动手能力和实际应用能力。
二、实验内容。
1. 学习组合逻辑电路的基本原理和设计方法;2. 设计和实现一个简单的组合逻辑电路;3. 进行实际电路的调试和测试;4. 编写实验报告,总结实验过程和结果。
三、实验原理。
组合逻辑电路是由多个逻辑门组成的电路,其输出仅依赖于输入信号的组合。
常见的组合逻辑电路包括加法器、译码器、多路选择器等。
在设计组合逻辑电路时,需要根据具体的逻辑功能,选择适当的逻辑门并进行连接,以实现所需的逻辑运算。
四、实验步骤。
1. 确定所需的逻辑功能,并进行逻辑门的选择;2. 根据逻辑功能,进行逻辑门的连接设计;3. 利用数字集成电路芯片,进行实际电路的搭建;4. 进行电路的调试和测试,验证电路的正确性和稳定性;5. 编写实验报告,总结实验过程和结果。
五、实验结果。
经过设计和实现,我们成功搭建了一个4位全加器电路,并进行了测试。
在输入A=1101,B=1011的情况下,得到了正确的输出结果S=11000,C=1。
实验结果表明,我们设计的组合逻辑电路能够正确地实现加法运算,并且具有较高的稳定性和可靠性。
六、实验总结。
通过本次实验,我们深入了解了组合逻辑电路的设计原理和实现方法,提高了我们的动手能力和实际应用能力。
同时,我们也意识到了在实际搭建电路时需要注意的细节问题,如电路连接的稳定性、输入信号的干扰等。
这些经验对我们今后的学习和工作都将具有重要的指导意义。
七、实验感想。
通过本次实验,我们不仅学到了理论知识,还提高了实际操作能力。
在今后的学习和工作中,我们将更加注重理论与实践相结合,不断提升自己的综合能力。
同时,我们也希望能够将所学知识应用到实际中,为社会做出更大的贡献。
八、参考文献。
[1] 《数字逻辑电路与系统设计》,张三,电子工业出版社,2018年。
[2] 《数字集成电路设计》,李四,清华大学出版社,2019年。
组合电路综合实验报告
一、实验目的1. 掌握组合逻辑电路的基本原理和设计方法。
2. 学会使用常用逻辑门电路(如与门、或门、非门、异或门等)设计简单的组合逻辑电路。
3. 提高实验操作技能,加深对数字电路理论知识的理解。
二、实验原理组合逻辑电路是由逻辑门电路组成的,其输出仅与当前输入有关,而与电路历史状态无关。
常见的组合逻辑电路有半加器、全加器、编码器、译码器、多路选择器等。
三、实验器材1. 74LS00、74LS20、74LS138、74LS151等逻辑门电路芯片2. 电阻、电容、导线等实验器材3. 数字逻辑实验箱四、实验内容1. 半加器电路设计(1)设计要求:使用与非门实现半加器电路。
(2)设计步骤:a. 根据半加器的逻辑功能,列出真值表。
b. 由真值表写出逻辑表达式。
c. 根据逻辑表达式,设计电路图。
d. 搭建电路,并进行测试。
2. 全加器电路设计(1)设计要求:使用与非门实现全加器电路。
(2)设计步骤:a. 根据全加器的逻辑功能,列出真值表。
b. 由真值表写出逻辑表达式。
c. 根据逻辑表达式,设计电路图。
d. 搭建电路,并进行测试。
3. 编码器电路设计(1)设计要求:使用与非门实现4-2编码器电路。
(2)设计步骤:a. 根据编码器的逻辑功能,列出真值表。
b. 由真值表写出逻辑表达式。
c. 根据逻辑表达式,设计电路图。
d. 搭建电路,并进行测试。
4. 译码器电路设计(1)设计要求:使用与非门实现2-4译码器电路。
(2)设计步骤:a. 根据译码器的逻辑功能,列出真值表。
b. 由真值表写出逻辑表达式。
c. 根据逻辑表达式,设计电路图。
d. 搭建电路,并进行测试。
5. 多路选择器电路设计(1)设计要求:使用与非门实现2-1多路选择器电路。
(2)设计步骤:a. 根据多路选择器的逻辑功能,列出真值表。
b. 由真值表写出逻辑表达式。
c. 根据逻辑表达式,设计电路图。
d. 搭建电路,并进行测试。
五、实验结果与分析1. 实验过程中,根据设计要求,成功搭建了半加器、全加器、编码器、译码器、多路选择器等组合逻辑电路。
实验一组合逻辑电路的设计
实验一 组合逻辑电路的设计一、实验目的:1、 掌握组合逻辑电路的设计方法。
2、 掌握组合逻辑电路的静态测试方法。
3、 加深FPGA 设计的过程,并比较原理图输入和文本输入的优劣。
4、 理解“毛刺”产生的原因及如何消除其影响。
5、 理解组合逻辑电路的特点。
二、实验的硬件要求:1、 EDA/SOPC 实验箱。
2、 计算机。
三、实验原理1、组合逻辑电路的定义数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。
组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。
时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。
通常组合逻辑电路可以用图1.1所示结构来描述。
其中,X0、X1、…、Xn 为输入信号, L0、L1、…、Lm 为输出信号。
输入和输出之间的逻辑函数关系可用式1.1表示: 2、组合逻辑电路的设计方法组合逻辑电路的设计任务是根据给定的逻辑功能,求出可实现该逻辑功能的最合理组 合电路。
理解组合逻辑电路的设计概念应该分两个层次:(1)设计的电路在功能上是完整的,能够满足所有设计要求;(2)考虑到成本和设计复杂度,设计的电路应该是最简单的,设计最优化是设计人员必须努力达到的目标。
在设计组合逻辑电路时,首先需要对实际问题进行逻辑抽象,列出真值表,建立起逻辑模型;然后利用代数法或卡诺图法简化逻辑函数,找到最简或最合理的函数表达式;根据简化的逻辑函数画出逻辑图,并验证电路的功能完整性。
设计过程中还应该考虑到一些实际的工程问题,如被选门电路的驱动能力、扇出系数是否足够,信号传递延时是否合乎要求等。
组合电路的基本设计步骤可用图1.2来表示。
3、组合逻辑电路的特点及设计时的注意事项①组合逻辑电路的输出具有立即性,即输入发生变化时,输出立即变化。
(实际电路中图 1.1 组合逻辑电路框图L0=F0(X0,X1,²²²Xn)² ² ²Lm=F0(X0,X1,²²²Xn)(1.1)图 1.2 组合电路设计步骤示意图图还要考虑器件和导线产生的延时)。
级《数字逻辑电路》实验指导书
课程名称:数字逻辑电路实验指导书课时:8学时集成电路芯片一、简介数字电路实验中所用到的集成芯片都是双列直插式的,其引脚排列规则如图1-1所示。
识别方法是:正对集成电路型号<如74LS20)或看标记<左边的缺口或小圆点标记),从左下角开始按逆时针方向以1,2,3,…依次排列到最后一脚<在左上角)。
在标准形TTL集成电路中,电源端V一般排在左上CC,7脚为端,接地端GND一般排在右下端。
如74LS20为14脚芯片,14脚为VCCGND。
若集成芯片引脚上的功能标号为NC,则表示该引脚为空脚,与内部电路不连接。
二、TTL集成电路使用规则1、接插集成块时,要认清定位标记,不得插反。
2、电源电压使用范围为+4.5V~+5.5V之间,实验中要求使用Vcc=+5V。
电源极性绝对不允许接错。
3、闲置输入端处理方法(1> 悬空,相当于正逻辑“1”,对于一般小规模集成电路的数据输入端,实验时允许悬空处理。
但易受外界干扰,导致电路的逻辑功能不正常。
因此,对于接有长线的输入端,中规模以上的集成电路和使用集成电路较多的复杂电路,所有控制输入端必须按逻辑要求接入电路,不允许悬空。
<也可以串入一只1~10KΩ的固定电阻)或接至某一 (2> 直接接电源电压VCC固定电压(+2.4≤V≤4.5V>的电源上,或与输入端为接地的多余与非门的输出端相接。
(3> 若前级驱动能力允许,可以与使用的输入端并联。
4、输入端通过电阻接地,电阻值的大小将直接影响电路所处的状态。
当R ≤680Ω时,输入端相当于逻辑“0”;当R≥4.7 KΩ时,输入端相当于逻辑“1”。
对于不同系列的器件,要求的阻值不同。
5、输出端不允许并联使用<集电极开路门(OC>和三态输出门电路(3S>除外)。
否则不仅会使电路逻辑功能混乱,并会导致器件损坏。
6、输出端不允许直接接地或直接接+5V电源,否则将损坏器件,有时为,一般取R 了使后级电路获得较高的输出电平,允许输出端通过电阻R接至Vcc=3~5.1 KΩ。
组合逻辑电路的设计及半加器全加器
组合逻辑电路的设计及半加器全加器组合逻辑电路的设计首先需要确定所需的逻辑功能。
常见的逻辑门包括与门、或门、非门、异或门等。
这些逻辑门可以通过晶体管、二极管等电子元件实现。
设计组合逻辑电路的目标是确定所需的逻辑门类型和电路连接方式,以实现预期的逻辑功能。
半加器是一种实现二进制加法运算的电路。
它有两个输入(被加数和加数)和两个输出(和与进位)。
半加器可以用两个异或门和一个与门实现。
两个输入通过两个异或门进行异或运算,得到和,再通过一个与门计算进位。
全加器是一种实现三个二进制数相加的电路,包括两个被加数和一个进位。
全加器有三个输入(两个被加数和进位)和两个输出(和与进位)。
全加器可以用两个半加器和一个或门实现。
首先,通过一个半加器计算两个被加数的和与进位,再通过另一个半加器计算前一步的和与进位与进位的和与进位。
在实际应用中,半加器和全加器经常被用于数字逻辑电路和计算机中。
它们在二进制加法运算中起着重要的作用。
例如,计算机中的加法器、减法器、乘法器和除法器等都需要使用半加器和全加器进行二进制数的运算。
此外,半加器和全加器还可以作为其他逻辑电路的构建模块,实现更复杂的逻辑功能。
总结起来,组合逻辑电路是由多个逻辑门组成的电路,用于实现特定的逻辑功能。
半加器和全加器是组合逻辑电路的重要组成部分,用于实现二进制加法运算。
它们在数字逻辑电路和计算机中起着重要的作用,并可以作为其他逻辑电路的构建模块。
组合逻辑电路的设计需要确定所需的逻辑功能,并确定适合的逻辑门类型和电路连接方式。
这些设计原理和应用为数字电路领域的进一步研究和应用提供了基础。
数字逻辑实验 门电路组合逻辑设计
VCC
&
:
&
GND
1 23 45 6 7
图1-1 74LS20逻辑框图、逻辑符号及引脚排列
1、与非门的逻辑功能 与非门的逻辑功能为:当输入端中有一个或一个以上是低电平时,输出 端为高电平;只有当输入端全部为高电平时,输出端才是低电平。
逻辑表达式为: Y=ABCD
2.与非门的逻辑功能测试 1)逻辑电路及74LS20芯片逻辑功能测试的连接方法如图1-3所示。
一、实验目的
1、掌握中规模集成芯片数据选择器和译码器的逻辑功能和使 用方法
2、熟悉组合功能器件的应用
二、实验原理
1、数据选择器 数据选择器又叫多路选择器或多路开关,它是多输入,单输
出的组合逻辑电路。由地址码控制器多个数据通道。实现单 个通道数据输出,还可以实现数据传输与并串转换等多种功 能。 它基本是由三部分组成:数据选择控制(或称地址输入)、 数据输入电路和数据输出电路,它的种类多样有原码形式输 出、反码形式输出,现以74LS153为例进行应用设计。
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 01111111 10111111 11011111 11101111 11110111 11111011 11111101 11111110 11111111 11111111
SY70
VCC Y0 Y1 Y2 Y3 Y4 Y5 Y6
YS1357026432
E
1
0
A B F1 F2
F2 = ABE = ABE
南北 东西 3、电路图:
╳╳ 0 0 A 0010
B
&
&&
& F1
0 0 1 0 1 E
数电综合实验报告(3篇)
第1篇一、实验目的1. 巩固和加深对数字电路基本原理和电路分析方法的理解。
2. 掌握数字电路仿真工具的使用,提高设计能力和问题解决能力。
3. 通过综合实验,培养团队合作精神和实践操作能力。
二、实验内容本次实验主要分为以下几个部分:1. 组合逻辑电路设计:设计一个4位二进制加法器,并使用仿真软件进行验证。
2. 时序逻辑电路设计:设计一个4位计数器,并使用仿真软件进行验证。
3. 数字电路综合应用:设计一个数字时钟,包括秒、分、时显示,并使用仿真软件进行验证。
三、实验步骤1. 组合逻辑电路设计:(1)根据题目要求,设计一个4位二进制加法器。
(2)使用Verilog HDL语言编写代码,实现4位二进制加法器。
(3)使用ModelSim软件对加法器进行仿真,验证其功能。
2. 时序逻辑电路设计:(1)根据题目要求,设计一个4位计数器。
(2)使用Verilog HDL语言编写代码,实现4位计数器。
(3)使用ModelSim软件对计数器进行仿真,验证其功能。
3. 数字电路综合应用:(1)根据题目要求,设计一个数字时钟,包括秒、分、时显示。
(2)使用Verilog HDL语言编写代码,实现数字时钟功能。
(3)使用ModelSim软件对数字时钟进行仿真,验证其功能。
四、实验结果与分析1. 组合逻辑电路设计:通过仿真验证,所设计的4位二进制加法器能够正确实现4位二进制加法运算。
2. 时序逻辑电路设计:通过仿真验证,所设计的4位计数器能够正确实现4位计数功能。
3. 数字电路综合应用:通过仿真验证,所设计的数字时钟能够正确实现秒、分、时显示功能。
五、实验心得1. 通过本次实验,加深了对数字电路基本原理和电路分析方法的理解。
2. 掌握了数字电路仿真工具的使用,提高了设计能力和问题解决能力。
3. 培养了团队合作精神和实践操作能力。
六、实验改进建议1. 在设计组合逻辑电路时,可以考虑使用更优的电路结构,以降低功耗。
2. 在设计时序逻辑电路时,可以尝试使用不同的时序电路结构,以实现更复杂的逻辑功能。
数字逻辑实验报告完整版
华中科技大学计算机学院数字逻辑实验报告实验一组合逻辑电路的设计实验二同步时许逻辑电路设计实验三:异步时序逻辑电路设计姓名:学号:班级:指导老师:完成时间:实验一组合逻辑电路的设计一、实验目的1掌握组合逻辑电路的功能测试.2验证半加器和全加器的逻辑功能。
3学会二进制的运算规律。
二、实验器材74LS00 二输入四与非门、74LS04 六门反向器、74LS10 三输入三与非门、74LS86 二输入四异或门、74LS73 负沿触发JK触发器、74LS74 双D触发器。
三、实验内容内容A 一位全加全减器的实现。
电路做加法还是做减法由S控制。
当s=0时做加法运算,s=1时做减法运算,当作为全加器输入信号A、B和Cin分别作为加数、被加数和低位来的进位,F1和F2为合数和向上位的进位。
当作为全减器输入信号A、B和Cin分别作为减数、被减数和低位来的借位,F1和F2为差数和向上位的借位。
内容B 舍入与检测电路的设计。
用所给定的集成电路组件设计一个多输出逻辑电路,输入为8421码.F1为四舍五入输入信号,F2为奇偶检测输出信号。
当输入的信号大于或等于(5)10时,电路输出F1=1,其他情况为0;当输入代码中含1的个数为奇数是,输出F2=1,其他情况为0.框图如图所示:四、实验步骤内容A 一位全加全减器的实现。
由要求可得如下真值表:F1的卡诺图为: F2的卡诺图为:化简得F1=A○+B○+C, F2=.由F1和F2表达式画出电路图如下:根据电路图,连接电路。
接线后拨动开关,结果如图:内容B 舍入与检测电路的设计。
由题意,列出真值表如图:化简卡诺图得F1=, F2=A ○+B ○+C ○+D.由此画出电路图如下:按照所示的电路图连接电路,将电路的输出端接实验台的开关,通过拨动开关输入8421代码,电路输出接实验台显示灯。
每输出一个代码后观察显示灯,并记录结果如下表:接开关接灯五、试验体会1、化简包含无关变量的逻辑函数时,,由于是否包含无关项以及对无关项是令其值为1为0并不影响函数的实际逻辑功能,因此在化简时,利用这种任意性可以使逻辑函数得到更好的化简,从而使设计的电路得到更简2、多输出函数的组合逻辑电路,因为各函数之间往往存在相互联系,具有某些共同部分,因此应当将它们当做一个整体来考虑,而不应该将其截然分开。
组合电路设计实验报告
一、实验目的1. 理解组合逻辑电路的基本原理和设计方法。
2. 掌握门电路的基本应用和组合逻辑电路的搭建。
3. 培养逻辑思维能力和实际操作能力。
二、实验原理组合逻辑电路是由门电路组成的,其输出信号仅与当前输入信号有关,而与电路之前的输入信号和输出信号无关。
常见的组合逻辑电路有编码器、译码器、数值比较器、数据选择器、奇偶检验器等。
三、实验器材1. 实验箱2. 74系列集成电路3. 跳线4. 数字逻辑分析仪5. 万用表四、实验步骤1. 编码器设计(1)根据设计要求,确定编码器的输入和输出信号。
(2)选用合适的门电路搭建编码器电路。
(3)将编码器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证编码器电路的正确性。
2. 译码器设计(1)根据设计要求,确定译码器的输入和输出信号。
(2)选用合适的门电路搭建译码器电路。
(3)将译码器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证译码器电路的正确性。
3. 数值比较器设计(1)根据设计要求,确定数值比较器的输入和输出信号。
(2)选用合适的门电路搭建数值比较器电路。
(3)将数值比较器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证数值比较器电路的正确性。
4. 数据选择器设计(1)根据设计要求,确定数据选择器的输入和输出信号。
(2)选用合适的门电路搭建数据选择器电路。
(3)将数据选择器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证数据选择器电路的正确性。
5. 奇偶检验器设计(1)根据设计要求,确定奇偶检验器的输入和输出信号。
(2)选用合适的门电路搭建奇偶检验器电路。
(3)将奇偶检验器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证奇偶检验器电路的正确性。
五、实验结果与分析1. 编码器电路输出波形符合设计要求,电路功能正常。
2. 译码器电路输出波形符合设计要求,电路功能正常。
3. 数值比较器电路输出波形符合设计要求,电路功能正常。
组合逻辑电路的设计实验报告
组合逻辑电路的设计实验报告摘要:本次实验以组合逻辑电路的设计为主题,通过使用门电路和逻辑元件,构建和测试了一个复杂的逻辑电路。
实验结果表明,我们成功地设计出了一个功能稳定、正确运行的组合逻辑电路。
本实验的目的是培养学生对于数字逻辑和组合电路设计的理解能力,提高学生的实践能力和创新意识。
一、引言组合逻辑电路是由多个门电路和逻辑元件组成的数字电路。
设计和实现一个功能稳定、正确运行的组合逻辑电路对于电子工程专业的学生来说是至关重要的。
本实验通过组合逻辑电路的设计和实验,旨在加深学生对逻辑电路设计原理的理解,提高他们的实践能力。
二、实验材料和方法1.实验材料:门电路芯片、逻辑元件、电源、示波器、电路板等。
2.实验方法:(1)根据实验要求,准备所需的材料和工具。
(2)根据设计要求和逻辑关系,选择合适的门电路芯片和逻辑元件进行组合。
(3)按照设计图纸,将电路连接好,确保每个元件的引脚正确连接。
(4)将电源接入电路板,同时将示波器连接至所需的信号端口。
(5)打开电源,观察示波器上的信号输出情况,检查电路的运行状态。
(6)记录实验结果和观察到的现象。
三、实验结果我们设计的组合逻辑电路是一个基于门电路实现的计数器电路。
电路由多个与门、或门和触发器构成,通过时钟信号进行计数。
实验中,我们观察到电路的输出信号在时钟脉冲信号的驱动下能够正确计数,并在达到特定计数值后正确地复位。
通过实验,我们成功地设计出了一个功能稳定、正确运行的组合逻辑电路。
在测试过程中,我们对电路进行了多次测试和调试,确保了电路的稳定性和正确性。
四、实验分析通过本次实验,我们巩固了对组合逻辑电路设计原理的理解。
我们深入了解了与门、或门、触发器等逻辑元件的原理和功能,并通过实践掌握了它们的用法和连接方式。
在实验的过程中,我们遇到了一些困难和问题。
例如,当连接电路时,我们发现几个引脚的连接不正确,导致电路无法正常工作。
通过仔细检查和调试,我们最终找到了问题的原因并解决了它。
实验二 组合逻辑电路分析与设计
信息工程学院数字逻辑与数字系统实验/实习报告学院:信息工程学院班级:信息111 姓名:朱伟定学号:2011013259 成绩:实验二组合逻辑电路分析与设计一、实验目的1.掌握组合逻辑电路的分析方法与测试方法;2.掌握组合逻辑电路的设计方法。
二、实验预习要求1.熟悉门电路工作原理及相应的逻辑表达式;2.熟悉数字集成电路的引脚位置及引脚用途;3.预习组合逻辑电路的分析与设计步骤。
三、实验原理通常,逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
电路在任何时刻,输出状态只决定于同一时刻各输入状态的组合,而与先前的状态无关的逻辑电路称为组合逻辑电路。
1.组合逻辑电路的分析过程,一般分为如下三步进行:(1)由逻辑图写出输出端的逻辑表达式;(2)画出真值表;(3)根据对真值表进行分析,确定电路功能。
2.组合逻辑电路的一般设计过程为图实验2.1所示。
设计过程中,“最简”是指电路所用器件最少,器件的种类最少,而且器件之间的连线也最少。
四、实验仪器设备1.TPE -AD Ⅱ实验箱(+5V 电源,单脉冲源,连续脉冲源,逻辑电平开关,LED 显示,面包板数码管等)1台;2. 四两输入集成与非门74LS00 2片; 3. 四两输入集成异或门74LS86 1片; 4. 两四输入集成与非门74LS20 3片。
五、实验内容及方法1.分析、测试74LS00组成的半加器的逻辑功能。
(1)用74LS00组成半加器,如图实验2.2所示电路,写出逻辑表达式并化简,验证逻辑关系。
ABC B A B A S i i =+=(2)列出真值表。
图实验2.1 组合逻辑电路设计方框图(3)分析、测试用异或门74LS86与74LS00组成的半加器的逻辑功能,自己画出电路,将测试结果填入自拟表格中,并验证逻辑关系。
图实验2.2 由与非门组成的半加器电路2.分析、测试全加器电路,设计用74LS86和74LS00组成全加器电路,用异或门、与门和或门组成的全加器如图实验2.3所示,将测试结果填于真值表内,验证其逻辑关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验目的
1.掌握组合逻辑电路的功能测试。
2.验证半加器和全加器的逻辑功能。
3.学会二进制的运算规律。
实验器材
二输入四“与非”门组件3片,型号74SL00
二输入四“异或”门组件1片,型号74SL86
六门反向器门组件1片,型号74SL04
二输入四“与”门组件1片,型号74SL08
实验内容
A:一位全加/全减法器的实现
电路做加法还是做减法是由M决定的。
当M=0时做加法运算,输入信号A、B和Cin分别为加数、被加数和低位来的进位,S为和数,Co为向上位的进位;当M=1时做减法运算,输入信号A、B和Cin分别为减数、被减数和低位来的借位,S为差,Co为向上位的借位。
B:舍入与检测电路设计
用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421码,F1为“四舍五入”输出信号,F2为奇偶检测输出信号。
当电路检测到输入的代码大于或等于(5)10时,电路的输出F1=1;其他情况F1=0。
当输入代码中含1的个数为奇数时,电路的输出F2=1;其他情况F2=0。
实验前准备
▽内容A:一位全加/全减法器的实现
①根据全加全减器功能,可得到输入输出表如下:
②由以上做出相应的卡诺图:
③于是可得其逻辑电路图:
▽内容B:舍入与检测电路设计
①根据舍入与检测电路功能,可得到输入输出表如下:
②由上做出相应的卡诺图:
③于是可得其逻辑电路图:
实验步骤
1.按要求预先设计好逻辑电路图;
2.按照所设计的电路图接线;
3.接线后拨动开关,观察结果并记录。
实验体会
本次是第一次实验,主要了解了实验平台,同时需要我们将自己设计好的电路,用实验台上的芯片来实现。
由于实验所使用的线很多,芯片的接口也多,所以一定要细心,分清楚连接芯片的输入、输出端,以免接错线。