小学三年级奥数练习:数的整除
小学奥数 数的整除性 知识点+例题+练习 (分类全面)
![小学奥数 数的整除性 知识点+例题+练习 (分类全面)](https://img.taocdn.com/s3/m/d756ef4ba76e58fafbb00306.png)
拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。
由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。
账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。
应是__________元。
(注:微波炉单价为整数元)。
36792
例4、五位数能被12整除,这个五位数是____________。
42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。
713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。
39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。
48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。
数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。
”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。
小学小升初奥数知识:数的整除
![小学小升初奥数知识:数的整除](https://img.taocdn.com/s3/m/e669380e590216fc700abb68a98271fe900eaf4c.png)
小学小升初奥数知识:数的整除小学小升初奥数知识集锦:数的整除导语:下面是小编为您收集整理的数的整除相关知识,欢迎阅读!1.整除的概念在小学书中所学的自然数和零,都是整数。
同学们都知道,如果一个整数a除以一个自然数b,商是整数而且没有余数(或者说余数为零),就叫做a能被b整除,或者b整除a,记作a│b。
这时a叫做b 的倍数,b叫做a的约数。
例如,3│15表示15能被3整除,或者3整除15;也可以说15是3的倍数,3是15的约数。
由整数概念可知,整除必须同时满足三个条件:(1)被除数是整数,除数是自然数;(2)商是整数;(3)没有余数。
这三个条件只要有一个不满足,就不能叫整除。
例如,16÷5=3.2,商不是整数,所以不能说5整除16。
又如,10÷2.5=4,除数不是自然数,所以不能说10能被2.5整除。
2.整除的性质(1)如果两个整数都被同一个自然数整除,那么它们的和、差(大减小)也都能被这个自然数整除。
换句话说,同一个自然数的两个倍数之和、差(大减小)仍是这个自然数的倍数。
例如,18与42都能被6整除,那么18与42的和60、差24也都能被6整除;即从6│18及6│42可知6│(18+42)、6│(42-18)。
(2)如果甲数整除乙数,乙数整除丙数,那么甲数整除丙数。
即如果丙数是乙数的倍数,乙又是甲数的倍数,那么丙数是甲数的倍数。
例如,7│28,28│84,那么就有7│84。
(3)如果甲数整除乙数,那么甲数就整除乙数与任一整数的乘积。
也就是说如果乙数是甲数的倍数,那么乙数的任一倍数也是甲数的倍数。
例如,13│39,39×4=156,因此13│156。
(4)如果甲数能被丙数整除,而乙数不能被丙数整除,那么甲数与乙数的和、差都不能被丙数整除。
即如果甲数是丙数的倍数,乙数不是丙数的倍数,那么甲数与乙数的和、差(大减小)都不是丙数的倍数。
例如,6整除48,6不整除35,所以6不整除83(48+35=83),也不整除13(48-35=13)。
小学生奥数面积问题、奇偶性、数的整除问题练习题
![小学生奥数面积问题、奇偶性、数的整除问题练习题](https://img.taocdn.com/s3/m/44d750a2534de518964bcf84b9d528ea81c72f1c.png)
小学生奥数面积问题、奇偶性、数的整除问题练习题1小学生奥数面积问题练习题篇一1、一张长方形的纸,长25厘米,宽20厘米,在这张纸上剪一个的圆,圆剪下后,剩下的面积是多少?解:3.14×(20÷2)2,=3.14X100,=314(平方厘米);25X20-314,=500-314,=186(平方厘米);答:剩下的面积是186平方厘米。
2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米?【思路导航】由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12X9=108(平方米)。
(36÷3)×(54÷9)=108(平方米)3、人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。
现在操场面积比原来增加多少平方米?【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积,操场现在的面积是:(90+10)×(45÷5)=5000(平方米),操场原来的面积是:90X45=4050(平方米)。
所以现在比原来增加5000-4050=950平方米。
(90+10)X(45+5)-(90X45)=950(平方米)2.小学生奥数面积问题练习题篇二1、一个正方形草坪,边长是21米,在它的四周围上护栏。
(1)护栏长是多少米?(2)这块草坪的面积是多少?2、一个长方形的游泳池长60米,宽30米,池底铺面积为9平方分米的方砖,需要多少块?3、有两个一样大小的长方形,长都是24厘米,宽都是12厘米。
(1)拼成一个正方形,它的周长和面积各是多少?(2)拼成一个长方形,它的周长和面积各是多少?4、拿一张边长是10厘米的正方形纸板,剪下一个长10厘米,宽6厘米的长方形。
小学数学数的整除练习题
![小学数学数的整除练习题](https://img.taocdn.com/s3/m/a1f50929571252d380eb6294dd88d0d233d43c0e.png)
小学数学数的整除练习题1. 小明有12支铅笔,要将它们平均分给4个同学,每人分几支?解析:我们可以将12个铅笔平均地分给4个同学,即每个同学分到的铅笔数量相等。
首先,我们将12除以4,得到的商是3,即每个同学最少可以分到3支铅笔。
然后,我们发现还有多余的铅笔,剩下的铅笔数量是12减去4乘以3,即12-4x3=0。
所以,每个同学可以分到的铅笔数量是3支。
2. 请问以下哪个数字是3的倍数:29、36、42、51、58?解析:要判断一个数是否是3的倍数,我们需要将这个数的各个位数上的数字相加,如果得到的和是3的倍数,那么这个数也是3的倍数。
我们计算一下各个选项的和:- 29: 2 + 9 = 11,不是3的倍数;- 36: 3 + 6 = 9,是3的倍数;- 42: 4 + 2 = 6,是3的倍数;- 51: 5 + 1 = 6,是3的倍数;- 58: 5 + 8 = 13,不是3的倍数。
所以,36、42和51都是3的倍数。
3. 小明有48颗糖,他想把它们平均分给8个朋友,每人分几颗?解析:与题目1类似,我们需要将48除以8来求得平均每个朋友可以分到多少颗糖。
48除以8等于6,所以平均每个朋友可以分到6颗糖。
4. 请问以下哪个数字是9的倍数:72、84、92、105、118?解析:同样地,我们计算每个选项的各位数和以判断是否是9的倍数:- 72: 7 + 2 = 9,是9的倍数;- 84: 8 + 4 = 12,不是9的倍数;- 92: 9 + 2 = 11,不是9的倍数;- 105: 1 + 0 + 5 = 6,不是9的倍数;- 118: 1 + 1 + 8 = 10,不是9的倍数。
所以,72是9的倍数。
5. 小玲有16个苹果,她想将它们平均分给亲戚们,每人能分几个苹果?如果最后剩余2个苹果,应该分给哪位亲戚?解析:我们可以将16除以亲戚的数量来求得平均每个亲戚可以分到多少个苹果。
假设亲戚的数量为n,那么每个亲戚可以分到的苹果数量是16除以n。
小学数学奥数测试题整除_人教版-精选学习文档
![小学数学奥数测试题整除_人教版-精选学习文档](https://img.taocdn.com/s3/m/8b52f846bed5b9f3f90f1c8b.png)
2019年小学奥数数论专题——整除1.整除1.173□是一个四位数.数学老师说:“我在其中的方框内中先后填入3个数字,所得到的3个四位数:依次可被9,1l,6整除.”问:数学老师先后填入的3个数字的和是多少?2.如果六位数1992□□能被105整除,那么它的最后两位数是多少?3.某个七位数1993□□□能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?4.从0,1,2,3,4,5,6,7,8,9这10个数字中选出5个不同的数字组成一个五位数,使它能被3,5,7,13整除,这个数最大是多少?5.修改31743的某一个数字,可以得到823的倍数.问修改后的这个数是多少?6.在六位数11□□11中的两个方框内各填入一个数字,使此数能被17和19整除,那么方框中的两位数是多少?7.已知四十一位数55…5□99…9(其中5和9各有20个)能被7整除,那么中间方格内的数字是多少?8.用数字6,7,8各两个,组成一个六位数,使它能被168整除.这个六位数是多少? 9.将自然数1,2,3,…依次写下去组成一个数:12345678910111213….如果写到某个自然数时,所组成的数恰好第一次能被72整除,那么这个自然数是多少?10.1~9九个数字按下图所示的次序排成一个圆圈,请在某两个数之间剪开,分别按顺时针和逆时针次序形成两个九位数.如果要求剪开后所得到的两个九位数的差能被396整除,那么应在何处剪开?11.1至9这9个数字,按图所示的次序排成一个圆圈.请你在某两个数字之间剪开,分别按顺时针和逆时针次序形成两个九位数(例如,在l和7之间剪开,得到两个数是193426857和758624391).如果要求剪开后所得到的两个九位数的差能被396整除,那么剪开处左右两个数字的乘积是多少?12.有15位同学,每位同学都有编号,他们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除.1号作了一一验证:只有编号连续的两位同学说得不对,其余同学都对.问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这个数.13.有20位同学,每位同学都有编号,他们是1号到20号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除.1号作了一一验证:只有编号连续的两位同学说得不对,其余同学都对.问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是七位数,请求出这个数.14.找出4个不同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除.如果要求这4个数中最大的数与最小的数的和尽可能的小,那么这4个数里中间两个数的和是多少?15.试求6个不同的正整数,使得它们中任意两数之积可被这两个数之和整除.16.把若干个自然数l,2,3,…乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?17.975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?18.如图,依次排列的5个数是13,12,15,25,20.它们每相邻的两个数相乘得4个数.这4个数每相邻的两个数相乘得3个数.这3个数每相邻的两个数相乘得2个数.这2个数相乘得1个数.请问:最后这个数从个位起向左数,可以连续地数出几个零?第 1 页19.已知道六位数20□279是13的倍数,求□中的数字是几?20.六位数2008能被99整除,是多少?21.六位数20□□08能被49整除,□□中的数是多少?22.在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数. ⑴请随便填出一种,并检查自己填的是否正确;⑵一共有多少种满足条件的填法?23.已知九位数2007122□□既是9的倍数,又是11的倍数;那么,这个九位数是多少?24.一位后勤人员买了72本笔记本,可是由于他吸烟不小心,火星落在帐本上,把这笔帐的总数烧去两个数字.帐本是这样的:72本笔记本,共□67.9□元(□为被烧掉的数字),请把□处数字补上,并求笔记本的单价.25.由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?26.各位数码是0、1或2,且能被225 整除的最小自然数是多少?27.张老师带领同学们去种树,学生的人数恰好等分成三组.已知老师和学生共种树312棵,老师与学生每人种的树一样多,并且不超过10棵.问:一共有多少学生?每人种了几棵树?28.某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果老师与学生每人种树一样多,共种了1073棵,那么平均每人种了棵树?29.在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。
小学奥数专项训练题:数的整除问题
![小学奥数专项训练题:数的整除问题](https://img.taocdn.com/s3/m/e55c2a9783c4bb4cf6ecd192.png)
小学奥数专项训练题:数的整除问题数的整除问题奥数专项训练题1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。
如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。
例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。
2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
即:如果c|a,c|b,那么c|(a±b)。
例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
即:如果b|a,c|a,且(b,c)=1,那么bc|a。
例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。
性质4:如果c能整除b,b能整除a,那么c能整除a。
即:如果c|b,b|a,那么c|a。
例如:如果3|9,9|27,那么3|27。
3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
三年级整除练习题
![三年级整除练习题](https://img.taocdn.com/s3/m/ab766db14793daef5ef7ba0d4a7302768f996f4f.png)
三年级整除练习题整除是数学中的一个重要概念,对于学习数学的三年级学生来说,进行整除的练习是非常必要的。
本文将为三年级的学生们准备了一些整除练习题,希望能够帮助他们巩固对整除的理解和运用。
练习题1:填空题1. 16 ÷ ___ = 42. 24 ÷ ___ = 83. 45 ÷ ___ = 54. 32 ÷ ___ = 45. 63 ÷ ___ = 7练习题2:选择题1. 36 ÷ 4 =A. 5B. 9C. 8D. 102. 56 ÷ 8 =A. 7B. 6C. 8D. 53. 48 ÷ 6 =A. 7B. 9C. 8D. 64. 24 ÷ 3 =A. 6B. 7C. 8D. 95. 63 ÷ 9 =A. 7B. 8C. 9D. 6练习题3:计算题1. 将52块糖果平均分给4个小朋友,每个小朋友能分到几块糖果?2. 小明有36本书,他把这些书都放在书架上,每层放8本,一共能放几层书?3. 甲乙两个人一共有72支铅笔,如果甲每次拿4支铅笔,乙每次拿3支铅笔,他们能拿几次?4. 有40个苹果,小明要把这些苹果放到10个篮子里,每个篮子放几个苹果?5. 小华有48颗糖果,他想将这些糖果放到每个纸袋里,每个纸袋装9颗,他需要准备几个纸袋?练习题4:应用题1. 小明有72枚硬币,他想将这些硬币平均分给6个小朋友,每个小朋友能分到几枚硬币?如果不能整除,是否还有多出来的硬币?2. 有36只小鸟分别站在12棵树上,每棵树上站几只小鸟?3. 一辆汽车每小时行驶80公里,它要行驶300公里,需要多少小时?4. 一个班级有45个学生,分别坐在5个桌子上,每个桌子上坐几个学生?5. 一箱书一共有60本书,每层放12本,一共可以放几层书?通过以上的练习题,希望能够帮助三年级学生们巩固对于整除的理解和应用能力。
同学们可以按照题目进行思考和计算,希望能够在练习中取得进步。
小学奥数:数的整除之四大判断法综合运用(二).专项练习及答案解析
![小学奥数:数的整除之四大判断法综合运用(二).专项练习及答案解析](https://img.taocdn.com/s3/m/c900faa75a8102d276a22fff.png)
5-2-2.数的整除之四大判断法综合运用(二)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、11系列【例 1】以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯()()()()()=⨯-+⨯++⨯-+⨯++⨯-+⨯110000114199992100118199511171()()=⨯+⨯+⨯+⨯+⨯+-+-+-11000014999921001899511418275因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被11整除,再根据整除性质1,要判断142857能否被11整除,只需判断418275487125-+-+-=++-++()()能否被11整除,因此结论得到说明.【例 2】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】设原序数为abcd,则反序数为dcba,则abcd+dcba100010010100010010()()a b c d d c b a=+++++++=+++a b c d10011101101001=+++(),因为等式的右边能被11整除,所以abcd+dcba能被11整1191101091a b c d除【例 3】一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【考点】整除之11系列【难度】2星【题型】解答【解析】设这个4位数是abcd,则新的4位数是bcda.两个数的和为+=+++,是11的倍数.在所给的5个数中只有9867是11的1001110011011abcd bcda a b c d倍数,故正确的答案为9867.【答案】9867模块二、7、11、13系列【例 4】以多位数142857314275为例,说明被7、11、13整除的规律.【考点】整除之7、11、13系列【难度】3星【题型】解答【解析】略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+ 14210000000011428579999998573141001314275=⨯-+⨯++⨯-+(14210000000018579999993141001)(857142275314)=⨯+⨯+⨯+-+-因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被7、11、13整除,再根据整除性质1,要判断142857314275能否被7、11、13整除,只需判断857142275314-+-能否被7、11、13整除,因此结论得到说明.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几?【考点】整除之7、11、13系列 【难度】2星 【题型】填空【解析】 根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数,所以知道方格中填1。
奥数训练——数的整除
![奥数训练——数的整除](https://img.taocdn.com/s3/m/3dc82cbfb9d528ea81c779ba.png)
数的整除一、解答题(共15小题,满分0分)1.判断能否被3,7,11,13整除.2.试说明形式的6位数一定能被11整除.3.在1998后面添上两个数字构成一个六位数,它能够同时被7和8整除,所添的两个数字是多少?4.求被179整除的最小和最大的四位数.5.一个五位数减去其各位数字之和后变为,则x是多少?6.首位数字是9,各位上的数字互不相同的7位数中,能被6整除最小数是多少??7.养殖专业户郝大爷共养鸡鸭810只,卖出鸡只数的,鸭只数的75%,剩下鸡鸭只数相同,求原来鸡鸭各养了多少只?8.五个三位数,前四个数分别是123、345、567、789.已知五个数的平均数是9的倍数,第5个数最大是多少?9.五个数之和是308.这五个数分别被2、3、5、7、11整除,且商相同,求这五个数.10.一个数乘以91后乘积的后三位是193,这个数最小是多少?11.一个各位数字全是1的自然数能被33333整除,问这个数最小是多少?12.某六位数能被17和19整除,求.13.五位数能被36整除,求这样的五位数.14.是105的倍数,求.15.给你一个六位数:(1)试求出所有这样的x、y的组合,使该六位数能被9整除;(2)根据(1)的结果说明该六位数一定不能被72整除;(3)试求出所有这样的x、y的组合,使该六位数能被24整除;(4)试求出所有这样的x、y的组合,使该六位数能被55整除;(5)试求出所有这样的x、y的组合,使该六位数能被91整除.数的整除参考答案与试题解析一、解答题(共15小题,满分0分)1.判断能否被3,7,11,13整除. 考点:数的整除特征.专题:整除性问题.分析: 首先判定能否被3整除,因为能同时被7、11、13整除的最小数为1001,把这个数写成1001×98666+766,探讨766能否被7,11,13整除即可.解答: 解:因为9+8+7+6+5+4+3+2=44,不能被3整除;因为98765432=1001×98666+766,766不能被7整除;766不能被11整除;766不能被13整除;所以不能被3,7,11,13整除.点评: 掌握能被3,7,11,13整除数的特征是解决问题的关键,注意问题的灵活处理.2.试说明形式的6位数一定能被11整除.考点:数的整除特征.专题:整除性问题.分析:根据被11整除数的特征:把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.由此说明即可.解答:解:=100010010=1001c=1001×(10010)因为11能整除1001,所以形式的6位数一定能被11整除.点评:此题考查数的整除特征,掌握被11能出数的特征是解决问题的根本.3.在1998后面添上两个数字构成一个六位数,它能够同时被7和8整除,所添的两个数字是多少?考点:数的整除特征.专题:整除性问题.分析: 不妨设,添加的两个数字为,则8能被8整除,则可以是00,08,16,24,32,40,48,56,64,72,80,88,96;且7能整除1998,也就是整除3,相当于整除20,进一步验证得出答案即可. 解答: 解:设添加的两个数字为,8能整除1998,则可以为:00,08,16,24,32,40,48,56,64,72,80,88,96;7能整除199828542×7+6,也就是7能整除6,经过验证可知,08,64.所以所添的两个数字是08或64.点评: 此题考查能被7,8整除的数的特征,解答此题还要有较强的分析推理能力.4.求被179整除的最小和最大的四位数.考点:数的整除特征.专题:整除性问题.分析: 先求出1000÷179的商,该商+1后,与179相乘的积即为所求的被179整除的最小四位数;先求出9999÷179的商,然后用商与179相乘的积即为所求的被179整除的最大四位数.解解:1000÷179=5…105,答:179×(5+1)=179×6=1074.9999÷179=55…154,179×55=9845;答:被179整除的最小的四位数是1074,最大的四位数是9845.点评:此题考查了数的整除特征,明确倍数的求法,是解答此题的关键.5.一个五位数减去其各位数字之和后变为,则x是多少?考点:数字问题.专题:数性的判断专题.分析:五位数与各位数字和的差为7,已知万位为7,那么47应是9的倍数,进一步解决问题.解答:解:设原来的三位数是,由题意得:110﹣()=7,99999999997,因此,五位数减去各们数字之和一定是9的倍数,可得47=9(或18,或27,36)经验证,只有47=27符合题意,因此5点评:设原来的三位数是,五位数减去各们数字之和一定是9的倍数,然后通过验证推出结果.6.首位数字是9,各位上的数字互不相同的7位数中,能被6整除最小数是多少??考点:数的整除特征.专题:整除性问题.分析:首位数字确定,要使最小,不妨设为901234x,x是偶数,且9+1+2+3+418+(1)要能被3整除,求得2或8,最小且不重复就是8.解答:解:要使最小,不妨设为901234x,x是偶数,则9+1+2+3+418+(1)需能被3整除,则2或8,2与前面的数字重复,所以x取8.所以能被6整除最小数是9012348.点评:此题考查被一个数整除的数的特征,掌握被2或3整除数的特征是解决问题的关键.7.养殖专业户郝大爷共养鸡鸭810只,卖出鸡只数的,鸭只数的75%,剩下鸡鸭只数相同,求原来鸡鸭各养了多少只?考点:分数和百分数应用题(多重条件).专题:分数百分数应用专题.分析: 根据“卖出鸡只数的,鸭只数的75%,剩下鸡鸭只数相同”,可知鸡×(1﹣80%)=鸭×(1﹣75%),所以鸡:鸭=(1﹣75%):(1﹣80%)=5:4.那么鸡有810÷(5+4)×5=450(只),进而求出鸭的只数.解答: 解:(1﹣75%):(1﹣80%)=5:4鸡有:810÷(5+4)×5=810÷9×5=450(只)鸭有:810﹣450=360(只)答:原来鸡养了450只,鸭养了360只.点评:此题先求出鸡鸭只数的比,是解答此题的关键.8.五个三位数,前四个数分别是123、345、567、789.已知五个数的平均数是9的倍数,第5个数最大是多少?考点:平均数问题;整除性质.专题:平均数问题;整除性问题.分析:123+345+567+789=1824,根据题意“已知五个数的平均数是9的倍数”所以得出这五个三位数的能既能被5整除,又能被9整除,因为能被5整除,所以个位数是0或5,因为求这个五位数最大是900多,1824+900=2724,因为这5个三位数的和能被9整除,所以各个数位上数的和能被9整除,然后分析当这五个数的和的个位是0或5时,要求的数的大小,然后进行比较,进而得出结论.解答:解:123+345+567+789=1824,因为能被5整除,所以个位数是0或5,因为求这个五位数最大是900多,1824+900=2724因为这5个三位数的和能被9整除,所以各个数位上数的和能被9整除,当个位是0时,2+7+9+0=18,能被9整除,所以这个数的和是2790,则要求的数为:2790﹣1824=966;当个位是5时,2+7+4+5=18,能被9整除,所以这个数的和是2745,则要求的数为:2745﹣1824=921;因为921<966所以要求的三位是最大是966.答:第5个数最大是966.点评: 此题考查了数的整除特征,明确能被5和9整除的数的特征,是解答此题的关键.9.五个数之和是308.这五个数分别被2、3、5、7、11整除,且商相同,求这五个数. 考点:整除性质.专题:整除性问题.分析: 先求出2、3、5、7、11的和,然后用308除以这五个数的和,求出商,然后用商分别乘2、3、5、7、11,即可求出这五个数.解答:解:2+3+5+7+11=28,308÷28=11,所以这五个数分别是:2×11=22,3×11=33,5×11=55,7×11=77,11×11=121;答:这五个数分别是22,33,55,77,121.点评: 求出2+3+5+7+11的和,然后用308除以28,求出商,是解答此题的关键.10.一个数乘以91后乘积的后三位是193,这个数最小是多少?考点:最大与最小.专题:整除性问题.分析:因为是193,3只能和1×3才出3.所以这个数的最后一个数是3,又3×90=270,十位90﹣70=20,则这个数的十应是2,即后两位是23,91×23=2093,百位还差1,只要找个数与1相乘得1相乘得1就可以了,1与1相乘得了,则这个数最小是123,即123×91=11193.解答:解:由于1×3=3,则这个数个位是3,3×90=270,十位90﹣70=20,1×20=20,则这个数的十应是2,即后两位是23,91×23=2093,百位还差1,1与1相乘得1,则这个数最小是123,即123×91=11193.答:这个数最小是123.点评:首先根据题意确定这个数的个位是3,然后逐步进行推理是完成本题的关键.11.一个各位数字全是1的自然数能被33333整除,问这个数最小是多少?考点:整除性质.专题:整除性问题.分析:先把33333分解质因数:33333=3×11111,能被33333整除,那么所有的1加起来能被3整除,所以可能有6,9,12,15个1;但是33333是5位数,很明显6个、9个、12个都不能整除,位数不合适,只能是15个.也就是111111*********÷33333=3333366667;由此解答即可.解答:解:能被33333整除,那么所有的1加起来能被3整除,所以可能有6,9,12,15个1;但是33333是5位数,很明显6个、9个、12个都不能整除,位数不合适,只能是15个,即这个数最小是111111*********;答:这个数最小是111111*********.点评:明确能被3和11111整除的数的特征,是解答此题的关键.12.某六位数能被17和19整除,求.考点:整除性质;位值原则.题:分析: 根据六位数2322能被17和19整除,得出这个六位数能被17×19=323整除,再假设出这个六位数最大值与最小值,进而得出它们商的取值范围,进而得出符合要求的答案.解答: 解:因为六位数2322能被17和19整除,所以这个六位数能被17×19=323整除,这个数最小为230022,故230022÷323=712..46,这个数最大为239922,故239922÷323=742…256,因为23□□22能被323整除,商一定为3位数,且个位数一定为4,符合要求的只有714,724,734.故试一下323×714=230622,323×724=233852,323×734=237082, 只有323×714=230622符合要求,故原数为:230622;答:06.点评: 此题主要考查了数的整除性,根据已知得出23□□22除以323商的取值范围以及个位数的特点是解题关键.13.五位数能被36整除,求这样的五位数.考点:整除性质;位值原则.题:分析: 36=4×9,能被36整除,就要能同时被4和9整除,能被4整除的数:后两位能被4整除;能被9整除的数:各位数字的和能被9整除;由此可知:y 可能是2或6,如果2,则28+9+2能被9整除,6;如果6,则28+9+6能被9整除,2;由此即可求出这个五位数.解答: 解:36=4×9,能被36整除,就要能同时被4和9整除, 能被4整除的数:后两位能被4整除;能被9整除的数:各位数字的和能被9整除;由此可知:y 可能是2或6,如果2,则28+9+2能被9整除,6;如果6,则28+9+6能被9整除,2;所以这个五位数是26892或22896.答:这个五位数是26892或22896.点评:明确能被4和9整除的数的特征,是解答此题的关键.14.是105的倍数,求. 考点:数的整除特征.专整除性问题.题:分析:首先105=3×5×7,能被3整除则2+7能被3整除,能被5整除,则末尾是0或5,进一步验证是否能被7整除得出答案即可.解答:解:因为105=3×5×7,则2+7能被3整除,能被5整除,则末尾是0或5,当0时,2+70能被3整除,则0,3,6,9;当5时,2+75能被3整除,则1,4,7;则能被7整除的只有200760.所以6,0.点评:此题考查被一个数整除的数的特征,掌握被3、5、7整除数的特征是解决问题的关键.15.给你一个六位数:(1)试求出所有这样的x、y的组合,使该六位数能被9整除;(2)根据(1)的结果说明该六位数一定不能被72整除;(3)试求出所有这样的x、y的组合,使该六位数能被24整除;(4)试求出所有这样的x、y的组合,使该六位数能被55整除;(5)试求出所有这样的x、y的组合,使该六位数能被91整除.考点:整除性质;位值原则.专题:整除性问题.分析:(1)由已知要求需(8+7+3+2)能被9整除,即2能被9整除,且0≤x,y<10,由此列举即可;(2)验证(1)中的11组结果,容易得到没有结果符合条件;(3)欲使该6位数被24整除,则首先必须是偶数,且2能被3整除,即要求2能被6整除,这样的组合只可能如下(0,6)(1,4)(2,2)(3,0)(2,8)(3,6)(4,4)(5,2)(6,0)(5,8)(6,6)(7,4)(8,2)(9,0)(8,8)(9,6),又要求该六位数能被8整除,即要求3被8整除,这样可以得到(2,8),(3,6),(4,4),(5,2)(6,0)几个组合;(4)为使能整除55,首先y只可能是0或者5,其次偶数位减奇数位整除11.因此即2x﹣y﹣2能被11整除,这样组合仅有(9,5)一组;(5)为使能整除91,则要求87x﹣3能被91整除,则8751,31027,即要求51=1027,由此得出(x,y)=(2,6).解答:解:(1)由已知要求需(8+7+3+2)能被9整除,即2能被9整除,且0≤x,y<10,因此(x,y)只能是如下组合(0,9)、(1,7)、(2,5)、(3,3)、(4,1)、(5,8)、(6,6)、(7,4)、(8,2)、(9,9);(2)验证(1)中的11组结果,容易得到没有结果符合条件;(3)欲使该6位数被24整除,则首先必须是偶数,且2能被3整除,即要求2能被6整除,这样的组合只可能如下(0,6)(1,4)(2,2)(3,0)(2,8)(3,6)(4,4)(5,2)(6,0)(5,8)(6,6)(7,4)(8,2)(9,0)(8,8)(9,6),又要求该六位数能被8整除,即要求3被8整除,这样可以得到只有(2,8),(3,6),(4,4),(5,2)(6,0);(4)为使能整除55,首先y只可能是0或者5,其次偶数位减奇数位整除11.因此即2x﹣y﹣2能被11整除,这样组合仅有(9,5)一组;(5)为使能整除91,则要求87x﹣3能被91整除,则8751,31027,即要求51=1027,由此得出(x,y)=(2,6).点评:此题考查了整除的性质,明确能被9整除及能被11整除的特征,是解答此题的关键.。
小学三年级整除练习题
![小学三年级整除练习题](https://img.taocdn.com/s3/m/6d56f23e26284b73f242336c1eb91a37f1113293.png)
小学三年级整除练习题整除是数学中的一个重要概念,在小学三年级的学习中,学生开始接触到除法和整除的概念。
通过练习整除题,不仅可以巩固对整除的理解,还可以提高计算能力和解决问题的能力。
本文将为小学三年级的学生提供一些整除练习题,以帮助他们更好地理解和掌握整除的知识。
一、填空题1. 16 ÷ ___ = 42. 24 ÷ ___ = 33. 36 ÷ ___ = 64. 48 ÷ ___ = 85. 64 ÷ ___ = 2二、选择题1. 12 ÷ 4 =A. 2B. 3C. 4D. 52. 15 ÷ 3 =A. 3B. 4C. 5D. 63. 20 ÷ 5 =A. 3B. 4C. 5D. 64. 27 ÷ 9 =A. 2B. 3C. 4D. 55. 40 ÷ 8 =A. 4B. 5C. 6D. 7三、解答题1. 小明有36本故事书,他打算把书平均分成9堆,每堆有多少本?2. 小红有48个苹果,她打算把苹果平均分给8个朋友,每个朋友能分到几个苹果?3. 一包书包装了56本数学书,每个包装箱最多能装多少包?4. 小华把72个饼干平均分给6个小朋友,每个小朋友能分到几个饼干?5. 一箱苹果有96个,小亮把苹果平均分给8个朋友,每个朋友能分到几个苹果?四、解决问题1. 小明有51个糖果,他想把这些糖果分成若干堆,每堆都有7个,问小明最多可以分成几堆?2. 小红有96个贝壳,她想把这些贝壳平均分到16个班级,每个班级能分到几个贝壳?3. 一辆公交车每天能载60个乘客,如果每个座位上都坐满乘客,这辆公交车一天最多能载几个乘客?4. 一共有120只苹果,要把这些苹果分成几堆,每堆都有5只,问最多能分成几堆?5. 一辆火车一次能拉10节车厢,每节车厢能装载50人,那么这辆火车一次最多能拉多少乘客?通过上述整除练习题的训练,相信小学三年级的学生们能够更好地理解整除的概念,掌握整除的运算规则,并提高他们的计算能力和解决问题的能力。
数的整除练习题(打印版)
![数的整除练习题(打印版)](https://img.taocdn.com/s3/m/acbe0b4ba31614791711cc7931b765ce05087a88.png)
数的整除练习题(打印版)# 数的整除练习题## 一、选择题1. 下列哪个数是5的倍数?- A. 23- B. 45- C. 67- D. 892. 能被3整除的数的特征是什么?- A. 个位数是3的倍数- B. 个位数是偶数- C. 所有位数之和是3的倍数- D. 所有位数之和是偶数## 二、填空题1. 一个数的个位数字是\_\_\_\_\_\_,这个数能被2整除。
2. 一个数的个位数字是\_\_\_\_\_\_,这个数能被5整除。
3. 一个数的各个数位上的数字之和能被3整除,这个数就能被\_\_\_\_\_\_整除。
## 三、判断题1. 所有偶数都能被4整除。
()2. 一个数的末尾两位数能被4整除,这个数就能被4整除。
()3. 一个数如果末尾是0或5,那么这个数一定能被5整除。
()## 四、计算题1. 计算下列各数的最大公因数(GCD):- 36和48- 54和722. 计算下列各数的最小公倍数(LCM):- 12和18- 24和36## 五、简答题1. 请解释什么是数的整除,并给出一个例子。
2. 请说明如何判断一个数是否能被11整除。
## 六、应用题1. 一个班级有48名学生,如果每4名学生组成一个小组,可以组成多少个小组?2. 一个长方形的长是18厘米,宽是12厘米,这个长方形的面积能否被36整除?为什么?请同学们认真完成以上练习题,通过这些题目,可以加深对数的整除概念的理解,并提高解题能力。
在解答过程中,注意审题,运用整除的性质和规则,逐步培养逻辑思维和数学素养。
小学奥数 整除问题
![小学奥数 整除问题](https://img.taocdn.com/s3/m/9ba0fbfac1c708a1284a44f6.png)
小学数学整除问题一、相关概念对于整数a和不为零的整数b,如果a除以b的商是整数且没有余数,我们就说a能被b整除,b能整除a。
a就是b的倍数,b是a 的约数。
0是任何自然数的倍数,1是任何整数的约数二、一些数的整除特征①被2整除的特征:数的个位上是0、2、4、6、8(即是偶数)②被3、9整除的特征:数的各数位上的数字和是3或9的倍数③被5整除的特征:数的个位上是0、5④被4、25整除的特征:数的末两位是4或25的倍数⑤被8、125整除的特征:数的末三位是8或125的倍数⑥被11整除的特征:数的奇数位上的数字和与偶数位上的数字和,两者的差是11的倍数⑦被7、11、13整除的特征:数的末三位与末三位以前的数字所组成的数,两者的差是7、11、13的倍数⑧一个整数既能被2整除又能被3整除,那这个数就能被6整除一个整数既能被2整除又能被5整除,那这个数就能被10整除一个整数既能被3整除又能被5整除,那这个数就能被15整除三、整除的应用(一)简单应用题型例1.期末考试六年级某班数学平均分是90分,总分是□95□,这个班有多少名学生?解析:总分=平均分×人数,即□95□是90的倍数,而90=2×5×9,□95□也应为2、5、9的倍数,根据相关数的整除特征,□95□的个位数一定是0,而□+9+5+0的和也一定是9的倍数,所以千位上的□一定是4,总分一定是4950,学生人数=4950÷90=55(人)例2.一位马虎的采购员买了36套桌椅,,洗衣服时将购货发票洗烂了,只能依稀看到:36套桌椅,单价:□3.□□元,总价:1□24.5□元。
你能帮忙算出单价和总价吗?解析:先不考虑小数点.总价=单价×数量,即1□245□应是36的倍数,而36=4×9,1□245□也应为4、9的倍数,根据相关数的整除特征,5□应为4的倍数,即个位上的□只能是2或6,同时,1+□+2+4+5+□应是9的倍数.如果个位上取2,那么百位上的□应是4,1424.52÷36=39.57,与题不符所以个位上只能取6,那么百位上的□应是0或9,如果是0,1024.56÷36=28.46,与题不符.所以总价应为1924.56元,单价=1924.56÷36=53.46元例3.水果店运来苹果和桔子共六筐,分别重15,16,18,19,20,31千克,两天已卖出其中五筐.卖出的五筐中苹果是桔子重量的2倍.剩下一筐是哪筐?解析:因为五筐中苹果是桔子重量的2倍,说明这五筐的总重量应是3的倍数.六筐的总重量是15+16+18+19+20+31=119千克,119÷3=39…2,由于其中5筐总重量是3的倍数,除以3没有余数,也就是说剩下的那筐重量除以3后,余数是2.在六筐中,20除以3的余数是2,所以,剩下那筐重20千克.例4.希望小学有11个兴趣小组,各小组人数如下表:一天下午,学校同时举办写作、数学两个讲座,已知有10个小组去听讲座,其中叫写作讲座的人数是听数学讲座人数的6倍,还剩下一个小组在讨论问题,这一组是哪个小组?解析:由“其中叫写作讲座的人数是听数学讲座人数的6倍”可知:听讲座的人数一定是7的倍数,除以7肯定没有余数,而总人数除以7必得一余数,再看表中哪组人数除以7得到的余数,与上面那个余数相同,该组就是去参加讨论的那组例5.小兵和小亮两人做一种轮流报数的游戏。
小学奥数之数的整除性(题目+答案)
![小学奥数之数的整除性(题目+答案)](https://img.taocdn.com/s3/m/69dc0250a32d7375a5178061.png)
=1665 7. 96910 或 46915
五位数 A691B 能被 55 整除,即此五位数既能被 5 整除,又能被 11 整除.所以
B=0 或 5.当 B=0 时, A6910 能被 11 整除,所以(A+9+0)-(6+1)=A+2 能被 11 整除,因
此 A=9;当 B=5 时,同样可求出 A=4.所以,所求的五位数是 96910 或 46915. 8. 90
4. 能同时被 2、5、7 整除的最大五位数是_____.
5. 1 至 100 以内所有不能被 3 整除的数的和是_____.
6. 所有能被 3 整除的两位数的和是______.
7. 已知一个五位数□691□能被 55 整除,所有符合题意的五位数是_____.
8. 如果六位数 1992□□能被 105 整除,那么它的最后两位数是_____.
=(1+100) 2 100-(3+99) 2 33
=5050-1683 =3367 6. 1665 能被 3 整除的二位数中最小的是 12,最大的是 99,所有能被 3 整除的二位数 如下: 12,15,18,21,…,96,99 这一列数共 30 个数,其和为 12+15+18+…+96+99
14.试找出这样的最小自然数,它可被 11 整除,它的各位数字之和等于 13.
教师之家-免费中小学教学资源下载网(/)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
小学三年级数的整除练习题
![小学三年级数的整除练习题](https://img.taocdn.com/s3/m/1c80c088db38376baf1ffc4ffe4733687f21fc75.png)
小学三年级数的整除练习题
一、填空题
1. 将16分成4等份,每份是 ________。
2. 18除以3等于 ________。
3. 20除以2等于 ________。
4. 24除以4等于 ________。
5. 将36分成6等份,每份是 ________。
二、选择题
1. 40除以5的商是:
A. 4
B. 8
C. 10
2. 48除以6的商是:
A. 6
B. 8
C. 12
3. 50除以10的商是:
A. 4
B. 5
C. 10
4. 54除以9的商是:
A. 5
B. 6
C. 9
三、解答题
1. 用列竖式计算:
647 ÷ 7 = _____
2. 请你判断下面的数是不是13的倍数,并用√或×表示:
a) 26 b) 39 c) 65 d) 78
3. 小华把80元均分成10等份,每份是多少钱?
4. 小明用手算出来80除以8的商是10,请你用竖式验证一下。
5. 将14分成2等份,每份是多少?
四、应用题
1. 一个班级有36名同学,他们排成6排,每排有几个同学?
2. 小明想把90个橙子平均分成6袋,每袋有多少个橙子?
3. 小华有24支铅笔,他要将它们平均分给3个朋友,每人可以得到几支铅笔?
4. 一个花坛里有36朵花,小红想将它们平均放在3个花盆里,每个花盆里有几朵花?
以上就是一份关于小学三年级数的整除练习题,希望可以帮助学生们巩固和提高自己的数学能力。
奥数专题数的整除特性
![奥数专题数的整除特性](https://img.taocdn.com/s3/m/080f5111ff4733687e21af45b307e87101f6f83e.png)
奥数专题
下列数字哪些能被2整除,哪些能被5 整除?
① 125,②756, ③1011, ④2450, ⑤7855 ,⑥8104,⑦9152,⑧70975
能被2整除:②、④、⑥、⑦ 能被5整除:①、④、⑤、⑧
(一)数旳整除特征:
假如具有某个条件旳数,都能被 整数b整除,反过来,能被b整除旳 数,都具有这个条件,那么这个条 件就叫做被b整除旳数旳特征.
(二)数旳整除特征
1.能被2或5整除旳数旳特征是: 这个数旳末 一位能被2或5整除. 2.能被4或25整除旳数旳特征是: 这个数旳末两位能被4或25整除. 3. 能被8或125整除旳数旳特征是: 这个数旳末三位能被8或125整除.
练习1
(1)下列整数 ①53728, ②375, ③1011, ④328925,⑤8421862,⑥8150, ⑦73600,⑧309108.
能被4整除旳是: 能被25整除旳是:
练习1
(1)下列整数 ①53728, ②375, ③1011, ④328925,⑤8421862,⑥8150, ⑦73600,⑧309108.
能被4整除旳是:①、④、⑦、⑧ 能被25整除旳是:②、⑥、⑦、
练习1(2)能被4整除来自最大四位数________.(3)能被8整除旳最小四位数是
除数
• 能被整除旳数旳特征
2或5 4或25 8或125
末位数能被2或5整除 末两位数能被4或25整除 末三位数能被8或125整除
7、11、13 • 一种整数旳末三位与末三位此 前旳数字构成旳数旳差能被7, 11或13整除
,
最大三位数
..
练习1
(2)当m= 7 时,能被25整除.
(3)能被4整除旳最大四位数___9996__.
三年级奥数系列2——数的整除
![三年级奥数系列2——数的整除](https://img.taocdn.com/s3/m/75721d49a300a6c30c229f6a.png)
数的整除
知识点:
一个数的个位数字是偶数,这个数能被2整除
一个数的个位数字是0或5,这个数能被5整除
一个数的各位数字和是3的倍数,这个数能被3整除
练习1:判断132,158,710,195,496,9760,765,3335,10100,424这10个数,哪些数能被2整除?哪些数能被5整除?哪些数能同时被2,5整除?
练习2:3,6,5,0组成的不重复的四位数中,能同时被2,5整除的数有哪些?
练习3:2,4,6,8这4个数字写成的没有重复的三位数中哪些数能被3整除?
练习4:0,1,2,3,4,5这6个数组成的没有重复数字的两位数中,能被5整除的有哪些?能被2整除的有哪些?能被10整除的有哪些?
练习5:请在2917的左右各添写一个数字,使得六位数能被3整除,并满足(1)尽可能大,(2)尽可能小
练习6:自然数123ab能被30整除,求这个自然数。
(数字不重复)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学三年级奥数练习:数的整除
1.能同时被2、5、7整除的五位数的多少?
2.下面一个19983位数33…3(991个3)□44…4(991个4)中间漏
写了一个数字(方框),已知,这个多位数被7整除,那么,中间方框
内的数字是多少?
3.有这样的两位数,它的两个数字之和能被4整除,而且比这个
两位数大1的数,它的两个数字之和也能被4组成,所以这样的两位
数的和是多少?
4.一个小于200的自然数,它的每位数字都是奇数,并且它是两
个两位数的乘积,那么这个自然数是多少?
5.任取一个四位数乘3456,用A表示其积的个位数字之和,用B
表示A的个位数字之和,C表示B是个位数字之和,那么C是多少?
6.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四
位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数
的末位数字是多少?
7.如果六位数1992□□能被105整除,那么它的最后两位数是多少?
8.从左向右编号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列,然后留下的同学再报数,
第三次报数后,最后留下的同学中,从左边数第一个人的最初编号是
多少?
9.173□是四位数字,老师在这个□中先后添入3个数字,所得到
的3个四位数,依次可被9、11、6整除,老师添入的3个数字的和是
多少?
10.在1992后面补上三个数字,组成一个七位数,使他们能被2、3、5、11整除,这个七位数最小值是多少?。