数列的通项公式与前n项和练习题
数列专题训练包括通项公式求法和前n项和求法 的方法和习题
数列专题1、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).2、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;3、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 4、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 5、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.常用数列不等式证明中的裂项形式:(1)(1111n n =-+n(n+1)1111()1k n k =-+n(n+k);(2) 211111()1211k k k <=---+2k (3)211111111(1)(1)1kk k k k k k k k-=<<=-++-- (4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦; (5)()()111!!1!n n n n =-++(6)=<<=1(1)n n >+)一.数列的通项公式的求法1.定义法:①等差数列通项公式;②等比数列通项公式。
例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=2.公式法:已知n S (即12()n a a a f n +++=L )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
等差数列前n项和公式(二)
4.2.4 等差数列前n项和公式(二)
(1 + )
,Sn=na1
2
1.通项公式:an=a1+(n-1)d,前n项和公式:sn=
+
(−பைடு நூலகம்)
d.
2
2.等差数列的通项公式和前n项和公式中共含有五个量:a1,an,n,d,
Sn,知道其中的三个量,可以通过解方程(组)求出另外的两个量.
3.已知数列{an}的前n项和公式是Sn=n2+n,求数列的通项公式.
当n≥2时,Sn-1=(n-1)2+(n-1)=n2-n.
∴an=Sn-Sn-1=(n2+n)-(n2-n)=2n.
同时当n=1时,a1=S1=2.∴当n∈N*时,an=2n
亲爱的同学们,下节课见!
3
2
21
2
a2= ,a6= .∴S7=
(1 +7 )·7
( + )·7
= 2 6 =
2
2
3 21
(2+ 2 )×7
2
=42
2.要使等差数列32,29,26,…的前n项的和Sn取最大值,求n的值.
an=a1+(n-1)·d=32+(n-1)·(-3)=35-3n≥0.
35
3
∴n≤ ∴当n=11时,Sn取最大值
(1 + )·
(18+6)×
∵Sn=
.∴48=
.∴n=4.
2
2
又∵an=a1+(n-1)·d.∴6=18+3d.∴d=-4
3.计算100以内能被3整除的所有自然数的和.
(3+99)×33
3+6+9+…+99=
=1683
2
解答题
数列通项、数列前n项和的求法例题+练习
通项公式和前n 项和一、新课讲解:求数列前N 项和的办法 1. 公式法(1)等差数列前n 项和:特此外,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中央项乘以项数.这个公式在许多时刻可以简化运算. (2)等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要留意对公比的评论辩论.(3)其他公式较罕有公式:1.)1(211+==∑=n n k S nk n 2.)12)(1(6112++==∑=n n n k S nk n3.213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种办法是在推导等比数列的前n 项和公式时所用的办法,这种办法重要用于求数列{a n ·b n }的前n 项和,个中{ a n }.{ b n }分离是等差数列和等比数列.[例3]乞降:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………① [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和.演习:求:S n =1+5x+9x 2+······+(4n -3)xn-1答案:当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x[4x(1-x n ) 1-x+1-(4n-3)x n ]3. 倒序相加法乞降这是推导等差数列的前n 项和公式时所用的办法,就是将一个数列倒过来分列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 4. 分组法乞降有一类数列,既不是等差数列,也不是等比数列,若将这类数列恰当拆开,可分为几个等差.等比或罕有的数列,然后分离乞降,再将其归并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa an ,… 演习:求数列•••+•••),21(,,813,412,211nn 的前n 项和.5. 裂项法乞降这是分化与组合思惟在数列乞降中的具体运用. 裂项法的本质是将数列中的每项(通项)分化,然后从新组合,使之能消去一些项,最终达到乞降的目标. 通项分化(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项乞降)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立演习:求63135115131+++之和.6. 归并法乞降针对一些特别的数列,将某些项归并在一路就具有某种特别的性质,是以,在求数列的和时,可将这些项放在一路先乞降,然后再求S n .[例12]求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. [例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.7. 运用数列的通项乞降先依据数列的构造及特点进行剖析,找出数列的通项及其特点,然后再运用数列的通项揭示的纪律来求数列的前n 项和,是一个重要的办法. [例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 演习:求5,55,555,…,的前n 项和.以上一个7种办法固然各有其特色,但总的原则是要擅长转变原数列的情势构造,使其能进行消项处理或能运用等差数列或等比数列的乞降公式以及其它已知的根本乞降公式来解决,只要很好地掌控这一纪律,就能使数列乞降化难为易,水到渠成.求数列通项公式的八种办法一.公式法(界说法)依据等差数列.等比数列的界说求通项 二.累加.累乘法1.累加法 实用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式.解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-2.累乘法 实用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯三.待定系数法 实用于1()n n a qa f n +=+剖析:经由过程凑配可转化为1121()[()]n n a f n a f n λλλ++=+; 解题根本步调: 1.肯定()f n2.设等比数列{}1()n a f n λ+,公比为2λ3.列出关系式1121()[()]n n a f n a f n λλλ++=+4.比较系数求1λ,2λ5.解得数列{}1()n a f n λ+的通项公式6.解得数列{}n a 的通项公式例4 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……例5 已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式. 解法一:设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n n a --⋅是首项为111435a --⋅=-,公比为2的等比数列, 所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二: 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略留意:例 6 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.留意:形如21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列.例7 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式. 解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅四.迭代法例8 已知数列{}n a 知足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21nn n n a a ++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式. 五.变性转化法1.对数变换法 实用于指数关系的递推公式例9 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 双方取经常运用对数得1lg 5lg lg3lg 2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg3lg3lg 2,4164x y ==+ 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg3lg3lg 2lg 04164n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +++是认为lg3lg3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.2.倒数变换法 实用于分式关系的递推公式,分子只有一项 例10 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 3.换元法 实用于含根式的递推关系 例11 已知数列{}n a知足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -===首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++.六.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例12 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立.(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 七.阶差法1.递推公式中既有n S ,又有n a 剖析:把已知关系经由过程11,1,2n nn S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例13 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式. 解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a =当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --= 当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去 所以32n a n =-2.对无限递推数列例14 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =八.不动点法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例 15 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n nn n a p a pk a q a q++--=⋅--,个中a pck a qc-=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=--- (2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p +=+--,个中2ck a d=+.例16 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19n n a -=+-.。
数列通项公式和前n项和求解方法(有针对训练)
专题一:数列通项公式的求法 一.观察法(关键是找出各项与项数n 的关系.)例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,52,21,32,1一、 公式法公式法1:特殊数列公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n例2:已知数列}{n a 的前n 项和n S 的公式12-+=n n S n ,求}{n a 的通项公式.例3:已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.三、 累加法 【型如)(1n f a a n n +=+的递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得。
例: 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a例4:已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.四、累乘法 【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例5:在数列{n a }中,1a =1, n n a n a n ⋅=⋅++1)1( ,求n a 的表达式.五、构造特殊数列法 【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c d λ, 所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列. 例6:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .六、迭代法【一般是递推关系含有的项数较多】例7:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式.解析:由题得 )1(2121-=++++-n a a a a n n ①2≥n 时, )2(2121-=+++-n a a a n ②由①-②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a n n =⋅⋅- ,求数列{n a }的通项公式。
数列的通项公式及前n项和例题及练习
求数列的通项公式:•公式法:项公式。
•累加法:适用于:a n 1 a n f(n)1.等差数列a n是递减数列,且a2 a3 a4=48, a2 a3 a4=12,求数列的通2. 若在数列a n中,a13, a n 1 a n求通项a n。
练习:已知数列{a n}满足a n1 a n 2n, a1 1,求数列{a n}的通项公式。
三.累乘法:适用于: a n 1 f(n)a n3•在数列a n中,a1a n 1 2a n ( n N ),求通项a n。
练习:在数列a n中, a i 1,a n 1n--- a nn 1(n N ),求通项a n。
四、倒数变换法 适用于分式关系的递推公式,分子只有一项 4..设数列{a n }满足a 12, a . 1六、S n 与a n 之间的关系练习:设数列a n 的前n 项和S n =n 2 n 2,求a n 。
练习:已知数列{a n }满足a nia 1 1,求数列{a n }的通项公式。
五、待定系数法适用于a n 1 qa n f(n)5.已知数列{a n }中,a 1 1,a n1(n 2),求数列a n 的通项公式。
练习:已知数列{a n }满足a n 12a n4 3n1, a i 1,求数列a n 的通项公式。
6.设数列a n 的前n 项和S n =|a n3,求 a n 。
求数列的前n项和:、公式法1.求x x2的前n项和.分组法求和1 1 12 .求数列12,24,38,???,(n *),???的前n项和。
练习1:求数列的前n项和:1 1,- 4,丄7,a a13n 2 a练习2:求1 11 111111n个1 1之和.错位相减法3.求和:S n 1 3x 5x2 7x3(2n 1)x n 1四、倒序相加法求和练习:设f(x)= 一,求 f(- 5)+f(- 4)+ I 1 I f(6)的值。
2X42I 门1 1 1———练习2: 求 12 12 3练习:求数列2,昇 笋前n项的和.4.求 sin 21 sin 2 2 sin 2 3sin 288 sin 289 的值五、 裂项法求和 5.在数列{a n }中,a--- ,求数列{a n }的前n 项和。
等比数列前n项和公式基础训练题(有详解)
1.A
【解析】
【分析】
利用等比数列的通项公式、前 项和公式列出方程组,求出首项和公比,由此能求出 .
【详解】
解: 等比数列 为单调递增数列,
设其前 项和为 , , ,
,
解得 , ,
.
故选: .
【点睛】
本题考查数列的第5项的求法,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.
23.已知正项等比数列{ }满足 .记 ,则数列{ }的前 项和为________.
三、解答题
24.已知 为等差数列,且 , .
(1)求 的通项公式;
(2)若等比数列 满足 , ,求数列 的前 项和公式.
25.等比数列{ }的前n项和为 ,已知 , , 成等差数列
(1)求{ }的公比q;
(2)求 - =3,求
【详解】
因为 ,所以 .又 ,所以 , ,
【点睛】
若 是等比数列,且 ,则 ,
前 项和公式 。
6.B
【解析】
【分析】
根据等比数列通项公式,可求得首项与公比;再代入即可求得结果。
【详解】
数列 是等比数列,且 ,
所以由通项公式可得 ,解得
所以
代入
可得
所以选B
【点睛】
本题考查了等比数列通项公式的简单应用,属于基础题。
等比数列前n项和公式基础训练题(有详解)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知等比数列 为单调递增数列,设其前 项和为 ,若 , ,则 的值为( )
A.16B.32C.8D.
2.设等比数列{ }的前n项和为 ,若 =3,则 =
等比数列的前n项和练习
等比数列的前n项和练习1、设S n是数列{a n}(n∈N*)的前n项和,已知a1=4,a n+1=S n+3n,设b n=S n ﹣3n.(Ⅰ)证明:数列{b n}是等比数列,并求数列{b n}的通项公式;(Ⅱ)令c n=2log2b n﹣+2,求数列{c n}的前n项和T n.2、已知数列{a n}的前n项和S n=,且a1=1.(1)求数列{a n}的通项公式;(2)令b n=lna n,是否存在k(k≥2,k∈N*),使得b k、b k+1、b k+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.3、数列{a n}满足a1=1,a2=r(r>0),令b n=a n•a n+1,{b n}是公比为q(q≠0,q≠﹣1)的等比数列,设c n=a2n﹣1+a2n.(1)求证:c n=(1+r)•q n﹣1;(2)设{c n}的前n项和为S n,求的值;(3)设{c n}前n项积为T n,当q=﹣时,T n的最大值在n=8和n=9的时候取到,求n为何值时,T n取到最小值.4、已知等比数列{a n}的公比为q,a1=,其前n项和为S n(n∈N*),且S2,S4,S3成等差数列.(I)求数列{a n}的通项公式;(Ⅱ)设b n=S n﹣(n∈N*),求b n的最大值与最小值.5、等比数列{}的前n 项和为,已知,,成等差数列(1)求{}的公比q;(2)若-=3,求。
6、对于一组向量(),令,如果存在(),使得,那么称是该向量组的“向量”.(1)设(),若是向量组的“向量”,求实数的取值范围;(2)若(),向量组是否存在“向量”?给出你的结论并说明理由;(3)已知均是向量组的“向量”,其中,.设在平面直角坐标系中有一点列满足:为坐标原点,为的位置向量的终点,且与关于点对称,与()关于点对称,求的最小值.7、已知数列为等比数列,其前项和为,已知,且对于任意的有,,成等差数列.求数列的通项公式;已知(),记,若对于恒成立,求实数的范围.8、已知各项都为正数的等比数列的前n项和,数列的通项公式,若是与的等比中项。
等比数列及其前n项和专题练习(含参考答案)
数学 等比数列及其前n 项和一、选择题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( )A .3B .4C .5D .62.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A .32B .23C .-23D .23或-233.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯塔的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( ) A .16 B .32 C .64D .1285.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则实数a 的值为( )A .-13B .13C .-12D .126.设等比数列{a n }的公比为q >0,且q ≠1,S n 为数列{a n }前n 项和,记T n =a nS n ,则( )A .T 3≤T 6B .T 3<T 6C .T 3≥T 6D .T 3>T 67.已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列{1a n}的前4项和为( ) A .158或4B .4027或4C .4027D .1588.已知数列{a n }是递减的等比数列,S n 是{a n }的前n 项和,若a 2+a 5=18,a 3a 4=32,则S 5的值是( )A .62B .48C .36D .31二、填空题9.数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8=_____.10.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2= .11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=_____.12. 已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是_____. 三、解答题13.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .14. (2018·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列. (2)求数列{S n }的前n 项和T n .1.已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( )A .52或-52B .-52C .52D .122.等比数列{a n }共有奇数项,所有奇数项的和S 奇=255,所有偶数项的和S 偶=-126,末项是192,则首项a 1等于( )A .1B .2C .3D .43.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n =( ) A .80 B .30 C .26D .164.在等比数列{a n }中,a 1+a n =82,a 3·a n -2=81,且前n 项和S n =121,则此数列的项数n 等于( )A .4B .5C .6D .75. 已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *,数列{b n }满足b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c na n=b n ,n ∈N *,求{c n }的前n 项和T n .【参考答案】一、选择题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .62.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( C ) A .32B .23C .-23D .23或-23[解析] 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23,又a 1<0,因此q =-23.故选C .3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯塔的2倍,则塔的顶层共有灯( B )A .1盏B .3盏C .5盏D .9盏[解析] 设塔的顶层共有灯x 盏,则各层的灯数构成一个公比为2的等比数列,由x (1-27)1-2=381可得x =3.4.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且S 3=14,a 3=8,则a 6=( C ) A .16 B .32 C .64D .128[解析] 由题意得,等比数列的公比为q ,由S 3=14,a 3=8,则⎩⎪⎨⎪⎧a 1(1+q +q 2)=14,a 3=a 1q 2=8,,解得a 1=2,q =2,所以a 6=a 1q 5=2×25=64,故选C .5.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则实数a 的值为( A )A .-13B .13C .-12D .12[解析] 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,又因为{a n }是等比数列,所以a +16=a 2,所以a =-13.6.设等比数列{a n }的公比为q >0,且q ≠1,S n 为数列{a n }前n 项和,记T n =a nS n ,则( D )A .T 3≤T 6B .T 3<T 6C .T 3≥T 6D .T 3>T 6[解析] T 6-T 3=a 6(1-q )a 1(1-q 6)-a 3(1-q )a 1(1-q 3)=q 5(1-q )1-q 6-q 2(1-q )1-q 3=-q 2(1-q )1-q 6,由于q >0且q ≠1,所以1-q 与1-q 6同号,所以T 6-T 3<0,∴T 6<T 3,故选D .7.已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列{1a n}的前4项和为( C ) A .158或4B .4027或4C .4027D .158[解析] 设数列{a n }的公比为q .当q =1时,由a 1=1,得28S 3=28×3=84.S 6=6,两者不相等,因此不合题意. 当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 61-q ,解得q =3.所以数列{a n }的通项公式为a n =3n -1.所以数列{1a n }的前4项和为1+13+19+127=4027.8.已知数列{a n }是递减的等比数列,S n 是{a n }的前n 项和,若a 2+a 5=18,a 3a 4=32,则S 5的值是( A )A .62B .48C .36D .31[解析] 由a 2+a 5=18,a 3a 4=32,得a 2=16,a 5=2或a 2=2,a 5=16(不符合题意,舍去),设数列{a n }的公比为q ,则a 1=32,q =12,所以S 5=32[1-(12)5]1-12=62,选A .二、填空题9.数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8=__320___.[解析] 由题意知log 2a n +1=log 22a n ,∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=647(1-2-3n) .[解析] 设数列{a n }的公比为q ,则q 3=a 5a 2=18,解得q =12,a 1=a 2q=4.易知数列{a n a n +1a n+2}是首项为a 1a 2a 3=4×2×1=8,公比为q 3=18的等比数列,所以a 1a 2a 3+a 2a 3a 4+…+a n a n+1a n +2=8(1-18n )1-18=647(1-2-3n ). 11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=__32___.[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12. 已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是__(-∞,-1]∪[3,+∞)___.[解析] 设等比数列的公比为q ,则S 3=1q +q +1∵|1q +q |=1|q |+|q |≥2(当且仅当|q |=1时取等号) ∴1q +q ≥2或1q+q ≤-2∴S 3≥3或S 3≤-1,∴S 3的取值范围是(-∞,-1]∪[3,+∞). 三、解答题13.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .[分析] 本题考查等比数列的通项公式、前n 项和公式. (1)根据已知,建立含有q 的方程→求得q 并加以检验→代入等比数列的通项公式(2)利用等比数列前n 项和公式与已知建立等量关系即可求解. [解析] (1)设{a n }的公比为q ,由题设得a n =q n -1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2.故a n =(-2)n -1或a n =2n -1. (2)若a n =(-2)n -1,则S n =1-(-2)n 3.由S m =63得(-2)m =-188,此方程没有正整数解.若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6.综上,m =6. [解后反思] 等比数列基本量运算问题的常见类型及解题策略: (1)求通项.求出等比数列的两个基本量a 1和q 后,通项便可求出. (2)求特定项.利用通项公式或者等比数列的性质求解. (3)求公比.利用等比数列的定义和性质建立方程(组)求解.(4)求前n 项和.直接将基本量代入等比数列的前n 项和公式求解或利用等比数列的性质求解.[易错警示] 解方程时,注意对根的检验.求解等比数列的公比时,要结合题意进行讨论、取值,避免错解.14. (2018·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. (1)证明:{S n -n +2}为等比数列. (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.1.已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C )A .52或-52B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C . [技巧点拨] (1)在等差(比)数列的基本运算中要注意数列性质的运用,利用性质解题可简化运算,提高运算的速度.(2)根据等比中项的定义可得,在等比数列中,下标为奇数的项的符号相同,下标为偶数的项的符号相同,在求等比数列的项时要注意这一性质的运用,避免出现符号上的错误.2.等比数列{a n }共有奇数项,所有奇数项的和S 奇=255,所有偶数项的和S 偶=-126,末项是192,则首项a 1等于( C )A .1B .2C .3D .4[解析] ∵a n =192, ∴q =S 偶S 奇-a n =-12663=-2.又S n =a 1-a n q1-q=S 奇+S 偶,∴a 1-192×(-2)1-(-2)=255+(-126),解得a 1=3,故选C .3.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n =( B ) A .80 B .30 C .26D .16[解析] 由等比数列的性质知S n 、S 2n -S n 、S 3n -S 2n 成等比数列,∴(S 2n -2)2=2(14-S 2n ),∴S 2n =6或-4(舍去),又S 2n -S n 、S 3n -S 2n 、S 4n -S 3n 成等比数列,∴82=4(S 4n -14),∴S 4n =30.故选B .另解:(特殊化)不妨令n =1,则a 1=S 1=2,S 3=2(1-q 3)1-q =14,∴q 2+q -6=0,∴q =2或-3(舍去)∴S 4=2(1-q 4)1-q=30.故选B .4.在等比数列{a n }中,a 1+a n =82,a 3·a n -2=81,且前n 项和S n =121,则此数列的项数n 等于( B )A .4B .5C .6D .7[解析] 在等比数列{a n }中,a 3·a n -2=a 1·a n =81,又a 1+a n =82,所以⎩⎪⎨⎪⎧a 1=1,a n =81或⎩⎪⎨⎪⎧a 1=81,a n =1.当a 1=1,a n =81时,S n =1-81q1-q =121,解得q =3.由a n =a 1q n -1得81=3n -1,解得n =5. 同理可得当a 1=81,a n =1时,n =5.故选B .5. 已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *,数列{b n }满足b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+c 3a 3+…+c na n =b n ,n ∈N *,求{c n }的前n 项和T n .[解析] (1)设{a n }的通项公式为a n =a 1q n -1,n ∈N *,由已知a 2+a 4=3(a 1+a 3),a 1q +a 1q 3=3(a 1+a 1q 2),得q =3,由已知a 2n =3a 2n ,即a 1q 2n -1=3a 21q 2n -2, 解得q =3a 1,a 1=1,所以{a n }的通项公式为a n =3n -1.因为b 1=1,b n -b n -1=2n -1(n ≥2,n ∈N *), 可得b 2-b 1=3,b 3-b 2=5,…,b n -b n -1=2n -1, 累加可得b n =n 2.(2)当n =1时,c 1a 1=1,c 1=1,当n ≥2时,c 1a 1+c 2a 2+c 3a 3+…+c na n =n 2①c 1a 1+c 2a 2+c 3a 3+…+c n -1a n -1=(n -1)2② 由①-②得到c na n =2n -1,c n =(2n -1)·3n -1,n ≥2,综上,c n =(2n -1)·3n -1,n ∈N *.T n =1×30+3×31+…+(2n -3)×3n -2+(2n -1)×3n -1③ 3T n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ④ 由③-④得到-2T n =1×30+2×(31+32+…+3n -1)-(2n -1)×3n =1×30+2×3(3n -1-1)3-1-(2n -1)×3n .所以T n =1+(n -1)×3n .。
等比数列的前n项和练习题
等比数列的前n项和练习1、设Sn 是数列{an}(n∈N*)的前n项和,已知a1=4,an+1=Sn+3n,设bn=Sn﹣3n.(Ⅰ)证明:数列{bn }是等比数列,并求数列{bn}的通项公式;(Ⅱ)令cn =2log2bn﹣+2,求数列{cn}的前n项和Tn.2、已知数列{an }的前n项和Sn=,且a1=1.(1)求数列{an}的通项公式;(2)令bn =lnan,是否存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.3、数列{an }满足a1=1,a2=r(r>0),令bn=an•an+1,{bn}是公比为q(q≠0,q≠﹣1)的等比数列,设cn =a2n﹣1+a2n.(1)求证:cn=(1+r)•q n﹣1;(2)设{cn }的前n项和为Sn,求的值;(3)设{cn }前n项积为Tn,当q=﹣时,Tn的最大值在n=8和n=9的时候取到,求n为何值时,Tn取到最小值.4、已知等比数列{an }的公比为q,a1=,其前n项和为Sn(n∈N*),且S2,S 4,S3成等差数列.(I)求数列{an}的通项公式;(Ⅱ)设bn=Sn﹣(n∈N*),求bn的最大值与最小值.5、等比数列{}的前n 项和为,已知,,成等差数列(1)求{}的公比q;(2)若-=3,求。
6、对于一组向量(),令,如果存在(),使得,那么称是该向量组的“向量”.(1)设(),若是向量组的“向量”,数的取值围;(2)若(),向量组是否存在“向量”?给出你的结论并说明理由;(3)已知均是向量组的“向量”,其中,.设在平面直角坐标系中有一点列满足:为坐标原点,为的位置向量的终点,且与关于点对称,与()关于点对称,求的最小值.7、已知数列为等比数列,其前项和为,已知,且对于任意的有,,成等差数列.求数列的通项公式;已知(),记,若对于恒成立,数的围.8、已知各项都为正数的等比数列的前n项和,数列的通项公式,若是与的等比中项。
数列的通项公式和前n项和
数列的通项公式和前n项和一.选择题(共20小题)1.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.42.在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.183.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5 B.4 C.3 D.24.已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100 B.210 C.380 D.4005.在等差数列{a n}中,若a4+a6=12,S n是数列{a n}的前n项和,则S9的值为()A.48 B.54 C.60 D.666.若数列{a n}是等差数列,首项a1>0,a2003+a2004>0,a2003.a2004<0,则使前n项和S n>0成立的最大自然数n是()A.4005 B.4006 C.4007 D.40087.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.4 B.2 C.1 D.88.设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.69.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1 C.44D.44+110.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)11.已知{a n}是首项为1的等比数列,S n是{a n}的前n项和,且9S3=S6,则数列的前5项和为()A.或5 B.或5 C.D.12.已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.5513.设S n为等比数列{a n}的前n项和,8a2+a5=0,则=()A.﹣11 B.﹣8 C.5 D.1114.设等比数列{a n}的前n项和为S n,若=3,则=()A.2 B.C.D.315.等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=()A.15 B.7 C.8 D.1616.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2 B.4 C.D.17.各项均为正数的等比数列{a n}的前n项和为S n,若S10=2,S30=14,则S40等于()A.80 B.30 C.26 D.1618.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.619.已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.9720.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.12二.填空题(共10小题)21.在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.22.在等差数列{a n}中,已知a3+a8=10,则3a5+a7=.23.已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n=.24.设等差数列{a n}的前n项和为S n,若a6=s3=12,则a n=.25.数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=.26.在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.27.已知{a n}是递增等比数列,a2=2,a4﹣a3=4,则此数列的公比q=.28.若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.29.等比数列{a n}的公比q>0.已知a2=1,a n+2+a n+1=6a n,则{a n}的前4项和S4=.30.S n为等差数列a n的前n项和,S2=S6,a4=1则a5=.数列的通项公式和前n项和参考答案与试题解析一.选择题(共20小题)1.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.4【分析】设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.【解答】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.【点评】本题主要考查等差数列的通项公式的应用,属于基础题.2.(2011•重庆)在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.18【分析】根据所给的等差数列的两项做出等差数列的公差,写出等差数列的第十项的表示式,用第三项加上七倍的公差,代入数值,求出结果.【解答】解:∵等差数列{a n}中,a2=2,a3=4,∴d=a3﹣a2=4﹣2=2,∴a10=a3+7d=4+14=18故选D.【点评】本题考查等差数列的公差求法,考查等差数列的通项公式,这是一个等差数列基本量的运算,是一个数列中最常出现的基础题.3.(2006•广东)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5 B.4 C.3 D.2【分析】写出数列的第一、三、五、七、九项的和即5a1+(2d+4d+6d+8d),写出数列的第二、四、六、八、十项的和即5a1+(d+3d+5d+7d+9d),都用首项和公差表示,两式相减,得到结果.【解答】解:,故选C.【点评】等差数列的奇数项和和偶数项和的问题也可以这样解,让每一个偶数项减去前一奇数项,有几对得到几个公差,让偶数项和减去奇数项和的差除以公差的系数.4.(2006•全国卷Ⅱ)已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100 B.210 C.380 D.400【分析】由第二项和第四项的值可以求出首项和公差,写出等差数列前n项和公式,代入n=10得出结果.【解答】解:d=,a1=3,∴S10==210,故选B【点评】若已知等差数列的两项,则等差数列的所有量都可以求出,只要简单数字运算时不出错,问题可解.5.(2006•重庆)在等差数列{a n}中,若a4+a6=12,S n是数列{a n}的前n项和,则S9的值为()A.48 B.54 C.60 D.66【分析】等差数列的等差中项的特点,由第四项和第六项可以求出第五项,而要求的结果前九项的和可以用第五项求出,两次应用等差中项的意义.【解答】解:在等差数列{a n}中,若a4+a6=12,则a5=6,S n是数列的{a n}的前n项和,∴=9a5=54故选B.【点评】观察具体的等差数列,认识等差数列的特征,更加理解等差数列的概念,对本问题应用等差中项要总结,更好培养学生由具体到抽象、由特殊到一般的认知能力.6.(2004•重庆)若数列{a n}是等差数列,首项a1>0,a2003+a2004>0,a2003.a2004<0,则使前n项和S n>0成立的最大自然数n是()A.4005 B.4006 C.4007 D.4008【分析】对于首项大于零的递减的等差数列,第2003项与2004项的和大于零,积小于零,说明第2003项大于零且2004项小于零,且2003项的绝对值比2004项的要大,由等差数列前n项和公式可判断结论.【解答】解:解法1:由a2003+a2004>0,a2003•a2004<0,知a2003和a2004两项中有一正数一负数,又a1>0,则公差为负数,否则各项总为正数,故a2003>a2004,即a2003>0,a2004<0.∴S4006==>0,∴S4007=•(a1+a4007)=4007•a2004<0,故4006为S n>0的最大自然数.选B.解法2:由a1>0,a2003+a2004>0,a2003•a2004<0,同解法1的分析得a2003>0,a2004<0,∴S2003为S n中的最大值.∵S n是关于n的二次函数,如草图所示,∴2003到对称轴的距离比2004到对称轴的距离小,∴在对称轴的右侧.根据已知条件及图象的对称性可得4006在图象中右侧零点B的左侧,4007,4008都在其右侧,S n>0的最大自然数是4006.【点评】本题没有具体的数字运算,它考查的是等差数列的性质,有数列的等差中项,等差数列的前n项和,实际上这类问题比具体的数字运算要困难,对同学们来说有些抽象.7.(2012•安徽)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.4 B.2 C.1 D.8【分析】利用等比数列的通项公式求解.【解答】解:∵公比为2的等比数列{a n}的各项都是正数,且a3a11=16,∴,且a1>0,解得,∴a5==1.故选:C.【点评】本题考查等比数列的第5项的求法,是基础题,解题时要注意等比数列的性质的合理运用.8.(2010•辽宁)设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.6【分析】3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,由此能求出公比q=4.【解答】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,a4=4a3,∴公比q=4.故选:B.【点评】本题考查公比的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.9.(2011•四川)数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1 C.44D.44+1【分析】根据已知的a n=3S n,当n大于等于2时得到a n=3S n﹣1,两者相减,根+1=a n,得到数列的第n+1项等于第n项的4倍(n大于等于2),所以据S n﹣S n﹣1得到此数列除去第1项,从第2项开始,为首项是第2项,公比为4的等比数列,由a1=1,a n+1=3S n,令n=1,即可求出第2项的值,写出2项以后各项的通项公式,把n=6代入通项公式即可求出第6项的值.=3S n,得到a n=3S n﹣1(n≥2),【解答】解:由a n+1﹣a n=3(S n﹣S n﹣1)=3a n,两式相减得:a n+1则a n=4a n(n≥2),又a1=1,a2=3S1=3a1=3,+1得到此数列除去第一项后,为首项是3,公比为4的等比数列,所以a n=a2q n﹣2=3×4n﹣2(n≥2)则a6=3×44.故选A【点评】此题考查学生掌握等比数列的确定方法,会根据首项和公比写出等比数列的通项公式,是一道基础题.10.(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求【解答】解:∵3a n+a n=0+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选C【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题11.(2010•天津)已知{a n}是首项为1的等比数列,S n是{a n}的前n项和,且9S3=S6,则数列的前5项和为()A.或5 B.或5 C.D.【分析】利用等比数列求和公式代入9s3=s6求得q,进而根据等比数列求和公式求得数列的前5项和.【解答】解:显然q≠1,所以,所以是首项为1,公比为的等比数列,前5项和.故选:C【点评】本题主要考查等比数列前n项和公式及等比数列的性质,属于中等题.在进行等比数列运算时要注意约分,降低幂的次数,同时也要注意基本量法的应用.12.(2011•江西)已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.55【分析】根据题意,用赋值法,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,进而由数列的前n项和的性质,可得答案.【解答】解:根据题意,在s n+s m=s n+m中,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,根据数列的性质,有a10=s10﹣s9,即a10=1,故选A.【点评】本题考查数列的前n项和的性质,对于本题,赋值法是比较简单、直接的方法.13.(2010•浙江)设S n为等比数列{a n}的前n项和,8a2+a5=0,则=()A.﹣11 B.﹣8 C.5 D.11【分析】先由等比数列的通项公式求得公比q,再利用等比数列的前n项和公式求之即可.【解答】解:设公比为q,由8a2+a5=0,得8a2+a2q3=0,解得q=﹣2,所以==﹣11.故选A.【点评】本题主要考查等比数列的通项公式与前n项和公式.14.(2009•辽宁)设等比数列{a n}的前n项和为S n,若=3,则=()A.2 B.C.D.3【分析】首先由等比数列前n项和公式列方程,并解得q3,然后再次利用等比数列前n项和公式则求得答案.【解答】解:设公比为q,则===1+q3=3,所以q3=2,所以===.故选B.【点评】本题考查等比数列前n项和公式.15.(2009•宁夏)等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=()A.15 B.7 C.8 D.16【分析】利用4a1,2a2,a3成等差数列求出公比即可得到结论.【解答】解:∵4a1,2a2,a3成等差数列.a1=1,∴4a1+a3=2×2a2,即4+q2﹣4q=0,即q2﹣4q+4=0,(q﹣2)2=0,解得q=2,∴a1=1,a2=2,a3=4,a4=8,∴S4=1+2+4+8=15.故选:A【点评】本题考查等比数列的前n项和的计算,根据条件求出公比是解决本题的关键.16.(2008•海南)设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2 B.4 C.D.【分析】根据等比数列的性质,借助公比q表示出S4和a1之间的关系,易得a2与a1间的关系,然后二者相除进而求得答案.【解答】解:由于q=2,∴∴;故选:C.【点评】本题主要考查等比数列的通项公式及求和公式的综合应用.等差数列及等比数列问题一直是高中数学的重点也是高考的一个热点,要予以高度重视.17.(2007•陕西)各项均为正数的等比数列{a n}的前n项和为S n,若S10=2,S30=14,则S40等于()A.80 B.30 C.26 D.16【分析】先由等比数列的前n项和公式列方程组解得q10,然后分别求出q40、,最后再次运用等比数列的前n项和公式求S40.【解答】解:由题意知等比数列{a n}的公比q>0,且q≠1,则有,得1+q10+q20=7,即q20+q10﹣6=0,解得q10=2,则q40=16,且代入①得=﹣2,所以=﹣2×(1﹣16)=30.故选B.【点评】本题主要考查等比数列的前n项和公式,同时考查处理方程、方程组的能力.18.(2013•新课标Ⅰ)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6【分析】由a n与S n的关系可求得a m与a m,进而得到公差d,由前n项和公式+1及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,﹣a m=1,所以公差d=a m+1S m==0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.故选C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.19.(2016•新课标Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.20.(2015•新课标Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.12【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:∵{a n}是公差为1的等差数列,S8=4S4,∴8a1+×1=4×(4a1+),解得a1=.则a10=+9×1=.故选:B.【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.二.填空题(共10小题)21.(2015•广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.【分析】根据等差数列的性质,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求出值.【解答】解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.【点评】本题主要考查了等差数列性质的简单应用,属于基础试题22.(2013•广东)在等差数列{a n}中,已知a3+a8=10,则3a5+a7=20.【分析】根据等差数列性质可得:3a5+a7=2(a5+a6)=2(a3+a8).【解答】解:由等差数列的性质得:3a5+a7=2a5+(a5+a7)=2a5+(2a6)=2(a5+a6)=2(a3+a8)=20,故答案为:20.【点评】本题考查等差数列的性质及其应用,属基础题,准确理解有关性质是解决问题的根本.23.(2012•广东)已知递增的等差数列{a n}满足a1=1,a3=a22﹣4,则a n=2n﹣1.【分析】由题意,设公差为d,代入,直接解出公式d,再由等差数列的通项公式求出通项即可得到答案【解答】解:由于等差数列{a n}满足a1=1,,令公差为d所以1+2d=(1+d)2﹣4,解得d=±2又递增的等差数列{a n},可得d=2所以a n=1+2(n﹣1)=2n﹣1故答案为:2n﹣1.【点评】本题考查等差数列的通项公式,解题的关键是利用公式建立方程求出参数,需要熟练记忆公式.24.(2009•陕西)设等差数列{a n}的前n项和为S n,若a6=s3=12,则a n=2n.【分析】由a6=s3=12,利用等差数列的前n项和公式和通项公式得到a1和d的两个方程,从而求出a1和d,得到a n.【解答】解;由a6=s3=12可得解得{a n}的公差d=2,首项a1=2,故易得a n=2+(2﹣1)n=2n.故答案为:2n【点评】此题很好的考查了等差数列的基本公式和方程思想.25.(2014•安徽)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=1.【分析】设出等差数列的公差,由a1+1,a3+3,a5+5构成公比为q的等比数列列式求出公差,则由化简得答案.【解答】解:设等差数列{a n}的公差为d,由a1+1,a3+3,a5+5构成等比数列,得:,整理得:,即+5a1+a1+4d.化简得:(d+1)2=0,即d=﹣1.∴q==.故答案为:1.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.26.(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.27.(2011•广东)已知{a n}是递增等比数列,a2=2,a4﹣a3=4,则此数列的公比q=2.【分析】由已知{a n}是递增等比数列,a2=2,我们可以判断此数列的公比q>1,又由a2=2,a4﹣a3=4,我们可以构造出一个关于公比q的方程,解方程即可求出公比q的值.【解答】解:∵{a n}是递增等比数列,且a2=2,则公比q>1又∵a4﹣a3=a2(q2﹣q)=2(q2﹣q)=4即q2﹣q﹣2=0解得q=2,或q=﹣1(舍去)故此数列的公比q=2故答案为:2【点评】本题考查的知识点是等比数列的通项公式,其中利用等比数列的通项公式及a2=2,a4﹣a3=4,构造出一个关于公比q的方程,是解答本题的关键.28.(2013•新课标Ⅰ)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.29.(2009•宁夏)等比数列{a n}的公比q>0.已知a2=1,a n+2+a n+1=6a n,则{a n}的前4项和S4=.【分析】先根据:{a n}是等比数列把a n+2+a n+1=6a n整成理q2+q﹣6=0求得q,进而根据a2求得a1,最后跟等比数列前n项的和求得S4.【解答】解:∵{a n}是等比数列,∴a n+2+a n+1=6a n可化为a1q n+1+a1q n=6a1q n﹣1,∴q2+q﹣6=0.∵q>0,∴q=2.a2=a1q=1,∴a1=.∴S4===.故答案为【点评】本题主要考查等比数列前n项和公式和等比数列的通项公式.考查了学生对等比数列基础知识点的掌握.30.(2011•辽宁)S n为等差数列a n的前n项和,S2=S6,a4=1则a5=﹣1.【分析】由S2=S6,a4=1,先求出首项和公差,然后再求a5的值.【解答】解:由题设知,∴a1=7,d=﹣2,a5=7+4×(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查等差数列的性质和应用,解题时要注意公式的灵活运用.。
数列求前n项和方法汇总及练习(含答案)
数列求和方法汇总及经典练习(含答案)一、公式法:利用以下公式求数列的和 1.d n n na a a n Sn n 2)1(2)(11-+=+=({}n a 为等差数列)2.qqa a q q a Sn n n --=--=11)1(11 (1≠q )或)1(1==q na Sn ({}n a 为等比数列) 3.6)12)(1(3212222++=+⋅⋅⋅⋅⋅⋅⋅+++n n n n4.23333]2)1([321+=+⋅⋅⋅⋅⋅⋅⋅+++n n n 等公式 例已知数列{}n a ,其中()12111,3,22n n n a a a a a n +-===+≥,记数列{}n a 的前n 项和为n S ,数列{}ln n S 的前n 项和为n U ,求n U 。
解:由题意,{}n a 是首项为1,公差为2的等差数列前n 项和()211212n n S n n ++-=⋅=,2ln ln 2ln n S n n ==()()2ln1ln 2ln 2ln !n U n n =+++=二、分组求和法对于数列{}n a ,若⋅⋅⋅⋅⋅⋅±±=nn nC b a 且数列{}n b 、{}n c ……都能求出其前n 项的和,则在求{}n a 前n 项和时,可采用该法例如:求和:999.09999.0999.099.09.0个n Sn ⋅⋅⋅+⋅⋅⋅⋅⋅⋅++++= 解:设n n na --=⋅⋅⋅⋅⋅⋅=10199.09个 n a a a a a Sn +⋅⋅⋅⋅⋅⋅++++=∴4321)101()101()101()101()101(4321n ------+⋅⋅⋅⋅⋅⋅+-+-+-+-=)1010101010()111(43211n n -----+⋅⋅⋅⋅⋅⋅++++-+⋅⋅⋅⋅⋅⋅++=相加个 )101(91n n ---= 三、倒序相加法(或倒序相乘法)将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +,S n 表示从第一项依次到第n 项的和,然后又将S n 表示成第n 项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法。
高中数列精选大题50题(带详细答案)
高中数列精选大题50题(带详细答案)1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值.3 .已知函数x ab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。
4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++…12n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由. 8 .已知数列),3,2(1335,}{11 =-+==-n a a a a n n n n 且中(I )试求a 2,a 3的值; (II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式; (2)令n nn S T 2=,①当n 为何正整数值时,1+>n n T T :②若对一切正整数n ,总有m T n ≤,求m 的取值范围。
数列的通项公式和前n项和
例2
分别在下列条件下求数 列{an }的通项公式
(1) a1 0, an 1 an (2n 1) (2) a1 1, (n 1)an 1 nan 0 (3) a1 1, an 1 2an 3
例2
分别在下列条件下求数 列{an }的通项公式
(n 1)[1 2(n 1) 1] 2 (n 1) 2(n 1) 2 (n 1) 2 (n 2) a1 0 ( n 2) 经检验,n 1时,满足上式 数列{an }的通项公式为 an (n 1) 2
一数列的通项公式定义如果数列a与序号n之间的关系可以用一个式子来表示那么这个式子叫做数列的通项公式
数列的通项和前n项和
一、数列的通项公式 【定义】 如果数列{an}的第n项与序号n之间 的关系可以用一个式子来表示,那么这个式子 叫做数列的通项公式。 【注】数列的通项公式反映的是数列的第n项
与序号n之间的关系:an=f(n)
【类型Ⅰ】已知数列的前几项,求通项公式。 【小结】解决这类问题要注意: 1、观察每一项的特点,建立合理联想,可使
用添加、还原、分割等办法转化成常见数列。
2、常见的数列有:
1,2,3,4,……
2,4,6,8,……
an=n
a n =2 n
1,3,5,7,……
1,4,9,16,…… 1,3,7,15,…… 9,99,999,9999,……
常见题型
【类型Ⅲ】裂项相消求和。 例3
1 1 1 1 求 Sn 1 2 2 3 3 4 n(n 1)
常见题型
【类型Ⅲ】裂项相消求和。 例3 解:
1 1 1 1 求 Sn 1 2 2 3 3 4 n(n 1)
求数列通项公式提升练习题(附答案和方法归纳)
数列11、 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
2、 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
3、 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
4、 已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
5、 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
6、 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项 公式。
数列2 1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a3、已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项4、已知在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a5、 已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。
6、已知数列{}n a 中,11=a,22=a ,n n n a a a 313212+=++,求na7、已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .8、已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a9、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。
高三第一轮复习数列基础练习题
/ 8 高三第一轮复习数列基础练习题 敕章知识点小结 等差数列 1相关公式: (1) 定义:),1(1为常数dndaann(2)通项公式:dnaan)1(1 (3)前n项和公式:dnnnaaanSnn2)1(2)(11(4)通项公式推广:dmnaamn)( 2.等差数列}{na的一些性质 (1)对于任意正整数n,都有121aaaann (2)}{na的通项公式)2()(2112aanaaan (3)对于任意的整数srqp,,,,如果srqp,那么srqpaaaa (4)对于任意的正整数rqp,,,如果qrp2,则qrpaaa2 (5)对于任意的正整数n>1,有112nnnaaa (6)对于任意的非零实数b,数列}{nba是等差数列,则}{na是等差数列 (7)已知}{nb是等差数列,则}{nnba也是等差数列 (8)}{},{},{},{},{23133122nnnnnaaaaa等都是等差数列 (9)nS是等差数列na的前n项和,则kkkkkSSSSS232,, 仍成等差数列,即)(323mmmSSS (10)若)(nmSSnm,则0nnS(11)若pSqSqp,,则)(qpSqp (12)bnanSn2,反之也成立 、等比数列 1相关公式: (1)定义:)0,1(1qnqaann (2)通项公式:11nnqaa (3)前n项和公式:1q 1)1(1q 11qqanaSnn (4)通项公式推广:mnmnqaa 2.等比数列}{na的一些性质
专题9 数列通项公式和前n项和(解析版)-2021年高考冲刺之二轮专题精讲精析
专题9通项公式和数列求和一、单选题1.正项数列{a n }的前n 项和为S n ,且满足22nn a S n =-,则a 5=( ) A .8 B .5 C .6 D .7【答案】B 【分析】根据22nn a S n =-,1n =时,得到11a =,当2n ≥时,根据1n n n a S S -=-得到11n n a a -=-或者11n n a a -=-,再求5a 即可. 【详解】正项数列{}n a ,22nn a S n =-, 当1n =时,21112121a S a =-=-,()221112110a a a -+=-=,所以11a =.当2n ≥时,221122121n n n n n a a S S a ---=--=-,222121(1)n n n n a a a a -=-+=-,所以11n n a a -=-或者11n n a a -=-.当11n n a a -=-时,{}n a 是首项为1,公差为1的等差数列, 所以n a n =,55a =;当11n n a a -=-时,20a =与{}n a 是正项数列矛盾,所以舍去. 故选:B.2.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩【答案】B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题. 3.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( )A .211n n -+B .212n n -+C .221n n -+D .222n n -+ 【答案】D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】 解:11nn na a na +=+,()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (1)11123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+.故选:D. 【点睛】易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 4.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-【答案】C 【分析】根据选项进行逐一验证,可得答案. 【详解】 选项A. ()11n a n n =-,当1n =时,无意义.所以A 不正确.选项B. ()1221n a n n =-,当2n =时,()211122221126a ==≠⨯⨯⨯-,故B 不正确. 选项C.11122=-,111162323==-⨯,1111123434==-⨯,1111204545==-⨯所以111n a n n =-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 1111012a =-=≠,故D 不正确.故选:C5.已知数列1,2a a +,234a a a ++,3456a a a a +++,…,则数列的第k 项是( ) A .12k k k a a a ++++ B .121k k k a a a --++ C .12k k k a a a -+++D .122k k k a a a --+++【答案】D 【分析】根据已知中数列的前4项,分析数列的项数及起始项的变化规律,进而可得答案 【详解】解:由已知数列的前4项:1,2a a +,234a a a ++,3456a a a a +++,归纳可知该数列的第k 项是一个以1为首项,以a 为公比的等比数列第k 项开始的连续k 项和, 所以数列的第k 项为:122k k k a a a --+++故选:D6.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92 B .102C .8182D .112【答案】B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=.令1n n n a b a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭.∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭2115(1)221122n n n---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;7.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m B .21m +C .22m +D .23m +【答案】C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负.8.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .675【答案】A 【分析】先利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值. 【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式,2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.9.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为( ) A .12020B .12019C .11010D .11009【答案】C 【分析】由累乘法可求得2n a n=,即可求出. 【详解】11n n n a a n +=+,即11n na n a n +=+, 12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=, 20202120201010a ∴==. 故选:C.10.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p qS S -的最小值为( ) A .6- B .2-C .1-D .0【答案】A 【分析】 转化条件为122527n n a an n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--,令()()23270n a n n =--≤,解得3722n ≤≤,所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 11.若数列{}n a 的前n 项和为n S ,nn S b n=,则称数列{}n b 是数列{}n a 的“均值数列”.已知数列{}n b 是数列{}n a 的“均值数列”且通项公式为n b n =,设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若2112n T m m <--对一切*n ∈N 恒成立,则实数m 的取值范围为( )A .()1,3-B .[]1,3-C .()(),13,-∞-+∞D .(][),13,-∞-+∞【答案】D 【分析】根据题意,求得2n S n =,进而求得数列的通项公式为21n a n =-,结合裂项法求得数列的前n 和n T ,得出不等式211122m m --≥,即可求得实数m 的取值范围. 【详解】由题意,数列{}n a 的前n 项和为n S ,由“均值数列”的定义可得nS n n=,所以2n S n =, 当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-,11a =也满足21n a n =-,所以21n a n =-,所以()()111111212122121n n a a n n n n +⎛⎫==- ⎪⋅-+-+⎝⎭,所以11111111111233521212212n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-< ⎪ ⎪-++⎝⎭⎝⎭, 又2112n T m m <--对一切*n ∈N 恒成立, 所以211122m m --≥,整理得2230m m --≥,解得1m ≤-或3m ≥. 即实数m 的取值范围为(][),13,-∞-+∞.故选:D. 【点睛】数列与函数、不等式综合问题的求解策略:1、已知数列的条件,解决函数问题,解决此类问题一把要利用数列的通项公式,前n 项和公式,求和方法等对于式子化简变形,注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊性;2、解决数列与不等式的综合问题时,若是证明题中,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等,若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决. 12.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N ,且0nS>,记数列{}2n n a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( ) A .7 B .8 C .10 D .11【答案】B 【分析】由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1122n n T n +=-⋅+,即可得解.【详解】由题意,()()*21n n n S a a n N=+∈,当2n ≥时,()11121n n n S a a ---=+,所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+,当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,所以()()234111212222222212212n nn n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,所以()1122n n T n +=-⋅+,所以876221538T =⨯+=,987223586T =⨯+=,所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 二、填空题13.已知首项为1的数列{}n a 的前n 项和为S n ,且当n 为偶数时,11n n a a --=,当n 为奇数且n >1时,121n n a a --=.若4000m S >,则m 的最小值为___________.【答案】18 【分析】根据已知条件求出n 为偶数和奇数时的通项公式121423k k a --=⋅-,12422k k a -=⋅-,再求得前2k 项的和得解 【详解】由题意得,2211k k a a -=+,21221k k a a +=+,*k N ∈,∴2121212(1)123k k k a a a +--=++=+,即212132(3)k k a a +-+=+.又134a +=, ∴数列{}213k a -+是以4为首项,2为公比的等比数列,∴121423k k a --=⋅-,12422k k a -=⋅-,∴奇数项的和为()213521412=...+324312k k k S a a a a k k +--+++=-=---偶数项的和为22462=...+242k k T a a a a k ++++=--∴32=285k k S S T k +=+--∴1218=2845=4043S --,17=3021S∴使得4000m S >的最小整数m 的值为18. 故答案为:18 【点睛】分奇偶项求得通项公式是解题关键.14.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.【答案】3288n n -+- 【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案. 【详解】解:由等比数列的前n 项和公式得()13141121818211212n n nn na q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦===-=-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-, 由于数列{}32n-是以4为首项,12为公比的等比数列, 设{}n S 的前n 项和n T ,则31412188812881212n nn nT n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-=--=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:3288n n -+- 【点睛】本题考查等比数列求和,分组求和,考查运算能力,是基础题.本题解题的关键是求出382nn S -=-,再结合数列{}32n-是以4为首项,12为公比的等比数列,再次求和即可. 15.已知数列{}n a 满足11a =,()*12141n n a a n N n+=+∈-,则10a =__________.【答案】1928【分析】利用已知条件得111122112+11n n n a n a +⎛⎫=- ⎪-⎝⎭-,运用叠加法先求得101a ,再求得10a . 【详解】依题意数列{}n a 满足11a =,()*12141n n a a n N n +=+∈-, 所以()()211111141212+1221211+1n n n n n a a n n +-⎛⎫==- ⎪--⎝=-⎭, 所以121112131a a ⎛⎫=- ⎪⎝⎭-,3211121351a a ⎛⎫=- ⎝-⎪⎭, ,1091112171911a a ⎛=-⎫- ⎪⎝⎭, 所以1011111111+++2335171119a a ⎡⎤⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣-⎦119121919⎛⎫=-= ⎪⎝⎭, 所以1011919128++1919119a a ===,所以101928a =, 故答案为:1928. 16.数列{}n a 的前n 项和为n S ,12a =,1112n n n S a +⎛⎫=- ⎪⎝⎭,2log nn b a =,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T =_____.【答案】1n n + 【分析】利用1n n n a S S -=-可得{}n a 为等比数列,即可求出n a ,进而得出n b ,利用裂项相消法即可求出. 【详解】 1112n n nS a +⎛⎫=- ⎪⎝⎭,2n ≥时,11112n n n S a --⎛⎫=- ⎪⎝⎭,两式作差,得()111111222n n n n n a a a n +-⎛⎫⎛⎫=---≥ ⎪ ⎪⎝⎭⎝⎭,, 化简得()122n na n a +=≥,,检验:当1n =时,112122S a a ==⨯=,24a =,212a a =,所以数列{}n a 是以2为首项,2为公比的等比数列;2nn a =,22l 2log og n n n b a n ===,令()1111111n n n c b b n n n n +===-++, 111111111122334111n n T n n n n =-+-+-++-=-=+++. 故答案为:1nn +.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n nn a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 三、解答题17.已知数列{}n a 的前n 项和n S 满足123n n a S +=+,且13a =. (1)求数列{}n a 的通项公式;(2)已知数列{}n b 满足n n b na =,求数列{}n b 的前n 项和n T .【答案】(1)3nn a =;(2)1213344n n n T +-⎛⎫=⋅+⎪⎝⎭. 【分析】(1)根据所给的递推关系,结合1(2,)n n n S S a n n N --=≥∈、等比数列的定义进行求解即可; (2)利用错位相减法进行求解即可. 【详解】(1)∵123n n a S +=+,∴2n ≥时,123n n a S -=+,∴112()2n n n n n a a S S a +-=-=-,∴()132n n a a n +=≥, 又∵21239a S =+=,∴213a a =,∴{}n a 是以3为首项,3为公比的等比数列,∴1333n n n a -=⨯=; (2)由(1)知,3n n a =,所以3nn b n =⋅, ∴213233n n T n =⨯+⨯++⋅①,∴231313233n n T n +=⨯+⨯++⋅②,由①-②得:231233333n n n T n +-=++++-⋅()11313132331322n n n n T n n ++-⎛⎫-=-⨯=-⋅- ⎪-⎝⎭1213344n n n T +-⎛⎫=⋅+ ⎪⎝⎭18.已知各项均为正数的数列{}n a 的前n 项和满足1n S >,且()()*612,n n n S a a n =++∈N .(1)求{}n a 的通项公式:(2)设数列{}n b 满足()211n bn a -=,并记n T 为{}n b 的前n 项和,求证:()*231log 3,n n T a n N +>+∈.【答案】(1)31n a n =-;(2)证明见解析. 【分析】(1)利用已知n S 与n a 的关系求{n a }的通项公式; (2)先根据(1)的结论求出23log 31n nb n =-,再求出{}n b 的前n 项和n T ,利用放缩法证明不等式. 【详解】(1)由()()11111126a S a a ==++,结合111a S =>,因此12a = 由()()()()111111121266n n n n n n n a S S a a a a ++++=-=++-++得()()1130n n n n a a a a +++--=, 又0n a >,得13n n a a +-=从而{}n a 是首项为2公差为3的等差数列,故{}n a 的通项公式为31n a n =-. (2)由(21)1n bn a -=可得23log 31n nb n =-, 从而2363log ()2531n nT n =⋅-323633log ()2531n n T n =⋅-∵3313231331n n n n n n ++>>-+, 3333132()3131331n n n n n n n n ++∴>⋅⋅--+ 于是33323633log 2531n n T n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅⎢⎥ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦234567833132log 23456731331n n n n n n ⎡⎤++⎛⎫⎛⎫⎛⎫>⋅⋅⋅⋅⋅⨯⨯ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦232log 2n += ∴()2231log (32)log 3n n T n a +>+=+. 【点睛】关键点点睛:本题考查了已知n S 与n a 的关系求{n a }的通项公式,根据3313231331n n n n n n ++>>-+利用放缩法得3333132()3131331n n n n n n n n ++>⋅⋅--+,证明不等式,属于较难题. 19.已知数列{}n a 的前n 项和为n S ,且237n S n n =-.(1)求数列{}n a 通项公式;(2)若数列{}n b 满足3nn n b a =⋅,求数列{}n b 的前n 项和n T .【答案】(1)610n a n =-;(2)113393322n n T n +⎛⎫=-⋅+ ⎪⎝⎭. 【分析】(1)利用()12n n n a S S n -=-≥即可求出; (2)利用错位相减法即可求出. 【详解】(1)当1n =时,则114a S ==-;当2n ≥时,()()221373171610n n n a S S n n n n n -=-=---+-=-,满足14a =-;∴610n a n =-;(2)依题意,()3610nn b n =⋅-,故()()1233432383610nn T n =⋅-+⋅+⋅+⋅⋅⋅+⋅-,故()()234133432383610n n T n +=⋅-+⋅+⋅+⋅⋅⋅+⋅-,两式相减可得,()12312343636363610nn n T n +-=-⋅+⋅+⋅+⋅⋅⋅+⋅-⋅-()()()111541312+610313633913n n n n n -++-=---⋅=-⋅--∴113393322n n T n +⎛⎫=-⋅+ ⎪⎝⎭.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n nn a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.20.设{}n a 是公比为正数的等比数列, 12a =,324a a =+. (1)求{}n a 的通项公式;(2)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n S .【答案】(1)2nn a =;(2)1222n n S n +=+-.【分析】(1)利用等比数列的定义求出公比2q后,再根据11n n a a q -=可得结果;(2)根据等差数列的首项和公差求出n b 后再根据等差、等比数列的前n 项和公式,分组求和,即可得到结果.【详解】(1)由题意设等比数列{}n a 的公比为q ,0q >,12a =,324a a =+,∴2224q q =+,即()()120,0,q q q +-=>∴2q ,∴{}n a 的通项公式1222n n n a -=⨯=.(2){}n b 是首项为1,公差为2的等差数列,∴()12121n b n n =+-=-, ∴数列{}n n a b +的前n 项和()()1221212122122n n nn n S n +⨯-+-=+=+--.【点睛】本题考查了等差数列的通项公式和前n 项和公式,考查了等比数列的通项公式和前n 项和公式,关键是正确求得等比数列的基本量,并注意分组求和思想的应用,属于基础题. 21.已知数列{}n a 的前n 项和n S 满足()()*231n n S a n N =-∈.(1)求数列{}n a 的通项公式; (2)记()()111n n n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,不等式141n kT n >-+都成立,求实数k 的取值范围.【答案】(1)3nn a =;(2)1,8⎛⎫+∞ ⎪⎝⎭.【分析】(1)由1(2)n n n a S S n -=-≥得出n a 的递推关系,结合1a 得{}n a 等比数列,从而得通项公式; (2)用裂项相消法求得和n T ,不等式可变形为()11231n n k -+>-,令()11()231n n f n ++=-,再用作差法得出()f n 的单调性,得最大项,从而得k 的取值范围.【详解】(1)因为数列{}n a 的前n 项和n S 满足()()231n n S a n N*=-∈,所以当2n ≥时,()11231n n S a --=-, 两式相减得:1233n n n a a a -=-,即13(2)nn a a n,又1n =时,()11231S a =-,解得:130a =≠,所以数列{}n a 是以3为首项,3为公比的等比数列,从而3nn a =(2)由(1)知:()()()()113113131nn n n n n n a b a a ++==----111123131n n +⎛⎫=- ⎪--⎝⎭,所以,12n n T b b b =+++1223111111112313131313131n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥------⎝⎭⎝⎭⎝⎭⎣⎦11112231n +⎛⎫=- ⎪-⎝⎭, 对任意的n *∈N ,不等式141n kT n >-+都成立,即11111223141n k n +⎛⎫->- ⎪-+⎝⎭, 化简得:()11231n n k -+>-,令()11()231n n f n ++=-,因为()()()()1211221(21)31(1)()023*********n n n n n n n n f n f n +++++++--⋅-+-=-=<---⋅-, 故()f n 单调递减, 所以max 1[()](1)8f n f ==,故18k >,所以,实数k 的取值范围是1,8⎛⎫+∞ ⎪⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,考查裂项相法法求和,数列不等式恒成立问题.数列求和方法有:公式法,错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等,用作差法确定数列的单调性求出数列的最大(小)项是求数列最值的常用方法.22.已知等差数列{}n a 中,前n 项和为n S ,11a =,{}n b 为等比数列且各项均为正数,11b =,且满足:22337,22b S b S +=+=.(1)求n a 与n b ;(2)记12n nn na cb -⋅=,求{}nc 的前项和;(3)若不等式1(1)2nn n nm T --⋅-<对一切n *∈N 恒成立,求实数m 的取值范围. 【答案】(1)n a n =,14n n b -= (2) 114(2)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭(3)()2,3-【分析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为0q >,由11a =,11b =,且满足:227b S +=,3322b S +=.可得27q d ++=,23322q d ++=,联立解出即可得出.(2)1112142n n n n n c n ---⋅⎛⎫==⋅ ⎪⎝⎭,利用“错位相减法”与等比数列的求和公式即可得出.(2)不等式1(1)2nn n n m T --⋅-<,即111(1)4(2)22n n n n m n --⎛⎫-⋅-++⋅< ⎪⎝⎭,化为:()12142n n m --⋅<-.对n 分类讨论,利用数列的单调性即可得出. 【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为0q >,11a =,11b =,且满足:227b S +=,3322b S +=, 27q d ∴++=,23322q d ++=,联立解得4,1q d ==,1(1)n a n n ∴=+-=,14n n b -=;(2)111122142n n n n n n n a n c n b ----⋅⋅⎛⎫===⋅ ⎪⎝⎭,{}n c ∴的前n 项和21111123222n n T n -⎛⎫⎛⎫=+⨯+⨯+⋯+⋅ ⎪ ⎪⎝⎭⎝⎭,21111112(1)22222n n n T n n -⎛⎫⎛⎫⎛⎫∴=+⨯++-⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相减得2111111122222n n n T n -⎛⎫⎛⎫⎛⎫=++++-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11211212n n n ⎛⎫- ⎪⎛⎫⎝⎭=-⋅ ⎪⎝⎭-12(2)2n n ⎛⎫=-+⋅ ⎪⎝⎭, 114(2)2n n T n -⎛⎫∴=-+⋅ ⎪⎝⎭; (3)不等式1(1)2n n n n m T --⋅-<,即111(1)4(2)22n n n n m n --⎛⎫-⋅-++⋅< ⎪⎝⎭, 化为:()12142nn m --⋅<-, 当n 为偶数时,212432m -<-=, 当n 为奇数时,112422m --<-=,解得2m >-, 1(1)2n n n n m T --⋅-<对一切n *∈N 恒成立, 23m ∴-<<,∴实数m 的取值范围是()2,3-【点睛】关键点睛:本题考查求等差数列和等比数列的通项公式,利用错位相减法求和,数列不等式恒成立求参数范围,解答本题的关键是利用错位相减法求和,计算要准确,不等式1(1)2n n n n m T --⋅-<,即111(1)4(2)22n n n n m n --⎛⎫-⋅-++⋅< ⎪⎝⎭,化为:1(1)42n n m -⋅<-,再分n 的奇偶性分别求解即可.属于中档题.。
专题18数列的通项公式及前n项和-高考数学(理)母题题源系列含解析
专题18数列的通项公式及前n 项和-高考数学(理)母题题源系列含解析【母题原题1】【2018天津,理18】设是等比数列,公比大于0,其前n 项和为,是等差数列. 已知,,,.{}n a ()n S n *∈N {}n b 11a =322a a =+435a b b =+5462a b b =+(I )求和的通项公式;{}n a {}n b(II )设数列的前n 项和为,{}n S ()n T n *∈N (i )求;n T(ii )证明.221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N 【考点分析】本小题主要考查等差数列的通项公式,等比数列的通项公式及前n 项和公式等基础知识.考查等差数列求和的基本方法和运算求解能力.满分13分.【答案】(I );(II )(i ).(ii )证明见解析.12,n n n a b n -==122n n T n +=--【解析】试题分析:(I )由题意得到关于的方程,解方程可得,则.结合等差数列通q2q =12n n a -=设等差数列的公差为,由,可得由,{}n b d 435a b b =+13 4.b d +=5462a b b =+可得 从而 故 131316,b d +=11,1,b d ==.n b n =所以数列的通项公式为,数列的通项公式为{}n a 12n n a -={}n b .n b n = (II)(i)由(I),有,故.122112nn n S -==--1112(12)(21)22212n n n k k n n k k T n n n +==⨯-=-=-=-=---∑∑ (ii )证明:,()()()()()()()()1121222222212121221k k k k k k+k k k k T +b b k k k k k k k k k ++++--++⋅===-++++++++ ()()()32432122122222222123243212n n n nk k k k T b b k k n n n ++++=+⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭∑. 【名师点睛】本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.【母题原题2】【2017天津,理18】已知为等差数列,前n 项和为,是首项为2的等比数列,且公比大于0,{}n a ()n S n *∈N {}n b2312b b +=,,.3412b a a =-11411S b =(Ⅰ)求和的通项公式;{}n a {}n b(Ⅱ)求数列的前n 项和.221{}n n a b -()n *∈N【答案】(Ⅰ),;(Ⅱ).32n a n =-2n n b =1328433n n +-⨯+ 联立①②,解得,,由此可得.11a =3d =32n a n =-所以,数列的通项公式为,数列的通项公式为.{}n a 32n a n =-{}n b 2nn b =(Ⅱ)设数列的前项和为,由,,有,221{}n n a b -n n T 262n a n =-12124n n b --=⨯221(31)4n n n a b n -=-⨯故,23245484(31)4n n T n =⨯+⨯+⨯++-⨯23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得:23112(14)324343434(31)44(314n n n n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----111)4(32)48n n n ++⨯=--⨯-,得.1328433n n n T +-=⨯+ 所以,数列的前项和为.221{}n n a b -n 1328433n n +-⨯+ 【考点】等差数列、等比数列、数列求和【名师点睛】利用等差数列和等比数列通项公式及前项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和.n n【母题原题3】【2016天津,理18】已知是各项均为正数的等差数列,公差为,对任意的是和的等比中项.{}n a d n n N ,b *∈n a 1n a +(Ⅰ)设,求证:是等差数列;22*1,n n n c b b n N +=-∈{}n c (Ⅱ)设 ,求证:()22*11,1,nnn n k a d T b n N===-∈∑2111.2nk kT d =<∑ 【答案】(Ⅰ)详见解析(Ⅱ)详见解析()222111111111111212121nn n k k k kT d k k d k k d n ===⎛⎫⎛⎫==-=⋅- ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,易得结论. 试题解析:(I )证明:,为定值,∴为等差数列.22112112n n n n n n n n c b b a a a a d a +++++=-=-=⋅21212()2n n n n c c d a a d +++-=-={}n c(II)证明:(*)2213211(1)nk n k n k T b C C C -==-=++⋅⋅⋅+∑21(1)42n n nC d -=+⋅212(1)nC d n n =+- 由已知,将代入(*)式得,∴,得证.22212123122122()4C b b a a a a d a d a d d =-=-=⋅=+=214C d =22(1)n T d n n =+2111112(1)nnk k kT d k k ===+∑∑21111(1)2311221k k d ⋅=⋅⋅++--+-+212d <【名师点睛】分组转化法求和的常见类型(1)若an =bn±c n ,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n 项和.(2)通项公式为an =的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和. 【母题原题4】【2015天津,理18】已知数列满足,且成等差数列.{}n a 212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,233445,,a a a a a a(I)求的值和的通项公式;q {}n a (II)设,求数列的前项和.*2221log ,nn n a b n N a -=∈n b n 【答案】(I) ; (II) .1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数1242n n n S -+=-当时,,2(*)n k n N =∈2222nkn k a a ===所以的通项公式为{}n a 1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数(II) 由(I)得,设数列的前项和为,则22121log 2n n n n a nb a --=={}n b n n S012111111232222n n S n -=⨯+⨯+⨯++⨯, 1231111112322222n n S n =⨯+⨯+⨯++⨯, 两式相减得,23111111112212122222222212n n n n n n n n n n S --=+++++-=-=--- 整理得,所以数列的前项和为.1242n n n S -+=-{}n b n 124,*2n n n N -+-∈【名师点睛】本题主要考查等差、等比数列定义与性质,求和公式以及错位相减法求和的问题,通过等差数列定义、等比数列性质,分为奇偶数讨论求通项公式,并用错位相减法基本思想求和.是中档题.n【命题意图】 高考对本部分内容的考查基础知识为主,重点考查求数列的通项公式和数列求和问题.【命题规律】 高考试题对该部分内容考查的主要角度有:其一求数列的通项公式,其二数列求和,其三证明数列成等差数列或成等比数列.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下三步:第一步:求数列 的通项公式:本题从等比数列入手,由于,设公比为,表达出和,利用列方程求出,写出的通项公式;{}n b {}n b 12b =q 2b 3b 2312b b +=q {}n b第二步:求数列 的通项公式:借助第一步的结果,由于数列成等差数列,设公差为,结合,解方程组求出和,写出数列的通项公式.{}n a {}n a d 3411142,11b a a S b =-=1a d {}n a第三步:利用错位相减法求和: 列出数列的前n 项和,两边同乘以4,两式相减后求和.221{}n n a b -n T 【方法总结】1.数列中 与的关系:an ={}n a n a n S ⎩⎨⎧S1,n =1,Sn -Sn -1,n≥2.2. 等差数列(1)等差数列的有关概念①定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为为常数.*1(,n n a a d n N d +-=∈)②等差中项:数列成等差数列的充要条件是,其中叫做的等差中项.,,a A b 2a bA +=A ,a b (2)等差数列的有关公式 ①通项公式:.1(1)n a a n d =+-②前项和公式:.n 11()(1)22n n n a a n n S na d +-=+=(3)等差数列的性质已知数列是等差数列,是其前项和.{}n a n S n ①通项公式的推广:.*()(,)n m a a n m d n m N =+-∈ ②若,则.*(,,,)k l m n k l m n N +=+∈k l m n a a a a +=+③若的公差为,则也是等差数列,公差为.{}n a d {}n a 2d④若 是等差数列,则也是等差数列.{}n b {}n n pa qb + ⑤数列,…构成等差数列.232,,n n n n n S S S S S -- (4). 妙设等差数列中的项若奇数个数成等差数列,可设中间三项为;,,a d a a d -+若偶数个数成等差数列,可设中间两项为,其余各项再依据等差数列的定义进行对称设元.,a d a d -+(5)等差数列的四种判断方法①定义法:为常数⇔是等差数列.*1(,n n a a d n N d +-=∈{}n a ②等差中项法: (n ∈N*)⇔是等差数列.122n n n a a a ++=+{}n a ③通项公式: (为常数)⇔ 是等差数列.n a pn q =+,p q {}n a④前n 项和公式:( 为常数)⇔ 是等差数列.2n S An bn =+A B 、{}n a 3.等比数列(1)等比数列的有关概念 ①定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为.*1(0,)n na q q n N a +=≠∈ ②等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件.(2)等比数列的有关公式 ①通项公式:.11n n a a q -=②前项和公式: ;n 111,1,(1),111n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩(3)等比数列的性质已知数列是等比数列,是其前n 项和.(m ,n ,p ,q ,r ,k ∈N*){}n a n S ①若,则;2m n p q r +=+=2m n p q r a a a a a == ②数列…仍是等比数列;23,,,,m m k m k m k a a a a +++③数列,…仍是等比数列(此时{an}的公比).232,,n n n n n S S S S S --1q ≠-(4)等比数列的三种判定方法 (1)定义:⇔是等比数列.*1(0,)n na q q n N a +=≠∈{}n a (2)通项公式:均是不为零的常数, ⇔是等比数列.1(n n a cq c q -=、*)n N ∈{}n a(3)等比中项法:⇔是等比数列.2*1212(0,)n n n n n n a a a a a a n N ++++=⋅⋅≠∈{}n a(5)求解等比数列的基本量常用的思想方法①方程的思想:等比数列的通项公式、前n 项和公式中联系着五个量:,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a1与q ,在解题中根据已知条件建立关于a1与q 的方程或者方程组,是解题的关键.1,,,,n na q n a S②分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当时,;当时,;在判断等比数列单调性时,也必须对与分类讨论.1q =1n S na =1q ≠1(1)1n n a q S q-=-1a q 5.数列求和的常用方法(1)公式法:直接利用等差数列、等比数列的前n 项和公式求和 等差数列的前n 项和公式:Sn ==na1+d ; 等比数列的前n 项和公式:Sn =错误!(2)倒序相加法:如果一个数列{an}的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(4)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(5)分组转化求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如an =(-1)nf(n)类型,可采用两项合并求解.例如,.222222S=-+-++-=++++++=10099989721(10099)(9897)(21)5050 n1.【2018天津南开中学模拟】已知数列是首项的等差数列,设.(1)求证:是等比数列;(2)记,求数列的前项和;(3)在(2)的条件下,记,若对任意正整数,不等式恒成立,求整数的最大值.【答案】(1)证明见解析;(2);(3)11.详解:(1)由及,得,所以.因为,所以,即.则,所以数列是首项,公比的等比数列.(2)由(1),得,所以(3)因为,则问题转化为对任意正整数使不等式恒成立.设,则.所以,故的最小值是/.由,得整数可取最大值为11.【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有用定义证明等比数列,对数的运算,裂项相消法求和,恒成立问题求有关参数的取值范围和最值问题,在解题的过程中,注意对公式的正确使用以及对问题的正确理解.2.【2018天津河西区三模】已知数列的前项和为,数列是首项为1,公差为2的等差数列.(1)求数列的通项公式;(2)设数列满足,求数列的前项和.【答案】(1);(2).【解析】分析:(1)利用进行求解;(2)利用类似的方法求出,进而求出,再利用等比数列的求和公式进行求解.相减可得:,又,解得,时,对上式也成立,∴,∴,∴数列的前项和.【名师点睛】利用数列的通项公式和前项和公式的关系求通项时,要注意为分段函数,解题时容易忽视验证“”的通项是否满足的通项.3.【2018天津部分区二模】已知数列的奇数项依次成公比为2的等比数列,偶数项依次成公差为4的等差数列,数列的前项和为,且,.(1)求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2).【解析】分析:(I)设数列的奇数项的公比为,偶数项的公差为.由已知,,可得,为奇数时,,为偶数时,;(II)由(1)知.为偶数时,,为奇数时,.详解:(1)设数列的奇数项的公比为,偶数项的公差为.由已知,得.∵,∴,解得为奇数时,;为偶数时,,∴(2)由(1)知即为偶数时,为奇数时,,.【名师点睛】本题考查数列的性质和综合运用,分类讨论思想,难度较大.解题时要认真审题,仔细解答.4.【2018天津河东区二模】已知等比数列满足条件,,.(1)求数列的通项公式;(2)数列满足,,求的前项和.【答案】(1)(2)【解析】分析:第一问首先利用等比数列的通项公式得到数列的首项和公比所满足的条件,从而求得相关的值,得到该数列的通项公式;第二问利用和与项的关系,得到,,再将时的情况进行验证,得到,,之后应用错位相减法对数列求和即可得结果.详解:(1)设的通项公式为,综上,①②由①-②得到,【名师点睛】该题考查的是有关数列的通项公式与求和的问题,在求解的过程中,注意对等比数列的通项公式的应用,得到题中的数列的首项和公比所满足的条件,从而求得结果;再者就是利用和与项的关系求通项的时候,需要对首项进行验证,在应用错位相减法求和时,需要明确步骤应该怎么写.5.【2018天津河北区二模】已知等差数列{}中,=1,且,,成等比数列.(I)求数列{}的通项公式及前n项和;(II)设,求数列{}的前2n项和.【答案】(Ⅰ),(Ⅱ)【解析】分析:(Ⅰ)设等差数列{}的公差为d,由题意可求得,故可得数列的通项公式和前n项和公式.(Ⅱ)由(Ⅰ)可得,故选用分组求和的方法将数列{}的项分为计数项和偶数项两部分后再求和.详解:(I)设等差数列{}的公差为d,∵,且,,成等比数列,∴,∴当n为偶数时,,当n为奇数时,.∴数列{}的奇数项是以为首项,为公比的等比数列;偶数项是以8为首项,16为公比的等比数列.∴数列{}的前2n项的和.【名师点睛】(1)等差、等比数列的运算中,要注意五个量之间的关系,根据条件得到方程(或方程组),通过解方程(方程组)达到求解的目的.(2)数列求和应从通项入手,若通项符合等差数列或等比数列,则直接用公式求和;若通项不符合等差或等比数列,需要通过对通项变形,转化为等差或等比或可求数列前n项和的数列求解.当数列的通项中含有或的字样时,一般要分为n为奇数和n为偶数两种情况求解.6.【2018天津十二校二模】已知数列的前项和满足:,(为常数,,).(Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值;(Ⅲ)在满足条件(Ⅱ)的情形下,.若数列的前项和为,且对任意满足,求实数的取值范围.【答案】(1);(2);(3).详解:(1)且数列是以为首项,为公比的等比数列(2)由得,因为数列为等比数列,所以,,所以, 解得.【名师点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.7.【2018天津滨海新区七校模拟】已知数列的前项和为,满足 (),数列满足(),且{}n a n n S 21n n S a =-*n N ∈{}n b ()()111n n nb n b n n +-+=+*n N ∈11b =(1)证明数列为等差数列,并求数列和的通项公式;n b n ⎧⎫⎨⎬⎩⎭{}n a {}n b(2)若,求数列的前项和;()()()()122141132log 32log n n n n n c a a -++=-++{}n c n 2n T(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.n n n d a b ={}n d n n D *n N ∈n n D nS a ≤-a【答案】(1), ;(2);(3)12n n a -=2n b n =11343n -+0a ≤【解析】试题分析:(1)两边同除以,得,可求得.用公式,统一成,可求得.(2)由(1),代入得 ,由并项求和可得.(3)由(1)由错位相减法可求得,代入可求.11,2{,1n n n S S n a S n --≥==n a n a 12n n a -=n c ()11112123n n n -⎛⎫=-+ ⎪++⎝⎭2nT 12n n d a n -==n D当时, ,所以. =1n 11121=S a a =-1=1a 当时, , ,2n ≥21n n S a =--1-121n n S a =- 两式相减得,又,所以,12n n a a -=1=1a 12nn a a -= 从而数列为首项,公比的等比数列,{}n a 1=1a =2q 从而数列的通项公式为. {}n a 12n n a -=(2) ()()()41(2123n n c n n -⎛⎫+=⎪ ⎪++⎝⎭()11112123n n n -⎛⎫=-+ ⎪++⎝⎭2123212n n n T c c c c c -=++++=1111111135574143343n n n +--+--=-+++ (3)由(1)得, 12n n d a n -==()221112232122n n n D n n --=⨯+⨯+⨯+-+ ,()()2311212223212122n n n n D n n n --=⨯+⨯+⨯+-+-+因为 ,从而数列为递增数列()()1+121121n nn n d d n n +⎡⎤-=-+----⎣⎦210n =->{}n d 所以当时, 取最小值,于是.=1n n d 1=0d 0a ≤【名师点睛】本题考查知识较多,有递推公式求通项公式,及通项公式与前n 项和关系,裂项求和,并项求和,等差数列求和,错位相减法,数列与不等式交汇等,需要对数列基本知识,基本方法掌握非常好. 8.【2018天津十二模拟一】已知等比数列的前项和为,满足,,数列满足,,且.{}n a n n S 4212a a -=423+2S 3S S ={}n b ()()111n n nb n b n n +-+=+*n N ∈11b = (1)求数列,的通项公式;{}n a {}n b(2)设, 为的前项和,求.()22log 212{ 2nn na n k n n c n k=-+==,n T {}n c n 2n T【答案】(1), ;(2).2n n a ∴=2n b n =21166899221n n nn -+-+⨯+ 【解析】试题分析:(1)由,可推出, ,结合,即可求出数列的通项公式,再将两边同除以得,可推出数列为等差数列,从而可求出的通项公式;(2)由(1)知,利用分组求和,裂项相消法及错位相减法即可求出.423+2S 3S S =432a a =2q =4212a a -={}n a ()()111n n nb n b n n +-+=+()1n n +111n n b b n n +-=+n b n ⎧⎫⎨⎬⎩⎭{}n b ()22log 2,212{2,22nn n n k n n c nn k =-+==2n T(2)由(1)知()()2211log 2,21,2122{{2,2,222nn n n n n k n k n n n n c c nnn k n k -=-=-++=⇒===∴21232n nT c c c c =++++13521111111124622133521212222n n n n -⎛⎫⎡⎤=-+-++-+++++ ⎪⎢⎥-+⎝⎭⎣⎦135212462212222n n n n -⎡⎤=+++++⎢⎥+⎣⎦设, 则, 两式相减得, 整理得.1352124622222n n A -=++++357211246242222n nA +=++++35721213222221422222n n n A -+=++++-211668992n n A -+=-⨯ ∴. 221166899221n n n nT n -+=-+⨯+ 【名师点睛】(1)分组转化法求和的常见类型主要有分段型(如 ),符号型(如 ),周期型 (如 );(2)用错位相减法求和的注意事项:①要善于识别题目类型,特别是等比数列公比为负数的情形;②在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;③在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.,{2,n n n n a n =为奇数为偶数()21nn a n =-πsin3n n a =n S n qS n n S qS - 9.【2018天津十二模拟二】已知正项等比数列,等差数列满足,且是与的等比中项.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).又,则:,解得或因为中各项均为正数,所以,进而. 故.(2)设设数列的前项和为,数列的前项和为,当为偶数时,, 当为奇数时, , 而 ①,则②,由①-②得:,,因此, 综上:.10.【2018天津部分区期末考】已知为等差数列,且,其前8项和为52, 是各项均为正数的等比数列,且满足, .{}n a 24a ={}n b 124b b a +=36b a = (1)求数列和的通项公式;{}n a {}n b(2)令,数列的前项和为,若对任意正整数,都有成立,求实数的取值范围.22log log n nn n nb ac a b =+{}n c n n T n 2n T n λ-<λ 【答案】(1), ;(2)2n a n =+2n n b =3λ≥ 【解析】试题分析:立,然后根据可得结果.1132312n n ⎛⎫-+< ⎪++⎝⎭试题解析:(1)设等差数列的公差为,{}n a d 由题意得,即,解得,114{82852a d a d +=+=1134{2713a d a d +=+=13{1a d ==所以.()312n a n n =+-=+设各项均为正数的等比数列的公比为,则有,解得,所以.{}n b q 124366{8b b a b a +====12{2b q ==2n n b =(2)由(1)可知 22224422n n n n n c n n n n +++=+=++1122.2n n ⎛⎫=+- ⎪+⎝⎭111111122132411n c n n n n n ⎛++=+⨯-+-++-+- -++⎝.11212n n ⎛⎫-+ ⎪++⎝⎭,因为对任意正整数,都有成立,即对任意正整数恒成立,n 2n T n λ-<113212n n λ⎛⎫>-+ ⎪++⎝⎭n又,所以.故实数的取值范围为.1132312n n ⎛⎫-+<⎪++⎝⎭3λ≥λ[)3,+∞ 11.【2018天津一中期中考】设数列的前项和为,满足, ,且. {}n a n n S 21234n n S na n n +=--*n N ∈13a = (Ⅰ)求、的值;2a 3a (Ⅱ)求数列的通项公式{}n a【答案】(Ⅰ), ; (Ⅱ)见解析.25a =37a =【解析】分析:(Ⅰ)分别令就可以求得, .1,2n n ==25a =37a = (Ⅱ)根据(Ⅰ)猜测,利用数学归纳可证明该猜测.21n a n =+详解:(Ⅰ) , .25a =37a = (Ⅱ)由题意得,13222n n S n a n +=++ 结合①②,由归纳原理知,对任意, .*n N ∈21n a n =+【名师点睛】与自然数有关的问题,可以用数学归纳法,在归纳假设中,我们一般设当时,命题成立,也可以假设时,命题成立,然后再证明, 也成立.n k =()P k 0n n k ≤≤()P n 1n k =+()1P k +12.【2018天津滨海新区模拟】已知数列的首项前项和为,且{}n a 15a =n n S ()*15n n S S n n N +=++∈(I )证明数列是等比数列;{}1n a +(II )令 求函数在点处的导数并比较 与的大小。
求数列前n项和的几种方法
六、分段求和法求和 【例 7】 已知数列{an}前 n 项和为 Sn,且 an+Sn=1(n∈N*). (1)求数列{an}的通项公式; (2)若数列{bn}满足 bn=3+log4an,设 Tn=|b1|+|b2|+…+|bn|,求 Tn.
1n n 6-n (2)法一:bn=3+log4( ) =3- = . 2 2 2 n11-n 当 n≤6 时,bn≥0,Tn=b1+b2+…+bn= ; 4 当 n≥7 时,bn<0, Tn=b1+b2+…+b6-(b7+b8+…+bn) 6×5 n2-11n+60 1 n-6n-7 1 = -[(n-6)(- )+ ×(- )]= , 4 2 2 2 4
(1)若数列{an}的通项能转化为 f(n+1)-f(n)的形式,常采用裂项相 消法求和. (2)使用裂项相消法求和时,要注意正、负项相消时,消去了哪些项,保 留了哪些项. 1 1 1 1 1 1 (3)常见的拆项有:① = - ,②a =a+ ,③ = b b nn+1 n n+1 n+ n+ 1 1 1 1 1 n+1- n,④ = ( - )等. 2n-12n+1 2 2n-1 2n+1
(1)解:由题设得 a3a4=10,且 a3,a4 均为非负整数, ∴a3 的可能值为 1,2,5,10. 3 若 a3=1,则 a4=10,a5= ,与题设矛盾; 2 35 若 a3=5,则 a4=2,a5= ,与题设矛盾; 2 3 若 a3=10,则 a4=1,a5=60,a6= ,与题设矛盾. 5 ∴a3=2.
综上可知,T = n -11n+60 4
n 2
n11-n 4
n≤6 . n≥7
1n n 6-n 法二:bn=3+log4( ) =3- = . 2 2 2 当 n≤6 时,bn≥0,|bn|=bn, n11-n ∴Tn=b1+b2+…+bn= . 4 当 n≥7 时,bn<0,|bn|=-bn, ∴Tn=b1+b2+…+b6-b7-b8-…-bn =2(b1+b2+…+b6)-(b1+b2+…+bn) n2-11n+60 =2T6-Sn′= ,(其中 Sn′表示{bn}的前 n 项和) 4
2022年高考数学一轮复习专题 专题49 求数列前n项和常用方法经典例题与练习(解析版)
专题49 求数列前n项和常用方法经典例题与练习(解析版)等差数列与等比数列性质的比较数列求和常用的方法(1)公式法:①d n n na a a n S n n 2)1(2)(11-+=+=②⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn(2)裂项求和:将数列的通项分成两个式子的代数差,即,然后累加时抵消中间的许多项. 应掌握以下常见的裂项:①111(1)1n n n n =-++②1111()()n n k k n n k =-++ ③222111111111111();12111(1)(1)1k k k k k k k k k k k k k<=--=<<=---+++-- ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++⑤=<<= (3)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 项和公式的推导方法) .(4)倒序相加法:若和式中到首尾距离相等的两项和有其共性,则常可考虑选用倒序相加法,发挥其共性的作用求和(这是等差数列前n 项和公式的推导方法) .(5)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.典型例题方法一:公式法1.已知等差数列{}n a 中,11a =,321a a -=. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S . 1.(1)n a n =;(2)()12n n n S +=.【分析】(1)根据题中条件,先得出公差,进而可求出通项公式; (2)根据(1)的结果,由等差数列的求和公式,即可求出结果. 【详解】(1)因为等差数列{}n a 中,首项为11a =,公差为321d a a =-=, 所以其通项公式为()11n a n n =+-=; (2)由(1)可得,数列{}n a 的前n 项和()()1122n n n a a n n S ++==. 2.已知正项等比数列{}n a 的前n 项和为n S ,且12a =,38a =. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .2.(1)*2,n n a n N =∈;(2)1*22,n n S n +=-∈N .【分析】(1)根据12a =,38a =,先求解等比数列的公比,然后利用公式可得数列{}n a 的通项公式;(2)根据等比数列的求和公式进行求解. 【详解】(1)设等比数列{}n a 的公比为q ,则223128a a q q ===,所以2q或2q =-(舍),所以112n nn a a q -==,*n N ∈.(2)由(1)得2nn a =,所以()()11121222112n n n n a q S q+--===---.【点睛】本题主要考查等比数列的通项公式及求和公式,熟记公式是求解的关键,侧重考查数学运算的核心素养. 方法二:裂项求和裂项求和:将数列的通项分成两个式子的代数差,即,然后累加时抵消中间的许多项. 应掌握以下常见的裂项:①111(1)1n n n n =-++②1111()()n n k k n n k =-++ ③222111111111111();12111(1)(1)1k k k k k k k k k k k k k<=--=<<=---+++--④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++⑤=<<=3.已知数列{}n a (*n N ∈)是公差不为0的等差数列,若11a =,且2a ,4a ,8a 成等比数列.(1)求{}n a 的通项公式; (2)若11n n n b a a +=⋅,求数列{}n b 的前n 项和n S .3.(1)n a n =;(2)1nn +. 【分析】(1)设{}n a 的公差为d ,由2a ,4a ,8a 成等比数列,得()2428a a a =⋅,从而解方程可求出公差,进而可求得{}n a 的通项公式; (2)由(1)得()1111111n n n b a a n n n n +===-⋅++,然后利用裂项相消法可求得n S【详解】解:(1)设{}n a 的公差为d ,因为2a ,4a ,8a 成等比数列,所以()2428a a a =⋅.即()()()211137a d a d a d +=+⋅+,即21d a d =又11a =,且0d ≠,解得1d =所以有()11n a a n d n =+-=. (2)由(1)知:()1111111n n n b a a n n n n +===-⋅++则1111112231n S n n =-+-+⋅⋅⋅+-+.即1111n n S n n =-=++. 【点睛】此题考查等差数列基本量计算,考查裂项相消法求和,考查计算能力,属于基础题4.已知各项均为正数的数列{}n a 的的前n 项和为n S ,对n N *∀∈,有22n n n S a a =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令n b ={}n b 的前n 项和为n T ,求证:1n T <.4.(I ),*=∈n a n n N ;(Ⅱ)证明过程见解析;【解析】试题分析:(Ⅰ)利用11222n n n a S S ++=- 整理得11n n a a +-= ,进而计算可得结论;(Ⅱ)通过分母有理化可知n b =-. 试题解析:(I )当1n =时,12112a a a =+,得11a =或0(舍去). 当2n ≥时,22n n n S a a =+,21112n n n S a a ---=+,两式相减得()112n n a a n --=≥,所以数列{}n a 是以1为首相,1为公差的等差数列,*,n a n n N =∈.(Ⅱ)n b======12311111111223341n n T b b b b n n ⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-+-++-⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭11=<方法三:含绝对值的数列求前n 项和5.在数列{}n a 中,148,2a a ==,且满足()2120n n n a a a n N *++-+=∈.(1)求数列{}n a 的通项公式;(2)设12n n T a a a =++⋯+,求n T .5.(1)102,n a n n N *=-∈;(2)229,5,,=940,6,.n n n n n N T n n n n N **⎧-≤∈⎨-+≥∈⎩.【分析】(1)根据递推关系式判断数列{}n a 是等差数列,再利用等差数列的通项公式即可求解. (2)讨论5n ≤或5n >,利用等差数列的前n 项和公式即可求解. 【详解】 (1)2120n n n a a a ++-+=,211n n n n a a a a +++∴-=-,∴数列{}n a 是等差数列,设其公差为d ,148,2a a ,41241a a d,()11102,n a a n d n n N *∴=+-=-∈.(2)设数列{}n a 的前n 项和为n S ,则由(1)可得,()()218292n n n S n n n -=+⨯-=-,n *∈N . 由(1)知102n a n =-,令0n a =,得5n =. ∴当5n >时,0n a <,则1212567n n n T a a a a a a a a a =++⋯+=++⋯+-++⋯+()552n n S S S S S =--=-5()()()22295259940n n n n =⨯⨯---=-+;当5n ≤时,0n a ≥,则212129n n n T a a a a a a n n =++⋯+=++⋯+=-.229,5,,940,6,.n n n n n N T n n n n N **⎧-≤∈∴⎨-+≥∈⎩ 【点睛】方法点睛:求数列{}n a 的前n 项和,关键在于分清哪些项为非负的,哪些项为负的,最终应化为去掉绝对值符号后的数列进行求和.如果数列{}n a 为等差数列,n S 为其前n 项和,12n n T a a a =++⋯+,那么有:(1)若10,0a d ><,则存在k *∈N ,使得100k k a a +≥<,,从而有()(),2;n n kn S n k T S S n k ⎧≤⎪=⎨->⎪⎩(2)若10,0a d <>,则存在k *∈N ,使得10,0k k a a +≤>,从而有()()2n n nk S n k T S S n k ⎧-≤⎪=⎨->⎪⎩ 6.已知数列{}n a 的前n 项和2252=-n n n S .(1)求证:{}n a 是等差数列; (2)求数列{}n a 的前n 项和n T .6.(1)证明见解析;(2)()22225,6225156,7n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩. 【分析】(1)现根据已知条件求解出{}n a 的通项公式,然后根据等差数列的定义证明{}n a 为等差数列;(2)先将{}n a 的通项公式分段书写,然后对n 分类讨论,由此求解出n T 的最终结果. 【详解】 (1)由题意得①若2n ≥,则()()22125225121427n n n a S S n n n n n -⎡⎤=-=-----=-+⎣⎦, ②若1n =,则1123a S ==,经检验满足上式. 故427n a n =-+,由14n n a a +-=-可知,数列{}n a 是首项为23,公差为4-的等差数列.(2)易得:()()427,6427,7n n n a n n ⎧-+≤⎪=⎨-≥⎪⎩①若6n ≤,2225n n T S n n ==-+,②若7n ≥,()26662225156n n n T S S S S S n n =--=-+=-+,综上()22225,6225156,7n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩. 【点睛】思路点睛:已知{}n a 为等差数列,求解{}n a 的前n 项和n S 的思路: (1)先根据项的正负将{}n a 的通项公式分段书写;(2)根据分段的{}n a 通项公式,分别考虑在对应n 的范围下n S 的计算方法,由此求解出结果.方法四:错位相减7.已知递增数列{}n a 满足212n n n a a a +++=,n *∈N ,且24,a a 是方程210210x x -+=的两根,数列{}n b 的前n 项和为n S ,且()*112n n S b n N =-∈. (1)求数列{}n a ,{}n b 的通项公式; (2)记n n n c a b =,求数列{}n c 的前n 项和n T . 7.(1)21n a n ∴=-,23n n b =;(2)2223n nn T +=-. 【分析】(1)求出11a =,2d =即得数列{}n a 的通项公式;利用1(2)n n n b S S n -=-≥求{}n b 的通项公式; (2)先求出423n nn c -=,再利用错位相减法求和. 【详解】(1)因为方程210210x x -+=两根为3x =或7,又2a 、4a 是方程210210x x -+=的两根,数列{}n a 是递增的等差数列,23a ∴=,47a =,设公差为d ,则11337a d a d +=⎧⎨+=⎩,解得11a =,2d =.1(1)12(1)21n a a n d n n ∴=+-=+-=-.对于数列{}n b ,()*112n n S b n N =-∈, 当1n =时,11112b b =-,解得123b =;当2n ≥时,11111122n n n n n b S S b b --⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭, 整理得113n n b b -=,即113n n b b -=,所以数列{}n b 是等比数列, 1212333n n n b -⎛⎫∴=⨯=⎪⎝⎭(2)2(21)4233n n n n nn n c a b --===, ∴数列{}n c 的前n 项和23126104(1)24233333n n nn n T ----=+++++,23126104(1)24233333n n nn n T ----=+++++,216104232333n n n T --∴=++++ (2161042)32333n n n T --∴=++++两式相减可得2144442223333n n n n T --=++++- (2)144442223333n n nn T --=++++-141424432413313n n n n n ⎛⎫- ⎪-+⎝⎭=--=--,2223n nn T +∴=-. 【点睛】方法点睛:数列求和常用的方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法.要根据数列通项的特征灵活选择求和方法.8.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,数列{}n b ,11b =,点()1,n n P b b +直线20x y -+=上.(1)求1a 值;(2)求数列{}{},n n a b 的通项公式; (3)设n n n c a b =,求数列{}n c 的前n 项和n T .8.(1)12a =;(2)2nn a =,21n b n =-;(3)1(23)26n nT n +=-⋅+.【分析】(1)由题意得出22n n a S =+,令1n =可求得1a 的值;(2)当2n ≥时,由22n n a S =+可得出1122n n a S --=+,两式作差可得出12nn a a -=,可得出数列{}n a 是等比数列,确定该数列的首项和公比,可求得数列{}n a 的通项公式,由题意可推导出数列{}n b 为等差数列,确定该数列的首项和公差,可求得数列{}n b 的通项公式; (3)求得12n n c n +=⋅,然后利用错位相减法可求得n T . 【详解】(1)由22n n a S =+得:1122a S =+ 即1122a a =+解得12a = (2)由22n n S a =-1122(2)n n S a n --=-≥①-②1122n n n n n a S S a a --=-=-12(2)nn a n a -=≥ 所以数列{}n a 是以2为首项,以2为公比的等比数列,则2nn a =又由数列{}bn 中,12b =,点()1,n n P b b +在直线20x y -+=上 得1:20n n b b +-+=且11b = 所以:12(1)21n b n n =+-=- (2)(21)2nn n n c a b n ==-数列{}n C 的前n 项和23412325272(21)2nTn n =⨯+⨯+⨯+⨯+⋯+-⋅23451212325272(21)2n n T n +=⨯+⨯+⨯+⨯+⋯+-⋅()23411222222222(21)2n n n T n +∴-=⨯+⨯+⨯+⨯+⋯+⋅--⋅可得:1(23)26n n T n +=-⋅+【点睛】解答特殊数列(等差数列与等比数列)的问题时,根据已知条件构造关于基本量的方程,解方程求出基本量,再根据定义确定数列的通项公式,当数列表示为等差和等比数列之积时,利用错位相减法求其前n 项和.方法五:分组求和9.已知数列{}n a 的前n 项和22n S n n =-,数列{}n b 满足24log 3n n b a =+. (1)求数列{}n a 、{}n b 的通项公式; (2)设14n n n n c b a a +=+,求数列{}n c 的前n 项和n T . 9.(1)43n a n =-;2n n b =(2)142241n n n ++-+ 【分析】(1)根据当2n ≥时,1n n n a S S -=-可以求出数列{}n a 的通项公式,再验证当1n =时,首项是否适合;再根据24log 3n n b a =+,结合对数与指数互化公式进行求解即可; (2)化简数列{}n c 的通项公式,利用分组求和的方法,结合等比数列前n 项和、裂项相消法进行求解即可. 【详解】(1)由22n S n n =-,当2n ≥时,143n n n a S S n -=-=-,1n =时,11a =对上式也成立,∴43n a n =-;又24log 3n n b a =+,2log n b n =,2nn b =.(2)1441122(43)(41)4341n n n n n n c b a a n n n n +⎛⎫=+=+=+- ⎪-+-+⎝⎭,()212111111125594341n n T n n -⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭1114222124141n n n n n +++⎛⎫=-+-=- ⎪++⎝⎭. 【点睛】本题考查了已知数列前n 项和求通项公式,考查了分组求和法,考查了裂项相消法,考查了数学运算能力.10.已知n S 是数列{}n a 的前n 项和,132a =,22a =,且113210n n n S S S +--++=,其中*2,n n N ≥∈.(1)求证数列{}1n a -是等比数列; (2)求数列{}n a 的前n 项和n S .10.(1)证明见解析;(2)212n n S n -=+【分析】(1)将113210n n n S S S +--++=化为()*121n n a a n N +=-∈,根据等差数列的定义可证结论成立;(2)利用等比数列{}1n a -的通项公式求出221n n a -=+,再分组根据等比数列的求和公式可求得结果. 【详解】(1)证明:∵113210n n n S S S +--++=,∴()1121n n n n S S S S +--=--, ∴121(2)n n a a n +=-≥. 又123,22a a ==也满足上式,()*121n n a a n N +∴=-∈,()()*1121n n a a n N +∴-=-∈,∴数列{}1n a -是公比为2,首项为1112a -=的等比数列.(2)∵数列{}1n a -是公比为2,首项为1112a -=的等比数列, 1211222n n n a --∴-=⨯=,221n n a -∴=+,()()()()101212321212121n n n S a a a a --∴=++++=++++++++()1122122222n n n n ---=+++++=+.【点睛】方法点睛:证明等比数列的常用方法有:一、定义法:若1n na q a +=,0q ≠且为常数,10a ≠,则数列{}n a 为等比数列; 二、等比中项法:若221n n n a a a ++⋅=(0)n a ≠,则数列{}n a 为等比数列.方法六:倒序相加法求和11 设f(x)=12x +2,利用教科书上推导数列前n 项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为________.11解析:∵f(x)=12x +2,∴f(1-x)=121-x +2=2x2+2×2x=12×2x2+2x =2×2x -12+2x . ∴f(x)+f(1-x)=12x +2+2×2x -12+2x=22.设S =f(-5)+f(-4)+…+f(0)+…+f(5)+f(6),倒过来,则有 S =f(6)+f(5)+…+f(0)+…+f(-4)+f(-5),∴2S =[f(-5)+f(6)]+[f(-4)+f(5)]+…+[f(6)+f(-5)]=6 2. ∴S =3 2.当堂训练1.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( )A .14n -B .41n -C .12n -D .21n -【答案】D 【分析】根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==, 因此()()111111111221112n nnn n n n n na q S q q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭.故选:D.2.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60 B .11 C .50 D .55【答案】D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D.3.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60 B .120C .160D .240【答案】B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =, 故()1158158151521515812022a a a S a +⨯====⨯=.故选:B.4.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31 B .32 C .63 D .64【答案】C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S . 【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C5.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160 B .180 C .200 D .220【答案】B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B6.已知数列{}n a 、{}n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且115a b +=,11,a b *∈N .设()n n b c a n *=∈N ,则数列{}n c 的前10项和等于( ).A .55B .70C .85D .100【答案】C 【分析】根据已知可求出1b a ,再根据等差数列的性质及求和公式即可求出数列{a bn }的前10项和. 【详解】数列{}n a 、{}n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且115a b +=,11,a b *∈N .设()n n b c a n *=∈N,又{}nb 都是公差为1的等差数列,所以数列{}nc 也成等差,则数列{}n c 的前10项和等于121011119b b b b b b a a a a a a +++++=+++,又()11114b a a b =+-=,1911(91)113b a a b +=++-⨯=, ∴11119(413)10852b b b a a a +++⨯+++==,故选:C . 【点睛】性质:若数列{}n a 为等差数列,则项数依次成等差的那些项也依次成等差.7.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯.”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层的灯数是( )A .1B .2C .3D .6【答案】C 【分析】可知每一层灯数形成以2为公比的等比数列{}n a ,根据7381S =即可求出. 【详解】设顶层的灯数是1a ,则每一层灯数形成以2为公比的等比数列{}n a , 由题可得()7171238112a S -==-,解得13a =,故塔的顶层的灯数是3. 故选:C. 8.数列1,2-,12,4-,14,…的一个通项公式为( ) A .112n -⎛⎫-⎪⎝⎭B.2n⎛- ⎝⎭C .()112n n -⎛⎫- ⎪ ⎪⎝⎭D .()1112n n -+⎛- ⎝⎭【答案】D 【分析】可知该数列是一个以1为首项,2-为公比的等比数列,即可求出通项公式. 【详解】根据数列可知,该数列是一个以1为首项,2-为公比的等比数列,所以该数列的通项公式为()()()11121+11111222n n n n n ----⎛⎛⎛⨯-=-⨯-⨯=-⨯ ⎝⎭⎝⎭⎝⎭.故选:D.二、填空题9.已知数列{}n a 的通项公式为(1)sin2n n a n n π=+⋅(n ∈+N ),其前n 项和为n S ,则8S =_______.【答案】36- 【分析】由4342414166k k k k k c a a a a k ---=+++=-+,故812S c c =+,进而计算即可. 【详解】4342414(43)(43)(42)sin2k k k k k k c a a a a k k π----=+++=--⋅ (42)(41)4(42)(41)sin (41)4sin 4(41)sin222k k k k k k k k k πππ--+--⋅+-⋅++⋅ (43)(42)1(42)(41)0(41)4(1)4(41)0k k k k k k k k =--⨯+--⨯+-⨯-++⨯166k =-+,∴81216(12)6236S c c =+=-⨯++⨯=-. 故答案为:36- 【点睛】本题考查数列的求和,解题的关键在于注意到4342414166k k k k k c a a a a k ---=+++=-+,进而将问题转化为求812S c c =+得问题,考查运算求解能力,是中档题.10.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢,各穿几何?”题意是:有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍:小老鼠第一天也进一尺,以后每天减半.如果墙足够厚,n S 为前n 天两只老鼠打洞长度之和,则3S =___________尺.【答案】354【分析】大、小老鼠每天打洞的距离符合等比数列,分别计算大、小老鼠打洞长度之和,然后简单计算即可. 【详解】由题意知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,所以大老鼠前n 天打洞长度之和为122112nn -=--,同理小老鼠前n 天打洞长度之和为111()1221212nn --=--, 所以11112122122n nn n n S --=-+-=-+所以33131512324S -=-+=故答案为:35411.在各项均为正数的等比数列{}n a 中,12a =,且2a ,42a +,5a 成等差数列,记n S 是数列{}n a 的前n 项和,则4S ___________. 【答案】30 【分析】设出公比,利用基本量代换求出公比,套公式求出4S . 【详解】设项均为正数的等比数列{}n a 的公比为q ()0q >,则11n n a a q -=,由题意可得:()25422=a a a ++, 即()342=2222q q q ++ 解得:2q ,所以()44212=3012S -=-.故答案为:30 【点睛】等差(比)数列问题解决的基本方法:基本量代换.12.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n项和为n T ,则100T =______.【答案】9901 【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和; (3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.三、解答题13.已知数列{}n a 是公比为2的等比数列,且2a ,31a +,4a 成等差数列. (1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和. 【答案】(1)12n n a ,(2)21nn S =-.【分析】(1)由2a ,31a +,4a 成等差数列可得32422a a a +=+,然后结合公比为2求出1a 即可; (2)直接根据公式求出答案即可. 【详解】(1)因为数列{}n a 是公比为2的等比数列,且2a ,31a +,4a 成等差数列 所以32422a a a +=+,所以1118228a a a +=+,解得11a = 所以12n na(2)122112nn n S -==--【点睛】本题考查的是等差中项的应用、等比数列的基本运算,考查了学生的计算能力,属于基础题.14.已知公差不为0的等差数列{a n }前9项之和945S =,且第2项,第4项,第8项成等比数列(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足n b = a n+112n -⎛⎫ ⎪⎝⎭,求数列{}n b 的前n 项的和n T .【答案】(1)n a n =;(2)n T 214122n n n -++=-【分析】(1)根据945S =,248,,a a a 成等比列两个方程,求出首项和公差,求得通项公式. (2)用分组求和法求和. 【详解】解:(1)设数列{}n a 公差为()d d ≠0,由已知有12428989452a d a a a ⨯⎧+=⎪⎨⎪=⎩ ,得()()()121119364537a d a d a d a d +=⎧⎪⎨+=++⎪⎩,得()11936450a d d a d +=⎧⎨-=⎩,又0d ≠, 解得11a d ==,故n a n =,所以数列{}n a 的通项公式n a n =. (2)由(1)有11()2n n b n -=+ ,则21111(123)(1)222n n T n -=+++++++++=11()(1)21212n n n -++-214122n n n -++=-,即数列{}n b 的前n 项的和n T 214122n n n -++=-【点睛】本题考查了等差数列的通项公式和前n 项和公式,等比数列的前n 项和公式,数列的分组 求和法.15.已知{}n a 是等差数列,212a =,64a =. (1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S 的最大值. 【答案】(1)216n a n =-+(2)56 【分析】(1)通过等差数列的性质求出公差62262a a d -==--,结合212a =,即可求出通项公式. (2)由公差20d =-<,知数列{}n a 是递减数列,要求和的最大值则根据0n a ≥,求出n ,即可求出和的最大值. 【详解】 解:由题意得62262a a d -==-- (1)2(2)216n a a n d n =+-=-+ (2)由2d =-知数列{}n a 是递减数列 所以令2160n a n =-+≥,解得8n ≤且80a =n S ∴的最大值为:7856S S ==【点睛】本题主要考察邓姝列的简单性质以及求等差数列的前n 项和,是简单题. 16.设函数23()(0)3x f x x x +=>,数列{}n a 满足1111,n n a a f a -⎛⎫== ⎪⎝⎭(*n N ∈,且2n ). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设212233445221n n n T a a a a a a a a a a +=-+-+-,若22n T tn >对*n N ∈恒成立,求实数t 的取值范围. 【答案】(Ⅰ)213n n a +=(Ⅱ)20,9⎛⎫-∞- ⎪⎝⎭【分析】(Ⅰ)根据函数解析式化简题中的递推关系,结合等差数列的概念求解数列的通项公式;(Ⅱ)求出2n T ,进而得到不等式,利用分离变量法求解t 的取值范围. 【详解】解:(Ⅰ)因为111123113n n n n a a f a a ---⨯+⎛⎫==⎪⎝⎭⨯123n a -=+(*n N ∈,且2n ), 所以123n n a a --=. 因为11a =,所以数列{}n a 是以1为首项,公差为23的等差数列,所以213n n a +=. (Ⅱ)212233445221n n n T a a a a a a a a a a +=-+-+-()()()21343522121n n n a a a a a a a a a -+=-+-++-()246243n a a a a =-++++()22432n a a n +=-⨯⋅()218129n n =-+ 要使22n T tn >对*n N ∈恒成立,只要使()2218129n n tn -+>对*n N ∈恒成立,只要使1289t n+<-对*n N ∈恒成立, 只要max 12209820,9t t n ⎛⎫->+=∴<- ⎪⎝⎭, 故实数t 的取值范围为20,9⎛⎫-∞- ⎪⎝⎭. 【点睛】本题考查等差数列的概念和性质、数列的综合应用,分离变量法求最值. 17.已知等差数列{a n }的前n 项和为S n ,若a 4=4,S 8=6S 3. (1)求数列{a n }的通项公式;(2)设b n =2n a ,求数列{b n }的前n 项和T n . 【答案】(1)a n = n ;(2)122n +- 【分析】(1)根据等差数列的通项公式以及前n 项和公式,可得首项和公差,利用公式法可得结果. (2)根据(1)的结论,可得n b ,然后利用公式法,可得结果. 【详解】(1)设等差数列{}n a 公差为d 由4834,6a S S ==则1111341873286322a d a d a d a d +=⎧⎪⇒==⨯⨯⎨⎛⎫+⋅=+ ⎪⎪⎝⎭⎩, 故n a n =(2)由(1)得n a n =,所以22n a nn b ==,则()1212212222221n nn nT +-=+++==--.【点睛】本题考查等差数列与等比数列的通项公式以及前n 项和公式,关键在于识记公式,属基础题. 18.设{}n a 是等差数列,510a =,且12310,8,6a a a +++成等比数列.(1)求{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,且1n nb S =,求数列{}n b 的前n 项和为n T . 【答案】(1)2n a n =(2)111n T n =-+ 【分析】(1)利用等差数列和等比数列的的通项公式,即可求出结果; (2)由等差数列的前n 项和可得2n S n n =+,所以111n b n n =-+,采用裂项相消法求和,即可求出结果. 【详解】(1)设等差数列{}n a 的公差为d ,12310,8,6a a a +++成等比数列, ∴()()()22138106a a a +=++,即2(183)(204)(162)d d d -=--, 解得2d =,∴5(5)102(5)2n a a n d n n =+-=+-=.(2)由(1)知2n a n =,∴2(22)2n n n S n n +==+, ∴111(1)1nb n n nn ,∴111111111112233411n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭, ∴数列{}n b 的前n 项和为111n T n =-+ 【点睛】本题主要考查了等差数列和等比数列的通项公式以及裂项相消法求和,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列练习题
一、选择题:
( )1.若数列}{n a 的通项公式为122-+=n a n n ,则数列}{n a 的前n 项和为
A 、122-+n n
B 、1221-++n n
C 、2221-++n n
D 、22-+n n
( )2.数列}{n a 的通项公式为)34()1(1-⋅-=-n a n n ,则它的前100项之和100S 等于
A 、200
B 、-200
C 、400
D 、-400 ( )3.在数列}{n a 中,21=a ,)11ln(1n
a a n n ++=+,则n a 等于 A 、n ln 2+ B 、n n ln )1(2-+ C 、n n ln 2+ D 、n n ln 1++
( )4.数列}{n a 对任意的q p ,*∈N 满足q p q p a a a +=+,且62-=a ,那么10a 等于
A 、-165
B 、-33
C 、-30
D 、-21 ( )5.已知数列{n a }中,11=a ,2
21+=+n n n a a a (*∈N n ),则5a 等于 A 、52 B 、31 C 、32 D 、2
1 ( )6.在数列}{n a 中,11=a ,52=a ,n n n a a a -=++12(*∈N n ),则1000a 等于
A 、5
B 、-5
C 、1
D 、-1
( )7.在数列1,2,2,3,3,3,4,4,4,4,5…中100a 等于
A 、13
B 、100
C 、10
D 、14
( )8.数列1,3,6,10,15,…的递推公式是
A 、⎩⎨⎧∈+==*+)( 11
1N n n a a a n n B 、⎩⎨⎧≥∈+==*-)2,( 111n N n n a a a n n C 、⎩⎨⎧≥∈++==*+)2,( 1 111n N n n a a a n n D 、⎩⎨⎧∈-+==*-)( 1 111N n n a a a n n
( )9.数列}{n a 的通项)3
sin 3(cos 222ππn n n a n -=,其前n 项和为n S ,则30S 为 A 、470 B 、490 C 、495 D 、510
( )10.数列}{n a 首项为3,}{n b 为等差数列,且n n n a a b -=+1(*∈N n ),若23-=b ,
1210=b ,则=8a
A 、0
B 、3
C 、8
D 、11
二、填空题:
10.若数列}{n a 中,31=a ,且21n n a a =+(*∈N n ),则数列的通项=n a _____ .
11.设数列}{n a 中,21=a ,11++=+n a a n n ,则通项=n a .
12.在数列}{n a 中,若11=a ,321+=+n n a a )1(≥n ,则该数列的通项=n a ___ ____。
三、解答题:
13.(2011年新课标)等比数列}{n a 的各项均为正数,且13221=+a a ,62239a a a ⋅=。
(1)求数列}{n a 的通项公式;
(2)设n n a a a b 32313log log log +++= ,求数列}1{n b 的前n 项和。
14.(2011年全国)设数列}{n a 满足01=a ,且
111111=---+n n a a 。
(1)求}{n a 的通项公式。
(2)设n a b n n 11+-=
,记∑==n k k n b S 1,证明1<n S 。