高考物理牛顿运动定律的应用专题训练答案及解析
高考物理牛顿运动定律的应用解题技巧(超强)及练习题(含答案)及解析
![高考物理牛顿运动定律的应用解题技巧(超强)及练习题(含答案)及解析](https://img.taocdn.com/s3/m/a46c0664941ea76e59fa0434.png)
高考物理牛顿运动定律的应用解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数;(2)物块b 加速度的大小; (3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ (3)22084sin sin 2525mg F mg x θθ=+ 【解析】【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有:kx 0=(m+35m )gsinθ 解得:k=08 5mgsin x θ (2)由题意可知,b 经两段相等的时间位移为x 0;由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ (3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ 则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x-(m+35m )gsinθ=(m+35m )a解得:F=825mgsinθ+22425mg sinxθt2因分离时位移x=04x由x=04x=12at2解得:052xtgsinθ=故应保证0≤t<052xgsinθ,F表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.2.一个弹簧测力计放在水平地面上,Q为与轻弹簧上端连在一起的秤盘,P为一重物,已知P的质量M10.5kg=,Q的质量m 1.5kg=,弹簧的质量不计,劲度系数k800/N m=,系统处于静止.如图所示,现给P施加一个方向竖直向上的力F,使它从静止开始向上做匀加速运动,已知在前0.2s内,F为变力,0.2s以后,F为恒力.求力F的最大值与最小值.(取g210/)m s=【答案】max168NF=min72NF=【解析】试题分析:由于重物向上做匀加速直线运动,故合外力不变,弹力减小,拉力增大,所以一开始有最小拉力,最后物体离开秤盘时有最大拉力静止时由()M m g kX+=物体离开秤盘时212x at=()k X x mg ma--=maxF Mg Ma-=以上各式代如数据联立解得max168NF=该开始向上拉时有最小拉力则min()()F kX M m g M m a+-+=+解得min72NF=考点:牛顿第二定律的应用点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.3.如图甲所示,有一倾角为37°的光滑固定斜面,斜面底端的水平面上放一质量为M的木板。
(物理) 高考物理牛顿运动定律的应用专题训练答案含解析
![(物理) 高考物理牛顿运动定律的应用专题训练答案含解析](https://img.taocdn.com/s3/m/640c412d69dc5022abea0096.png)
(物理) 高考物理牛顿运动定律的应用专题训练答案含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x =L−x相对滑动产生的热量为:Q=μmg △x代值解得:Q =0.5J 【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M =6.0kg 的物块A 。
(物理)物理牛顿运动定律的应用练习题含解析
![(物理)物理牛顿运动定律的应用练习题含解析](https://img.taocdn.com/s3/m/ec42e18510a6f524cdbf8543.png)
(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
高中物理牛顿运动定律的应用专题训练答案及解析
![高中物理牛顿运动定律的应用专题训练答案及解析](https://img.taocdn.com/s3/m/53f1e7af31126edb6e1a1093.png)
高中物理牛顿运动定律的应用专题训练答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。
(物理)物理牛顿运动定律的应用练习题及答案及解析
![(物理)物理牛顿运动定律的应用练习题及答案及解析](https://img.taocdn.com/s3/m/33852395581b6bd97e19ea09.png)
(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。
【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
高中物理牛顿运动定律的应用专项训练及答案及解析
![高中物理牛顿运动定律的应用专项训练及答案及解析](https://img.taocdn.com/s3/m/ddfdcb52a1c7aa00b42acb25.png)
高中物理牛顿运动定律的应用专项训练及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,质量为1kg m =的物体置于倾角为37θ︒=的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。
(210/,sin 370.6,cos370.8g m s ︒︒===)问: (1)物体与斜面间的动摩擦因数μ为多少? (2)拉力F 的大小为多少?【答案】(1)0.5 (2)30N 【解析】 【详解】(1)由速度时间图象得:物体向上匀减速时加速度大小:22110-5m/s 10m/s 0.5a == 根据牛顿第二定律得:1sin cos mg mg ma θμθ+=代入数据解得:0.5μ=(2)由速度时间图象得:物体向上匀加速时:2220m /s va t∆==∆ 根据牛顿第二定律得:2sin cos F mg mg ma θμθ--=代入数据解得:30N F =2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+ 之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++= 对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆== 点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.3.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:(1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =(2)物块进入电场向右运动的过程,根据动能定理得:()210102mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m(3)物块先向右作匀减速直线运动,根据:00111••22t v v vs t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m=μ-=. 根据:212212s a t =得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mga g mμμ=-=-=-根据:3322a t a t = 解得30.2t s =物块运动的总时间为:123 1.74t t t t s =++= 【点睛】本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.4.如图所示,一质量M=4.0kg 、长度L=2.0m 的长方形木板B 静止在光滑的水平地面上,在其右端放一质量m=1.0kg 的小滑块A (可视为质点)。
高考物理牛顿运动定律专题训练答案含解析
![高考物理牛顿运动定律专题训练答案含解析](https://img.taocdn.com/s3/m/03618975b8f67c1cfbd6b82d.png)
高考物理牛顿运动定律专题训练答案含解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。
t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。
已知圆轨道的半径R=0.5 m。
(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C点时对轨道的压力F N的大小;(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。
如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。
【答案】(1)μ=0.5 (2)F'N=4 N (3)【解析】【分析】由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度;【详解】解:(1)由图乙可知物块上滑时的加速度大小为根据牛顿第二定律有:解得(2)设物块到达C点时的速度大小为v C,由动能定理得:在最高点,根据牛顿第二定律则有:解得:由根据牛顿第三定律得:物体在C点对轨道的压力大小为4 N(3)设物块以初速度v1上滑,最后恰好落到A点物块从C到A,做平抛运动,竖直方向:水平方向:解得,所以能通过C 点落到A 点物块从A 到C ,由动能定律可得:解得:2.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。
木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。
t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。
高考物理牛顿运动定律的应用专题训练答案含解析
![高考物理牛顿运动定律的应用专题训练答案含解析](https://img.taocdn.com/s3/m/2e6c5faf5a8102d276a22fa3.png)
高考物理牛顿运动定律的应用专题训练答案含解析一、高中物理精讲专题测试牛顿运动定律的应用1.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为: v 1112a L 5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.2.如图所示,质量为M =10kg 的小车停放在光滑水平面上.在小车右端施加一个F =10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量m =2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.(1)求经过多长时间煤块与小车保持相对静止 (2) 求3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】 【分析】分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移. 【详解】(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:1N F ma μ=F N -mg =0代入数据解得:a 1=2m/s 2 刚开始运动时对小车有:2N F F Ma μ-=解得:a 2=0.6m/s 2经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v +a 2t解得:t =2s ;(2)在2s 内小黑煤块前进的位移为:21114m 2x a t ==2s 时的速度为:11122m/s 4m/s v a t ==⨯=此后加速运动的加速度为:235m/s 6F a M m ==+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:2212321 4.4m 2x v t a t =+=所以煤块的总位移为:128.4m x x +=(3)在2s 内小黑煤块前进的位移为:21114m 2x a t ==小车前进的位移为:21116.8m 2x v t a t '=+=两者的相对位移为:m 1 2.8x x x '∆=-=即煤块最终在小车上留下的痕迹长度2.8m . 【点睛】该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.3.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:(1)物体从A 点到达B 点所需的时间;(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.【答案】(1)2s (2)5m 【解析】 【分析】(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s此过程中物体的位移01192v vx t m +== 传送带的位移:214x vt m ==当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2物体向上减速运动s 1=L-x 1=3m根据位移公式:s 1=vt 2-12a 2t 22 解得:t 2=1 s (t 2=3 s 舍去)则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s (2)物体减速上滑时,传送带的位移:224s vt m == 则物体相对传送带向下的位移211s s s m ∆=-=因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.4.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析
![高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析](https://img.taocdn.com/s3/m/2eecbf8dcc7931b764ce1534.png)
高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:(1)物体从A 点到达B 点所需的时间;(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.【答案】(1)2s (2)5m 【解析】 【分析】(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s此过程中物体的位移01192v vx t m +== 传送带的位移:214x vt m ==当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2物体向上减速运动s 1=L-x 1=3m根据位移公式:s 1=vt 2-12a 2t 22 解得:t 2=1 s (t 2=3 s 舍去)则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s(2)物体减速上滑时,传送带的位移:224s vt m == 则物体相对传送带向下的位移211s s s m ∆=-=因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.2.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
高考物理牛顿运动定律专题训练答案含解析
![高考物理牛顿运动定律专题训练答案含解析](https://img.taocdn.com/s3/m/30da80fb1ed9ad51f11df28f.png)
高考物理牛顿运动定律专题训练答案含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。
已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。
求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2;(2)从释放到小滑块滑离薄平板经历的时间t 。
【答案】(1)24m/s ,21m/s ;(2)1s t =【解析】【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ=解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-=其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。
设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。
水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。
传送带BC 间距0.8L m =,以01/v m s =顺时针运转。
两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。
用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析
![高中物理牛顿运动定律的应用试题(有答案和解析)及解析](https://img.taocdn.com/s3/m/d86c0af47e21af45b307a8c2.png)
高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)含解析
![高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)含解析](https://img.taocdn.com/s3/m/9cf3498ea417866fb94a8edc.png)
高考物理牛顿运动定律的应用解题技巧讲解及练习题 (含答案)含解析 一、高中物理精讲专题测试牛顿运动定律的应用1. 一轻弹簧的一端固定在倾角为 B 的固定光滑斜面的底部,另一端和质量为m 的小物块3m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为5x o ,从t=0时开始,对b 施加沿斜面向上的外力,使 b 始终做匀加速直线运动.经过一段 时间后,物块a 、b 分离;再经过同样长的时间, b 距其出发点的距离恰好也为 x o .弹簧的 形变始终在弹性限度内,重力加速度大小为g .求:(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【解析】 【详解】(1) 对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有: 3kx o = (m+ — m ) gsin 08mgs in解得:k=5x °(2) 由题意可知,b 经两段相等的时间位移为 x o ;x .1由匀变速直线运动相邻相等时间内位移关系的规律可知:—-X 。
4说明当形变量为x-i x 0渔 3x 0时二者分离;4 4对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsin 0 =ma1联立解得:a= gsin(3) 设时间为t ,则经时间t 时,ab 前进的位移x=^at 2= 2则形变量变为:^x=x o -xa 相连,如图所示•质量为【答案】(1) 8mg sin5xo gsi n(2) - 5 (3) F8 254mg 2 sin 2 25x ogsin t 2 10⑵物块b 加速度的大小;3 3 对整体分析可知,由牛顿第二定律有:F+kAx- (m+—m) gsin 0(m+—m) a5 5因分离时位移x=生由x=X 0 = 1at 2解得:t ■' 5X 04 4 2”2gsi n故应保证0w t —5X0— , F 表达式才能成立.\2gsin点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确 应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.2. 如图所示,质量为 2kg 的物体在与水平方向成 37°角的斜向上的拉力 F 作用下由静止开 始运动.已知力 F 的大小为5N ,物体与地面之间的动摩擦因数□为(1) 物体由静止开始运动后的加速度大小;(2) 8s 末物体的瞬时速度大小和 8s 时间内物体通过的位移大小 ;(3) 若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1) a=0.3m/s 2 (2) x=9.6m (3) x ' =1.44m 【解析】(1) 物体的受力情况如图所示根据牛顿第二定律,得:Fcos37°-f=ma Fsin37 +F N =mg 又 f= F 联立得:a = —(mg Fsin37o )m代入解得a=0.3m/s 2(2) 8s 末物体的瞬时速度大小 v=at=0.3 x 8m/s=2.4m/s12解得:F=254mg 2s in 2 2mgsin 0+t 225x o=0.8)求:8s时间内物体通过的位移大小x at 9.6m2 (3) 8s末撤去力F后,物体做匀减速运动,2V 2由 v 2=2a'x 得:x1.44m 2a【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求 解运动学参量.3.如图所示,倾角 a=30的足够长传送带上有一长 L=1.0m ,质量M=0.5kg 的薄木板,木板 的最右端叠放质量为 m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度 v=1.0m/s 。
物理牛顿运动定律的应用专项习题及答案解析及解析
![物理牛顿运动定律的应用专项习题及答案解析及解析](https://img.taocdn.com/s3/m/80442e10a0116c175e0e483e.png)
物理牛顿运动定律的应用专项习题及答案解析及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求:(1)m 、M 之间的动摩擦因数;(2)M 的质量及它与水平地面之间的动摩擦因数;(3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】(1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有:11mg ma μ=由乙图知214m /s a =解得10.4μ=(2)对M 由牛顿第二定律有122()F mg M m g Ma μμ--+=即12122()()F mg M m g mg M m g Fa M M Mμμμμ--+--+==+乙图知114M = 12()94mg M m g M μμ--+=-解得M = 4 kg μ2=0. 1(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左,设m 运动t 1时间速度减为零,则111s v t a == 位移21011112m 2x v t a t =-=M 的加速度大小2122()5m /s F mg M m ga Mμμ--+==方向向左, M 的位移大小22211 2.5m 2x a t == 此时M 的速度2215m /s v a t ==由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落,设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律23F Mg Ma μ-=可得2325m /s 4a =在t =2s 时m 与M 右端的距离2321311()()8.125m 2x v t t a t t =-+-=.4.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:(1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =(2)物块进入电场向右运动的过程,根据动能定理得:()210102mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m(3)物块先向右作匀减速直线运动,根据:00111••22t v v vs t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m=μ-=. 根据:212212s a t =得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mga g mμμ=-=-=-根据:3322a t a t = 解得30.2t s =物块运动的总时间为:123 1.74t t t t s =++= 【点睛】本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.5.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
高考物理牛顿运动定律的应用练习题及答案含解析
![高考物理牛顿运动定律的应用练习题及答案含解析](https://img.taocdn.com/s3/m/c32c08b3b4daa58da0114aae.png)
高考物理牛顿运动定律的应用练习题及答案含解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为: v 1=112a L =5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2 联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.3.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s4.如图甲所示,质量为1kg m =的物体置于倾角为37θ︒=的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。
物理牛顿运动定律的应用专项习题及答案解析
![物理牛顿运动定律的应用专项习题及答案解析](https://img.taocdn.com/s3/m/1bf3aee9f46527d3240ce0b9.png)
物理牛顿运动定律的应用专项习题及答案解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
高考物理牛顿运动定律的应用专题训练答案及解析
![高考物理牛顿运动定律的应用专题训练答案及解析](https://img.taocdn.com/s3/m/3dd4ebf258fafab068dc0263.png)
高考物理牛顿运动定律的应用专题训练答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)含解析
![高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)含解析](https://img.taocdn.com/s3/m/5987a608dd88d0d232d46a0c.png)
高考物理牛顿运动定律的应用及其解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m =2 kg 的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s 末物体到达B 端,取沿传送带向下为正方向,g =10 m/s 2,sin 37°=0.6,求:(1)小物体在传送带A 、B 两端间运动的平均速度v ; (2)物体与传送带间的动摩擦因数μ; (3)2 s 内物体机械能的减少量ΔE . 【答案】(1)8 m/s (2)0.5 (3)48 J 【解析】 【详解】(1)由v-t 图象的面积规律可知传送带A 、B 间的距离L 即为v-t 图线与t 轴所围的面积,所以:112122v v v L t t t =++代入数值得:L =16m由平均速度的定义得:168/2L v m s t ===(2)由v-t 图象可知传送代运行速度为v 1=10m/s ,0-1s 内物体的加速度为:22110/10/1v a m s m s t V V === 则物体所受的合力为:F 合=ma 1=2×10N=20N .1-2s 内的加速度为:a 2=21=2m /s 2, 根据牛顿第二定律得:a 1=mgsin mgcos mθμθ+=gsinθ+μgcosθa 2= mgsin mgcos mθμθ-=gsinθ-μgcosθ联立两式解得:μ=0.5,θ=37°.(3)0-1s 内,物块的位移:x 1=12a 1t 12=12×10×1m =5m 传送带的位移为:x 2=vt 1=10×1m=10m则相对位移的大小为:△x 1=x 2-x 1=5m则1-2s 内,物块的位移为:x 3=vt 2+12a 2t 22=10×1+12×2×1m =11m 0-2s 内物块向下的位移:L =x 1+x 3=5+11=16m物块下降的高度:h =L sin37°=16×0.6=9.6m物块机械能的变化量:△E =12m v B 2−mgh =12×2×122−2×10×9.6=-48J 负号表示机械能减小.2.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M 10.5kg =,Q 的质量m 1.5kg =,弹簧的质量不计,劲度系数k 800/N m =,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2s 内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g 210/)m s =【答案】max 168N F =min 72N F = 【解析】试题分析:由于重物向上做匀加速直线运动,故合外力不变,弹力减小,拉力增大,所以一开始有最小拉力,最后物体离开秤盘时有最大拉力 静止时由()M m g kX += 物体离开秤盘时212x at =()k X x mg ma --=max F Mg Ma -=以上各式代如数据联立解得max 168N F =该开始向上拉时有最小拉力则min ()()F kX M m g M m a +-+=+解得min 72N F =考点:牛顿第二定律的应用点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.3.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s 时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A 由静止开始自由下滑,滑至坡底B 处(B 处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC 之间的某处.如图所示,不计空气阻力,已知AB 长14.8m ,取g =10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解.(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2;由速度时间关系得 t 1=11va =1s(2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22v x m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m 【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.4.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。
高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析
![高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析](https://img.taocdn.com/s3/m/263d449aeff9aef8941e06a3.png)
高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.皮带传输装置示意图的一部分如下图所示,传送带与水平地面的夹角37θ=︒,A 、B 两端相距12m,质量为M=1kg 的物体以0v =14.0m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为0.5,传送带顺时针运转动的速度v =4.0m/s(g 取210/m s ),试求:(1)物体从A 点到达B 点所需的时间;(2)若物体能在传送带上留下痕迹,物体从A 点到达B 点的过程中在传送带上留下的划痕长度.【答案】(1)2s (2)5m 【解析】 【分析】(1)开始时物体的初速度大于传送带的速度,根据受力及牛顿第二定律求出物体的加速度,当物体与传送带共速时,求解时间和物体以及传送带的位移;物体与传送带共速后,物体向上做减速运动,根据牛顿第二定律求解加速度,几何运动公式求解到达B 点的时间以及传送带的位移;(2)开始时物体相对传送带上滑,后来物体相对传送带下滑,结合位移关系求解划痕长度. 【详解】(1)物体刚滑上传送带时因速度v 0=14.0m/s 大于传送带的速度v=4m/s ,则物体相对斜面向上运动,物体的加速度沿斜面向下,根据牛顿第二定律有:Mgsin θ+μMgcos θ=Ma 1 解得:a 1=gsin θ+μgcos θ=10m/s 2 当物体与传送带共速时:v 0-at 1=v 解得t 1=1s此过程中物体的位移01192v vx t m +== 传送带的位移:214x vt m ==当物体与传送带共速后,由于μ=0.5<tan370=0.75,则物体向上做减速运动,加速度为:Mgsin θ-μMgcos θ=Ma 2 解得a 2=2m/s 2物体向上减速运动s 1=L-x 1=3m根据位移公式:s 1=vt 2-12a 2t 22 解得:t 2=1 s (t 2=3 s 舍去)则物体从A 点到达B 点所需的时间:t=t 1+t 2=2s (2)物体减速上滑时,传送带的位移:224s vt m == 则物体相对传送带向下的位移211s s s m ∆=-=因物体加速上滑时相对传送带向上的位移为:125x x x m ∆=-= 则物体从A 点到达B 点的过程中在传送带上留下的划痕长度为5m . 【点睛】此题是牛顿第二定律在传送带问题中的应用问题;关键是分析物体的受力情况,根据牛顿第二定律求解加速度,根据运动公式求解时间和位移等;其中的关键点是共速后物体如何运动.3.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
物理牛顿运动定律的应用专项习题及答案解析及解析
![物理牛顿运动定律的应用专项习题及答案解析及解析](https://img.taocdn.com/s3/m/1c2c598df18583d0496459b2.png)
物理牛顿运动定律的应用专项习题及答案解析及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++= 对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆== 点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.3.如图所示,质量为M =10kg 的小车停放在光滑水平面上.在小车右端施加一个F =10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量m =2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.(1)求经过多长时间煤块与小车保持相对静止 (2) 求3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m【解析】 【分析】分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移. 【详解】(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:1N F ma μ=F N -mg =0代入数据解得:a 1=2m/s 2 刚开始运动时对小车有:2N F F Ma μ-=解得:a 2=0.6m/s 2经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v +a 2t解得:t =2s ;(2)在2s 内小黑煤块前进的位移为:21114m 2x a t ==2s 时的速度为:11122m/s 4m/s v a t ==⨯=此后加速运动的加速度为:235m/s 6F a M m ==+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:2212321 4.4m 2x v t a t =+=所以煤块的总位移为:128.4m x x +=(3)在2s 内小黑煤块前进的位移为:21114m 2x a t ==小车前进的位移为:21116.8m 2x v t a t '=+=两者的相对位移为:m 1 2.8x x x '∆=-=即煤块最终在小车上留下的痕迹长度2.8m . 【点睛】该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.4.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M 10.5kg =,Q 的质量m 1.5kg =,弹簧的质量不计,劲度系数k 800/N m =,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2s 内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g 210/)m s =【答案】max 168N F =min 72N F = 【解析】试题分析:由于重物向上做匀加速直线运动,故合外力不变,弹力减小,拉力增大,所以一开始有最小拉力,最后物体离开秤盘时有最大拉力 静止时由()M m g kX += 物体离开秤盘时212x at =()k X x mg ma --= max F Mg Ma -=以上各式代如数据联立解得max 168N F =该开始向上拉时有最小拉力则min ()()F kX M m g M m a +-+=+解得min 72N F =考点:牛顿第二定律的应用点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.5.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析
![高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析](https://img.taocdn.com/s3/m/efe99ca25727a5e9846a6146.png)
高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M 10.5kg =,Q 的质量m 1.5kg =,弹簧的质量不计,劲度系数k 800/N m =,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2s 内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g 210/)m s =【答案】max 168N F =min 72N F =【解析】试题分析:由于重物向上做匀加速直线运动,故合外力不变,弹力减小,拉力增大,所以一开始有最小拉力,最后物体离开秤盘时有最大拉力静止时由()M m g kX += 物体离开秤盘时212x at = ()k X x mg ma --=max F Mg Ma -=以上各式代如数据联立解得max 168N F =该开始向上拉时有最小拉力则min ()()F kX M m g M m a +-+=+解得min 72N F =考点:牛顿第二定律的应用点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.2.如图所示,一质量M=4.0kg 、长度L=2.0m 的长方形木板B 静止在光滑的水平地面上,在其右端放一质量m=1.0kg 的小滑块A (可视为质点)。
现对A 、B 同时施以适当的瞬时冲量,使A 向左运动,B 向右运动,二者的初速度大小均为2.0m/s ,最后A 并没有滑离B 板。
已知A 、B 之间的动摩擦因数μ=0.50,取重力加速度g=10m/s 2。
求:(1)经历多长时间A相对地面速度减为零;(2)站在地面上观察,B板从开始运动,到A相对地面速度减为零的过程中,B板向右运动的距离;(3)A和B相对运动过程中,小滑块A与板B左端的最小距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理牛顿运动定律的应用专题训练答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小; (2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+ 解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.3.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有Nsinθ﹣μNcosθ=ma1竖直方向有Ncosθ+μNsinθ﹣mg=0对整体有 F 1=(M+m )a 1 代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2, 对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2 竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0 对整体有 F 2=(M +m )a 2 代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N . 【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.4.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】 【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -= 对B :B B B B m g f m a -=A B f f = 0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t =212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E =(3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+-- 代入以上数据得:250J E ∆= 【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到. (2)根据运动性质和动能定理可得到. (3)由能量守恒定律可求出.5.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数32μ=,且最大静摩擦力等于滑动摩擦力,重力加速度为g .(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 【答案】(1) 32mg (2) 94mgh 【解析】(1)木板与物块整体:F 0−2mg sinθ=2ma 0 对物块,有:μmg cosθ−mg sinθ═ma 0 解得:F 0=32mg(2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零. 对木板,有:F −mg sinθ−μmg cosθ=m a 1 mg sinθ+μmg cosθ=ma 3对物块,有:μmg cosθ−mg sinθ=ma 2 对木板与物块整体,有2mg sinθ=2m a 4另有:1132212 ()a t a t a t t -=+ 21243 ()a t t a t +=222111123243111222sin h a t a t t a t a t θ+⋅-+= 21112W F a t =⋅解得W =94mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.6.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。