流体力学第三章-y
流体力学-第三章
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。
第三章 流体力学
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax
P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0
gh
p0
1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮
1 2
V
v
2 1
gh2V
gh1V
即:
p1
1 2
v
2 1
gh1
第3章-流体力学连续性方程微分形式
• 符号说明
物理意义
z 单位重流体的位能(比位能)
p
单位重流体的压能(比压能)
u 2 单位重流体的动能(比动能)
2g
z
p
单位重流体总势能(比势能)
z
p
u2 2g
总比能
第四节 欧拉运动微分方程的积分
几何意义
位置水头 压强水头 流速水头 测压管水头 总水头
( Xdx Ydy
Zdz)
1
(
p x
0
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) ,
与流出的流体体积(质量)之差等于零。
适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
第三节 流体动力学基本方程式
6
二、理想流体运动微分方程
理想流体的动水压强特性与静水压强的特性相同:
px py pz p
从理想流体中任取一(x,y,z)为 中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。
u2
( )dx ( )dy ( )dz
z x x 2
y 2
z 2
u2 d( )
2
由以上得:
gdz
d
(
p
)
d
u2 (
)
2
积分得:
z
p
u2 2g
C
第四节 欧拉运动微分方程的积分
• 理想势流伯努里方程
17
z
p
u2 2g
C
或
z1
p 1
u2 1
2g
z2
p2
u22 2g
物理意义:在同一恒定不可压缩流体重力势流中 ,理想流体各点的总比能 相等即在整个势流场中,伯努里常数C均相等。(应用条件:“——”所示)
流体力学课件 第3章流体运动的基本原理
u u (x, y,z, t )
17
二、流场描述
1、迹线:某一质点在某一时段内的运动轨迹曲线。
例: 烟火、火箭、流星、子弹等轨迹线。。。。。
(1)拉格朗日法迹线方程
x x(a,b,c,t) y y(a,b,c,t)
z z(a,b,c,t)
消去参数t并给定(a,b,c)即得相应质点的迹线方 程。
说明:
*(a,b,c)=const, t为变数,可得某个指定质点在任意时刻
所处的位臵,上式即迹线方程; *(a,b,c)为变数,对应时刻 t可以得出某一瞬间不同质点 在空间的分布情况。
3、拉格朗日法的速度与加速度方程
( 1) 流速方 程
x ux ; t y uy ; t z uz t 均为(a,b,c,t)的函数。
第三章 流体运动的基本原理
静止只是流体的一种特殊的存在形态,运动 或流动是流体更为普遍的存在形态,也更能反映 流体的本质特征。 本章主要讨论流体的运动特征(速度、加速 度等)和流体运动的描述方法,流体连续性方程、 动量守恒及能量守恒方程是研究流体运动的基础。
1
第一节、流体运动的描述方法
一、拉格朗日法(lj)
18
(2)欧拉法迹线方程 若质点P在时间dt内从A点运
Z
A
B
动到B点,则质点移动速度为:
u dr dt
O
Y
得迹线方程:
dx dy dz dt ux uy uz
2、流线
表示某一瞬时流体各点流动 趋势的曲线,其上任一点的切线 方向与该点流速方向重合。即同 一时刻不同质点的速度方向线。
根据行列式的性质,有:
22
流线微分方程
dx dy dz u x u y uz
第三章一元流体动力学基础
d (gz p 1 u 2 ) 0
2
积分后得 gz p 1 u 2 常数
2
考虑到重度γ=ρg,将上式两端除以重力加速度g,得: z p u 2 常数 (3)
2 . 通过某一空间点在给定瞬间只能有一条流线,一般情况流 线不能相交和分支。否则在同一空间点上流体质点将同时 有几个不同的流动方向。只有在流场中速度为零或无穷大 的那些点,流线可以相交,这是因为,在这些点上不会出 现在同一点上存在不同流动方向的问题。速度为零的点称 驻点,速度为无穷大的点称为奇点。
)
再看右端三式相加: 由于是在重力场中,故流体
dx
u x t
u x x
ux
u x y
uy
u x z
uz
X
1
p x
的质量力只是重力,则 X=0, Y=0, Z=-g。
dy
u y t
u y x
ux
u y y
uy
u y z
uz
Y
1
p y
所以: Xdx+Ydy+Zdz=-gdz
dz
u z t
u z x
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f (x, y, z,t),u f (x, y, z,t)
定常流动
非定常流动
有旋流动(rotational flow):流体在流动中,流场中有若干处 流体微团具有绕通过其自身轴线的旋转运动
无旋流动(irrotational flow):在整个流场中各处的流体微团 均不绕自身轴线的旋转运动
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 的流动状况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程
流体力学第三章(相似原理与量纲分析)
它们所反映的是没有量纲(单位)的数,称为无量纲数
l Sr 斯特劳哈尔数 tu
欧拉数
雷诺数
Vl
Re
p Eu 2 V
V2 Fr 弗劳德数 gl
25
2w 2w 2w w w w w p u v w 2 2 2 g t y z z z x x y
2伯努利方程5简单情况下的ns方程的准确解3第一节流体力学的模型实验和相似概念第二节相似判据第三节无量纲方程第四节特征无量纲数第五节量纲分析和定理主要内容第三章相似原理与量纲分析4实验数据的简化处理设计实验的基本要求理论流体力学第一二章实验流体力学普通实验数值实验5第一节流体力学的模型实验和相似概念流体力学实验
13
通常可以采用两种方法来确定动力相似判据: (一)方程分析法:描述流体的运动方程应该是一致的。 从而得到必须满足的关系式,即相似判据;
(二)量纲分析方法:以量纲分析为基础的一种方法。
14
方程分析法
动力相似判据
前提条件:假定原型流场和模型流场是满足几何相似、 时间相似和运动相似的,考虑不可压缩粘性流体的简单 情况。 首先,给出有关相似常数的定义:
此时,两个流场称之为是流场 相似或运动相似的。流场相似 也就是在两流场对应点的速度 的大小、方向成常数比例。
Q P
9
动力相似
动力相似:要求在两流场相应点上各动力学变量 成同一常数比例。 例如原型流场和模型流场在运动过程中受到的 质量力、粘性力等动力学变量成正比。
10
几何相似 时间相似 有比较清晰的关系表达式 运动相似 (可直接观测) 判断什么条件下两流场才满足动力相似??
u = U u’
流体力学第3章(第二版)知识点总结经典例题讲解
dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be
流体力学 第三章 流体动力学
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2
面
6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点
流体力学 传递过程原理第三章
ux
u y x
uy
u y y
uz
u y z
u y
Y
1 p
三、平均流速与流动压降
压降:
Δp f p Δp 3μub 2 L x L y0
范宁摩擦因子(推导过程?):
τs 12 μ 12 f 2 ρub / 2 y0 ρub Re
(2 y0 ) ρub Re = μ
第三章 动量传递变化方程的解
3.1 两平壁间的稳态层流
3.2 圆管与套管环隙间的稳态层流
1 p 2 2 ux ( y y0 ) 2 μ x
抛物线形
当 y 0 时速度最大 1 p 2 umax y0 2 μ x
y 2 ux umax [1 ( ) ] y0
三、平均流速与流动压降
在流动方向上,取单位宽度的流通截面 A 2 y0 1, 则通过该截面的体积流率为 y0
二、套管环隙中的轴向稳态层流
套管环隙中层流的变化方程与圆管相同,即
1 d duz r r dr dr 1 dpd 常数 μ dz
B.C. 为 (I)
r r1 , uz 0
du z , 0 dr
(II) r r2 , uz 0
(III) r rmax , u z umax
一、圆管中的轴向稳态层流
二、套管环隙中的轴向稳态层流
三、旋转黏度计的测量原理
一、圆管中的轴向稳态层流
流体在圆管中的流动问题许多工程科学中遇到。 设:不可压缩流体在 水平圆管中作稳态层流 流动,所考察的部位远 离管道进、出口,流动 为沿轴向的一维流动。 r
流体力学——流体动力学
pB
b
2
a
3.6 10 0 3.6 a 0.24
a=6.16m
v2 2g
2
3.15 如图, 水从敞口水池沿一截面有变化的管路排出, 若质量流量 qm=15kg/s, d1=100mm, d2=75mm,不计损失,试求所需的水头 H 以及第二管段中央 M 点的相对压强。 (参考分数: 12 分)
故
pm=3.94kPa
3.16 如图,由水池通过等直径虹吸管输水,A 点为虹吸管进口处,HA=0;B 点为虹吸管中 与水池液面齐高的部位,HB=6m;C 点为虹吸管中的最高点,HC=7m;D 点为虹吸管的出 口处,HD=4m。若不计流动中的能量损失,求虹吸管的断面平均流速和 A、B、C 各断面上 的绝对压强。 (参考分数:12 分)
Δh
uA A
d
2 uA p p A 2g
解:由能量方程
2 uA p p A ,得到 2g
由毕托管原理
p pA
12.6h
解得
u A 3.85m / s , v 0.84u A 3.24m / s , Q vA 0.102m 3 / s
3.10 如图,用抽水量 Q=24m3/h 的离心水泵由水池抽水,水泵的安装高程 hs=6m,吸水管 的直径为 d=100mm,如水流通过进口底阀、吸水管路、90º弯头至泵叶轮进口的总水头损 失为 hw=0.4mH2O,求该泵叶轮进口处的真空度 pv。 (参考分数:12 分)
B
C
解:取 1-1 断面在 C 处,2-2 断面在 B 处,自由液面为 0-0 断面,选基准面在 C 处。列 0、1 断面的能量方程,有
3.6 0 0 0 0
工程流体力学-第三章
三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax
dux dt
dux (x, y, z,t) dt
ux t
ux
ux t
uy
ux t
uz
ux t
ay
du y dt
duy (x, y, z,t) dt
u y t
ux
u y t
uy
u y t
uz
u y t
az
du z dt
duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt
ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A
流体力学 第三章
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。
第3章-流体静力学-例题
工程流体力学——第三章 流体静力学——例题
CH3-7
z
z
pw
R h R y o b a o R
pw
β
R y
液柱顶部
A A1 A2
p0
CH3-3
n2
h2
= − ∫ ρ g (h1 + h2 − y )(−idy + j tanθ dy ) − ∫ ρ g (h1 + h2 − y )(−idy )
0 h1
h1
h2
n1
θ θ
= +∫
h1 + h2
0
ρ g (h1 + h2 − y )dyi − ∫ ρ g ( h1 + h2 − y ) tanθ dyj
p − p0 = ρ g ( h 1 + h2 − y )
p0
n2
h2
hc =
n1
dl
θ dy
h1+h 2 2
θ θ
dx
y
o
h1 tan θ
h1
x
流体静压 ( p − p0 ) 对水坝内侧表面 A 的总作用力为
A A
图 3-11 例 3-3 附图
FA = − ∫∫ ( p − p0 )ndA = − ρ g ∫∫ ( h1 + h2 − y )ndA
= −1000 × 9.8 ×
302 ⎛ 30 ⎞ tan 230o ⎜ + 20 ⎟ = −44.10MN-m/m 2 ⎝ 3 ⎠
流体动力学理论基础第三章解析
az= x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
式中第一项叫时变加速度或当地加速度 (Local Acceleration),流动过程中流体由于速度 随时间变化而引起的加速度;第二项叫位变速度 ,流动过程中流体由于速度随位置变化而引起的 加速度(Connective Acceleration)。
uz uz (x、y、z、t)
(x,y,z,t)—欧拉变量
考察不同时刻液体质点通过流场中固定空间点 的运动情况,综合足够多的固定空间点的运动情 况,得到整个液流的运动规律。——流场法
欧拉法不直接追究质点的运动过程,而是研究各时 刻质点在流场中的变化规律。将个别流体质点运动过程 置之不理,而固守于流场各空间点。通过观察在流动空 间中的每一个空间点上运动要素随时间的变化,把足够 多的空间点综合起来而得出的整个流体的运动情况。
显然,在欧拉描述中,各空间点上的物理量(实际上是通 过此点的流体质点所具有的物理量)是随时间变化的。因此, 流体的运动参数应该是空间坐标和时间的函数。如流体的速 度、压强和密度可以表示为
z
t时刻
M (x,y,z) O
x
y
ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
算子
全质 导点 数导
数
d dt
=
t
+ (u )
时变导数 当地导数 局部导数
位变导数 迁移导数 对流导数
流体力学第三章课后习题答案
流体⼒学第三章课后习题答案⼀元流体动⼒学基础1.直径为150mm 的给⽔管道,输⽔量为h kN /7.980,试求断⾯平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→//A Qv ρ=得:s m v /57.1=2.断⾯为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出⼝处断⾯收缩为150mm ×400mm,求该断⾯的平均流速解:由流量公式vA Q = 得:A Q v =由连续性⽅程知2211A v A v = 得:s m v /5.122=3.⽔从⽔箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流⼊⼤⽓中. 当出⼝流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性⽅程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输⽔量为h kg /294210的给⽔管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代⼊得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代⼊vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代⼊得:mm d 5.420≥ 取mm d 450= 代⼊vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断⾯上,⽤下法选定五个点,以测局部风速。
设想⽤和管轴同⼼但不同半径的圆周,将全部断⾯分为中间是圆,其他是圆环的五个⾯积相等的部分。
《流体力学》徐正坦主编课后答案第三章
第三章习题简答3-1 已知流体流动的速度分布为22y x u x -= ,xy u y 2-=,求通过1,1==y x 的一条流线。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 dy y x xydx )(222-=-两边积分可得C y y x yx +-=-3322即0623=+-C y x y将x=1,y=1代入上式,可得C=5,则 流线方程为05623=+-y x y3-3 已知流体的速度分布为⎭⎬⎫==-=-=tx x u ty y u y x 00εωεω(ω>0,0ε>0)试求流线方程,并画流线图。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 tydy txdx 00εε-=两边积分可得C y x +-=22流线方程为C y x =+223-5 以平均速度s m v /5.1=流入直径为D=2cm 的排孔管中的液体,全部经8个直径d=1mm 的排孔流出,假定每孔出流速度依次降低2%,试求第一孔与第八孔的出流速度各为多少?题3-5图解:由题意得:v 2=v 1(1-2%),v 3=v 1(1-2%)2,…,v 8=v 1(1-2%)7 根据质量守恒定律可得282322212832144444dv d v d v d v D v Q Q Q Q Q πππππ⋅+⋅⋅⋅+⋅+⋅+⋅=⋅+⋅⋅⋅+++=sm d vD v v d v v v v d D v /4.80)98.01(001.002.002.05.1)98.01()98.01(98.01)98.01(4)(448228221812832122=-⨯⨯⨯=--⋅=∴--⋅=+⋅⋅⋅+++⋅=⋅πππ则 v 8=v 1(1-2%)7=80.4×(1-2%)7=69.8m/s3-6 油从铅直圆管向下流出。
管直径cm d 101=,管口处的速度为s m v /4.11=,试求管口处下方H=1.5m 处的速度和油柱直径。
流体力学讲义 第三章 流体动力学基础
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。
工程流体力学第三章
则总压力P 则总压力P为: 其中 代入上式,则: 代入上式,
(1)
对于本例即
它表明作用在平面 A 的液体总压力,等于浸水面积 A 与形心点 的液体总压力, 的静压力 γhc的乘积。 的乘积。 可理解为一假想体积的液重,即以浸水面积 A 为底,面积 A 的 为底, 可理解为一假想体积的液重, 形心淹没深度h 为高的这样一个体积包围的液体重量。 形心淹没深度hc为高的这样一个体积包围的液体重量。
一点的质量力必然垂直于通过该点的等压面。 一点的质量力必然垂直于通过该点的等压面。 等压面概念对解决许多流体平衡问题很有用处, 等压面概念对解决许多流体平衡问题很有用处,它是液柱式压力计测压原理的重 要基础。 要基础。 根据等压面性质,我们可以在已知质量力的方向,去确定等压面的形状, 根据等压面性质,我们可以在已知质量力的方向,去确定等压面的形状,或已知 等压面的形状去确定质量力的方向。 等压面的形状去确定质量力的方向。
根据等压面的特性可以更普遍地证明:两种不同流体处于平衡状态时,其 根据等压面的特性可以更普遍地证明:两种不同流体处于平衡状态时, 相互接触的(但互不相混)分界面必然是等压面。 相互接触的(但互不相混)分界面必然是等压面。
( 4 )正压流场 流体的密度只是压力的函数的流场称之为正压流场,即在正压流场中 流体的密度只是压力的函数的流场称之为正压流场,
§3 . 3 某些流体静力学基本问题
在工程技术中,许多的工业过程与流体静力学相关,研究这些问 在工程技术中,许多的工业过程与流体静力学相关, 题就需要流体静力学的知识。 题就需要流体静力学的知识。 一、压力分布与受力分析 对于流体静力学基本方程: 对于流体静力学基本方程:
∂P = ρ fx; ∂x ∂P = ρ fy; ∂y
工程流体力学答案第三章(杜广生)习题解答
p1 p +z1 2 +z2 = w 1 H g g
由式(3) 、 (7)得:
2 2 w 1 H = 2g
12
2g
(8)
第 4 页 共 25 页
《工程流体力学(杜广生) 》习题答案
q d V 2 2 d q dA( x) 1 dA( x) qV A( x) = qV = ax x x = V 2 3 dx A( x) dx A( x) A ( x) dx A ( x) dx
6. 解:
根据已知条件,有:
x
dx dy y x , y ,代入流线微分方程: = 可得: x y 2 (x y ) 2 (x y )
y t x y x y y y z y z 0 0 9y 0 9y
ay
az
z x z y z z z 0 0 0 8z3 8z3 t x y z
3 2 3
根据不可压缩管流连续性方程: 1 A1 =2 A2 , 代入已知参数,可以得到:
1 1 0.3 0.52 =2 0.0382 ,求解方程,可得: 2 =51.94m /s 4 4
14. 解:
列 1-1,2-2 缓变流截面的伯努利方程:
1a21
2 p1 2a p 2 z1 z2 2 +hw (1) 2g 2g g g
ax
x x x y x z x 1 0+(xz t )z xy 2 1 (xz t )z xy 2 t x y z
y t x y x y y y z y z 1 (yz t )z 0 x 2 y 1 (yz t )z x 2 y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
B
pz
C 流体各点压力不一定相同, y 一般说来,压力是时间和空
间的函数。
p p(x, y, z,t)
压力指向作用面的内法线方向; 压力只是位置和时间的函数,与作用面的方位无关
第一节 静止流场中的应力性质
静压力两个特征(证明)
1. 流体静压力方向与作用面相垂直,并指向作用
面的内法线方向。
假 设: 在静止流体中,流体静压力方向不与作用面
2019/9/20
18
p 1 p dxdydz
2 x
ቤተ መጻሕፍቲ ባይዱ
A
C
p
B
p 1 p dxdydz 2 x
½ dx
微元平行六面体x方向的受力分析
2019/9/20
19
第二节 流体静平衡方程
垂直于 x 轴的左、右两微元面上的总压力 分别为
x方向受力分析
质量力—— f x dxdydz
表面力—— 只有静压力
2019/9/20
如何求解是关键
15
A
C
B
p
½ dx
已知:微元六面体中心点C的压力为P
求:A、B点的压力
2019/9/20
16
第二节 流体静平衡方程
作用在六个平面中心点上的静压力可按 泰勒级数展开
f (x)
f ( x0 )
作用在ABD面 上的静压力
py
9
第一节 静止流场中的应力性质
静压力两个特征(证明) 流体微团受力分析 x方向受力分析
表面力:
Fx
Px
1 dydz 2
dAn
cos
1 2
dydz
Fn cos
PndAn cos
Pn
1 dydz 2
质量力:
Wx
(1 6
dxdydz)
fx
流体微团质量
x方向单位质量力
2019/9/20
10
第一节 静止流场中的应力性质
静压力两个特征(证明)
因为流体平衡 Fx 0
在轴方向上力的平衡方程为
Px Pn cos Wx 0
把 Px ,Pn和Wx的各式代入得
px
1 2
dydz
pn
1 dydz 2
1 6
dxdydzf x
2. 作用于平面上液体压力。 3. 作用于曲面上液体压力。
难点:
1. 应用静力学基本定律计算作用在平面、曲面上 的压力;
2. 不同高度的液体对固体壁面压力的计算。
2019/9/20
3
第一节 静止流场中的应力性质
应力张量Pn包含了九个分量
z
pzx pxz
pzz pzy
p yz
pxx
pxy pyx
静止流场中,切应力为零
研究内容: 流体在外力作用下处于平衡状态的规 律及其在工程实际中的应用。
静止含义: 以地球作为惯性参考坐标系
绝对静止:流体相对于惯性坐标系静止 相对静止:流体相对于非惯性参考坐标系静止
静止状态
作用在流体上的外力的合力为零
合力矩也为零。
2019/9/20
2
【学习重点、难点】
重点:
1. 静止流场中压力分布及其特性,流体静平衡方 程。
0
2019/9/20
11
第一节 静止流场中的应力性质
静压力两个特征(证明)
化简得
px
pn
1 3
f xdx
0
由于等式左侧第三项为无穷小,可以略去,故得
px pn
同理可得 py pn pz pn
所以
px py pz pn
结论
n的方向可以任意选择,从而证明了在静止流体 中任一点上来自各个方向的流体静压力都相等。
相垂直,与作用面的切线方向成α角
则存在
切向压力pt 法向压力pn
流体要流动
与假设静止流体相矛盾
2019/9/20
6
第一节 静止流场中的应力性质
pn α
静压力 p
pt
切向压力
2019/9/20
7
第一节 静止流场中的应力性质
静压力两个特征(证明)
2. px py pz pn
证 明:
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2
......
f
n ( x0 n!
)
(
x
x0
)n
2019/9/20
17
第二节 流体静平衡方程
在垂直于 x 轴的左、右两个平面中心点上的静压 强分别为
p
p x
dx 2
1 2
2 p x 2
dx 2
第三章 静止流场的性质
• §3–1 静止流场中的应力性质 • §3–2 流体静平衡方程 • §3–3 重力场中的静止液体 • §3–4 重力场静液对物面的作用力 • §3–5 重力场静止气体的压力分布 • §3–6 非惯性系坐标中的静止液体
2019/9/20
1
本章导论
(1) 静止流场中压力分布规律; (2) 流体与其它物体间的相互作用力。
静压强是空间坐标的连续函数
p f (x, y, z)
求静压强分布规律 研究平衡状态的一般情况 推导平衡微分方程式
2019/9/20
流体静力学 最基本方程组
14
第二节 流体静平衡方程
在静止流体中任取一平行六面体的流体微 团,边长为 dx,dy,dz的微元,中心点静压 强为p(x,y,z)
2
1 6
3 p x 3
dx 2
3
p
p x
dx 2
1 2
2 p x 2
dx 2
2
1 6
3 p x 3
dx 2
3
略去二阶以上无穷小量后,分别等于
p 1 p dx 2 x
p 1 p dx 2 x
则
Pxy Pyx Pxz
pyy Pzx Pzy Pyz 0
y
且
x
Pxx Pyy Pzz Pnn p
第一节 静止流场中的应力性质
在静止流场中,切应力为零,正应力为 np
z
D
说明:
px
n
由于流体不能承受拉力,因此
p y dz
pn
有一个负号。
A dy
o
dx
取一微元四面体的流体微团ABCD,边长分别为dx, dy和dz
由于流体处于平衡状态,故作用在其上的一切力在 任意轴上投影的总和等于零。
Fx 0 Fy 0 Fz 0
2019/9/20
8
作用在ACD面上 的流体静压力 px
2019/9/20
pz
作用在BCD面上
pn
的静压力
2019/9/20
12
第一节 静止流场中的应力性质
静压力两个特征:
1. 流体静压力方向与作用面相垂直,并指向作用
面的内法线方向。
2. 静止流体中任意一点流体压力的大小与作用面
的方向无关,即任一点上各方向的流体静压力 都相同。
px py pz pn
2019/9/20
13
第二节 流体静平衡方程