疲劳与断裂讲课课件

合集下载

疲劳与断裂4ppt课件第四章节应变疲劳

疲劳与断裂4ppt课件第四章节应变疲劳

多轴应变疲劳研究
总结词
多轴应变疲劳是工程结构中常见的应力 状态,研究多轴应变疲劳对于提高结构 的安全性和可靠性具有重要意义。
VS
详细描述
多轴应变疲劳涉及到多个方向的应力分量 ,其断裂行为和寿命预测比单轴应变疲劳 更为复杂。因此,需要深入研究多轴应变 疲劳的机制和规律,包括多轴应变疲劳的 损伤演化、寿命预测和实验技术等。
THANKS
感谢观看
02
应变疲劳的实验研究
应变疲劳实验方法
实验对象
选择一定数量的受试者,可以是 不同年龄、性别和身体状况的人 群,以探究应变疲劳在不同个体 之间的表现。
实验设计
设计合理的实验方案,包括应变 方式、应变时间、恢复时间等, 确保实验过程科学、严谨。
实验操作
在实验过程中,确保受试者按照 规定的应变方式进行操作,并记 录相关数据。
影响应变疲劳的因素包括材料特性、应力水平、温度、环 境条件等。
要点二
详细描述
材料的特性,如硬度、韧性、强度等,对应变疲劳有显著 影响。高硬度和脆性的材料更容易发生应变疲劳。应力水 平,特别是低应力幅值和高循环应变,也是影响应变疲劳 的重要因素。温度和环境条件,如湿度、腐蚀介质等,也 会对应变疲劳产生影响。在高温和腐蚀环境中,材料的抗 应变疲劳性能通常会降低。
01
根据实验结果分析,总结应变疲劳在不同个体之间的表现和规
律。
提出研究建议
02
根据实验结论,提出对应变疲劳进一步研究的建议和方法,为
相关领域的研究提供参考。
应用前景展望
03
探讨应变疲劳在生产、生活等方面的应用前景,为实际应用提
供指导。
03
应变疲劳的数值模拟
数值模拟方法

《疲劳断裂分析》PPT课件

《疲劳断裂分析》PPT课件
如右图所示:雨流路径为A-B-D-E -A´
5. 随机载荷谱与循环计数法:
简化雨流计数法:
第三步:记下雨滴流过的最大峰、 谷值,作为一个循环。第一次流 经的路径,给出的循环为ADA´, 载荷历程可有图中读出:
Δσ=5-(-4)=9 σm=[5+(-4)]/2=0.5
5. 随机载荷谱与循环计数法:
C (0.9b )m 106
4.14
将4.14式所得值带入4.1式则可得近似103-106 内的S-N曲线,预测结果偏保守。
4.1 应力疲劳
1. S-N 曲线:近似估计
假设当N=103时,有:
1 0.9b
疲劳极限取偏保守估计即:
N 106时
1 k b
k:式4.5-4.10中系数 将4.11和4.12带入Sm·N=C ,可得:
k
D
Di
ni
/
N i
1.75
1
1
因此,如σ=200MPa,则构件会发生破坏,应降低应力水平。
令σ=150MPa,则计算后可得:
k
D
Di
ni
/
N i
0.985
1
1
由此可得,基本上可承受的最大应力水平为150MPa。
Miner理论的应用实例:
例4-3:已知构件的S-N曲线满足σ2N=2.5*1010,一年内承受的载荷
破坏准则为:
D
ni
/
N i
1
4.23
变幅载荷谱
线性累计损伤
4.1 应力疲劳
4. Miner线性累计损伤理论:
Miner理论的应用步骤:
① 确定构件在设计寿命期的载荷谱,确定拟用的设计载荷或者应 力水平;

疲劳与断裂5PPT课件

疲劳与断裂5PPT课件
所幸的是,断裂力学的发展帮助我们避免了一些潜 在的危险。我们对材料如何破坏的理解、避免这类 破坏发生的能力,自二次世界大战以来已显著增加。 然而,还有许多要研究,已有的断裂力学知识也并 未总是在适当的时候得到应用。
7
5.2 裂纹尖端的应力强度因子
裂纹的 三种基 本受载 形式:
y
x
t
z
1型 t
y
x
作用(、a)越大,抗力(K1C )越低,越可能断裂。
K是低应力脆性断裂(线弹性断裂)发生与否 的控制参量,断裂判据可写为:
K= f (Wa ,L) pa K1c 16
断裂判据:
K= f (Wa ,L) pa K1c 或 KK1C
这是进行抗断设计的基本控制方程。
f是裂纹尺寸a和构件几何(如W)的函数,查手册; K1C是断裂韧性(材料抗断指标),由试验确定。
r, ij趋于零;但显然可知, 当q=0时,在x轴 上远离裂纹处,应有y=,且不受r的影响。故 此时应以其后的r0阶项为主项。
断裂力学关心的是裂纹尖端附近的应力场。
11
裂尖的应力强度因子K1: K1= p a
K反映了裂尖应力场的强弱;足标1表示是1型。
ij越大,K越大;裂纹尺寸a越大,K越大。 K的量纲为[应力][长度]1/2,常用MPa m。
内压 p ,则 ,临界裂纹尺寸 ac ;
若内压不变,容器直径 d , , ac , 抗断裂能力越差。
22
本章基本概念
低应力断裂:在静强度足够的情况下发生的断裂。
剩余强度: 受裂纹影响降低后的强度。 工程中最常见的、危害最大的是 I (张开)型裂纹。 用弹性力学方法可以得到裂纹尖端附近任一点 (r,q)处的正应力x、y和剪应力txy为:

疲劳与断裂讲课课件

疲劳与断裂讲课课件

材料因素
材料类型
不同材料的疲劳性能和断裂韧性各不相同,如金属、塑料、陶瓷 等。
材料微观结构
晶粒大小、相组成、微观缺陷等都会影响材料的疲劳性能和断裂韧 性。
材料成分
化学成分的差异也会影响材料的疲劳性能和断裂韧性,例如合金元 素对金属的疲劳性能有显著影响。
环境因素
温度
01
温度对材料的疲劳性能和断裂韧性有显著影响,有些材料在高
热处理和表面处理
对材料进行适当的热处理和表面处理,以提高其力学性能和抗疲 劳性能,进一步增强结构的耐久性。
质量检测
进行严格的质量检测,确保每个制造环节都符合设计要求和质量 标准,及时发现并处理潜在的问题。
使用阶段
定期检查和维护
建立定期检查和维护制度,对关键部位进行重点检查,及时发现 并修复疲劳裂纹和损伤,以延长结构的使用寿命。
总结词
汽车疲劳断裂事故分析
详细描述
汽车疲劳断裂事故通常是由于汽车零部件在承受重复载荷和热载荷时发生的。这个案例将分析汽车的 结构设计、材料选择以及断裂发生的过程,并讨论如何通过疲劳试验和无损检测来评估汽车的疲劳寿 命。此外,还会讨论汽车维护和检查的重要性,以及如何预防疲劳断裂的发生。
THANKS
感谢观看
载荷分析
准确分析结构所承受的载荷,以确定疲劳和断裂的关键区域,从而 进行针对性的优化设计。
优化设计
采用先进的计算和分析工具,对结构进行优化设计,以降低应力集中 和改善受力分布,从而减少疲劳和断裂的风险。
制造阶段
加工制造
确保制造过程中的精确性和一致性,以减小制造误差和残余应力 ,从而降低疲劳和断裂的可能性。
温下容易发生蠕变或热疲劳。
湿度
02

疲劳与断裂2ppt课件第二章节应力疲劳

疲劳与断裂2ppt课件第二章节应力疲劳

宏观机理的研究有助于了解材料 的疲劳断裂过程,并指导材料的
设计和应用。
裂纹扩展与断裂
当材料受到循环应力作用时, 裂纹会在材料内部形成并逐渐 扩展。
随着循环次数的增加,裂纹扩 展到一定程度后,材料会发生 断裂。
裂纹扩展与断裂的研究有助于 预测材料的寿命和安全性,为 工程结构的维护和安全评估提 供依据。
在循环应力作用下,材料内部的微观 结构会发生改变,如晶粒的变形、位 错的滑移等,这些改变会影响材料的 疲劳性能。
宏观机理
宏观机理主要研究材料在宏观尺 度上的疲劳行为,包括材料的应
力应变曲线、塑性变形等。
在循环应力作用下,材料会发生 塑性变形,随着循环次数的增加, 塑性变形逐渐累积,最终导致材
料的断裂。
Байду номын сангаас命较长。
应力集中
结构中的缺口、孔洞、 切槽等引起的应力集中,
会降低疲劳寿命。
环境因素
温度、湿度、腐蚀介质 等环境因素对材料的疲
劳性能产生影响。
02
应力疲劳的机理
微观机理
微观机理主要研究材料在微观尺度上 的疲劳行为,包括晶粒、位错等。
微观机理的研究有助于深入了解材料 的疲劳性能,并为提高材料的疲劳强 度提供理论依据。
03
应力疲劳的测试与评估
测试方法
01
02
03
恒幅载荷疲劳试验
在恒定的应力幅值下,对 试样进行疲劳试验,以确 定试样的疲劳极限和寿命。
随机载荷疲劳试验
模拟实际工况中的随机载 荷,对试样进行疲劳试验, 以评估试样在随机载荷下 的疲劳性能。
断裂力学方法
通过测量材料的裂纹扩展 速率和临界应力强度因子, 评估材料的疲劳性能和断 裂韧性。

疲劳断裂讲义 PPT

疲劳断裂讲义 PPT
30
有效应力集中系数
1 d K 或K 1 k


与构件的形状、尺寸有关; 与材料性质(极限强度)有关,静载 抗拉强度越高则有效应力集中系数越 大,即对应力集中就越敏感。
31
凹凸不平的最后破断区
最后疲劳破坏的阶段,当试样无法承受 所施加的载荷而突然断裂时,因没有经过摩 擦阶段,故其表面将出现粗糙而不规则的特 征, 亦有人称其为粒状表面。
38
第五节 影响材料疲劳限或疲劳强度的因素
A. 平均应力的影响 压缩应力会使疲劳裂缝开口闭合, 一般研 究平均应力m>0或应力比值R >-1的循环 应力对材料疲劳破坏的影响。
随着应力比值R 的增加,材料的疲劳 极限亦上升。
39
大部分材料的应力振幅a与平均应力 间有线性关系 → Goodman经验方程式:
该材料对缺口敏感 !
粒状表面
32
B. 微观特征
借助SEM可发现断口存在微细间隔的平行纹路 (宽约 2.5×10-5mm), 称疲劳条纹(fatigue striation) 。 疲劳条纹垂直于疲劳裂纹 的延伸方向,其每条代表的是 经一次应力循环后疲劳裂纹前 端前进的距离. 材料塑性越佳, 疲劳条纹 越明显;应力范围越大, 疲劳 条纹越宽。 疲劳条纹与贝纹线外观相 似但尺度不同, 单一的贝纹线 内可能包含数千条以上的疲劳 条纹。
43
腐蚀疲劳

零件处于腐蚀环境中会出 现小蚀孔造成应力集中, 使疲劳裂纹成核扩展,从 而缩短疲劳寿命。 防止腐蚀疲劳的方法 很多,根本在于尽量降低 腐蚀速率(如:使用保护 性被覆层、降低或隔离环 境的腐蚀性及使用较耐腐 蚀的材料等)。
44
疲劳极限消失
D. 温度影响
温度升高时,材料疲劳行为趋于复杂(潜变、 氧化现象、循环应力频率会造成相当大的影响)。

《疲劳断裂分析》课件

《疲劳断裂分析》课件

分析一起因桥梁疲劳断裂导致的事故,并总结教训。
2Hale Waihona Puke 案例二:飞机翼疲劳断裂事故
探讨飞机翼疲劳断裂事故的原因和改进措施。
总结
疲劳断裂的重要性
说明疲劳断裂对工程结构的重 要性和影响。
影响疲劳断裂的因素
列举影响疲劳断裂的常见因素 和变量。
预测与避免疲劳断裂
提供预测和避免疲劳断裂的一 些建议和方法。
《疲劳断裂分析》
本课程将介绍疲劳断裂的基本概念和理论,以及对材料和结构性能的影响。 你将学习疲劳断裂的形成机理、试验方法、预测与分析技术,以及如何防止 疲劳断裂发生。
疲劳断裂简介
什么是疲劳断裂
介绍疲劳断裂的定义和特点。
疲劳断裂对材料性能的影响
说明疲劳断裂对材料强度和可靠性的影响。
疲劳断裂形成机理
循环应力
循环应变
疲劳断裂曲线
解释循环应力如何导致疲劳断裂。 描述循环应变对疲劳断裂的作用。 阐述疲劳断裂曲线的特点和意义。
疲劳断裂试验
1 疲劳试验方法
介绍常用的疲劳试验方法 和标准。
2 疲劳试验数据与分析
讲解如何获取和分析疲劳 试验数据。
3 试验过程中需要注意
的问题
提醒试验中需要注意的关 键问题和技巧。
疲劳断裂的预测与分析
1
疲劳断裂寿命的评定
介绍常见的疲劳寿命评定方法和理论模型。
2
疲劳断裂的预测模型
讲解使用预测模型来预测疲劳断裂寿命。
3
疲劳断裂分析软件
推荐一些常用的疲劳断裂分析软件和工具。
防止疲劳断裂的方法
材料设计与选择 建立可靠的疲劳寿命预测模型 合理的结构设计
疲劳断裂事故案例分析
1
案例一:桥梁疲劳断裂事故

《疲劳与断裂》PPT课件

《疲劳与断裂》PPT课件


设计目标 初步设计
平衡方程
内强 强
变形几何条件
力 应
度 条
度 计
力件 算
应力应变关系
材料试验 极限应力 选取安全系数 许用应力
满 NO 修改 意 设计 ?
YES
结束
研究对象是无缺陷变形体,
研究目的是保证在最大载荷下有足够的强度。
精选课件ppt
4
有缺陷怎么办?
研究含缺陷材料的强度 --断裂
多次载荷作用下如何破坏?
静强度失效、断抗裂震失模效型和试疲验劳失效,是工程
中最(为破关坏注部的位基、本破失坏效形模式、。抗震能力)
精选课件ppt
16
疲劳与断裂
一. 概述
introduction
二. 应力疲劳 三. 疲劳应用统计学基础 四. 应变疲劳
Crack initiation
精选课件ppt
17
疲劳与断裂
五. 断裂失效与断裂控制设计 六. 表面裂纹 七. 弹塑性断裂力学简介
应力幅
Sa=(Smax-Smin)/2
应力变程 S=Smax-Smin
应力比或循环特性参数 R=Smin/Smax
精选课件ppt
22
定义:平均应力 Sm=(Smax+Smin)/2
(1)
应力幅
Sa=(Smax-Smin)/2
(2)
应力变程 S=Smax-Smin
(3)
应力比或循环特性参数 R=Smin/Smax
精选课件ppt
9

叶轮
疲劳断裂破坏
精选课件ppt
10
转子轴
疲劳开裂
疲劳断裂破坏
精选课件ppt
11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种方法互相补充,适应不同设计需求, 不是相互取代的。
1.4 疲劳破坏机理与断口特征
14
一、断口宏观特征
典型疲劳断口,特征明显: 1)有裂纹源、裂纹扩展区和
最后断裂区三个部分。 2)裂纹扩展区断面较光滑,
通常可见 “海滩条带”, 还可能有腐蚀痕迹。
裂纹扩展区 海滩条带 最后断裂区 裂纹源
飞孔机边轮角毂裂疲纹劳断断口口
用于民用飞机,容器,管道,汽车等。
12
损伤容限设计 ( Damage tolerance design)
由于裂纹存在,安全寿命设计并不能完全确保安全。
20世纪70年代提出的损伤容限设计: 假定构件中存在着裂纹,用断裂分析、疲劳
纹扩展分析和试验验证,保证在定期检查肯定能 发现前,裂纹不会扩展到足以引起破坏。
10
无限寿命设计 (Infinite-life design)
控制疲劳裂纹萌生的是应力幅Sa 。 Sa 小于疲劳极限值 Sf 时,将不发生疲劳破坏。 控制疲劳裂纹扩展的是应力强度因子K=f(S, a)。 K小于疲劳裂纹扩展门槛值Kth时,裂纹不扩展。
控制应力水平,使裂纹不萌生或不扩展,即:
S<Sf or K<Kth
8
1993年,美国政府报告 ( PB94-143336, 1993)发 表了1973-1990年期间的飞机使用故障统计结果,表 中列出了四种常用机型的数据。
SDR-使用故障报告 (美国) (1973-1990)
机型
Boeing 727 737 747
DC-9
SDR 报告总次数 飞机数 报告数
2364 36315 1097 15437
疲劳与断裂
提纲
第一章 概述………………………… 3-27 第二章 应力疲劳…………………… 28-83 第三章 疲劳应用统计学基础……… 84-137 第四章 应变疲劳……………………138-194 第五章 断裂失效与断裂控制设计…195-251
3
疲劳与断裂
第一章 概述 introduction
SP647-1 最终报告 “数据资料和经济分析方法”
SP6断47-裂2 使美国一年损失1190亿美 摘要元发表于 Int. J. of Fracture, Vol23, No.3, 1983
译文见 力学进展, Vol15,No2,1985
5
断裂(包括疲劳、腐蚀引起的断裂)
使美国一年损失1190亿美元,
1.1 什么是疲劳? 1.2 疲劳断裂破坏的严重性 1.3 抗疲劳设计方法 1.4 疲劳破坏机理与断口特征 1.5 疲劳问题研究方法
返回主目录
1.2 疲劳断裂破坏的严重性
4
1982年,美国众议院科学技术委员会委托商业 部国家标准局(NBS)调查断裂破坏对美国经济的影 响。 提交综合报告 “美国断裂破坏的经济影响”
利用现有研究成果,可再减少损失24%(285亿/年)。
包括提高对缺陷影响、材料韧性、工作应力的预测 能力;改进检查、使用、维护;建立力学性能数据 库;改善设计方法更新标准规范等。
剩余的47%,有待于进一步基础研究的突破。
如裂纹起始、扩展的进一步基础研究;高强度、 高韧性、无缺陷材料的研究等。
疲劳断裂引起的空难达每年100次以 7 上国际民航组织 (ICAO)发表的
选用韧性较好、裂纹扩展缓慢的材料,以保证有足 够大的ac和充分的时间,安排检查并发现裂纹。
耐久性设计 ( Durability design)
13
20世纪80年代起,以经济寿命为目标的耐久性设计 概念形成。耐久性是构件和结构在规定的使用条件 下抗疲劳断裂性能的一种定量度量。
先定义疲劳破坏严重细节群(如孔等)的初始疲劳 质量---初始损伤状态;再用疲劳或疲劳裂纹扩展分 析预测在不同使用时刻损伤状态的变化;然后确定 其经济寿命,制订使用、维修方案。
为其1982年国家总产值的4%。
损失最严重的是: 车辆业 (125亿/年), 建筑业 (100亿/年), 航空 (67亿/年), 金属结构及制品 (55亿/年).
对策
6
普及断裂的基本知识,可减少损失29%(345亿/年)。
设计、制造人员了解断裂,主动采取改进措施, 如设计;材料断裂韧性;冷、热加工质量等。
381 6936 1465 26128
涉及蒙皮开裂的SDR次数Fra bibliotek飞机数
报告数
774
3294
257
2069
134
543
493
1532
可见疲劳开裂仍然是值得严密关注的。
设 计 水 使用故障、失效研究 平
9
可靠性设计 耐久性设计
抗断裂设计
抗疲劳设计
静强度设计
1800
1900
2000 年代
1.3 抗疲劳设计方法
“涉及金属疲劳断裂的重大飞机失事调查”指出: 80年代以来,由金属疲劳断裂引起的机毁人亡
重大事故,平均每年100次。(不包括中、苏) Int. J. Fatigue, Vol.6, No.1, 1984
工程实际中发生的疲劳断裂破坏,占全部力学破 坏的50-90%,是机械、结构失效的最常见形式。
因此,工程技术人员必须认真考虑可能的疲劳断 裂问题。
3)裂纹源在高应力局部或材料缺陷处。 4)与静载破坏相比,即使是延性材料,也没有明显
的塑性变形。 5)工程实际中的表面裂纹,一般呈半椭圆形。
疲劳破坏与静载破坏之比较
15
疲劳破坏 S<Su
静载破坏 S>Su
破坏是局部损伤累积的结 破坏是瞬间发生的。 果。
断口光滑,有海滩条带或 断口粗糙,新鲜,无表面
腐蚀痕迹。有裂纹源、裂 磨蚀及腐蚀痕迹。
纹扩展区、瞬断区。
韧性材料塑性变形明显。
无明显塑性变形。 应力集中对极限承载能力
应力集中对寿命影响大。 影响不大。
由断口可分析裂纹起因、扩展信息、临界裂纹
尺寸、破坏载荷等,是失效分析的重要依据。
16
二、疲劳破坏机理及断口微观特征
疲劳裂纹萌生机理:
疲劳裂纹的起始或萌生,称为疲劳裂纹成核。
对于气缸阀门、顶杆、弹簧,长期频繁运行的轮轴 等,无限寿命设计至今仍是简单而合理的方法。
安全寿命设计 ( Safe-life design )
11
不需经受很多次循环的构件,无限寿命设计很不经济。
研究载荷水平与疲劳寿命的关系; 建立描述材料疲劳性能的S-N、e-N曲线。
按照S-N或e-N曲线设计,使构件在有限长设 计寿命内,不发生疲劳破坏的设计---安全或有限 寿命设计。
疲劳裂 纹成核
扩展至临 界尺寸
相关文档
最新文档