有限元分析第3章弹性力学基础知识2
弹性力学基础及有限单元法
第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。
2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。
实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。
根据这个假设所得的结果与实验结果是符合的。
(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。
这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。
钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。
木材不是各向同性的。
(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。
同时还假定材料服从胡克定律,即应力与形变成正比。
(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。
在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。
在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。
(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。
也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。
物体中初应力的性质及数值与物体形成的历史有关。
若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。
上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。
有限元法基本原理及应用第3章重庆大学龙雪峰
有限元原理及应用
第三章 弹性力学有限元法
• 3.单元分析 • 单元分析包括位移模式选择,单元力学分析两个内容。 • 位移模式也称位移函数或插值函数,在有限元位移法中是 以节点位移为基本未知量,再由这些节点位移插值得到单 元内任意一点的位移值。单元的位移模式一般采用多项式, 因为多项式计算简便,并且随着项数的增加,可以逼近任 何一段光滑的函数曲线。 • 单元力学分析 根据所选单元的节点数和单元材料性质, 应用弹性力学几何方程和物理方程得到单元刚度矩阵。由 于连续体离散化后假定力是通过节点在单元间传递的,因 此要利用插值函数把作用在单元上的体积力、面积力和集 中力按静力等效原则移到节点上。
Hale Waihona Puke 有限元原理及应用第三章 弹性力学有限元法
• 5.结果后处理和分析 • 求解线性方程组得到位移矢量后,由几何和物理关系可以 得到应变和应力。 • 由于应变(应力)来自位移的微分可能导致单元间应力不 连续,这会使应力计算误差较大,要在节点附近进行平均 化处理。 • 通过后处理还可得到位移、应变和应力的最大最小值及其 所在位臵以及主应力、主应变或其它定义的等效应力。 • 结果的输出可以应用图表、动画等各种方式。最后还要对 这些结果进行分析以指导工程设计、产品开发等等。
有限元原理及应用第三章弹性力学有限元法?如果挠度与板厚相比不再为小量如金属板当挠度如果挠度与板厚相比不再为小量如金属板当挠度ww与板厚tt的关系在范围内板的中面应变就不能忽略如图的关系在范围内板的中面应变就不能忽略如图35所示面内的两个自由度也要一并考虑所示面内的两个自由度也要一并考虑导致单元的每个节点上a四边形弯曲单元b三角形弯曲单元图34薄板弯曲单元导致单元的每个节点上就要有五个自由度此类单元一般称为薄板单元
有限元原理及应用
弹性力学与有限元程序设计--第三章
—— 对应于矩形梁的纯弯曲问题。
第三章 平面问题的直角坐标解答
§3-2 矩形梁的纯弯曲
应力函数取三次多项式
ay
3
M
h
M
2 2
对应的应力分量:
x 6ay y 0 xy yx 0
(a)
x
x
图
y
y
l
h
x
1
h
结论:应力函数(a)能解决 矩形梁受纯弯曲的问题。 如图,取单位宽度的梁来考察,并命每单位宽度上力偶的矩为 M 。这 里 M 的因次是[力][长度]/[长度],即[力]。 边界条件: 上下(主要)边界:
h 2 h 2
h 2 h 2
前一式总能满足,而后一式要求:
a 2M h3
代入式(a),得:
x
12 M y y 0 xy yx 0 3 h
第三章 平面问题的直角坐标解答
§3-3 位移分量的求出
1. 形变分量与位移分量
(1)形变分量 由前节可知,其应力分量为:
x M y
u x l 0, v x l 0
y 0 y 0
v x
x l y 0
0
o
l
x
y
(中点不动)
u0 0
M 2 l l v0 0 2 EI
(轴线在端部不转动)
u0 0
v0 Ml 2 EI
2
代入式(f),有
代回式(f),有
u M (l x) y EI
2 x 2 fx x y
(2-25)
2 y 2 fy y x
(2-24)
(b)边界条件
第3讲—弹性力学问题的有限单元法
1 T U d Kd 2
u1 d u 2 u 3
有限单元法
崔向阳
Step 3: 单元集成
单元集成——外力功
整体节点 位移列阵
整体等效节 点力列阵
u1 d u2 u 3
f1 R1 f f 2 0 f F 3
有限单元法
崔向阳
Step 2.单元特征分析
xi
单元节点位移列阵: 单元节点坐标列阵: 单元等效节点力列阵:
II=0
有限单元法 崔向阳
真实位移
6
最小势能原理
1 II ij ij dV bi ui dV pi ui dA 2 Sp 1 II Dijkl ij kl dV bi ui dV pi ui dA Sp 2
ij
ij
dV biui dV piui dA
Sp
弹性问题中等价于最小势能原理!
有限单元法 崔向阳
比较:虚功原理和能量变分原理
虚功原理是理论力学上的一个根本性原理,可以用于
一切非线性力学问题。
最小势能原理只是虚功原理对弹性体导出的一种表述
形式,但是对于线弹性问题,最小势能原理的应用非 常方便。
ij ui ij ui Dijkl ij kl dV bi ui dV pi ui dA Sp ij ij dV bi ui dV pi ui dA Sp
V= – W
弹性势能—弹性体变形后,产生弹性内力,这种力也具有对外作 功的能力,称为弹性势能,或弹性应变能。
弹性力学理论基础
2.1 基本假设和基本概念
(2)弹性力学的基本概念 2)应力 物体受外力作用后,在其内部将要产生 应力。 六面体称为微元体:从物体中取出一 个无限小的平行六面体,它的棱边平行于 坐标轴。 将微元体每一个面上的应力分解成为一 个正应力和两个剪应力,分别与三个坐标轴 平行,并称为该面的三个应力分量
2.1 基本假设和基本概念
1)分析各点的位移
2.2 弹性力学的基本方程
(2)几何方程 2)求正应变
根据弹性力学的基本假设,限定位移是微小 的。
正应变的定义有:
u dx
x
dx
u dx x
dx
u x
同理:
y
PB2 PB
PB
v y
2.2 弹性力学的基本方程
(2)几何方程 3)求剪应变
在弹性力学里假想把物体分成无限多个微小六面体(在物 体边界处可能是微小四面体),称为微元体。
考虑任一微元体的平衡(或运动),可写出一组平衡(或运 动)微分方程及边界条件。
2.1 基本假设和基本概念
(3)弹性力学问题求解的基本方法 弹性力学问题都是超静定的,必须同时再考虑微元体
的变形条件以及应力和应变的关系,它们在弹性力学中相 应地称为几何方程和物理方程。平衡(或运动)方程、几何方 程和物理方程以及边界条件称为弹性力学的基本方程。
2 x
x 2
dx 2
略去二阶及二阶以上的微量后:
x
x
x
dx
同样设左面的剪应力是 xy
右面的剪应力将是
xy
xy x
dx
2.2 弹性力学的基本方程
(1)平衡方程
各个面上所受的应力可以假设为均匀分
布,并作用在对应面的中心。六面体所受的 体力,也可假设为均匀分布,并作用在它的 体积的中心。
第2章 弹性力学的基本知识
(2)均匀性假设:假定物体内各点处材料均相同。
(3)各向同性假设:假定物体内各点处各个方向上的物理性质相同。
(4)完全弹性假设:胡可定律
(5)几何假设——小变形假设: 变形产生的位移与物体的尺 寸相比 ,是微小的。
关于外力、应力、应变和位移的定义
1.外力
体力 (定义)分布在物体体积内的力,如重力、惯性力等。 分为体积力(体力)和表面力(面力)两类。 有限元分析也使用集中力这一概念。
以通过一点的沿坐标正向微分线段的 正应变ε和 切(剪)应变 γ 来表示。 正应变εx ,εy , εz 以伸长为正。
切应变γxy , γyz ,γzx 以直角减小为正, 用弧度表示。 正应变和切应变都是无因次的量 应变列阵 x y z xy yz zx
Tຫໍສະໝຸດ 4. 位移材力研究方法
也考虑这几方面的条件,但不是十分严格的:常常引用近 似的计算假设(如平面 截面假设)来简化问题,并在许多 方面进行了近似的处理。 因此材料力学建立的是近似理论,得出的是近似的解答。 从其精度来看,材力解法只能 适用于杆件形状的结构。
★ 弹塑性力学研究问题的基本方法
在受力物体 内任取一点 (单元体)为 研究对象。
写成矩阵形式:
ε=
σ
ε=φσ 显然: φ=D-1
三、平衡方程
弹性体中任一点满足平衡方程, 在给定边界上满 足应力边界条件。
弹力的研究方法
在体积V内 由微分体的平衡条件,建立平衡微分方程; 由微分线段上应变与位移的几何关系,建立几何方程; 由应力与形变之间的物理关系,建立物理方程; 在边界 S 面上
x
二、物理方程
若弹性体只有单向拉伸或压缩时,根据材料 力学胡克定律:
弹性力学与有限元分析
m α 式中: = ∑i , α1,α2 ,⋯ 2m 为待定系数。把位移函
i=1
n+1
数的这种描述形式称为广义坐标形式。 在确定二维多项式的项数时,需参照二维帕斯卡三 角形,即在二维多项式中,若包含帕斯卡三角形对称轴 一侧的任意一项,则必须同时包含它在对称轴另一侧的 对应项。
1 x x2 x3 x4 y xy y2 y3
1、结构的离散化——单元划分 2、假设单元的位移插值函数和形函数 3、计算单元刚度矩阵 4、载荷移置——把非节点载荷等效地移置 到节点上 5、计算结构刚度矩阵,形成结构刚度方程 6、引入位移边界条件,求解方程 7、计算应力与应变
三、两种平面问题
平面问题分为平面应力问题和平面应变问题两大类。 体力——指分布于物体体积内的外力,它作用于 物体内部的各个质点上,如重力、磁力 和运动时的惯性力等。 面力——指均布于物体表面上的外力,它作用于 物体表面的各个质点上,如物体间的接 触力和气体压力等。
f (x, y),把位移函数的这种描述形式称为插值函数形
式。 形函数具有以下两个性质: 1、形函数 Ni在节点 处的值为0。 2、在单元中任意一点,3个形函数之和为1,即:
i处的值为1,而在其余两个节点
Ni (x, y) + N j (x, y) + Nm (x, y) = 1
六、计算单元刚度矩阵
U(x, y) Ni f (x, y) = = V(x, y) 0
0 Ni
Nj 0
0 Nj
Nm 0
Ui V i 0 U j Nm Vj Um Vm
其中 Ni , N j , Nm 称为单元位移的形状函数,简称形函 数,其值为:
1、用单元节点位移表示单元中任一点的应变,得
弹性力学有限元法详解
x
4
i1 4
Ni ( ,)xi
y
i1
Ni ( ,) yi
总体坐标系适用于整体结构,局部坐标系只适用于具体某个 单元。
常用的对于平面问题还有八节点等参元,空间问题有八节 点空间等参元,二十节点等参元等 。
第18页,共40页。
3.2 连续体离散化
5.轴对称单元
对于回转结构,如果约束条件和载荷都对称于回转轴,其 应力、应变和位移也都对称于回转轴线,这类应力应变问题称 为轴对称问题 ,通常用柱坐标来描述应力、应变和位移,单元 为实心圆环体,仅截面不同
1
2
ai
(1
0
)
ai (1 0 ) ai (1 0 )
1
2
ai
(1
0
)
(i, j,l,m)
对于平面应变问题:
E
E 1 2
1
第29页,共40页。
3.3 单元分析
2. 单元分析
由虚功原理得:
Fe
K e BT DBdxdyt A
BT DBdxdyt δe
A
Fe Keδe
单元刚度矩阵可分块表示为:
第10页,共40页。
3.2 连续体离散化
3. 薄板弯曲单元和薄板单元
A. 薄板弯曲单元
l
θxi
i
θyi
wi
m
j
四边形弯 曲单元
四边形单元有四个节点,每个节点有三个自由度,主要承 受横向载荷和绕水平轴的弯矩。
第11页,共40页。
3.2 连续体离散化
3.薄板弯曲单元和薄板单元
A. 薄板弯曲单元
m
θxi
对于平面应变问题:
E
E 1 2
有限元分析第3章弹性力学基础知识2
有限元分析Finite Element Analysis李建宇天津科技大学内容Chp.3 弹性力学基础知识2:补充内容1. 边界条件2. 弹性力学中的能量表示3. 弹性力学边值问题要求理解:弹性力学边界条件的提法了解:弹性力学边值问题的内涵掌握:弹性力学中的能量表述课后作业继续检索、阅读弹性力学基本文献有限元分析——弹性力学补充内容弹性力学的“三个基本”1、基本假定2、基本变量3、基本方程弹性力学的基本假定五个基本假定:1、连续性(Continuity)2、线弹性(Linear elastic)3、均匀性(Homogeneity)4、各向同性(Isotropy)5、小变形假定(Small deformation)弹性力学基本变量变形体的描述:在外部力和约束作用下的变形体位移的描述形状改变的描述力的描述材料的描述弹性力学基本变量材料参数位移物体变形后的位置物体的变形程度物体的受力状态物体的材料特性应变应力描述变形体的三类变量:dyxyzuvwdzdx(x,y,z)S uS pΩT位移(displacement)是指位置的移动。
它在x, y 和z轴上的投影用u, v和w。
dyxyzuvwdzdx(x,y,z)S uS pΩT微元体( Representative volume)应力张量(stress tensor )x xy xz yx y yz zx zy z στττστττσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦应变张量(strain tensor )dyuvwdzdx(x,y,z )xu x d d =εd xxσxσuu +d uτβαγ=α+βx xy xz yx y yz zx zy z εγγγεγγγε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦弹性力学的基本方程应力应变位移几何方程物理方程平衡方程弹性力学三大方程上节回顾上节回顾弹性力学基本方程x y z xy yz zx u x v y w z u v y x v w z y w u x zεεεγγγ∂=∂∂=∂∂=∂∂∂=+∂∂∂∂=+∂∂∂∂=+∂∂几何方程00000000x y z xy yz zx x y u z v w y x z y zx εεεγγγ∂⎡⎤⎢⎥∂⎢⎥∂⎢⎥⎧⎫⎢⎥∂⎪⎪⎢⎥∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬∂∂⎢⎥⎪⎪⎪⎪⎩⎭⎢⎥∂∂⎪⎪⎢⎥⎪⎪∂∂⎢⎥⎪⎪⎩⎭⎢⎥∂∂⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦Luε=L :微分算子上节回顾弹性力学基本方程000yx x zx x xy y zyy yz xz z z b x y z b x y zb x y zτσττστττσ∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂平衡方程000000000x y x z y yx zzy xz x y z b b y x z b zyx σσστττ⎧⎫⎡⎤∂∂∂⎪⎪⎢⎥∂∂∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂∂∂⎪⎪⎪⎪+=⎨⎬⎨⎬⎢⎥∂∂∂⎪⎪⎪⎪⎢⎥⎩⎭⎪⎪⎢⎥∂∂∂⎪⎪⎢⎥∂∂∂⎪⎪⎣⎦⎩⎭A :微分算子A b σ+=TA L=上节回顾弹性力学基本方程物理方程()()()111x x y z y y z x z z x y xyxy yzyz zxzx E EE GGGεσνσσεσνσσεσνσστγτγτγ⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦===()()()()()()1000111000111000111121120000021120000021120021x x y y z z xy xy yz yz zx zx E ννννννσεννσεννννσενντγννντγντγννν⎡⎤⎢⎥--⎢⎥⎢⎥⎧⎫⎧⎫⎢⎥--⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥---⎪⎪⎪⎪⎢⎥=⎨⎬⎨⎬-+-⎢⎥⎪⎪⎪⎪-⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪-⎢⎥⎪⎪⎪⎪⎩⎭⎩⎭-⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦D :弹性矩阵D σε=对称上节回顾弹性力学基本方程dyxyzuvwdzdx(x,y,z )S uS pΩT0Lu A b D σεσε+===弹性力学三大方程in Ω边界上呢?一、弹性力学的边界条件(Boundary condition)dyxyzuvwdzdx(x,y,z)S uS pΩT两类边界条件:S p:力的边界S u:位移边界一、弹性力学的边界条件1、位移边界条件边界上已知位移时,应建立物体边界上点的位移与给定位移相等的条件dyxyzuvwdzdx(x,y,z )S uS pΩTuu u v v on S w w =⎧⎪=⎨⎪=⎩一、弹性力学的边界条件以二维问题为例2、力的边界条件边界上给定面力时,则物体边界上的应力应满足与面力相平衡的力的平衡条件∑X=注意ds为边界斜边的长度,边界外法线n的方向余弦l=dy/ds,m=dx/ds有:一、弹性力学的边界条件以二维问题为例Y =∑同理:M =∑一、弹性力学的边界条件以二维问题为例二维情形的力的边界条件00x x x y y yx y xy p n n n n p σστ⎧⎫⎧⎫⎡⎤⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭⎪⎪⎩⎭其中:n x =l ;n y =m一、弹性力学的边界条件扩展到三维情形的力的边界条件00000000x y xy z x z y x z y xy zyx z yz zx n n n p n n n p n n n p σσστττ⎧⎫⎪⎪⎪⎪⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎩⎭⎣⎦⎪⎪⎪⎪⎪⎪⎩⎭n ppon S σ=二、弹性力学中的能量表述功能原理的两个基本概念:功(work):外力功;能量(energy):如动能、势能、热能等弹性问题中的功和能量:外力功:施加外力在可能位移上所做的功应变能:变形体由于变形而储存的能量二、弹性力学中的能量表述1. 弹性力学中的外力功(work by force )弹性力学中的外力包括:面力和体力,故外力功包括:Part 1:面力p i 在对应位移上u i 上的功(on S p )Part 2:体力b i 在对应位移上u i 上的功(in Ω)外力总功为:()()d d pxyzxyzS W p u p v p w S b u b v b w Ω=+++++Ω⎰⎰二、弹性力学中的能量表述2. 弹性力学中的应变能(strain energy)设加载缓慢,系统功能可忽略,同时略去其它能量(如热能等)的消耗,则所做的功全部以应变能的形式储存于内部。
有限元分析的力学基础
应用场景:流体 动力学分析广泛 应用于航空航天、 汽车、船舶、能 源等领域如飞机 机翼的气动性能 分析、汽车发动 机的流体动力学 分析等。
优势:有限元分 析能够处理复杂 的几何形状和边 界条件提供高精 度和可靠的分析 结果有助于优化 设计和改进产品 性能。
未来发展:随着 计算技术和数值 方法的不断进步 有限元分析在流 体动力学分析中 的应用将更加广 泛和深入有望在 解决复杂流体动 力学问题方面发 挥更大的作用。
特点:适用于大规模复杂问题的求解但需要设置合适的初值和解的精度要求。
有限元分析的精度与收敛性
精度:有限元分析的精度取决于网格划分的大小和形状以及所选择的近似函数。 收斂性:有限元分析的收敛性是指随着网格的细化解的近似值将逐渐接近真实解。 收敛速度:收敛速度取决于所选择的有限元类型和边界条件。 误差估计:通过误差估计可以确定所需的网格细化程度以确保解的精度。
弹性力学的 应用实例
塑性力学基础
定义:塑性力学是研究材料在达到屈服点后发生不可逆变形时行为规律的学科。 特点:塑性变形过程中外力的大小和方向可以发生变化而材料的内部结构保持不变。 塑性力学的基本方程:包括应力-应变关系、屈服准则、流动法则等。 应用:塑性力学在工程领域中广泛应用于金属成型、压力容器设计等领域。
局限性:塑性力 学模型忽略了材 料在塑性变形过 程中的微观结构 和相变行为因此 对于某些特定材 料或极端条件下 的应用可能存在 局限性。
流体动力学模型
简介:流体动力 学模型是有限元 分析中用于描述 流体运动的数学 模型包括流体压 力、速度、密度
等参数。
方程形式:流体 动力学模型通常 由一组偏微分方 程表示如NvierSkes方程描述了 流体的运动规律。
单元分析: 对每个单元 进行力学分 析包括内力、 外力、位移 等
弹性力学与有限元完整版
• 后者与弹性体的应力有着直接的关系——弹性力 学研究的主要变形,通常叫位移。
根据连续性假设,弹性体在变形前和变形后仍保持为连
续体。
弹性体中某点在变形过程中由M(x,y,z)移动至 M’(x’,y’,z’),这一过程也是连续的,为 x、y、z
弹性力学各个量之间的关系
平衡方程
外力
物理方程
几何方程
应力
应变
位移
3.1 概述
根据几何方程和本构方程可见:
位移、应力和应变分量之间不是相互独立的。
• 假如已知位移分量,通过几何方程可以得到应变 分量,然后通过物理方程可以得到应力分量。
弹性力学基本内容
外界作用
弹性体
外力 温度变化
应力 应变 位移
1.1 弹性力学绪论
• 弹性力学,又称弹性理论。
– 是研究弹性体由于外力载荷或者温度改变,物体内部 所产生的位移、变形和应力分布等。为解决工程结构 的强度,刚度和稳定性问题作准备 。
• 弹性力学的研究对象:
–是完全弹性体,包括构件、板和三维弹性体,比材料 力学和结构力学的研究范围更为广泛 。
合计 15
未知量:
应力分量——6个
x、 y、 z、 xy、 yz、 zx
应变分量——6个
x、 y、 z、 xy、yz、 zx
位移分量——3个
u、v、w
合计 15
• 第二章 弹性力学平面问题
2.1 平面应力问题 2.2 平面应变问题 2.3 平面问题的基本方程
2.1 平面应力问题
1、平面应力问题的概念
• ②受力特征
– 外力平行于中心层 – 外力沿厚度不变化
有限元与弹性力学的基本原理
区别:
▪ 平面应力: 只在平面内有应力,与该面垂直方向的应力可忽略,例如薄板拉压问题。
平面应变: 只在平面内有应变,与该面垂直方向的应变可忽略,例如水坝侧向水压问题。
▪ 具体说来: 平面应力是指所有的应力都在一个平面内,如果平面是OXY平面,那么只有正应力 σx,σy,剪应力τxy(它们都在一个平面内),没有σz,τyz,τzx。 平面应变是指所有的应变都在一个平面内,同样如果平面是OXY平面,则只有正应
弹性力学的分类
平面问题的基本理论
直角坐标解答 极坐标解答 温度应力
空间问题的基本理论
理论弹性力学
薄板理论 薄壳理论
应用弹性力学
弹性体力学的基本概念简介
弹性体有四种形变:拉伸压缩、剪切、扭转和弯曲。 其实,最基本的形变有两种:拉伸压缩和剪切形变;扭转 和弯曲可以看作是由两种基本形变的组成。
弹性体的拉伸和压缩形变
有限元分析的基本原理
有限元与弹性力学的基本原理
之所以介绍弹性力学的有限元法的主要是:它概念浅显, 易于掌握,既可以从直观的物理模型来理解,也可以按 严格的数学逻辑来研究; 不仅能成功地分析具有复杂边界 条件、非线性、非均质材料、动力学等难题,而且还可 以推广到解答数学方程的其它边值问题,如热传导、电 磁场、流体力学等问题。
(1)平面应力问题:如梁,由于梁的厚度很小,而荷载 又都与Oxy平面平行,且沿z轴为均匀分布,因此可以认为 沿z轴方向的应力分量等于零。这种问题称为平面应力问题。
(2)平面变形问题:如一圆形隧洞的横截面。由于隧洞的 长度比直径大得多,而荷载又都与Oxy平面平行,且沿z轴为 均匀分布,因此可以认为,沿z轴方向的位移分量等于零。 这种问题称为平面变形问题。
弹性力学所依据的基本规律有三个:变形连续规律、 应力-应变关系和运动(或平衡)规律,它们有时被称为弹性 力学三大基本规律。弹性力学中许多定理、公式和结论等, 都可以从三大基本规律推导出来。
3 有限元分析矩阵 弹性力学基础
虚功原理
功是力和力作用点处沿力方向位移的乘积。 * 力或应力在它本身引起的真实位移或应变上做的功为 实功; * 力或应力在其它某种原因引起的微小可能的位移或应 变上做功,则称为虚功; * 这种任意的无限微小的可能位移完全可以是虚拟的, 称为虚位移。
虚功原理
1 一个质点
Wi Fi r Fir r
应力S在其作用截面上的
法向分量为正应力σ,切
向分量称为剪应力,用τ
F1
F2 表示。
lim Q S
A0 A
应 力—物体内某一点的内力
N A
N sin sin A
N sin cos
A
点p在不同截面上的应力是不同的。 用无穷小平行六面体表面的应力分量来表示p点的应力状态。
T F={ }T dxdydz
z
j wj
T F
整个弹性体内应力在虚应变上做的虚功 (虚应变能):
W内应力虚功 =
(
x
x
yy
z
z
xy
xy
yz
yz
zx
zx
)dxdydz
{ }T dxdydz
虚功原理
*虚功原理: 弹性体处于平衡状态,外力在虚位移上做的虚功等于整个 弹性体内应力在虚应变上做的虚功(虚应变能)。
y
1
E 1
E
x y
y
x
z
z
应变和应力的相互换算:
z
1 E
z
x
xy
1 G
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、弹性力学中的能量表述
2. 弹性力学中的应变能(strain energy)
怎么 求?
设加载缓慢,系统功能可忽略,同时略去其它能量(如热 能等)的消耗,则所做的功全部以应变能的形式储存于内部。 对应于微元体的两种变形:线应变和切应变,亦有两种形 式的应变能: Part 1:对应于正应力与正应变的应变能
x z y
T
w (x,y,z) dz v dx u
Sp
dy
Ω
Su
一、弹性力学的边界条件
1、位移边界条件
T 边界上已知位移时,应建 立物体边界上点的位移与 给定位移相等的条件
w (x,y,z) dz v dx u dy
Sp
u u v v w w
on Su
z y x
Ω
Su
一、弹性力学的边界条件
上节回顾
应力张量 (stress tensor)
x xy xz y yz yx zx zy z
弹性力学基本变量
应变张量 (strain tensor)
w (x,y,z) dz v dx u dy
上节回顾
x
dx
x
du x dx
应变能密度的性质
U0 1 x x y y z z xy xy yz yz zx zx 2 1 1 2 2 2 2 2 2 U 0 ij x y z x y y z z x xy yz zx 2E E 2G 1 2 2 2 2 2 2 2 U 0 ij e 2 G G x y z xy yz zx 2
Part 2:对应于切应力与切应变的应变能
Part 1:对应于正应力与正应变的应变能
微元体的变形能:
整个物体Ω上σx,εx 所产生的变形能:
Part 2:对应于剪应力与剪应变的应变能
微元体的 变形能:
整个物体Ω上τxy,γxy 所产生的变形能:
二、弹性力学中的能量表述
2. 弹性力学中的应变能(strain energy)
nx 0 0
0 ny 0
0 0 nz
ny nx 0
0 nz ny
n p
on S p
二、弹性力学中的能量表述
功能原理的两个基本概念:
功(work):外力功; 能量(energy):如动能、势能、热能等 弹性问题中的功和能量: 外力功:施加外力在可能位移上所做的功
应变能:变形体由于变形而储存的能量
2、力的边界条件
边界上给定面力时,则物体边界上的应 力应满足与面力相平衡的力的平衡条件
X 0
以二维问题为例
Hale Waihona Puke 注意ds为边界斜边的长度,边界外法 线n的方向余弦l=dy/ds,m=dx/ds
有:
一、弹性力学的边界条件
以二维问题为例
同理:
Y 0
M 0
一、弹性力学的边界条件
以二维问题为例
0 y 0
0 0 z
0 z y
A:微分算子
A b 0
A L
T
上节回顾
物理方程
1 x x y z E 1 y y z x E 1 z z x y E
由叠加原理,将所有方向正应力正应变、剪应力剪应变所产生的 变形能叠加
应变能密度
U0 1 x x y y z z xy xy yz yz zx zx 2 1 1 2 2 2 2 2 2 U 0 ij x y z x y y z z x xy yz zx 2E E 2G 1 2 2 2 2 2 2 2 U 0 ij e 2 G G x y z xy yz zx 2
二维情形的力的边界条件
nx 0
0 ny
x ny px y nx py xy
其中:nx=l;ny=m
一、弹性力学的边界条件
扩展到三维情形的力的边界条件
x nz y px z 0 py xy nx pz yz zx
二、弹性力学中的能量表述
1. 弹性力学中的外力功(work by force)
弹性力学中的外力包括:面力和体力,故外力功包括: Part 1:面力pi在对应位移上ui上的功(on Sp) Part 2:体力bi在对应位移上ui上的功(in Ω)
外力总功为:
W
Sp
p u p v p w dS b u b v b w d
L:微分算子
Lu
上节回顾
平 衡 方 程
弹性力学基本方程
yx x zx bx 0 x y z xy y zy by 0 x y z yz xz z bz 0 x y z
x 0 0 y x 0 x z y bx 0 z by 0 yx b z zy x xz
基本方程组,普遍规律
(2)在物体边界:应力分量、应变分量和位移分量满足:
位移边界条件 力的边界条件
定解条件,特定规律。
每一个具体 问题反映在 各自的边界 条件上
三、弹性力学边值问题
弹性力学边值问题提法:
求u,σ,ε,满足:
A b 0 Lu D
u u v v w w
dz v dx dy
位移(displacement) 是指位置的移动。它 在 x, y 和 z 轴上的投 影用 u, v 和w。
z
u
Ω
y x
Su
弹性力学基本变量
T
w
上节回顾
微元体
( Representative volume )
(x,y,z)
dz v dx u dy
Sp
Ω
z
y x
Su
弹性力学基本变量
fx
fy
FN
FS
关于弹性力学解的唯一性的讨论 ——圣维南原理
有限元分析
Finite Element Analysis
李建宇
天津科技大学
内容 弹性力学基础知识 2
1. 边界条件 2. 弹性力学中的能量表示 3. 弹性力学边值问题
要求 理解: 弹性力学边界条件的提法 了解: 弹性力学边值问题的内涵 掌握: 弹性力学中的能量表述
课后作业 继续检索、阅读弹性力学基本文献
1
1
1 1
1 0 0 0
0 0 0 1 2 2 1 0 0
0 0 0 0 1 2 2 1 0
1
0 0 0
xy yz zx
xy
G
yz
G
0 x 0 y z 0 xy yz 0 zx 1 2 2 1 0
zx
G
D:弹性矩阵
D
上节回顾
弹性力学三大方程
弹性力学基本方程
T
w (x,y,z) dz v dx dy
A b 0 Lu D
z
Sp
u
Ω
in
x
y
Su
边界上呢?
一、弹性力学的边界条件 (Boundary condition)
两类边界条件: Sp:力的边界
Su:位移边界
圣维南原理:
如作用在弹性体表面某一 不大的局部面积上的力系, 为作用在同一局部面积上 的另一静力等效力系所代 替,则荷载的这种重新分 布只在力荷载作用处很近 的地方才是应力的分布发 生显著变化,在离荷载较 远处只有极小的影响。
关于弹性力学解的唯一性的讨论 ——圣维南原理
圣维南原理的应用:可将边界条件简化, 将不容易积分的方程变成近似 的容易积分的边界条件方程.
u +du
u
x yx zx
xy xz y yz zy z
α
γ=α+β
τ
β
上节回顾
位 应 应 移
弹性力学的基本方程
几何方程
变 力 物理方程 弹性力学 三大方程
平衡方程
上节回顾
几 何 方 程
u x x v y y w z z u v xy y x v w yz z y w u zx x z
上节回顾
弹性力学的 “三个基本”
1、基本假定
2、基本变量 3、基本方程
上节回顾
弹性力学的基本假定
五个基本假定: 1、连续性(Continuity) 2、线弹性(Linear elastic) 3、均匀性(Homogeneity) 4、各向同性(Isotropy) 5、小变形假定(Small deformation)
上节回顾
弹性力学基本变量
变形体的描述:
在外部力和约束作用下的变形体
位移的描述 形状改变的描述
力的描述
材料的描述
上节回顾
弹性力学基本变量
描述变形体的三类变量:
位 应 应 移 变 力 物体变形后的位置 物体的变形程度
物体的受力状态
物体的材料特性
材料参数
弹性力学基本变量
w (x,y,z)