泛函分析试卷
泛函分析习题
泛函分析习题泛函分析练习题⼀名词解释:1.范数与线性赋范空间2.⽆处稠密⼦集与第⼀纲集3.紧集与相对紧集4.开映射5.共轭算⼦6. 内点、内部:7. 线性算⼦、线性范函:8. ⾃然嵌⼊算⼦9. 共轭算⼦10. 内积与内积空间:11. 弱有界集:12. 紧算⼦:13. 凸集14. 有界集15. 距离16. 可分17. Cauchy 列18.⾃反空间⼆、定理叙述1、压缩映射原理2. 共鸣定理3.逆算⼦定理4. 闭图像定理5.实空间上的Hahn-Banach 延拓定理6、Baire 纲定理7、开映射定理8、Riesz 表现定理三证明题:1.若(,)x ρ是度量空间,则1d ρρ=+也使X 成为度量空间。
证明:,,x y z X ?∈显然有(1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。
(2)(,)(,)d x y d y x =(3)由1()111t f t t t ==-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,)x z x y y z d x z x z x y y z ρρρρρρ+=≤+++(,)(,)1(,)1(,)x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+故d 也是X 上的度量。
2,设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。
证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?-已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。
故有 2|(,)(,)|0n n x y x y -→即 (,)(,)n n x y x y →。
3.考虑[,]C a b 上的⾮线性积分⽅程()(,,())()ba x t k t s x s ds t λ?-=?其中[,],(,,)C a b k t s ?ω∈是[,][,]a b a b R ??上的连续函数,满⾜1212|(,,)(,,)|||k t s k t s b ωωωω-≤-证明当||λ⾜够⼩时,此⽅程存在唯⼀解0[,]x C a b ∈。
泛函分析基础试卷参考答案
又对en{0,, 0, 1, 0,, }X, || en||1,
|| T ||sup|| x ||1|| T x |||| T en|||| {0,, 0, an, 0,} || = | an|(5分)
所以|| T ||supn| an|M.
所以|| T ||M.(3分)
所以2A x, y0x, yH
所以A x0xH
所以A0.(5分)
4.证明无穷维赋范线性空间X的共轭空间X '也是无穷空间.
证设{ x1, x2,}是X中线性无关向量,
由Hnha-Banach定理
存在f1X ', f1(x1)0,
存在f2X ', f2(x2)0, f2(x1)0
存在f3X ', f3(x3)0, f3(x1)f3(x2)0
所以(T), (5分)
对[0, 1],定义线性算子T : XX,对xC [0, 1]
(T x) (t) x (t)t[0, 1]
由|| T x ||maxt[ 0, 1]| x (t) |
maxt[ 0, 1]| x (t) |
|| x ||
所以T有界.且
T (AI)(AI) TI
所以(A),
所以(A)[0, 1]. (5分)
令SB1A1B (XX),则
S TB1A1ABI, A B B1A1I (2分)
所以ST1,所以T是正则算子. (1分)
二.以下各题每题15分,共75分
1.设X是度量空间, {xn}是X中Cauchy列,证明若存在{xn}的收敛子列{xn k},则{xn}收敛.
证设xX, xn kx (k)
对任何> 0,存在K, k > K时,
泛函分析考试题型及答案
泛函分析考试题型及答案一、选择题(每题2分,共20分)1. 设函数空间E为所有连续函数的集合,定义泛函F(u)=∫₀¹u(x)dx,则F(u)是线性的。
A. 正确B. 错误答案:A2. 每一个线性泛函都可以表示为一个内积。
A. 正确B. 错误答案:B3. 泛函分析中的“泛函”一词指的是函数的函数。
A. 正确B. 错误答案:A4. 弱收敛和强收敛是等价的。
A. 正确B. 错误答案:B5. 紧算子总是有界算子。
A. 正确B. 错误答案:A6. 每一个闭算子都是有界的。
A. 正确B. 错误答案:B7. 每一个有界线性算子都是紧算子。
A. 正确B. 错误答案:B8. 每一个线性泛函都可以用Riesz表示定理表示。
A. 正确B. 错误答案:A9. 每一个线性算子都可以分解为一个紧算子和一个有界算子的和。
A. 正确B. 错误答案:B10. 每一个线性算子都可以分解为一个有界算子和一个紧算子的和。
A. 正确B. 错误答案:A二、填空题(每题3分,共15分)1. 设X是赋范线性空间,如果对于X中的每一个序列{x_n},都有‖x_n‖→0当且仅当x_n→0,则称X是______空间。
答案:完备2. 设T是线性算子,如果T(X)是X的闭子空间,则称T是______算子。
答案:闭3. 设E是Hilbert空间,如果对于每一个x∈E,都有∥Tx∥≥∥x∥,则称T是______算子。
答案:正4. 设E是Banach空间,如果对于每一个序列{x_n}⊂E,都有∑‖x_n‖<∞当且仅当∑x_n收敛,则称E是______空间。
答案:自反5. 设E是线性空间,如果对于每一个序列{x_n}⊂E,都有∑x_n收敛当且仅当∑‖x_n‖<∞,则称E是______空间。
答案:序列完备三、简答题(每题10分,共30分)1. 简述Hahn-Banach定理的内容。
答案:Hahn-Banach定理指出,如果X是一个赋范线性空间,p是X 的一个线性子空间,f是p上的一个线性泛函,并且存在一个常数M使得对于所有x∈p,有|f(x)|≤M‖x‖,则存在X上的一个线性泛函F,使得F|p=f,并且对于所有x∈X,有|F(x)|≤M‖x‖。
泛函分析(含答案)
山东师范大学试题(时间:120分钟 共100分)课程编号: 4081331 课程名称:数学分析方法 适用年级: 2004学制: 四 适用专业:数学与应用数学 试题类别: 补考考生注意事项1、全题三个大题,22个小题。
判断正确(√)与错误(×)(本题10个小题,每题3分,共30分):1、 ( )距离空间X 中的序列{}n x 收敛于X x ∈*的充要条件是{}n x 的任意子列收敛于*x ;t P311 22、 ( )任一离散空间必是完备的;t 311 93、 ( )全有界集不一定可分;f 312 214、 ( )相对紧集的闭包是紧集; t 313 345、 ( )完备距离空间的闭子空间可能是完备的;f 313 296、 ()X 是完备距离空间,闭X F F T ⊂→:,如果存在[)1,0∈α,使()()F y x y x Ty Tx ∈∀<,,,,ρρ,则 F x ∈∃*!使得**x Tx =;f 280 Th17、 ( )有界数列空间m 不是可分的;t 292 7.6.5 8、 ( )函相对紧集未必是有界的;f 294 系19、 ( )紧有界线性算子T 连续⇔T 有界; t318 Th210、 ( )在空间[)[]3,21,0 =X ,()y x y x -=,ρ中,[)1,0=F 是相对紧集。
f ⎭⎬⎫⎩⎨⎧-n 11不收敛(本题共五个小题,每小题14分,共70分):1、证明:连续函数空间[]b a C ,在范数()x f f bx a ≤≤=max 下构成一Banach 空间。
证1 显然[]b a C ,为一线性空间;2 ()()()00max 0;0max ≡⇔=⇔=≥=≤≤≤≤x f x f f x f f bx a bx a ;()()f x f x f f bx a bx a αααα===≤≤≤≤max max()()()()g f x g x f x g x f g f bx a bx a bx a +=+≤+=+≤≤≤≤≤≤max max max因而[]b a C ,为一赋范线性空间3 下证[]b a C ,的完备性设{}n f 是[]b a C ,的一基本列,及0>∀ε,0>∃N ,使得N n m >,时,有()ερ<-=n m n m f f f f ,。
泛函分析期末试题及答案
泛函分析期末试题及答案一、选择题1. 下列哪个不是泛函分析的主要研究对象?A. 函数空间B. 向量空间C. 线性映射D. 点集答案:D2. 泛函是指将一个向量空间的元素映射到一个标量的函数。
以下哪个选项是泛函的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶空间答案:C3. 在泛函分析中,范数是一种度量向量空间中向量大小的方法。
以下哪个选项是范数的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶范数答案:B4. 下列哪个不是泛函分析中的基本定理?A. 嵌入定理B. 开铃定理C. Hahn-Banach定理D. Banach-Steinhaus定理答案:B5. 泛函分析中的内积是指满足一定条件的映射。
以下哪个选项是内积的定义?A. 函数空间B. 向量空间C. 线性映射D. 内积空间答案:D二、填空题1. 完成下列范数的定义:范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
2. 填写完整的Hahn-Banach定理的表述:设X是一个实或复数的线性空间,Y是X的一个线性子空间,f是定义在Y上的线性泛函,对于所有的y∈Y,有f(y) ≤ p(y),其中p是X上的一个次线性泛函,且满足p(y) ≤ p(x)对所有的x∈X成立,则存在一个定义在整个X上的线性泛函F,满足F(x) ≤ p(x)对所有的x∈X成立,并且在Y上,F和f的限制是相等的。
三、计算题1. 对于给定的函数空间C[0,1],计算函数f(x) = x^2在C[0,1]上的范数。
解答:根据范数的定义,范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
(完整word版)泛函分析试卷
泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分)1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ).A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ).A. 0等价于0且,0==≥x x xB.()数复为任意实,αααx x =C. y x y x +≤+D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列 4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的 C.集X 是闭的 D.集Y 是闭的5、设(1)p l p <<+∞的共轭空间为q l ,则有11p q+的值为( ).A. 1-B.12 C. 1 D. 12- 二、填空题(每个3分,共15分)1、度量空间中的每一个收敛点列都是( )。
2、任何赋范线性空间的共轭空间是( )。
3、1l 的共轭空间是( )。
4、设X按内积空间<x,y>成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。
5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。
三、判断题(每个3分,共15分)1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。
( )2、距离空间中的列紧集都是可分的。
( )3、若范数满足平行四边形法则,范数可以诱导内积。
( )4、任何一个Hilbert空间都有正交基。
泛函分析试题及答案
泛函分析试题及答案一、选择题1. 在泛函分析中,以下哪个概念描述了一个函数对于输入变量的敏感程度?A. 泛函B. 导数C. 凸函数D. 可测函数答案:B. 导数2. 设X和Y是两个Banach空间,f:X→Y是一个线性算子。
以下哪个条件可以保证f是有界线性算子?A. f是可逆的B. f是连续的C. f是紧致的D. f是自共轭的答案:B. f是连续的3. 在泛函分析中,以下哪个概念描述了一个函数在每个点上的局部模式与全局模式之间的一致性?A. 可微性B. 凸性C. 全纯性D. 一致连续性答案:B. 凸性4. 设X和Y是两个赋范空间,f:X→Y是一个线性算子。
以下哪个条件可以保证f是有界线性算子?A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤C||x||B. 对于每个有界集A ⊂ X,f(A)是有界集C. f是连续的D. f是满射答案:A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤ C||x||二、填空题1. 在Hilbert空间中,内积运算满足线性性和_____________性。
答案:共轭对称性2. 设X是一个有界完备度量空间,那么X是一个____________空间。
答案:Banach空间3. 在泛函分析中,将一个函数的导数定义为其_____________。
答案:弱导数4. 设X是一个线性空间,D是X上的一个有界线性算子。
如果对于所有x和y都有⟨Dx, y⟩ = ⟨x, Dy⟩,那么D被称为______________。
答案:自伴算子三、解答题1. 请简要说明什么是范数,并给出一些范数的例子。
范数是定义在一个线性空间上的一种函数,用于衡量该空间中的向量的大小。
它满足以下三个性质:- 非负性:对于任意向量x,其范数必须大于等于0,即||x|| ≥ 0,并且当且仅当x为零向量时,范数等于0。
- 齐次性:对于任意向量x和任意实数α,有||αx|| = |α| ||x||,其中|α|表示α的绝对值。
泛函分析考试题
判断题:(1) 设X 是线性赋范空间,X 中的单位球是列紧集,则X 必为有限维。
√ (2) 距离空间中的列紧集都是可分的。
√(3) 若范数满足平行四边形法则,范数可以诱导内积。
× (4) 任何一个Hilbert 空间都有正交基。
×(5) 设X 是线性赋范空间,T 是X →X 的有界线性算子,若T 既是单射又是满射,则T 有逆算子。
× (6) 设X 是线性赋范空间,若X 与X *同构,则X 必是完备的。
√ (7) 设X 是Hilbert 空间,T 是线性算子,满足()(),,,,Tx y x Ty x y X =∈,则()T L X ∈。
√(8) 设M X ⊆是线性赋范闭子空间,若0x M ∉,则一定存在f X *∈,使()000,,1Mff x x f ===。
×(9) 设X 是Banach 空间,T 是X 上线性算子,如果()D T 是X 中的闭集且在X 中稠密,则T 有界。
√(10) 设{}n a l ∞⊆,定义2l 上的算子T 为{}(){}n n n T a ξξ=,则(){}p n T a σ=。
√1.设X 是有限维赋范空间,试证:X 上任意两个范数都是等价范数。
证明:令()()1212,,,X X X X =∙=∙,显然必存在有一个范数较强,不妨假设存在一个M>0,使得21x M x ≤。
取单位算子()12,I L X X ∈,这时有21Ix M x ≤,故I 是有界线性算子,显然I 是单射,满射,由逆算子定理可知,I 存在逆算子1I -,且有界,因而1121I x I x --≤,所以12,∙∙等价。
2.设X 是有限维赋范空间,试证:X 中弱收敛等价于按范数收敛。
证明:显然,在X 中按范数收敛的序列一定是弱收敛。
另一方面,取{}01,n n x X x X ∞=⊆∈,使得0w n x x −−→,即对于任意的T X *∈使得0lim n n Tx Tx →∞=。
《泛函分析》课程考试试题
《泛函分析》课程考试试题学年第 学期 班级时量:100分钟 总分100分考试形式 开卷 一、判断题(以下各题中,正确的打错误打X,每题5分,共30分).如果离散度量空间1可数,那么X 是可分空间.()1 .赋范线性空间不是度量空间.().设X 是复内积空间,x, yeX,那么||x+y 『=||x 『+|| y 『的充要条件是()82 .设/〃(p 〉0)表示满足Z ㈤"< 8的实(或复)数列X = M 的全体,对/〃中点X = ■} k=T 5,设7为赋范线性空间X 的子空间0(7)到赋范线性空间y 中的线性算子,那么T = sup Tx .料国.设{&}是Hilbert 空间X 中可数规范正交系,那么对每个XE X,成立8G£卜,哂=卜『/=1二、证明题(此题共6个小题,请任选5个小题作答,每题14分,共70分)6 .设T 是度量空间X 到X 中的压缩映射,那么对任意正整数— 7〃也是压缩映射.7 .设X 是完备度量空间,A 是X 到X 中映射,假设且那么映射A 有唯一不动点. 8 .设sup|«,J <oo,在尸中定义线性算子y = Tx, q=a£, i = l,2,…,其中 n>\x =,・・・,〃,・・・),y = (〃],%,・・・,〃〃,・・・),那么T 是有界线性算子,且||T|| = supMn>\.设X 是实可分的Hilbert 空间,证明乃中存在一个可数的完全规范正交系{〃}.9 .设X 是赋范线性空间,与,九2,毛是1中3个线性无关向量,是一组数,假设对 任意数彳"2,%3,有那么在X 上存在满足以下条件(1)、(2)的线性泛函(1)/(工,)=4,u = l, 2,3⑵II 小L〃心叩d(A«心,)-°“),d(x, y) 〃心叩d(A«心,)-°“),d(x, y) (77 f oo) 定义人定义人 XI 成为完备的赋范线性空间.k=10.设((以=1,2,・•,是Banach空间X到赋范线性空间丫中有界线性算子,假设对每个XE X,{7>}都收敛,令笈=1的7>,证明T是X到丫中有界线性算子.。
《 泛函分析》期末试题
存在 xn X , xn 0 使得 Txn . 3 (15 分) 设 X 是 Banach 空间, An , A B( X ), 则 An x Ax, x X 当且仅当{ An }
有界并且存在子集合 G 使得 spanG X ,在 G 上 An x Ax. 4 (15 分) 对于内积空间 H 中的规范正交集{e1, , en}和 H 中的 x ,证明函数
n
f (1, , n ) x iei 当且仅当 i (x, ei ) ( i 1, , n) 时达到 i1
极小值。
5 (15 分) 设 H 是 Hilbet 空间,{en , n 1}是其中的规范正交系。证明级数 nen 按 n1 H 的范数收敛等价于弱收敛。
《 泛函分析》期末试题
1(20 分) 证明非ቤተ መጻሕፍቲ ባይዱ性积分方程
b
x(t) a K (t, s, x(s))ds y(t), t [a,b]
在 足够小时有唯一连续解。这里 y(t) C[a,b], K : [a,b][a,b] R R
连续并且满足
K(t, s,1) K(t, s, 2 ) L1 2 , t, s [a,b]. 2 (15 分) 设 X ,Y 是线性赋范空间,T : X Y 是线性算子, 则T 不是有界的当且仅当
泛函分析试卷与答案
泛函分析试卷与答案【篇一:泛函分析习题参考答案】证明:显然为空间x上的距离,试证:~d(y,x)也是xd(y,x)?1?d(y,x)上的距离。
~~d(x,y)?0,并且d(x,y)?0d(x,y)0xy。
~~d(y,x)d(x,y)d(y,x)d(x,y);1?d(y,x)1?d(x,y)t1?1?1?t1?t的单调增加性及再者,最后,由d(x,y)?d(x,z)?d(z,y),可得~d(x,y)d(x,z)?d(z,y)d(x,z)d(z,y)d(x,y)1?d(x,y)1?d(x,z)?d(z,y)1?d(x,z)?d(z,y)1?d(x,z)?d(z,y)~~d(x,z)d(z,y)d(x,z)?d(z,y)。
1?d(x,z)1?d(z,y)、设二p?1,xn?(?1(n),?,?i(n),?)?lp,n?1,2,?,x?(?1,?,?i,?)?lp,则n??时,p??d(xn,x)i(n)??i??0的充要条件为(1)n??时,?i(n)??i,i?1,2,?;(2)0,i1存在n?0,使得i?n?1i(n)p对任何自然数n成立。
(n)(n)必要性证明:由d(x,x)?ni??i??0可知,?i??i,i?1,2,?。
i1p由x?(?1,?,?i,?)?l。
p可知,,存在n1?0,使得i?n1?1p?(n)ii?(p?i?1pi(p2,并且n?n1时,2p由此可得,i?n1?1i(n)ppppi(n)??ii????p对n?n1成立。
i?n1?1i?n1?1p对于n?1,2,?n1,存在n2?0,i?n2?1i(n)pp。
取n?max?n1,n2?,则i?n?1(n)pip对任何自然数n成立。
0,存在k?0,使得充分性证明:由条件可知,i?k?1时,k(n)pi(2ip对任何自然数n成立,并且i?k?1pi(p2。
由(n)i??i可知,存在n?0,使得n?n i?1(n)ipp,并且d(xn,x)pi?1(n)i??ipi?1k(n)i??i?pi?k?1pi(n)ipi(n)??ii?1kp(n)ppp?(i)?(i)p2?p。
泛函分析考研试题及答案
泛函分析考研试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项是泛函分析中线性算子的定义?A. 定义在函数空间上的映射B. 满足加法和乘法封闭性的映射C. 满足加法和乘法封闭性的线性映射D. 定义在向量空间上的映射答案:C2. 泛函分析中,紧性的定义是什么?A. 任意序列都有收敛子序列B. 任意序列都有收敛子序列,且收敛到该空间中的点C. 任意开覆盖都有有限子覆盖D. 任意闭集都是紧致的答案:B3. 下列哪个定理是泛函分析中关于线性算子的基本定理?A. 泰勒定理B. 格林定理C. 霍德尔定理D. 里斯表示定理答案:D4. 在泛函分析中,下列哪个概念用于描述空间的完备性?A. 可分性B. 完备性C. 紧性D. 连续性答案:B二、填空题(每题5分,共20分)1. 定义在函数空间上的线性算子,如果满足______,则称其为有界算子。
答案:对于任意的x,存在常数M,使得||Tx||≤M||x||2. 希尔伯特空间中的Riesz表示定理表明,对于任意的线性泛函f,存在唯一的向量______,使得f(x)=<x,y>。
答案:y3. 线性算子的谱定义为使得______的λ的集合。
答案:(A-λI)^{-1}不存在4. 紧算子的一个重要性质是其谱中只有______点。
答案:0三、简答题(每题10分,共30分)1. 简述泛函分析中弱收敛和强收敛的区别。
答案:弱收敛是指序列的泛函极限存在,即对于任意的连续线性泛函f,序列的泛函极限存在。
强收敛则要求序列在原空间中收敛,即存在极限点。
2. 请解释什么是Banach空间。
答案:Banach空间是完备的赋范线性空间,即对于空间中的任意柯西序列,都存在极限点在该空间中。
3. 什么是紧算子?请举例说明。
答案:紧算子是将任意有界集映射为相对紧集的线性算子。
例如,定义在L^2空间上的卷积算子就是紧算子。
四、计算题(每题15分,共30分)1. 设线性算子A: L^2[0,1]→L^2[0,1]定义为(Af)(x)=∫₀¹f(t)dt,求A的谱。
泛函分析试题及答案
泛函分析试题及答案一、单项选择题(每题5分,共20分)1. 在泛函分析中,下列哪个概念不是线性空间的公理之一?A. 封闭性B. 加法结合律C. 交换律D. 分配律答案:A2. 一个线性泛函在定义域内是连续的,那么它在定义域内也是:A. 有界的B. 无界的C. 可微的D. 可导的答案:A3. 紧算子一定是:A. 有界算子B. 单射算子C. 满射算子D. 可逆算子答案:A4. 希尔伯特空间中,下列哪个性质不是正交性的定义?A. 正交向量的长度不为零B. 正交向量的内积为零C. 正交向量的数量可以是无限的D. 正交向量在同一个空间中答案:C二、简答题(每题10分,共20分)1. 请简述什么是巴拿赫空间,并给出一个例子。
答案:巴拿赫空间是完备的赋范线性空间,即在该空间中,任何柯西序列都收敛于该空间中的一个点。
一个典型的例子是所有连续函数构成的空间,赋予最大范数。
2. 什么是紧算子?请解释其性质。
答案:紧算子是定义在巴拿赫空间上的有界线性算子,其值域是原空间的一个闭子空间,并且是可分的。
紧算子的一个重要性质是它们将单位球面映射到一个相对紧集。
三、计算题(每题20分,共40分)1. 设线性算子A在希尔伯特空间H上定义,且满足A^*A = I,证明A是单射的。
答案:设x, y属于H,且Ax = Ay,那么A^*(Ax) = A^*(Ay),即x = y。
因此,A是单射的。
2. 给定线性泛函f在希尔伯特空间H上定义,且满足f(x) = <x, y>,其中y是H中的一个固定向量。
证明f是连续的。
答案:由于f(x) = <x, y>,根据内积的性质,|f(x)| ≤ ||x||||y||,其中||y||是y的范数。
因此,f在H上是连续的。
四、论述题(每题20分,共20分)1. 论述希尔伯特空间中正交投影算子的性质。
答案:希尔伯特空间中的正交投影算子P具有以下性质:- P是线性的。
- P是自伴的,即P^* = P。
泛函分析试题及解答
∞
一 (X, ρ)是完备的距离空间,Ωn ⊂ X 列紧,n = 1, 2,…,问 Ωn 是
n=1
否列紧?若不列紧,如何增加条件使之列紧?
设 xn = Cn · e + yn,要证 x = C · e + y,y ∈ X0。
d(xn, xm) = xn − xm = (Cn − Cm)e + (yn − ym)
=| Cn − Cm | ·
e
+
yn Cn
− −
ym Cm
d | Cn − Cm |
其中 d = d( e, X0) > 0。 所以 | Cn − Cm |−→ 0。Cn −→ C,yn −→ y ∈ X0( X0 闭)。
要证明 E 中有界集是列紧集,由 Arzela-Ascoli 定理,只需要证明一
致有界和等度连续即可。只证等度连续:对于 ∀f (x) ∈ E, x, y ∈ [0, 1],都
有
| f (x) − f (y) |=|
y x
f
(t)dt
|
y x
|
f
(t)
|
dt。那么只需证
f
(t)
有界即
可。
考虑等价范数 f C1[0,1]= f C[0,1] + f C[0,1],由 (E , · C1 ) 和 (E , · C[0,1]) 的完备性,知 f (t) 有界。
f1 与 f2 结合为 f ,由 三 知 f 连续。
五 设 X 是 B 空 间 ,A, B ∈ L(X), 若 AB = BA, 则 对 ∀λ,Eλ = ker(λI − B) 一定是 A 的不变子空间。
泛函分析考试试卷.doc
泛函分析考试试卷选择题。
1、下列说法不正确的是()A、n维欧式空间疋是可分空间B、全体有理数集为疋的可数稠密了集C、严是不可分空间D、若X为不可数集则离散度量空间X是可分的答案:D2、设T是度量空间(X,d)到度量空间(Y, d~)的映射,那么T在xocx连续的充要条件是()A、:1 2 3 4 51 x n—x° (n-co)时,B、当Xn—Xo (mcc)时,C、当x0—>x n (n—)时,D、当x n—Xg(n—0)时,答案:D必有TxnfTxo (n—xx) 必有Tx()—>Tx n(n—>oo)必有Txn—>Tx°(n—>oo)必有Txn- T XQ(n—0)答案:原像是X中的开集2设T是赋范线性空间X到赋范线性空间Y屮的线性算了,则T为有界算子的充要条件是T是X上的____ 匚答案:连续算子。
3若T为复内积空间X上有界线性算子,那么T=0的充要条件是対一切xCX有 _________________________________________________________________________ 匚答案:(Tx, x)=04有界线性算子T的共馳算子尸也是有界线性算子,并且_『11。
答案:=5设仏}是巴拿赫空间X上的一列泛函,如果仏}在X的每点X处有界,那么{仏} _______________________________________________________________________ o_答案:一致有界B 、(A*)*=A** D 、(aA)*=aA* 3、在度量空间屮有()A 、 柯西点列一定收敛,但是每一个收敛点列不一定是柯西点列B 、 柯西点列一定收敛,而且每一个收敛点列是柯西点列C 、 柯西点列不一定收敛,但是每一个收敛点列都是柯西点列D 、 柯西点列不一定收敛,但是每一个收敛点列不一定是柯西点列 答案:C4、 关于巴拿赫空间叙述不正确的是()A 、 完备的赋范线性空间称为巴拿赫空间B 、 L p [a, b] (p>l )是巴拿赫空间C 、 空间卩是巴拿赫空间D 、 赋范线性空间的共轨空间不是巴拿赫空间 答案:D5、 下列对共純算子性质描述错误的是()A 、(A+B)*=A*+B*; C^ 当 X=Y 时,(AB)*=B*A* 答案:B 二、填空题1、度量空间X 到Y 中的映射T 是X 上的连续映射的充要条件为Y 中的任意开集M 为三、判断题1、 自伴算子一定为正常算子,正常算子不一定是自伴算子。
泛函分析考试试卷自制试卷
泛函分析考试试卷、选择题。
1、下列说法不正确的是( ) A 、 n 维欧式空间R n 是可分空间 B 、全体有理数集为 R n 的可数稠密子集 C 、广是不可分空间 D 、若X 为不可数集则离散度量空间 X 是可分的答案:D2、设T 是度量空间(X,d )到度量空间(Y , d ~)的映射,那么T 在x °?X 连续的充要条件是() A 、 当 X n ^X 0 (n is)时,必有 Tx n ^Tx o (n 宀① B 、 当 X n f X o (n fg) o f Tx n (n fg) C 、 当 x o f X n (n fg)时,必有 TX n f Tx o (n fg) D 、 当 X n f X o (n f 0)时,必有 TX n f Tx o (n f 0) 答案:D3、在度量空间中有()A 、 柯西点列一定收敛,但是每一个收敛点列不一定是柯西点列B 、 柯西点列一定收敛,而且每一个收敛点列是柯西点列C 、 柯西点列不一定收敛,但是每一个收敛点列都是柯西点列D 、 柯西点列不一定收敛,但是每一个收敛点列不一定是柯西点列 答案:C4、关于巴拿赫空间叙述不正确的是( )A 、 完备的赋范线性空间称为巴拿赫空间B 、 L p [a , b] (p 》)是巴拿赫空间C 、 空间l P 是巴拿赫空间D 、 赋范线性空间的共轭空间不是巴拿赫空间 答案:D5、 下列对共轭算子性质描述错误的是( )A 、(A+B)*=A*+B*; C 、当 X=Y 时,(AB)*=B*A*答案:B 、填空题1、度量空间X 到Y 中的映射T 是X 上的连续映射的充要条件为Y 中的任意开集 M 为_______________ O答案:原像T -1M 是X 中的开集2、设T 是赋范线性空间X 到赋范线性空间 Y 中的线性算子,则 T 为有界算子的充要条件是T 是X 上的 。
答案:连续算子。
3、若T 为复内积空间X 上有界线性算子,那么T=0的充要条件是对一切答案:(Tx , x ) =04、有界线性算子T 的共轭算子T 地是有界线性算子,并且答案:=5、设{f n }是巴拿赫空间X 上的一列泛函,如果{f n }在X 的每点X 处有界,那么{f n } ______ 。
泛函分析(含答案)
泛函分析(含答案)山东师范大学试题(时间:120分钟共100分)课程编号: 4081331 课程名称:数学分析方法适用年级: 2004 学制: 四适用专业:数学与应用数学试题类别: 补考二、证明题题号一二三阅卷人复核人得得分分阅卷考生注意事项人1、全题三个大题,22个小题。
(本题共五个小题,每小题14分,共70分):一、判断题 1、证明:连续函数空间在范数下构成一Banach空间。
,,C,,a,bf,maxfxa,x,b得分阅卷人 ,1证显然为一线性空间; C,,a,b判断正确(?)与错误(×)(本题10个小题,每题3分,共30分):,**2 ; ,,,,,,f,maxfx,0;f,0,maxfx,0,fx,0X,,,,1、 ( )距离空间中的序列收敛于的充要条件是的任意子列收敛于;t xxxx,Xnna,x,ba,x,b P311 2 ,,,,,f,max,fx,,maxfx,,fa,x,ba,x,b2、 ( )任一离散空间必是完备的;t 311 93、 ( )全有界集不一定可分;f 312 21 ,,,,,,,,f,g,maxfx,gx,maxfx,maxgx,f,ga,x,ba,x,ba,x,b4、 ( )相对紧集的闭包是紧集; t 313 345、 ( )完备距离空间的闭子空间可能是完备的;f 313 29 因而为一赋范线性空间 C,,a,bXT:F,F,X闭6、 ()是完备距离空间,,如果存在,使,,,,0,1, 下证的完备性 C,,a,b3***,则使得;f 280 Th1 ,,,,,Tx,Ty,,x,y,,x,y,F,!x,FTx,xm,n,N 设,,是的一基本列,及,,使得时,有,,,0,N,0fC,,a,bn7、 ( )有界数列空间不是可分的;t 292 7.6.5 m8、 ( )函相对紧集未必是有界的;f 294 系1 ,,,f,f,f,f,,。
依范数定义有,对有 ,x,,,a,bmnmnTT9、 ( )紧有界线性算子连续有界; t 318 Th2 , ,,,,,,,,,fx,fx,maxfx,fx,f,f,,,x,y,x,y10、 ( )在空间,中,是相对紧集。
泛函分析试题及答案
泛函分析试题及答案### 泛函分析试题及答案#### 一、选择题(每题5分,共20分)1. 泛函分析中,下列哪个概念不是线性空间的概念?A. 线性组合B. 线性映射C. 线性泛函D. 非线性变换答案:D2. 在Banach空间中,以下哪个条件不是完备性的必要条件?A. 空间中的每个Cauchy序列都收敛于空间内B. 空间是完备的C. 空间中存在一个完备的度量D. 空间中的每个有界序列都有一个收敛的子序列答案:C3. 泛函分析中,Hilbert空间的完备性是相对于哪种范数?A. 欧几里得范数B. 赋范范数C. 内积诱导的范数D. 以上都是答案:C4. 下列哪个定理不是泛函分析中的基本定理?A. Hahn-Banach定理B. Riesz表示定理C. 闭图定理D. 微积分基本定理答案:D#### 二、填空题(每题5分,共20分)1. 线性泛函在定义域上的连续性等价于其在定义域的原点处的连续性,这是基于泛函分析中的________定理。
答案:Hahn-Banach2. 在Hilbert空间中,任意两个向量的内积满足平行四边形法则,即对于任意向量\( u \)和\( v \),有\( \|u+v\|^2 + \|u-v\|^2 =2(\|u\|^2 + \|v\|^2) \),这是基于________定理。
答案:平行四边形3. 线性算子的谱半径公式为\( r(T) = \lim_{n \to \infty}\|T^n\|^{1/n} \),其中\( T \)是Banach空间上的有界线性算子,这是基于________定理。
答案:Gelfand公式4. 在泛函分析中,紧算子的定义是:如果对于空间中的每一个有界序列,其在算子下的像序列都有一个收敛的子序列,则称该算子为紧算子,这是基于________定理。
答案:Arzelà-Ascoli#### 三、简答题(每题15分,共30分)1. 简述Riesz表示定理的内容及其在泛函分析中的意义。
泛函分析期末考试题库及答案
泛函分析期末考试题库及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是泛函分析中的基本概念?A. 线性空间B. 线性算子C. 微分方程D. 范数答案:C2. 希尔伯特空间中的内积满足的性质不包括以下哪一项?A. 线性B. 对称性C. 正定性D. 可逆性答案:D3. 以下哪个是紧算子的性质?A. 有界B. 可逆C. 连续D. 可微答案:A4. 以下哪个定理是泛函分析中的基本定理?A. 泰勒定理B. 格林定理C. 里斯表示定理D. 牛顿-莱布尼茨定理答案:C二、填空题(每题5分,共20分)1. 在泛函分析中,一个线性空间的基是一组线性______的向量。
答案:无关2. 一个线性算子是______的,如果它将一个有界集映射到一个有界集。
答案:有界3. 一个线性算子是______的,如果它将一个紧集映射到一个紧集。
答案:紧4. 一个线性算子是______的,如果它在某个线性空间上是连续的。
答案:连续三、简答题(每题10分,共30分)1. 简述什么是线性空间,并给出其基本性质。
答案:线性空间是一个集合,其中的元素称为向量,满足加法和数乘两种运算,并且满足加法交换律、加法结合律、数乘分配律等性质。
2. 解释什么是紧算子,并给出一个例子。
答案:紧算子是一个线性算子,它将任意有界序列映射到一个收敛序列。
例如,考虑在L^2空间上的算子K,定义为K(f)(x) =∫f(t)sin(x-t)dt,它是一个紧算子。
3. 描述什么是希尔伯特空间,并说明其与欧几里得空间的关系。
答案:希尔伯特空间是一个完备的内积空间,它允许无限维向量的存在。
希尔伯特空间是欧几里得空间的推广,其中欧几里得空间是有限维的希尔伯特空间。
四、计算题(每题15分,共30分)1. 给定线性算子A: L^2(0,1) → L^2(0,1),定义为A(f)(x) =∫₀^x f(t)dt,证明A是一个紧算子。
答案:略2. 考虑在L^2(-1,1)上的算子B,定义为B(f)(x) = xf(x),证明B是一个有界算子,并求出其范数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分)1、设X 是赋线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ).A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的数,下列哪个条件不是应满足的条件:( ).A. 0等价于0且,0==≥x x xB.()数复为任意实,αααx x =C. y x y x +≤+D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列 4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的 C.集X 是闭的 D.集Y 是闭的5、设(1)p l p <<+∞的共轭空间为q l ,则有11p q+的值为( ).A. 1-B.12 C. 1 D. 12- 二、填空题(每个3分,共15分)1、度量空间中的每一个收敛点列都是( )。
2、任何赋线性空间的共轭空间是( )。
3、1l 的共轭空间是( )。
4、设X按积空间<x,y>成为积空间,则对于X中任意向量x,y成立不等式()当且仅当x与y线性相关时不等式等号成立。
5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。
三、判断题(每个3分,共15分)1、设X是线性赋空间,X中的单位球是列紧集,则X必为有限维。
( )2、距离空间中的列紧集都是可分的。
( )3、若数满足平行四边形法则,数可以诱导积。
( )4、任何一个Hilbert空间都有正交基。
( )5、设X是线性赋空间,T是X X的有界线性算子,若T既是单射又是满射,则T有逆算子。
( )四、计算题(10分)叙述1l空间的定义,并求1l上连续线性泛函全体所成的空间?。
五、证明题(第一个5分,其余10分一个,共45分)1、若T为Banach 空间X上的无界闭算子,证明T的定义域至多只能在X中稠密。
2、设[0,1]C 表示闭区间[0,1]上连续函数全体,对任何,[0,1]x y C ∈,令10(,)|()()|,d x y x t y t dt =-⎰证明(,)x d 成为度量空间。
3、证明nR 按数||||max ||i ix ξ=组成的赋线性空间X 与nR 按数1||||||ni i x ξ==∑组成的赋线性空间Y 共轭。
4、设X 是可分Banach 空间,M 是X '中的有界集,证明M 中每个点列含有一个弱*收敛子列。
5、设H 是积空间,M 为H 的子集,证明M 在H 中的正交补是H 中的闭线性子空间。
泛函分析期末考试试卷答案一、选择题1、A2、D3、B4、D5、D二、填空题1、柯西点列2、巴拿赫空间3、∞l 4、|<x,y>|≦||x||||y|| 5、对于一切x ∈X,<TX,X>是实数 三、判断题1、对2、对3、错4、错5、错 四、计算题答: 1121(,,),,(1,2)i i i l x R i ξξξξ∞=⎧⎫==<∞∈=∞⎨⎬⎩⎭∑ 对于任意12(,,,)n x ξξξ=,12(,,)n y ηηη=,定义运算1122(,)n n x y ξηξηξη+=+++,12(,)n ax a a a ξξξ=1l 按上述加法与数乘运算成为线性空间11i i x ξ∞==∑1l 按上述定义的数构为Banach 空间令(0,01,0),1,2n ne n ==,121(,,0,0,),nn n n i i i x x e ξξξξ===∑则121(,)nnx l ξξξ∀=∈能被表示为lim n n x x →∞=,对任意给定()'1f l ∈,令(),1,2n n f e n η==则11()(lim )lim ()lim ()n nn n i i i i n n n i i f x f x f x f e ξξη→∞→∞→∞======∑∑.又因为1i e =对于i ∀有1()i i i f e f e f η=≤=。
由此可得sup i if η≤即12(,)nl ηηη∞∈反之,对12(,)nb l ηηη∞∀=∈,作1l 上泛函()f x 如下:1121(),(,)ni i ni f x x l ξηξξξ==∀=∈∑,显然f 是1l 上线性泛函,又因为1111()sup .sup ,i i i i i i i iii i i f x x ξηξηηξη∞∞∞====≤≤=∑∑∑因此,1'(),f l ∈并且有sup .i if b η∞≤=综上1'().l l ∞=五、证明题(共50分)1、 证:反证法。
若T 为定义在整个空间X 上的闭算子,由于X 为闭集,而X 为Banach 空间,由闭图像定理可知,T 为X 到X 的有界闭算子, 这与T 为无界闭算子矛盾,原命题成立。
2、证:由定义,对于,[0,1],x y C ∀∈显然(,)0,d x y ≥且如果()(),[0,1],x t y t t =∈显然(,)0,d x y =反之如果(,)0,d x y =因为|()()|0,x t y t -≥所以()(),..[0,1],x t y t a e =于由于(),()x t y t 为连续函数,若0[0,1],t ∃∈使得00()(),x t y t ≠则存在0,δ>使得在00(,)[0,1]t t δδ-+⊂区间上,均有()(),x t y t ≠这与()(),..x t y t a e =相矛盾,所以()(),[0,1].x t y t t ≡∈此外,对于,,[0,1],x y z C ∀∈111(,)|()()||()()||()()|(,)(,)d x z x t z t dt x t y t dt y t z t dt d x y d y z =-≤-+-≤+⎰⎰⎰即三点不等式成立。
因此(,)x d 成为度量空间。
3、证:定义X ’到Y 的映射T ,任意'1,((),,()),n f X Tf f e f e ∈=其中(0,,0,1,0,0),1,2,,i e i n == 对任意1ni i i x e ξ==∑,11()()()max nniiiii i f x f e f e ξξ===≤∑∑=Tf x ,于是f Tf ≤。
反之,对任意()1,,,n y Y ηη=∈定义'f X ∈:对任意1n i i i x e ξ==∑,1(),ni i i f x ξη==∑则Tf y =。
因此T 是从X ’到Y 上的映射。
若(0,,0)y =,则显然0f =,则0Tf f == 若1(,,)(0,,0),n y ηη=≠令1(sign )ni i i x e η==∑,则1x =。
因此()f f x ≥=1.nii y Tf η===∑从而.Tf f =于是T 是从X ’到Y 的同构映射,在同构的意义下X ’=Y 。
4、证: 设{},n f M ⊂存在0,,1,2,.n K f K n >≤=设{}n x 是X 的可数稠密子集.考察有界数列{}11().n n f x ∞=由Weierstrass 定理,存在收敛子列{}{}1,11()().n n f x f x ⊂同理{}1,21().n n f x ∞=也有收敛子列{}2,2()n f x .一般地,若已有子列{},1()k n k n f x ∞=收敛,考察{},11().k n k n f x ∞+=.由于数列的有界性可找到收敛子列{}1,11()k n k n f x ∞++=我们用对角线法则,取泛函列{}{},11k kn n k f f ∞∞==⊂,{},k k f 在稠密子集{}n x 上点点收敛.事实上,由定义,对任意i ,{},1()i n i n f x ∞=是收敛的,而{},k kk if ∞=是{},1i nn f ∞=的子列,因此{},1()k k i k f x ∞=也是收敛的,{},k kf 在{}nx 上点点收敛,即 {},k kf 弱*收敛。
5、证:对于,,,,a R x y M z M ⊥∀∈∀∈∀∈则,,,0,x y z x z y z +=+=,,0,ax z a x z ==因此M ⊥为H 的线性子空间。
另外,对于任意M ⊥中的聚点x ,即存在由M ⊥中互异的点组成的点列{},n x 使得lim .n n x x →∞=由积的连续性,可知,lim ,lim ,0,n n n n x z x z x z →∞→∞===即x M ⊥∈,因此M ⊥为H 的闭线性子空间。
.试卷评价:题型丰富,难易结合。