离散数学同步练习

合集下载

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。

A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。

答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。

答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。

答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。

答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案《离散数学》练习题和参考答案⼀、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪⼏个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,⾃由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )北京是中华⼈民共和国的⾸都。

(2) 陕西师⼤是⼀座⼯⼚。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三⾓形有4条边。

(5) 前进!(6) 给我⼀杯⽔吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在⼀些⼈是⼤学⽣”的否定是( ),⽽命题“所有的⼈都是要死的”的否定是( )。

答:所有⼈都不是⼤学⽣,有些⼈不会死7、设P:我⽣病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在⽣病时,我才不去学校 (2) 若我⽣病,则我不去学校(3) 当且仅当我⽣病时,我才不去学校(4) 若我不⽣病,则我⼀定去学校答:(1)PQ→(2)QP?→(3)QP?(4)QP→8、设个体域为整数集,则下列公式的意义是( )。

(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任⼀整数x存在整数 y满⾜x+y=0(2)存在整数y对任⼀整数x满⾜x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)∨Q(x))在哪个个体域中为真?( ) (1) ⾃然数(2) 实数 (3) 复数(4) (1)--(3)均成⽴答:(1)11、命题“2是偶数或-3是负数”的否定是()。

(完整版)《离散数学》同步练习答案

(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。

(2)设A,B都是命题公式,A B,则A B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

" 可符号化为: p q 。

(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。

(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。

”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。

(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。

(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。

(12)设P:你努力.Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。

(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。

()2.命题公式p q r是析取范式。

( √ )3.陈述句“x + y > 5”是命题。

离散数学 同步测试1、命题逻辑

离散数学 同步测试1、命题逻辑

《 离散数学 》同步测试1、命题逻辑一.填空:1.公式)()(s r q p ∨→∧的真值表中共有 16 种真值指派。

2.命题公式(⌝P →Q )→(⌝ Q ∨ P )的主析取范式为001011m m m ∨∨或(P ∧Q )∨(P ∧⌝ Q )∨(⌝P ∧⌝Q ) ,主合取范式为:01M 或P ∨⌝ Q 。

3.设A 、B 、C 和D 四个人中派两个人出差,需要满足下列条件:(1)若A 去,则C 和D 中要去一人;(2)B 和C 不能都去;(3)C 去则D 要留下。

则有3 种派法,分别为 AC,AD,BD 。

4.给定命题公式:P ∨(⌝P →(Q ∨(⌝ Q →R ))则它的成真指派为001,010,011,100,101,110,111,成假指派为000。

二.判断下列命题的对错。

正确的在括号内填√,错误的在括号内填×。

1、设A 、B 、C 为任意命题公式,若A ∨B ⇔ B ∨ C ,则A ⇔ B 。

( × )2、设A 、B 为任意命题公式,若⌝ A ⇔⌝ B ,则A ⇔ B 。

( √ )3、公式)()(q p q p ∨→∧是重言式。

( √ )4、公式P ∧Q 是合取范式,不是析取范式。

( × )5、所有极大项的析取为永真式。

(√ )6、一个命题公式可以有多个与之等价的析取范式。

(√ )7、任一命题的主合取范式是唯一的。

(√)8、下面推理是正确的: ( × )(1)P →Q P(2)⌝P P(3)⌝Q T(1)(2)9、公式(P ∧Q )→(R ∨ ⌝S )的对偶式为(P ∨Q )→(R ∧ ⌝S )。

( × )10、公式(⌝P ∨Q )∧(P →R )与P →(Q ∧ R )。

( √ )三、在每小题的备选答案中只有一个正确答案,将正确答案序号填入下列叙述中的括号内(多选不给分)。

1、给定命题公式如下:A .(P ↔Q )↔(P →Q )∧(Q → P )B .(P ∧⌝P )↔ QC .(P ∨⌝P )→((Q ∧⌝ Q )∧R )则重言式为:( A ) ,矛盾式为:( C ),可满足式为:( B )2.给定命题公式如下:(⌝P →Q )→(⌝ P ∧Q )该命题公式的成真赋值个数是(D),成假赋值个数是(B),与它等价的主析取范式中极小项个数为(D),主合取范式中极大项个数为(B)A.0 B.1 C.2 D.3 E. 43.给定命题公式:P∨(Q∧R)则它的成真赋值为(A),成假赋值为(C)A.111,011,100,101,110 B.111,011C.000,010,001 D.0004.给定真值表:则F等价于( D )A.P ∧Q B.P∨Q C.P→Q D.⌝P∨⌝Q5.给定命题公式:(⌝P∨Q)∧(P→ R),与之等价的是(C )A.P→(⌝ Q∧R)B.P→(Q∨R)C.P→(Q∧R)D.⌝P→(Q∧R)6.前提条件:P→(Q →S),Q, P∨⌝R,则它的有效推论为(B )A.S B.R→S C.P D.R→Q同步测试2、谓词逻辑一.填空:1.对谓词公式((∀x)P(x)∨(∃y)Q(y))→(∀x)R(x)中约束变元应用变换规则所得到的前束范式是(∃x)(∀ y)(∀z)(P(x)∨Q(y))→R(z))2.谓词公式(∀x)(P(x)→Q(x))∧(∃z)(R(x)∧S(z))中,量词(∀x)的辖域为(P(x)→Q(x))。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学-习题集

离散数学-习题集

离散数学-习题集《离散数学》习题集第⼀部分判断题⼀、第⼀章—集合1、()已知集合A的元素个数为10,则集合A的幂集的基=102。

2、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。

2、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。

3、( ) 已知两个集合A={Ф,{Ф}},B={Ф},则A∩B={Ф}。

4、()已知两个集合A={Ф,{Ф}},B={Ф},则A∩B=Ф。

5、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。

6、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。

7、()已知集合A的元素个数为n,则A×A的幂集的元素个数为n2。

8、()已知两个集合A、B,则A-B是由属于B但不属于A的元素构成的集合。

⼆、第⼆章—⼆元关系1、()若R是A上的⼆元关系,I A是A上的恒等关系,则当且仅当I A∈R时,R是A上的⾃反关系。

2、(√)若R是集合A上的⼆元关系,且当(a,b)∈R且(a,c)∈R时,就有(b,c)∈R,则R是A 上的可传递关系。

3、()设A是集合,A1、A2、...A n都是A的⾮空⼦集,令S={A1,A2,...,A n},则如果S是集合A的⼀个划分,那么S⼀定是集合A的⼀个完全覆盖;反之亦然。

5、()R是⾮空集合A上的等价⼆元关系,则A关于R的商集A/R是集合A的⼀个划分,但不是A的⼀个完全覆盖。

6、()已知集合A有4元素,易知集合A共有24个互不相同的⼦集合,所以在集合A上⼀共可定义24个互不相同的⼆元关系。

7、()若R1和R2都是集合A上的可传递⼆元关系,则R1∪R2也是A上的传递关系。

8、()设R是有限的⾮空集合A上的偏序关系,则A必有极⼤(⼩)元和最⼤(⼩)元。

9、()若R1和R2都是集合A上的相容关系,则R1∩R2也是A上的相容关系。

10、()若R1和R2都是集合A的可传递⼆元关系,则R1∩R2也是A上的传递关系。

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PQ→⌝(2)QP⌝→(3)QP⌝↔(4)QP→⌝8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学-练习题附答案可编辑

离散数学-练习题附答案可编辑

离散数学-题库1、将下列命题推理符号化并给出形式证明:已知张三或李四的彩票中奖了;如果张三的彩票中奖了,那么你是知道的;如果李四的彩票中奖了,那么王五的彩票也中奖了;现在你不知道张三的彩票中奖。

所以李四和王五的彩票都中奖了。

答案:解:设:p:张三的彩票中奖了。

q:李四的彩票中奖了。

r:你知道张三的彩票中奖。

s:王五的彩票中奖了。

符号化:前提:p∨q,p→r,q→s,¬r结论:q∧s证明:(1)¬r 前提(2)p→r 前提(3)¬p (1)(2)拒取式(4)p∨q 前提(5)q (3)(4)析取三段论(6)q→s 前提(7)s (5)(6)假言推理(8)q∧s (5)(7)合取引入2、用推导法求下列公式的主合取范式和主析取范式:((¬P∨Q)→R)答:((¬P∨Q)→R)⇔(¬(¬P∨Q)∨R)⇔((P∧¬Q)∨R)⇔((P∨R)∧(¬Q∨R))⇔((P∨(Q∧¬Q)∨R)∧((P∧¬P)∨¬Q∨R))⇔((P∨Q∨R)∧(P∨¬Q∨R)∧(¬P∨¬Q∨R))⇔((P∧Q∧R)∨(P∧¬Q∧R)∨(P∧¬Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧¬Q∧R))3、设集合 A ={1,2,3,4},A上二元关系R ={<1,2>,<2,2>,<,2,4〉,<3,4>}. 求其自反闭包,对称闭包和传递闭包。

答案: r(R)={<1,1>,<1,2>,<2,1>,<2,3>,<3,4>,<2,2>,<3,3>,<4,4>} s(R)={<1,1>,<1,2>,<2,1>,<2,3>,<3,4>,<3,2>,<4,3>}t(R)={<1,1>,<1,2>,<2,1>,<2,3>,<3,4>,<1,3>,<2,2>,<2,4>,<1,4>}4、设A,B,C是三个集合,证明(A∩B)-C=(A-C)∩B答案:答:(A∩B)-C=(A∩B)∩C=(A∩C)∩B=(A-C)∩B5、证明等价式:(∃χ)(A(χ)→B(χ))⇔(∀χ)A(χ)→(∃χ)B(χ)答案:(∃χ)(A(χ)→B(χ))⇔(∃χ)¬(A(χ)∨B(χ))⇔(∃χ)¬A(χ)∨(∃x)B(χ) ⇔¬(∀χ)A(χ)∨(∃χ)B(χ)⇔¬(∀χ)A(χ)→(∃χ)B(χ)6、设复数集合C={a+bi|a,b∈R,a≠0},定义C上二元关系R:<a+bi,c+di>∈R当且仅当ac>0,证明:R为等价关系。

《离散数学》练习题库.docx

《离散数学》练习题库.docx

《离散数学》练习题库(加粗红色字体为2013下新增题目)一、选择题1、G是一棵根树,贝ij ()oA、G—定是连通的C、G只有一个顶点的出度为02、下而哪个语句不是命题()。

A、中国将成功举办2008年奥运会C、我说的不是真话B、G —定是强连通的D、G只有一个顶点的入度为1B、一亿年前地球发生了大灾难D、哈密顿图是连通的3、设R是实数集合,在上定义二元运算佗a, bWR, a*b=a+b-ab,则F面的论断屮正确的是()。

A、()是*的零元B、1是*的幺元C、0是*的幺元D、*没有等幕元4、下面说法中正确的是()。

C、有些无限集合没有可数子集D、有理数集合是不可数集合5、无向完全图心的不同构的生成了图有()个。

A. 6B.5C.4D. 36、下I何哪一种图彳、一定是无向树?A、无回路的连通图有n个顶点n-1条边的连通图C、每对顶点间都有通路的图D、连通但删去一条边则不连通的图7、设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下列各式为真的是()。

A. I E A B・{{4,5}}uAC. (1,2, 3}cAD. 0G A8、在有界格屮,若一个元素有补元,则补元()。

A、必惟一B、不惟一c、不一定惟一D、可能惟一9、设集合A={l,2,3,・・・,10},下面定义的哪种运算关于集合A是不封闭的?()A、x*y=max{x,y}B、x*y=min{x,y}C^ x*y=GCD(x,y),即x,y的最大公约数D、x*y=LCM(x,y),即x,y的最小公倍数_i o r10.集合X中的关系R,其矩阵是110,则关于R的论述中正确的是()o1 I 1A、R是对称的B、R是反对称的C、R是反自反的D、R中有7个元素11.下列各组数中,哪个可以构成无向图的度数列()。

A.1, 1, 1, 2, 2B.2, 2, 2, 2, 3C.1, 2, 2, 4, 6D.2, 3, 3, 312.*是定义在Z上的二元运算,Vx,yeZ,x^y = xy + x-y,则*的幺元和零元分别是()。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学(一)练习题与答案

离散数学(一)练习题与答案

1-5 题:× × × ×√6-10 题:× ×√√√11-15题:× ×√ ×√16-17题:√ ×二、单项选择题1 A C2 C3 C 4. B 5 A6 B7 B8 C9 B 10 B11 D 12 A 13 C 14 C三、填空题1 ┐Q→P 或┐P→Q,Q→P2 A B={{a,b}, {a},{b},{c}},A B={{c}},A B-={{a,b}},A B⊕={{a,b},{a},{b}}。

3.{}ΦΦ=Φ,{,{}}ΦΦ-Φ={Φ,{ Φ}},ΦΦ={Φ}。

{,{}}{}ΦΦ-Φ={{Φ}},{}4.A={1,2,3,……,12},R是A上的整除关系,子集B={2,4,6}。

则B的最大元是:无,最小元是:2,极大元是:4,6,极小元是:2,上界是:12,下界是:2,上确界是:12,下确界是:2。

5. g g g6 R, T7. 略8.极大元:{a,b}, {b,c},最大元:无,上界:{a,b,c},下确界:Φ。

( )1.设A ,B ,C 为任意的命题公式,若A C B C ∨⇔∨,则A B ⇔。

( )2.公式P Q ∧是合取范式,不是析取范式。

( )3.公式()()P Q P Q ⌝∨∧→与公式()P Q R →∧等价。

( )4.()(()())()()()()x A x B x x A x x B x ∀∨⇔∀∨∀。

( )5.谓词公式()()((,)(,))x y P x y Q y z ∀∀∨中,x,y 是约束变元,z 是自由变元。

( )6.对谓词公式()(()(,))(,)x P y Q x y R x y ∀→∧中的自由变元进行代入后得到公式()(()(,))(,)x P z Q x z R x y ∀→∧。

( )7.对谓词公式()(()(,))(,)x P x Q x y R x y ∀→∧中的约束变元进行换名后得到公式()(()(,))(,)y P y Q y y R x y ∀→∧。

《离散数学》同步练习参考答案

《离散数学》同步练习参考答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会。

则命题:“派小王或小李中的一人去开会”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。

(2)设A,B都是命题公式,A⇒B,则A→B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p∧q。

(4)设A , B 代表任意的命题公式,则蕴涵等值式为A → B⇔⌝A∨B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

”可符号化为:⌝ p→⌝q 。

(6)设A , B 代表任意的命题公式,则德∙摩根律为⌝(A ∧ B)⇔⌝A ∨⌝B)。

(7)设,p:选小王当班长;q:选小李当班长。

则命题:“选小王或小李中的一人当班长。

”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。

(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

”可符号化为:P∧Q 。

(9)对于命题公式A,B,当且仅当 A → B 是重言式时,称“A蕴含B”,并记为A⇒B。

(10)设:P:我们划船。

Q:我们跑步。

在命题逻辑中,命题:“我们不能既划船又跑步。

”可符号化为:⌝ (P∧Q) 。

(11)设P , Q是命题公式,德·摩根律为:⌝(P∨Q)⇔⌝P∧⌝Q)。

(12)设P:你努力。

Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:⌝P→Q。

(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军。

”可符号化为:p∨q。

(14)设A,C为两个命题公式,当且仅当A→C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A→B⇔⌝A∧B。

(⨯)2.命题公式⌝p∧q∧⌝r是析取范式。

(√)3.陈述句“x + y > 5”是命题。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∃x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。

答案:如果x不能被2整除,则x不是偶数。

2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。

答案:6个顶点。

3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。

答案:2^4=16个元素。

4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。

答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。

5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。

答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。

离散数学练习(附答案)

离散数学练习(附答案)

选择答案在最后1. 11是( )的成假赋值.A.p q ∨B.p q ∨⌝C.p q ⌝∨⌝D.p q ∧2. 10是( )的成真赋值.A.p q ∧B.p q ∧⌝C.p q ⌝∧D.p q ⌝∧⌝3.下列语句中是命题的有( ).A.全体起立!B.我正在说谎.C.81x +>D.9能被2整除.E.月球上有外星人F.小王和小李是同学4.下面四组数能构成无向图的度数列的是( ).A.(1,1,1,1,1)B.(1,3,2,3,3)C.(9,3,3,2,2)D.(3,5,2,1,0)5.下列命题公式中与公式p q ⌝→等值的是( ).A.p q ∧ B.q p →⌝ C.p q ⌝↔ D.p q ∨ 6.设()F x :x 是人,()G x :x 爱吃零食,命题“没有不爱吃零食的人”符号化为( ). A.()()()x F x G x ∀∧ B. ()()()x F x G x ⌝∃→⌝ C. ()()()x F x G x ⌝∃∧ D. ()()()x F x G x ∀→7.下列逻辑联结词中,优先级最高的是( ).A.∨B. ⌝C.↔D.→8.设R 为实数集合,函数R R f →:,2()x f x e =则f 是( ) . A.单射而非满射B.满射而非单射C.双射D.既不是单射也不是满射. 9设R 为实数集合,函数R R f →:,()26f x x =-+则f 是( ) . A.单射而非满射B.满射而非单射C.双射D.既不是单射也不是满射.10.设集合A {,,}a b c =,下列A 上关系中有传递性的是( ).{}A.,b c <>{}B.,,,a c c a <><> {}C.,,,,,a b b a b b <><><> {}.,,,D a c c b <><>11. 设集合A {,}a b =,A 上一共有_16_个不同的二元关系,其中反自反关系有__4__个,等价关系有__2_个.4A A {<,>,<,>,<,>,<,>},A 2a a a b b a b b ⨯=的子集是上关系,子集有=16个 反自反中不能有〈a ,a 〉这种相等有序对等价关系看成划分,可以分成,{}{}{},a b 两种分法。

离散数学习题及答案

离散数学习题及答案

离散数学习题及答案一、选择题:1、下列命题正确的是( A )。

A .φ⋂{φ}=φB .φ⋃{φ}=φC .{a}∈{a ,b ,c}D .φ∈{a ,b ,c}2、设集合},{y x X =,则=)(x ρ( C )。

}}.,{},{},{{.}};,{},{},{,{.}};{},{,{.}};{},{{.y x y x D y x y x C y x B y x A φφ3、下列式子中正确的有( B )。

..};,{.};{.;0.φφφφφφ∈∈∈=D b a C B A4、某个集合的元数为10,可以构成( D )个子集。

A 、10B 、20C 、210D 、1025、下列命题正确的有( A )A 、}},{,,{},{b a b a b a ⊆B 、}},,{,,{},{c b a b a b a ∈C 、}}},{{,{},{b a a b a ⊆D 、}}},{{,,{},{b a b a b a ∈6、集合A={a ,b ,c},A 上的关系R={(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(c ,c )},则R 具有关系的( B )性质。

A 、自反性B 、对称性C 、反对称性D 、传递性7、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。

A .单射而非满射B .满射而非单射C .双射D .既不是单射,也不是满射8、下列语句中,( C )是命题。

A .下午有会吗?B .这朵花多好看呀!C .2是常数。

D .请把门关上。

9、一个公式在等价意义下,下面哪个写法是唯一的( C )。

A .析取范式B .合取范式C .主析取范式D .以上答案都不对10、通过约束变元的换名规则,可以将 ∀x(P(x)→R(x, y))∧Q(x, y) 改写为( C )A 、∀x(P(x)→R(u, y)∧Q(x, y)B 、∀x(P(y)→R(y, y)∧Q(x, y)C 、∀z(P(z)→R(z, y))∧Q(x, y)D 、∀z(P(z)→R(z, y))∧Q(z, y)11、∃x(P(x)∨(∀y)R(y))→Q(x)中∃x 的辖域是( C )。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

(完整word版)离散数学习题集(十五套)

(完整word版)离散数学习题集(十五套)

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。

10.下图所示的偏序集中,是格的为 。

二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。

2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

3、设A={1,2,3},则A 上的二元关系有( )个。

A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。

4、设R ,S 是集合A 上的关系,则下列说法正确的是() A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。

5、设A={1,2,3,4},P (A )(A 的幂集)上规定二元系如下|}||(|)(,|,{t s A p t s t s R =∧∈><=则P (A )/ R=( )A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a)x(S(x)y(J(y)L(x,y)))
b)xy(S(x)(J(y)L(x,y)))
c)x(S(x)y(J(y)L(x,y)))
d)yx(S(x)(J(y)L(x,y)))
6.下列式子是合式公式的是。
(1)(PQ)(2)(P(QR))
(3)(PQ)(4)QR
7.下列式子中正确的是。
(1)(x)P(x)(x)P(x)
(7)M(x):x是人,B(x):x勇敢。则命题“有人勇敢,但不是所有的人都勇敢”谓词符号化为___________________________________________。
(8)P(x):x是人,M(x):x聪明。则命题“尽管有人聪明,但不是一切人都聪明”谓词符号化为__________________________________________。
令F(x):x喜欢步行。G(x):x喜欢坐汽车。H(x):x喜欢骑自行车。
3.在命题逻辑中构造下面推理的证明:
如果他是理科学生,他必须学好数学。如果他不是文科学生,他必是理科学生。他没学好数学,所以他是文科学生。
4.用直接证法证明:
前提:(x)(C(x)→W(x)∧R(x)),(x)(C(x)∧Q(x))
(7)设R是定义在集合X上的二元关系,如果对于任意x,yX,
______________________,则称集合X上的关系R是对称的。
(8)设关系R和S为,R={<1,2>,<3,4>,<2,2>},S={<4,2>,<2,5>,<3,1>,<1,3>},则R◦S=__________________________。
(4)如果|A|=n,那么|P(A)|=2n。
(5)设集合A上的关系R和S,R={<1,2>,<2,1>,<3,4>,<4,3>},S={<1,3>,<3,1>,<2,4>,<4,2>},则R◦S=。
(6)设集合E={a,b,c},E的幂集P(E)=___________________________。
(9)I(x):x是实数,R(x):x是正数,N(x):x是负数。在谓词逻辑中,命题:
“任何实数或是正的或是负的”可符号化为:。
(10)令M(x):x是大学生,P(y):y是运动员,H(x,y):x钦佩y。则命题“有些大学生不钦佩所有运动员。”可符号化为_______________________。
xA(x)
(2)取全总个体域,令F(x):x为人,G(x):x爱看电影。则命题“没有不爱看电影的人。”可符号化为_____________________________________。
(3)若个体域是含三个元素的有限域{a,b,c},则
xA(x)。
(4)取全总个体域,令M(x):x是人,G(y):y是花, H(x,y):x喜欢y。则命题“有些人喜欢所有的花。”可符号化为_________________________。
3.集合A={1,2,3,4}上的整除关系是等价关系。()
4.集合A的幂集P(A)上的包含关系是偏序关系。()
5.设A={a,b,c}, RA×A且R={< a,b>,< a,c>},则R是传递的。()
6.设A,B是任意集合,如果B,则A–BA。()

二.判断题
1.设A,B是命题公式,则等价式ABAB。()
2.命题公式pqr是析取范式。()
3.陈述句“x + y >5”是命题。()
4.110 (p=1,q=1, r=0)是命题公式(((pq))r)q的成真赋值。()
5.命题公式p(pq)是重言式。()
6.设A,B都是合式公式,则ABB也是合式公式。()
(8)设,P:他聪明;Q:他用功。在命题逻辑中,命题:
“他既聪明又用功。”可符号化为:。
(9)对于命题公式A,B,当且仅当是重言式时,称“A蕴含B”,并记为AB

(10)设:P:我们划船。Q:我们跑步。在命题逻辑中,命题:
“我们不能既划船又跑步。”可符号化为:。
(11)设P,Q是命题公式,德·摩根律为:
5.下列式子中正确的是。
(1)(x)P(x)(x)P(x)
(2)(x)P(x)(x)P(x)
(3)(x)P(x)(x)P(x)
(4)(x)P(x)(x)P(x)
6.下面谓词公式是永真式的是。
a)P(x)Q(x)
b)(x)P(x)(x)P(x)
c)P(a)(x)P(x)
d)P(a)(x)P(x)
5.设S(x):x是运动员,J(y):y是教练员,L(x,y):x钦佩y。命题“所有运动员都钦佩一些教练员”的符号化公式是。
14.命题公式(PQ)R(PQ)是析取范式。()
三、选择题:在每小题的备选答案中只有一个正确答案,将正确答案序号填入下列叙述中的内。
1.设:P:天下雪。Q:他走路上班。则命题“只有天下雪,他才走路上班。”可符号化为。
(1)PQ
(2)QP
(3)QP
(4)QP
2.(1)明年国庆节是晴天。
(2 )在实数范围内,x+y〈3。
(3 )请回答这个问题!
(4 )明天下午有课吗?
在上面句子中,是命题的只有。
3.命题公式A与B是等值的,是指。
(1)A与B有相同的命题变元
(2)AB是可满足式
(3)AB为重言式
(4)AB为重言式
4.(1)雪是黑色的。
(2 )这朵花多好看呀!。
(3 )请回答这个问题!
(4 )明天下午有会吗?
在上面句子中,是命题的是。
(2)(x)P(x)(x)P(x)
(3)(x)P(x)(x)P(x)
(4)(x)P(x)(x)P(x)
四、解答题
1.构造下面推理的证明:
前提:xF(x)y((F(y)G(y))R(y)),
xF(x)。
结论:xR(x)。
2.在一阶逻辑中构造下面推理的证明
每个喜欢步行的人都不喜欢坐汽车。每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车。因而有的人不喜欢步行。
2.设命题公式为(pq)(pr)。
(1)求此命题公式的真值表;
(2)给出它的析取范式;
3.设命题公式为Q(PQ)P。
(1)求此命题公式的真值表;
(2)求此命题公式的析取范式;
4.完成下列问题
(1)求此命题公式Q(PQ)P的真值表;
(2)求命题公式(P∧(Q→R))→S的析取范式。
5.设命题公式为(P(PQ))Q。
(9)设R是定义在集合X上的二元关系,如果对于每个xX,
______________________,则称集合X上的关系R是自反的。
二.判断题
1.设S,T是任意集合,如果ST =,则S = T。()
2.集合A={1,2,3,4}上的关系{<1,2>,<2,3>,<2,4>,<3,4>}是一个函数。()
(1)yx(x–y=2)
(2)xy(x–y=2)
(3)xy(x–y=2)
(4)xy(x–y=2)
3.设F(x):x是人,G(x):x早晨吃面包。命题“有些人早晨吃面包”在谓词逻辑中的符号化公式是。
(1)(x)(F(x)G(x))
(2)(x)(F(x)G(x))
(3)(x)(F(x)G(x))
(4)(x)(F(x)G(x))
5.设:P:天下大雨。Q:他乘公共汽车上班。则命题“只要天下大雨,他就乘公共汽车上班。”
可符号化为。
(1)QP
(2)PQ
(3)QP
(4)QP
6.设:P:你努力;Q:你失败。则命题“除非你努力,否则你将失败。”
在命题逻辑中可符号化为。
(1)QP(2)PQ
(3)PQ(4)QP
7.(1)现在开会吗?
(2 )在实数范围内,x+y5。
(4)设A , B代表任意的命题公式,则等价式
AB。
(5)设,p:径一事;q:长一智。在命题逻辑中,命题:
“不径一事,不长一智。”可符号化为:。
(6)设A , B代表任意的命题公式,则德摩根律为
(AB)。
(7)设,p:选小王当班长;q:选小李当班长。则命题:“选小王或小李中的一人当班长。”可符号化为:。
7.A(BC)( AB)(AC)。()
8.陈述句“我学英语,或者我学法语”是命题。()
9.命题“如果雪是黑的,那么太阳从西方出”是假命题。()
10.“请不要随地吐痰!”是命题。()
11.PQPQ。()
12.陈述句“如果天下雨,那么我在家看电视”是命题。()
13.命题公式(PQ)(RT)是析取范式。()
1.设F(x):x是火车,G(x):x是汽车,H(x,y):x比y快。命题“某些汽车比所有火车慢”的符号化公式是。
(1)y(G(y)x(F(x)H(x,y)))
(2)y(G(y)x(F(x)H(x,y)))
(3)xy(G(y)(F(x)H(x,y)))
(4)y(G(y)x(F(x)H(x,y)))
2.设个体域为整数集,下列真值为真的公式是。
结论:(x)(Q(x)∧R(x))。
第三章集合与关系
一填空题
(1)如果|A|=n,那么|A×A|=n2。A上的二元关系有_________个。
(2)集合A上关系R的自反闭包r(R)=___________________。
(3)设集合A上的关系R和S,R={(1,2),(1,3),(3,2)},S={(1, 3),(2,1),(3,2)},则S◦R=。
二.判断题
1.设A,B都是谓词公式,则xAB也是谓词公式。()
相关文档
最新文档