一次函数经典例题大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.定义型
例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知
,
,故一次函数的解析式为y=-6x+3。
注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。
二. 点斜型
例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。
解:一次函数的图像过点(2, -1),
,即k=1。故这个一次函数的解析式为y=x-3。
变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。
三. 两点型
例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。
解:设一次函数解析式为y=kx+b,由题意得
,故这个一次函数的解析式为y=2x+4
四. 图像型
例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)
有故这个一次函数的解析式为y=-2x+2
五. 斜截型
例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。
解析:两条直线;。当k1=k2,b1≠b2时,
直线y=kx+b与直线y=-2x平行,。
又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2
六. 平移型
例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。
解析:设函数解析式为 y=kx+b,
直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行
直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为
七. 实际应用型
例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。
解:由题意得Q=20-0.2t ,即Q=-0.2t+20
故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
八. 面积型
例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。
解:易求得直线与x轴交点为,所以,所以|k|=2 ,即
故直线解析式为y=2x-4或y=-2x-4
九. 对称型
若直线与直线y=kx+b关于
(1)x轴对称,则直线的解析式为y=-kx-b
(2)y轴对称,则直线的解析式为y=-kx+b
(3)直线y=x对称,则直线的解析式为
(4)直线y=-x对称,则直线的解析式为
(5)原点对称,则直线的解析式为y=kx-b
例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。
解:由(2)得直线l的解析式为y=-2x-1
十. 开放型
例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。
解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6
(2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以
是双曲线,解析式为
(3)其它(略)
十一. 几何型
例11. 如图,在平面直角坐标系中,A、B是x轴上的两点,,,以AO、BO为直径的半圆分别交AC、BC于E、F两点,若C点的坐标为(0, 3)。
(1)求图像过A、B、C三点的二次函数的解析式,并求其对称轴;
(2)求图像过点E、F的一次函数的解析式。
解:(1)由直角三角形的知识易得点A(-3√3, 0)、B(√3, 0),由待定系数法可求得二次函数解析式为
,对称轴是x=-√3
(2)连结OE、OF,则,。过E、F分别作x、y轴的垂线,垂足为M、N、P、G,易求得E 、F ,由待定系数法可求得一次函数解析式为
十二. 方程型
例12. 若方程x2+3x+1=0的两根分别为,求经过点P
和Q 的一次函数图像的解析式
解:由根与系数的关系得
点P(11, 3)、Q(-11, 11)
设过点P、Q的一次函数的解析式为y=kx+b则有
解得故这个一次函数的解析式为
十三. 综合型
例13. 已知抛物线y=(9-m2)x2-2(m-3)x+3m的顶点D在双曲线上,直线y=kx+c经过
点D和点C(a, b)且使y随x的增大而减小,a、b满足方程组,求这条直线的解析式。
解:由抛物线y=(9-m2)x2-2(m-3)x+3m的顶点D
在双曲线上,可求得抛物线的解析式为:y1=-7x2+14x-12,顶点D1(1, -5)及y2=-27x2+18x-18 顶点D2
解方程组得,即C1(-1, -4),C2(2, -1)
由题意知C点就是C1(-1, -4),所以过C1、D1的直线是;过C1、D2的直线是
函数问题1
已知正比例函数,则当k≠0时,y随x的增大而减小。
解:根据正比例函数的定义和性质,得 k<0。
函数问题2
已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是()
A. x1>x2
B. x1 C. x1=x2 D.无法确定 解:根据题意,知k=3>0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。 函数问题3 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过() A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0,从而b<0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A . 函数问题4 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围. 分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理. 解:由题意设所求函数为y=kx+12,则13.5=3k+12 解之,k=0.5 ∴y与x的函数关系式为y=0.5x+12 由题意,得:23=0.5x+12x=22 解之,x=22 ∴自变量x的取值范围是0≤x≤22 函数问题5 某学校需刻录一些电脑光盘,若到电脑公司刻录,每张需8元,若学校自刻,除租用刻录机120元外,每张还需成本4元,问这些光盘是到电脑公司刻录,还是学校自己刻费用较省? 此题要考虑X的范围 解:设总费用为Y元,刻录X张,则电脑公司:Y1=8X 学校:Y2=4X+120 当X=30时,Y1=Y2 ,当X>30时,Y1>Y2 ,当X<30时,Y1 函数问题6 (1)y与x成正比例函数,当 y=5时,x=2.5,求这个正比例函数的解析式. (2)已知一次函数的图象经过A(-1,2)和B(3,-5)两点,求此一次函数的解析式. 解:(1)设所求正比例函数的解析式为 y=kX ,把 y=5,x=2.5代入上式得,5=2.5k,解之,得k=2 ∴所求正比例函数的解析式为 y=2X (2)设所求一次函数的解析式为y=kx+b ∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足y=kx+b ,将x=-1 、y=2和x=3、y=-5 分别代入上式,得 2=-k+b,-5=3k+b 解得 k=-7/4,b=1/4 ∴此一次函数的解析式为y=-7x/4+1/4 点评:(1)不能化成带分数.(2)所设定的解析式中有几个待定系数,就需根据已知条件列几个方程. 函数问题7