1.4 向量的线性关系与向量的分解
向量的线性运算与正交分解
向量的线性运算与正交分解向量是线性代数中的基本概念,它在数学和物理学等领域中有着广泛的应用。
本文将重点讨论向量的线性运算和正交分解。
一、向量的线性运算向量的线性运算是指对向量进行加法和标量乘法的操作。
设有两个向量a和b,它们的线性组合可以写成如下形式:c = αa + βb其中,α和β为标量。
向量的线性运算具有以下性质:1. 加法的交换律和结合律:a + b = b + a,(a + b) + c = a + (b + c)2. 标量乘法的结合律和分配律:α(βa) = (αβ)a,(α +β)a = αa + βa,α(a + b) = αa + αb3. 零向量的存在性:存在一个向量0,使得对任意向量a,有0 + a = a + 0 = a通过线性运算,我们可以获得新的向量,从而对原始向量进行扩展和变换。
线性运算在矩阵和向量空间的运算中有重要的作用。
二、向量的正交分解正交分解是将一个向量表示为若干个互相正交的向量的线性组合的过程。
设有n个向量v₁, v₂, ..., vₙ,它们两两正交,且设待分解的向量为v,则v可以表示为:v = λ₁v₁ + λ₂v₂ + ... + λₙvₙ其中,λ₁, λ₂, ..., λₙ为标量。
正交分解的关键在于找到合适的正交基,使得向量可以被唯一地表示为正交基的线性组合。
在实际应用中,我们经常会遇到需要将复杂的向量分解为若干个简单的正交向量的情况。
正交分解可以简化向量的计算和运算,提高问题的求解效率。
总结:本文主要介绍了向量的线性运算和正交分解。
向量的线性运算包括加法和标量乘法,具有交换律、结合律和分配律等性质。
线性运算可以对向量进行扩展和变换。
正交分解是将一个向量表示为若干个互相正交的向量的线性组合的过程。
通过正交分解,可以将复杂的向量简化为若干个简单的正交向量的线性组合。
向量的线性运算和正交分解在数学和物理学等领域中有着广泛的应用。
它们为我们解决问题提供了强有力的工具,也为我们对向量的理解和运用提供了基础。
《解析几何》教案
页眉内容《解析几何》教案第一章向量与坐标本章教学目的:通过本章学习,使学生掌握向量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础.本章教学重点:(1)向量的基本概念和向量间关系的各种刻划。
(2)向量的线性运算、积运算的定义、运算规律及分量表示.本章教学难点:(1)向量及其运算与空间坐标系的联系;(2)向量的数量积与向量积的区别与联系;(3)向量及其运算在平面、立体几何中的应用.本章教学内容:§1.1 向量的基本概念一、定义:既有大小又有方向的量称为向量,如力、速度、位移等.二、表示:在几何上,用带箭头的线段表示向量,箭头表示向量的方向,线段长度代表向量的大小;向量的大小又叫向量的模(长度).始点为A,终点为B的向量,记作,其模记做.注:为方便起见,今后除少数情形用向量的始、终点字母标记向量外,我们一般用小写黑体字母a、b、c……标记向量,而用希腊字母λ、μ、ν……标记数量.三、两种特殊向量:1、零向量:模等于0的向量为零向量,简称零向量,以0记之.注:零向量是唯一方向不定的向量.2、单位向量:模等于1的向量称为单位向量.特别地,与非0向量同向的单位向量称为的单位向量,记作.四、向量间的几种特殊关系:1、平行(共线):向量a平行于向量b,意即a所在直线平行于b所在直线,记作a∥b,规定:零向量平行于任何向量.2、相等:向量a等于向量b,意即a与b同向且模相等,记作a=b.注:二向量相等与否,仅取决于它们的模与方向,而与其位置无关,这种与位置无关的向量称为自由向量,我们以后提到的向量都是指自由向量.3、反向量:与向量a模相等但方向相反的向量称为a的反向量,记作-a,显然,,零向量的反向量还是其自身.4、共面向量:平行于同一平面的一组向量称为共面向量.易见,任两个向量总是共面的,三向量中若有两向量共线,则三向量一定共面,零向量与任何共面向量组共面.注意:应把向量与数量严格区别开来:①向量不能比较大小,如没有意义;②向量没有运算,如类似的式子没有意义.§1.2 向量的加法一向量的加法:定义1设、,以与为邻边作一平行四边形,取对角线向量,记,如图1-1,称为与之和,并记作(图1-1)这种用平行四边形的对角线向量来规定两个向量之和的方法称作向量加法的平行四边形法则.如果向量与向量在同一直线上,那么,规定它们的和是这样一个向量:若与的指向相同时,和向量的方向与原来两向量相同,其模等于两向量的模之和.若与的指向相反时,和向量的模等于两向量的模之差的绝对值,其方向与模值大的向量方向一致.由于平行四边形的对边平行且相等,可以这样来作出两向量的和向量:定义2作,以的终点为起点作,联接(图1-2)得(1-2)该方法称作向量加法的三角形法则.(图1-2)向量加法的三角形法则的实质是:将两向量的首尾相联,则一向量的首与另一向量的尾的连线就是两向量的和向量.据向量的加法的定义,可以证明向量加法具有下列运算规律:定理1 向量的加法满足下面的运算律:1、交换律, (1.2-2)2、结合律. (1.2-3)证交换律的证明从向量的加法定义即可得证.下证结合律 .自空间任一点O开始依次作则有,所以.由定理1知,对三向量相加,不论其先后顺序和结合顺序如何,结果总是相同的,可以简单的写作.二向量的减法定义3 若,则我们把叫做与的差,记为显然,,特别地,.由三角形法则可看出:要从减去,只要把与长度相同而方向相反的向量加到向量上去.由平行四边形法可如下作出向量.设、,以与为邻边作一平行四边形,则对角线向量.例1 设互不共线的三向量、与,试证明顺次将它们的终点与始点相连而成一个三角形的充要条件是它们的和是零向量.证必要性设三向量、、可以构成三角形(图1-3),(图1-3),那么,即.充分性设,作那么,所以,从而,所以、、可以构成三角形.例2 用向量法证明:对角线互相平分的四边形是平行四边形.证设四边形的对角线、交于点且互相平分(图1-4)因此从图可看出:,所以,∥,且,即四边形为平行四边形.(图1-4)§1.3 数量乘向量定义1.3.1设是一个数量,向量与的乘积是一向量,记作,其模等于的倍,即;且方向规定如下:当时,向量的方向与的方向相同;当时,向量是零向量,当时,向量的方向与的方向相反.特别地,取,则向量的模与的模相等,而方向相反,由负向量的定义知:.据向量与数量乘积的定义,可导出数乘向量运算符合下列运算规律:定理1.3.1. 数量与向量的乘法满足下面的运算律:1) 1·=2)结合律, (1.3-1)3)分配律, (1.3-2)4) . ( 1.3-3)证 1)据定义显然成立.2)显然,向量、、的方向是一致,且= == .3)分配律如果或中至少有一个为0,等式显然成立;反之ⅰ)若,显然同向,且所以ⅱ)若不妨设若则有由ⅰ)可得,所以对的情形可类似证明.一个常用的结论:定理3. 若( 为数量 ),则向量与向量平行,记作;反之,若向量与向量平行且,则( 是数量).设是非零向量,用表示与同方向的单位向量.由于与同方向,从而与亦同方向,而且,即.我们规定:若,. 于是.这表明:一个非零向量除以它的模是一个与原向量同方向的单位向量.请注意:向量之间并没有定义除法运算,因此决不能将式子改写成形式.十分显然,这种错误是受实数运算法则的“惯性作用”所造成.例1 设AM是三角形ABC的中线,求证.(图1-5)证如图1-5,因为,所以但因而,即.例2 用向量法证明:连接三角形两边中点的线段平行于第三边且等于第三边的一半.证设△ABC两边AB,AC中点分别为M,N,则所以,且.§1.4 向量的线性关系与向量的分解定义1.4.1由向量与数量所组成的向量叫做向量的线性组合,或称可以用向量线性表示,或称可以分解成向量的线性组合.定理1.4.1如果向量,那么向量与向量共线的充要条件是可用向量线性表示,即存在实数使得, (1.4-1)并且系数被,唯一确定.证若成立,那么由定义1.3.1知向量与向量共线.反之,如果向量与向量共线,那么一定存在实数使得(见1.3节中1.3.5的证明).再证的唯一性:如果,那么,而,所以,.定理1.4.2如果向量不共线,那么向量与共面的充要条件是可用向量线性表示,即, (1.4-2)并且系数被,唯一确定.证:(图1-6)因与不共线,由定义1.1.4知.设与中之一共线,那么由定理1.4.1有,其中中有一个为零;如果与都不共线,把它们归结共同的始点,并设,,,那么经过的终点分别作的平行线依次交直线于(图1-6),因,由定理 1.4.1,可设,所以由平行四边形法则得,即.反之,设,如果中有一个为零,如,那么与共线,因此与共面.如果,那么,从向量加法的平行四边形法则知与都共面,因此与共面.最后证的唯一性.因为=,那么,如果,那么,将有,这与假设矛盾,所以.同理,这就证明了唯一性.定理1.4.3 如果向量不共面,那么空间任意向量可以由向量线性表示,即存在一组实数使得,(1.4-3)并且系数x,y,z被,唯一确定.证明方法与定理1.4.2类似.定义1.4.2对于个向量,若存在不全为零的实数,使得, (1.4-4)则称向量线性相关.不是线性相关的向量叫做线性无关,即向量线性无关:.定理1.4.4在时,向量线性相关的充要条件是其中至少有一个向量是其余向量的线性组合.证设向量线性相关,则存在不全为零的实数使得,且中至少有一个不等于0,不妨设,则;反过来,设向量中有一个向量,不妨设为,它是其余向量的线性组合,即,即.因为数,-1不全为0,所以向量线性相关.定理1.4.5 如果一组向量中的部分向量线性相关,那么这一组向量就线性相关.证设中有一部分,不妨设前r个向量线性相关,即存在不全为零的实数,使得.则有,因为不全为零,所以线性相关.推论如果一组向量中含有零向量,那么这一组向量就线性相关类似地可证明下面的定理:定理1.4.6 两向量与共线线性相关.定理1.4.7 三向量与共面线性相关.定理1.4.8 空间任意四个或四个以上的向量总是线性相关的.例1 试证明:点在线段上的充要条件是:存在非负实数,,使得,且,其中是任意取定的一点.证(先证必要性)设在线段上,则与同向,且,所以,.任取一点所以,所以,.取,,则,,.(充分性)若对任一点有非负实数,,使得,且则,所以与共线,即在直线上.又,所以在线段上.例2设为两不共线向量,证明,共线的充要条件是.证共线,线性相关,即存在不全为0的实数,使,(1.4-5)即.又因为不共线即线性无关,故方程有非零解.§1.5 标架与坐标一空间点的直角坐标:平面直角坐标系使我们建立了平面上的点与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究.为了沟通空间图形与数的研究,我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现.1、空间直角坐标系过空间一定点,作三条互相垂直的数轴,它们以为原点,且一般具有相同的长度单位,这三条轴分别叫轴(横轴)、轴(纵轴)、轴(竖轴),且统称为坐标轴.通常把轴,轴配置在水平面上,而轴则是铅垂线,它们的正方向要符合右手规则:(图1-7)右手握住轴,当右手的四个指头从轴的正向以角度转向轴正向时,大拇指的指向就是轴正向.三条坐标轴就组成了一个空间直角坐标系,点叫做坐标原点.注:为使空间直角坐标系画得更富于立体感,通常把轴与轴间的夹角画成左右.当然,它们的实际夹角还是.2、坐标面与卦限三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面.由轴与轴所决定的坐标面称为面,另外还有面与面.三个坐标面把空间分成了八个部分,这八个部分称为卦限.(图1-8)3、空间点的直角坐标取定空间直角坐标系之后,我们就可以建立起空间点与有序数组之间的对应关系.设为空间的一已知点,过点分别作垂直于轴、轴、轴的三个平面,它们与轴、轴、轴的交点依次为,这三点在轴、轴、轴的坐标依次为,于是:空间点就唯一地确定了一个有序数组,这组数叫点的坐标.依次称,,为点的横坐标、纵坐标和竖坐标,记为.反过来,若已知一有序数组,我们可以在轴上取坐标为的点,在轴上取坐标为的点,在轴取坐标为的点,然后过、、分别作轴、轴、轴的垂直平面,这三个平面的交点就是以有序数组为坐标的空间点.这样,通过空间直角坐标系,我们建立了空间点和有序数组之间的一一对应关系.定义1 我们把上面有序数组叫点在此坐标系下的坐标,记为.二空间两点间的距离公式定理1设、为空间的两点,则两点间的距离为(1.5-1)证过、各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以为对角线的长方体,如图所示(图1-9)是直角三角形,故,因为是直角三角形,故,从而;而,,,故.特别地,点与坐标原点的距离为.三空间向量的坐标定义2 设是与坐标轴,同向的单位向量,对空间任意向量都存在唯一的一组实数,使得,那么我们把这组有序的实数,叫做向量在此坐标系下的坐标,记为或.定理2设向量的始终点坐标分别为、,那么向量的坐标为. (1.5-2)证由点及向量坐标的定义知,所以=.由定义知.定理3 两向量和的分量等于两向量对应的分量的和.证设,,那么=+=,所以. (1.5-3)类似地可证下面的两定理:定理4设,则.定理5 设,,则共线的充要条件是.(1.5-4)定理6三非零向量,,共面的充要条件是. (1.5-5)证因为不共面,所以存在不全为0的实数使得,由此可得因为不全为0,所以.§1.6 向量在轴上的射影一、空间点在轴上的投影:设已知点及轴,过点作轴的垂直平面,则平面与轴的交点叫做点在轴上的投影.(图1-10)二、向量在轴上的投影:定义1设向量的始点与终点在轴的投影分别为、,那么轴上的有向线段的值叫做向量在轴上的投影,记作,轴称为投影轴.(图1-11)这里,的值是这样的一个数:(1)即,数的绝对值等于向量的模.(2)当的方向与轴的正向一致时,;当的方向与轴的正向相反时,.三、空间两向量的夹角:设有两向量、交于点(若、不相交,可将其中一个向量平移使之相交),将其中一向量绕点在两向量所决定的平面内旋转,使它的正方向与另一向量的正方向重合,这样得到的旋转角度(限定)称为、间的夹角,记作.(图1-12)若、平行,当它们指向相同时,规定它们之间的夹角为;当它们的指向相反时,规定它们的夹角为.类似地,可规定向量与数轴间的夹角.将向量平行移动到与数轴相交,然后将向量绕交点在向量与数轴所决定的平面内旋转,使向量的正方向与数轴的正方向重合,这样得到的旋转角度称为向量与数轴的夹角.四投影定理:定理1.6.1向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦.即, (1.6-1)(图1-13)证过向量的始点引轴,且轴与轴平行且具有相同的正方向,那未轴与向量的夹角等于轴与向量的夹角,而且有故由上式可知:向量在轴上的投影是一个数值,而不是向量.当非零向量与投影轴成锐角时,向量的投影为正.定理1.6.2对于任何向量都有. (1.6-2)证取,那么,设分别是在轴上的投影,那么显然有,因为所以,即.类似地可证下面的定理:定理1.6.3对于任何向量与任何实数有. (1.6-3)§1.7 两向量的数性积定义1.7.1 对于两个向量a和b 把它们的模|a|,|b|及它们的夹角的余弦的乘积称为向量和的数量积 记作ab,即ab=|a||b|cos .由此定义和投影的关系可得 ab|b|Prj b a=|a|Prj a b .数量积的性质(1) a·a=|a| 2,记a·a a 2,则a2|a| 2.(2) 对于两个非零向量a、b 如果a· b=0 则a b反之 如果a b 则a· b 0.定理1.7.1 如果认为零向量与任何向量都垂直 则a b a· b 0.定理1.7.2 数量积满足下面运算律:(1)交换律 a· b= b·a(2)分配律( a b)c a c b c( (3)a)· b a·(b )(a·b)(a)·(b )(a·b) 、为数证(1)由定义知显然.(2)的证明因为当c0时上式显然成立当c0时有(a b)c|c|Prj c(a b)|c|(Prj c a Prj c b)|c|Prj c a|c|Prj c ba cb c(3)可类似地证明.例1试用向量证明三角形的余弦定理证设在ΔABC中 ∠BCA||=a ||=b ||=c要证c 2a 2+b 2 2 a b cos记a b =c 则有 c a b从而 |c|2c c(a b)(a b)a2-2ab+b2|a|2+|b|22|a||b|cos(a^b)即c 2a 2+b 2 2 a b cos数量积的坐标表示 :定理1.7.3设a{a x a y a z } b{b x b y b z }则a·b a x b x a y b y a z b z证a· b( a x i a y j a z k)·(b x i b y j b z k)a xb x i·i a x b y i·j a x b z i·ka yb x j ·i a y b y j ·j a y b z j·ka zb x k·i a z b y k·j a z b z k·ka xb x a y b y a z b z定理1.7.4设a={},则向量a的模|a|=.证由定理1.7.2知|a|2=a2=,所以 |a|=.向量的方向角和方向余弦:向量与坐标轴所成的角叫做向量的方向角,方向角的余弦叫向量的方向余弦.定理1.7.5 设a={},则a的方向余弦为cos=,cos,cos;且,其中分别是向量a与x轴,y轴,z轴的夹角.证因为ai=|a|cos且ai=,所以 |a|cos=,从而 cos=.同理可证 coscos且显然两向量夹角的余弦的坐标表示定理1.7.6设(a ^ b)则当a0、b0时 有.证 因为a·b|a||b|cos,所以.例2 已知三点M (11 1) 、A (22 1) 和B (21 2) 求AMB解从M到A的向量记为a从M到B的向量记为b则AMB就是向量a与b的夹角 .a{11 0} b{10 1}因为a b1110011所以从而.§1.8 两向量的向量积定义1.8.1 两个向量a与b的向量积(也称外积)是一个向量,记做a b或,它的模|a b||a||b|sin,它的方向与a和b垂直并且按a,b,a b确定这个顺序构成右手标架{O;a,b,a b}.从定义知向量积有下列性质:(1) a a0(2) 对于两个非零向量a,b如果a b0则a//b;反之如果a//b则a b0.定理1.8.1 两不共线向量a与b的向量积的模,等于以a与b为边所构成的平行四边形的面积.定理1.8.2两向量a与b共线的充要条件是a b0.证当a与b共线时,由于sin(a、b)=0,所以|a b|=|a||b| sin(a、b)=0,从而a b0;反之,当a b0时,由定义知,a=0,或b=0,或a//b,因零向可看成与任向量都共线,所以总有a//b,即a与b共线.定理1.8.3 向量积满足下面的运算律(1) 反交换律a b b a,(2) 分配律(a b)c a c b c,(3) 数因子的结合律 (a)b a(b)(a b) (为数).证(略).推论: c (a b) c a c b定理1.8.4 设a a x i a y j a z k b b x i b y j b z k,则a b(a y b za zb y)i(a z b x a x b z)j(a x b y a y b x)k证由向量积的运算律可得a b(a x i a y j a z k)(b x i b y j b z k)a xb x i i a x b y i j a x b z i ka yb x j i a y b y j j a y b z j k a z b x k i a z b y k a z b z k k由于i i j j k k0i j k j k i k i j所以a b(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k.为了帮助记忆利用三阶行列式符号上式可写成a yb z i+a z b x j+a x b y k a y b x k a x b z j a z b y i(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k例1设a(2 11)b(11 2)计算a b解=2i j2k k4j i i5j 3k例2已知三角形ABC的顶点分别是A (123)、B (345)、C (247)求三角形ABC的面积解根据向量积的定义可知三角形ABC的面积由于(222)(124)因此4i6j2k于是例3 设刚体以等角速度绕l轴旋转计算刚体上一点M的线速度解刚体绕l轴旋转时我们可以用在l轴上的一个向量n表示角速度它的大小等于角速度的大小它的方向由右手规则定出即以右手握住l轴当右手的四个手指的转向与刚体的旋转方向一致时大姆指的指向就是n的方向设点M到旋转轴l的距离为a再在l轴上任取一点O作向量r并以表示n与r的夹角那么a|r| sin设线速度为v那么由物理学上线速度与角速度间的关系可知v的大小为|v||n|a|n||r| sinv的方向垂直于通过M点与l轴的平面即v垂直于n与r又v的指向是使n、r、v符合右手规则因此有v n r§1.9 三向量的混合积定义1.9.1 给定空间的三个向量,我们把叫做三向量的混合积,记做或.定理1.9.1三个不共面向量的混合积的绝对值等于以为棱的平行六面体的体积,并且当构成右手系时混合积为正;当构成左手系时混合积为负,也就是=当构成右手系时,当构成左手系时.证由于向量不共面,所以把它们归结到共同的试始点可构成以为棱的平行六面体,它的底面是以为边的平行四边形,面积为,它的高为,体积是.根据数性积的定义,其中是与的夹角.当构成右手系时,,,因而可得.当构成左手系时,,,因而可得.定理1.9.2三向量共面的充要条件是.证若三向量共面,由定理1.9.1知,所以,从而.反过来,如果,即,那么根据定理1.7.1有,另一方面,有向性积的定义知,所以共面.定理1.9.3轮换混合积的三个因子,并不改变它的值;对调任何俩因子要改变混合积符号,即.证当共面时,定理显然成立;当不共面时,混合积的绝对值等于以为棱的平行六面体的体积,又因轮换的顺序时,不改变左右手系,因而混合积不变,而对调任意两个之间的顺序时,将右手系变为左,而左变右,所以混合积变号.推论:.定理1.9.4设,,,那么.证由向量的向性积的计算知,再根据向量的数性积得===.推论: 三向量共面的充要条件是.例1设三向量满足,证明:共面。
1.4:矢量的线性关系与矢量的分解
证明: 先证充分性, 即已知存在实数x使 r xe ,
证明
e
唯一确定.
称为共线矢量的基底.
// e . ? r
(由数乘以矢量的定义得到).
// 证明存在实数x使 再证必要性. 即已知 r e. r xe. e 事实上,当 r 与 e 同向时, 可取 x r 当 与 反向时, 就可以满足 r xe . r e
情形2
OE2 E3 , OE1E3 , OE1E2平行,
E3 e3 PE 2 E1 e e2
r
B
A
1
易见, OP是平行六面体的对角线.
C
E3 e3 PE 2 E1 e e2
于是可得
OP OA OB OC
两式相加:
因为 ,
A M
B N
D
C
2MN MA AB BN MD DC CN 注意 MA MD 0, BN CN 0, 所以, 2MN AB DC 1 即 MN ( AB DC ) 2
那么有
( x x)e1 ( y y)e2 ( z z)e3 0 如果 x x
y y z z e1 e2 e3 x x x x 这说明矢量 e1 , e2 , e3 共面(前面的定理1.4.2), 这与假 假定矛盾. 所以 x x, 同理可得 y y, z z .
D
解: 连接AF,
1 1 1 而 EA e1 , AF ( AC AD) (e2 e3 ) 2 2 2
解析几何课件(吕林根许子道第四版)(精)
返回
第一章 向量与坐标
§1.3 数乘向量
表示与非零向量 设ea a 同方向的单位向量,
按照向量与数的乘积的规定,
a | a | ea
a . ea |a |
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页下一页ຫໍສະໝຸດ §1.2 向量的加法定 义1.2.1 设 已 知 矢 量 a、 b ,以空间任意一点 O为 始 点 接连作矢量 OA a, AB b得 一 折 线 OAB, 从 折 线 的 端 点 O到 另 一 端 点 B的 矢 量 OB c , 叫 做 两 矢 量 a与b的 和 , 记 做 cab
(2)结合律: a b c (a b ) c a (b c ). (3) a ( a ) 0.
上一页
下一页
返回
第一章 向量与坐标
§1.2 向量的加法
有限个矢量 a1 , a2 ,an 相 加 可 由 矢 量 的 三 角 求 形和 法则推广
解析几何课件(第四版)
吕林根 许子道等编
解析几何的基本思想是用代数的方法来研究 几何,为将代数运算引导几何中,采用的最根本最 有效的做法----有系统的把空间的几何结构代数 化,数量化.
第一章 第二章 第三章 第四章 向量与坐标 轨迹与方程 平面与空间直线 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
下一页
返回
第一章 向量与坐标
§1.4向量的线性关系与向量的分解
定理1.4.2 如果向量 e1 , e 2 不共线,那么向量 r与 e1 , e2 共面的充要条件是 r可以用向量 e1 , e2线性表示, 或者说向量 r可以分解成 e1 , e2的线性组合,即 r x e1 y e2 并且系数 x , y被 e1 , e2 , r唯一确定 . 这时 e1 , e 2叫做平面上向量的基底 . 定理1.4.3 如果向量 e1 , e 2 , e 3 不共面,那么空间 任意向量 r可以由向量 e1 , e 2 , e 3线性表示,或说空间 ( ) 1.4-2
向量的线性关系与向量的分解
如果向量
e1,
e2
,
e3
不共面,那么空间任意向量 r
r 可以由向量 ur uur ur
e1,e2,e3 线性表示,或者说空间任意向量 r 可以分解成向量 e1,e2,e3 的线性
组合,即
r ur uur ur r xe1 ye2 ze3 ,
C
并且其中系数 x, y, z 被 ur uur ur r e1,e2,e3,r 惟一确定.
由定理1.4.1,可设OA uuur uuur uuur
xe1,OB
ye2,
B
P
所以,OP OA OB, r ur uur
r
uurE2
r
即r xe1 ye2.
e2
O
ur
e1 E1
A
r ur uur
反过来,设r
r
xe1
ye uur
2u, ur 若x,y有一个ur是uur0,
例如x 0,则r ye2u与r e2u共r 线uur,从uur而与e1,e2
P
b
ur p
p b n(a b) na (1 n)b r
r
O a
Ma
A
因为 所以 解得 所以
a,b 不共线,
(1 m) n, m (1 n).
m (1 ) , n (1 ) .
1
1
p (1 ) a (1 ) b. 1 1
例2 证明四面体对边中点的连线交于一点,且互相
二、共线向量的基底
rr
r
r
r
定理 1.4.1 如果向量 e 0 ,那么向量 r 与向量 e 共线的充要条件是 r
r
rr
可以用向量 e 线性表示,或者说 r 是 e 的线性组合,即
解析几何第四版吕林根课后习题答案一至三章
PA1 PO PA2 PO PAn PO 0
即
PA1 PA2 PAn n PO
§1.4 向量的线性关系与向量的分解
1.在平行四边形 ABCD 中, (1)设对角线 AZ a, BD b, 求 AB, BC , CD, DA. 解: AB
解?a?b?b?a?b?a?b?a?b?a?b?a?b?a?????????????????yxyyxxyyxxyxyx22?e?e?e?e?e?e?e?e?b?a?????????3132132142232?e?e?e?e?e?e?e?e?e?b?a???????????3213213213422232?e?e?e?e?e?e?e?e?e?b?a???????????321321321710322322323
OA OB + OC = OL + OM + ON .
7. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明 [证明] OA OL LA
OB OM MB OC ON NC OA OB OC OL OM ON ( LA MB NC )
1 1 1 1 b a , BC b a , CD b a , DA b a .设边 BC 和 CD 的 2 2 2 2
(2)中点 M 和 N,且 AM P, AN q 求 BC , CD 。 解: AC
1 1 q P , BC 2MC 2 q P P q 3P 2 2
解析几何课程简介
《解析几何》课程简介一、《解析几何》课程说明1、课程编码:A9F32202X2、开课学期及学时学分:第3-4学期 64学时 4学分3、课程类型:专业必修课4、先修课程:高中数学5、教材:《解析几何》(第四版),吕林根主编,高等教育出版社出版,2009。
6、开课对象:初等教育综合理科学生二、课程的性质和任务《解析几何》是我院初等教育综理专业的一门重要的专业必修课,是初等数学通向高等数学的桥梁,是数学专业课的基石。
空间解析几何是用坐标法,把数学的基本对象与数量关系紧密地联系起来,对数学的发展起到了重要作用。
本课程内容丰富,方法系统,体系完备,应用广泛。
学好本课程,使学生系统掌握解析几何的基础知识和基本理论,能够培养学生用解析几何思想解决问题的能力、提高学生的空间想象能力,为数学专业的后继课程、其他学科的相关课程的学习和未来从事中小学数学教学工作打下坚实的基础。
三、课程内容本课程选用的教材是普通高等教育“十一五”国家级规划教材,吕林根、许子道编著、高等教育出版社出版的《解析几何》第四版,2009。
主要内容有:第一章向量与坐标1.1向量的概念;1.2向量的加法;1.3数量乘向量;1.4向量的线性关系与向量的分解;1.5标架与坐标;1.6向量在轴上的射影;1.7两向量的数量积;1.8两向量的向量积;1.9三向量的混合积;1.10三向量的双重向量积。
第二章轨迹与方程2.1 平面曲线的方程;2.2曲面的方程;2.3空间曲线的方程。
第三章平面与空间直线3.1平面的方程;3.2平面与点的相关位置;3.3两平面的相关位置;3.4空间直线的方程;3.5直线与平面的相关位置;3.6空间直线与点的相关位置;3.7空间两直线的相关位置;3.8平面束。
第四章二次曲面4.1柱面;4.2锥面;4.3旋转曲面;4.4椭球面;4.5双曲面;4.6抛物面;4.7单叶双曲面与双曲抛物面的直母线。
第五章二次曲线的一般理论5.1二次曲线与直线的相关位置;5.2二次曲线的渐近方向、中心、渐近线;5.3二次曲线的切线;5.4二次曲线的直径;5.5二次曲线的主直径与主方向;5.6二次曲线方程的化简与分类;5.7应用不变量化简二次曲面的方程。
§1.4 矢量的线性关系与矢量的分解
§1.4 矢量的线性关系与矢量的分解一、矢量的分解1. 线性运算: 矢量的加法和数与矢量的乘法统称为矢量的线性运算.2. 线性组合: 由矢量,,…,与数量λ1,λ2,…,λn所组成的矢量=λ1+λ2+…+λn叫做矢量,,…,的线性组合.我们也说矢量可以用矢量,,…,线性表示,或者说,矢量可以分解成矢量,,…,的线性组合.3. 矢量在直线上的分解:定理1 如果矢量≠,那么矢量与矢量共线的充要条件是可以用矢量线性表示,或者说是的线性组合,即=x,且系数x被,唯一确定. 称为用线性组合来表示共线矢量的基底.证明如果=x成立,那么由数乘矢量的定义立刻知与共线. 反过来,如果与非零矢量共线,那么一定存在实数x,使得=x. 显然,如果=,那么=0,即x=0. x的唯一性:如果=x=,那么(x-=,而≠,所以x= .4. 矢量在平面上的分解:定理 2 如果矢量, 不共线,那么矢量与, 共面的充要条件是可以用矢量x+y,且系, 线性表示,或者说矢量可以分解成矢量, 的线性组合,即=数x, y被, , 唯一确定. , 称为平面上矢量的基底.证明因为矢量, 不共线,所以≠, ≠.设与, 共面,如果与(或)共线,那么根据定理1有=x+y,其中y=0(或x=0);如果与,都不共线,则把它们归结到共同的始点O,并设=,=(i=1,2),那么过的终点分别作OE2,OE1的平行线依次与OE1,OE2交于A,B. 因为∥,∥,那么根据定理1可设= x,=y,根据平行四边形法则得=+,即=x+y.反过来,设=x+y,如果x, y有一个是零,那么与(或)共线,则与,共面.如果xy≠0,那么x∥,y∥,根据平行四边形法则得与 x,y共面,因此与, 共面.最后证明x, y被, , 唯一确定. 假设=x+y=+,那么 ( x-)=(y-)=,如果x≠,那么=-,x=. 同理y =,因此x, y被唯一确定.即∥, 这与定理条件矛盾,所以5. 矢量在空间的分解:定理3 如果矢量, , 不共面,那么空间任意矢量可以由矢量, , 线性表示,或者说矢量可以分解成矢量, , 的线性组合,即=x+y+z,且系数x, y, z被, , , 唯一确定. , , 称为空间矢量的基底.证明因为矢量, , 不共面,所以≠(i=1,2,3),且被此不共线.如果与, ,之中的两个矢量, (,或,)共面,那么根据定理2有=x+y+0(=x+0+z或=0+y+z).如果与, ,之中的任意两个矢量都不共面,则把它们归结到共同的始点O,并设=,=(i=1,2,3),那么过的终点分别作三个平面分别与平面OE2E3,OE3E1,OE1E2平行,且分别与直线OE1,OE2,OE3相交于A,B,C三点,从而作成了以、、为三棱,=为对角线的平行六面体,于是得到:=++,由定理1可设= x,= y,= z,所以=x+y+z.下面证明x, y, z被, , , 唯一确定. 假设=x+y+z=++,那么 ( x-)=(y-)=( z-)=,如果x≠,那么=-=-,有定理2可知, , 共面,这与定理条件矛盾,所以x=. 同理,y=,z=.因此x, y, z被, , , 唯一确定.二、矢量的线性关系1.定义对于n (n≥1)个矢量, , …, ,如果存在不全为零的n个数λ1, λ2,…, λn, 使得λ1+λ2+…+λn=,那么n个矢量, , …, 叫做线性相关. 矢量, , …, 线性无关是指,只有当λ1=λ2=…=λn=0时,上式才成立.2.判断方法推论1 一个矢量线性相关的充要条件是=.证明:由矢量线性相关的定义即得.定理 4 矢量, , …,(n≥2)线性相关的充要条件是其中有一个矢量是其余矢量的线性组合.证明:设, , …, 线性相关,则λ1+λ2+…+λn=,且λ1, λ2,…, λn不全为零,不妨设λn≠0,那么=---…-,即是其余矢量的线性组合.反过来,设n个矢量, , …, 中有一个矢量,不妨设是其余矢量的线性组合,即=λ1+λ2+…+λn-1,即λ1+λ2+…+(-1)=,且λ1, λ2,…, (-1)不全为零,因此, , …, 线性相关.定理5 如果一组矢量中的一部分矢量线性相关,那么这一组矢量就线性相关.证明:设一组矢量, , …, ,…, (s≤r)中,有一部分矢量, , …,线性相关,那么存在不全为零的n个数λ1, λ2,…, λs, 使得λ1+λ2+…+λs=,即λ1+λ2+…+λs+0+…+λr=,且λ1, λ2,…, λs不全为零.所以这一组矢量, , …, ,…, 线性相关.推论2 一组矢量中如果含有零矢量,那么这组矢量必线性相关.证明:由推论1和定理5即得.根据矢量的分解定理和线性相关概念,可得如下定理:定理6 两矢量共线的充要条件是它们线性相关.定理7 三矢量共面的充要条件是它们线性相关.定理8 空间任何四个矢量总是线性相关.推论3 空间四个以上矢量总是线性相关.证明:由定理5和定理8即得.例1. 设一直线上三点A, B, P满足=λ(λ≠-1),O是空间任意一点,求证:=证明:如图1-11,因为=-,=-,所以-=λ(-),(1+λ)=+λ,所以=.例2. 在△ABC中,设=,=,AT是角A的平分线(它与BC交于T点),试将分解为,的线性组合.分析:如图1-12,利用三角形的角平分线定理.解:因为=,且与方向相同,所以=.由上题结论有==.例3. 用矢量法证明:P是△ABC重心的充要条件是++=.分析:如图1-13,利用三角形重心的性质.证明:) 若P为△ABC的重心,则=2=+, 从而+-=,即++=.) 若++=, 则+=-=,取E,F,G分别为AB,BC,CA之中点,则有=(+).从而=2. 同理可证=2, =2.故P为△ABC的重心.例 4. 证明三个矢量=-+3+2, =4-6+2,=-3+12+11共面,其中能否用,线性表示?如能表示,写出线性表示关系式.证明:题中的矢量, , 不共面,即它们线性无关. 考虑表达式λ+μ+v=,即λ (-+3+2)+μ (4-6+2)+v (-3+12+11)=,或 (-λ+4μ-3v) +(3λ-6μ+12v) +(2λ+2μ+11v) =.由于, , 线性无关,故有解得λ=-10,μ=-1,v=2.由于λ=-10≠0,所以能用,线性表示=-+.例5. 如图1-14,, 是三个两两不共线的矢量,且=λ+μ,试证A, B, C三点共线的充要条件是λ+μ=1.证明:) 因为A,B,C共线,从而有//,有m≠-1, 使=m,-=m (-),(1+m)=+m,=+.但已知=λ+μ. 由对, 分解的唯一性可得λ=, μ=从而λ+μ=+=1.) 设λ+μ=1. 则有=λ+μ=λ+(1-λ)=+λ(-),-=λ(-),所以=λ,从而//.所以A,B,C三点共线.例6. 梅尼劳(MeneLaus)定理:如图1-15,A',B',C'分别是△ABC三边BC,CA,AB上的定比分点,如果它们把△ABC的边分成定比λ=, μ=, v=,那么A',B',C'三点共线的充要条件是λμv=-1.证明:由λ=, μ=, v=,可知=λ, =μ, =v,由第1题有=,=+=μ,从而=(1+μ),=v=v(+),所以=,=+.由上题结论知三点A',B',C'共线的充要条件是+=1,化简即得λμv=-1.作业题:1. 在平行四边形ABCD中,(1) 设对角线=,=,求, , , ;(2) 设边BC和CD的中点为M和N,且=, =,求, .2. 在△ABC中,设=, =, D、E是边BC的三等分点,将矢量,分解为, 的线性组合.3. 用矢量法证明: 三角形三中线共点.4. 设G是△ABC的重心,O是空间任意一点,试证=(+).5.设= (i=1, 2, 3, 4),试证P1, P2, P3, P4四点共面的充要条件是存在不全为零的实数λi (i=1, 2, 3, 4)使λ1+λ2+λ3+λ4=, 且.。
向量坐标知识点总结
解析几何复习知识点总结第一章向量与坐标第一节向量的概念:空间中具有大小和方向的量叫做空间向量。
向量的大小叫做向量的长度或模(moduius)。
规定,长度为0的向量叫做零向量,记为0.模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0,a0=a/|a|。
1共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb2共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=a x+b y3空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a+y b+z c。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
1.2 向量的加法三角形定则解决向量加减的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。
平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,向量的加法结果为公共起点的对角线。
平行四边形定则解决向量减法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。
(平行四边形定则只适用于两个非零非共线向量的加减。
)坐标系解向量加减法:在直角坐标系里面,定义原点为向量的起点.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式,A(X1,Y1) B(X2,Y2),则A+B=(X1+X2,Y1+Y2),A-B=(X1-X2,Y1-Y2)简单地讲:向量的加减就是向量对应分量的加减。
类似于物理的正交分解。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
《解析几何》教学大纲
《解析几何》教学大纲一、课程基本信息课程编码:061106B中文名称:解析几何英文名称:Analytic Geometry课程类别:专业基础及核心课总学时:48总学分:3适用专业:数学与应用数学专业先修课程:平面解析几何、线性代数基础知识二、课程的性质、目标和任务解析几何是数学与应用数学专业的专业基础及核心课,是初等数学通向高等数学的桥梁,在大学一年级第一学期开设的专业必修课程。
解析几何的基本思想是以向量、坐标为工具,将几何结构代数化,从而利用代数的方法研究、解决几何问题,其理论与方法对整个数学的发展起着重要的作用,为学习数学分析、微分几何、高等几何等数学学科的后续课程提供必要的理论基础。
通过本课程的教学,使学生对空间解析几何的基本思想与研究方法有完整的认识,系统地掌握几何知识和几何图形代数化的基本理论,受到几何直观性思维及逻辑推理等方面的训练,扩大知识领域;培养学生的空间想象能力,以及运用向量法与坐标法计算和证明几问题的能力,为进一步学习其它课程打下基础;另外能够加深对中学几何的理解和应用,从而获得在比较高的观点下处理中学几何问题的能力,为将来中学数学教学打下良好的基础;能够借助解析几何所具有的较强的直观效果,提高学生认识事物,解决实际问题的能力,为学生在创新能力培养等方面获得重要的平台。
三、课程教学基本要求1、教学方法:以课堂教学讲授方法为主,采用多媒体先进的教学手段。
讲清楚数学概念产生的实际背景、内涵和外延,定理的条件、结论和应用,比较分析类似数学概念的异同,找出内在联系,使学生在庞杂的学习内容面前能时刻抓住主线,有整体概念。
2、作业布置:课后习题选作,由于所用教材课后习题较多,根据教学内容选作部分题目,要求学生完成课后布置习题的80%以上,作业每周批改一次。
3、教学辅导:习题课,典型问题分析,方法总结,难题讲解;课后答疑辅导,解答课内或课外学习中的问题。
四、课程教学内容及要求第一章向量与坐标(16学时)【教学目标与要求】1、教学目标:向量、坐标是研究解析几何的工具,是学习该课程的基础。
解析几何向量的线性关系与向量的分解
E e1 B
上一页 下一页
返回
连接AF,因为AP1是△AEF 的中线,所以有
1 AP1 2 ( AE AF ),
又因为AF是△ACD 的中线,所以又有
1
1
AF 2 ( AC AD) 2 (e2 e3 ),
而
1
1
AE 2 AB 2 e1,
从而得
AP1
1 2
1 2
e1
1 2
(e2
e3 )
任意向量r可以分解成向量 e1 , e2 , e3的线性组合,即
r xe1 ye2 ze3 ,
(1.4 3)
并且其中系数 x, y, z被e1 , e2 , e3 , r唯一确定.
这时e1 , e2 , e3叫做空间向量的基底 .
例 证明四面体对边中点的连线交于一点,且互相平分.
证 设四面体 ABCD 一组
§1.4 向量的线性关系与向量的分解
ur uur uur
定义1.4.1 r由向量ura1, a2u,uLr , an与数u量ur 1, 2,L , unr所uu组r 成的uur向量 a 1a1 2 a2 L n an ,叫做向量a1, a2 ,L , an的线性组合.
rr
r
r
定理1.4.1 如果向量e 0,那么向量r与向量e共线的充要条件是
r
r
rr
rr
r可以用向量e线性表示,或者说 r是e的线性组合,即 r=xe,(1.4 1)
rr
并且系数x被e, r唯一确定.
r 这时e称为用线性组合来表示共线向量的基底.
下一页
返回
平面向量的表示(分解)
定理1.4.2 如果向量e1, e2不共线,那么向量r与
(完整版)解析几何课件(吕林根许子道第四版)(精)
任意向量 r可以由向量 e1 , e2 , e3线性表示,或说空间
任意向量 r可以分解成向量 e1 , e2 , e3的线性组合,即
r xe1 ye2 ze3 ,
(1.4 3) 上一页 下一页
并且其中系数 x, y, z被e1 , e2 , e3 , r唯一确定.
返回
第一章 向量与坐标 §1.4向量的线性关系与向量的分解
这时e1 , e2 , e3叫做空间向量的基底 .
例2 证明四面体对边中点的连线交于一点,且
互相平分.
证 设四面体ABCD一组
D
对边AB,CD的中点E, F的连
线为EF ,它的中点为P1,其余
e3
两组对边中点分别为 P2 , P3 ,
下只需证P1 , P2 , P3三点重合
就可以了.取不共面的三向量 A
设 是一个数,向量a与 的乘积a规定为
(1) 0, (2) 0,
aa与a0同向,| a| | a|
(3) 0, a与a反向,| a|| | | a|
a 2a
1 a 2
下一页
返回
第一章 向量与坐标 §1.3 数乘向量
|
a a|
ea .
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页 下一页
返回
第一章 向量与坐标 §1.3 数乘向量
例1设AM是三角形ABC的中线,求证:
uuuur AM
1
uuur ( AB
uuuur AC)
2
如图
证
uuuur uuur uuuur uuuur uuur uuuur
D
向量坐标知识点总结
解析几何复习知识点总结第一章向量与坐标第一节向量的概念:空间中具有大小和方向的量叫做空间向量。
向量的大小叫做向量的长度或模(moduius)。
规定,长度为0的向量叫做零向量,记为0.模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0,a0=a/|a|。
1共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb2共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=a x+b y3空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a+y b+z c。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
1.2 向量的加法三角形定则解决向量加减的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。
平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,向量的加法结果为公共起点的对角线。
平行四边形定则解决向量减法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。
(平行四边形定则只适用于两个非零非共线向量的加减。
)坐标系解向量加减法:在直角坐标系里面,定义原点为向量的起点.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式,A(X1,Y1) B(X2,Y2),则A+B=(X1+X2,Y1+Y2),A-B=(X1-X2,Y1-Y2)简单地讲:向量的加减就是向量对应分量的加减。
类似于物理的正交分解。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
1.4矢量的线性关系与矢量分解
如果
那么,
这说明矢量
假定矛盾. 所以 证毕. 例 如图, 四面体中,
共面(前面的定理1.4.2), 这与假 同理可得 D
A
C
B
分别是棱AB, DC的中点, 试将矢量
D F P1
解: 连接AF, 则由图可知
A EB
C
而
所以, 又若P1是EF的中点,
由前面的结论
所以
注意: 这个结果对于其它对边(DA与BC, DB与AC)
同样成立.
例 证明 四面体对边中点的连线交于
一点,且互相平分.
证明 四面体的图形同上. P1 是对
边AB与DC中点连线的中点. 设P2, P3 分别是对边DA与BC, DB与AC
A
E
的中点连线的中点.
D F P1
C B
利用前面的结论
所以
即
又因为 注意:本例题所蕴含的思想方法.
结论成立.
例 已知三角形OAB,
线性表示. 亦称矢量 的线性组合.
可以分解
也叫做矢量 的线性组合.
两个矢量的情形
定理4.1 如果矢量 e 0 那么矢量 与矢量
共线的充分必要条件是 可以用矢量 线性表示,
或者说
可以写成 的线性组合. 即
其中系数 x 被
惟一确定.
这时, 矢量 称为共线矢量的基底.
证明: 先证充分性, 即已知存在实数x使
定理1.4.7 三个矢量共面的充要条件是它们线性相关 问题: 4) 四个矢量呢? 定理1.4.8 空间任意四个矢量总是线性相关的. 推论 空间四个以上的矢量总是线性相关的.
例设
试证
P1、 P2、P3三点共线的
充分必要条件是存在
向量的线性关系与向量的分解
M
e1 e2( , R)
称e1 , e2为平面向量"基底"
解析几何
向量的线性关系与向量的分解
定理3 (空间向量基本定理) 空间情形有类似的结论.
C M
e3 r
e1 O e2
A
r OA OB OC
e1 e2 e3 (, , R,且惟一)
ai(i 1, 2, , n)线性相关. (2)一组向量中的部分线性相关,则全体线性相关.
向量共线、共面概念的拓展
10 a, b共线 a与b线性相关. 20 a, b, c共面 a, b, c线性相关. 30 空间四个以上向量总是线性相关.
解析几何
与向量e( 0)共线的向量r可用e线性表示.
e0
r
r e( R,且惟一)
称e为共线向量的"基底"
解析几何
向量的线性关系与向量的分解
定理2 (平面向量基本定理)
若e1 , e2为平面内不共线两向量, 则平面内任一向量r可用e1 , e2线性表示.
B
e2
r
O
e1
A
r OA OB
向量的线性关系与向量的分解
1.向量的线性组合
n
若 a λ1a1 λ2 a2 λn an i ai (i R) i 1 把a叫做ai (i 1, 2, n)的线性组合, 或称a可由ai线性表示. 或称a可分解成ai的线性组合.
解析几何
向量的线性关系与向量的分解
定理1 (共线向量基本定理)
B
e1, e2 , e3称空间向量"基底"
解析几何
向量的线性关系与向量的分解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何
七、共线向量的条件
定理 6
两向量共线的充要条件是它们线性相关.
证:设两向量a, b,若它们线性相关,则有 a b 0,
且,不全为零,不妨设 0,则有a b,即a, b共线. 反过来,由a, b共线,若b 0,则存在x,使得
解:
设 所以
p OM MP, p ON NP
MP mMB m(b a), NP n NA n(a b)
B
p a m(b a) (1 m)a mb,
b
O
b
N P
p b n(a b) na (1 n)b
解析几何
思考题
设 a, b 为两不共线向量,证明向量 u a1 a b1b ,
a1 v a2 a b2 b 共线的充要条件是 b1
a2 0. b2
解析几何
p
M
a
a
解析几何
A
因为
a,b 不共线,
所以
(1 m) n, m (1 n).
m
解得
(1 ) (1 ) ,n . 1 1
所以
p
(1 ) (1 ) a b. 1 1
换句话说,向量 a1, a2 ,
, an 叫做线性无关就是指:只有当
1=2= =n=0 时,(1)才成立.
推论 一个向量 a 线性相关的充要条件为 a=0 .
解析几何
六、向量线性相关的条件
定理 1.4.4 在 n 2 时,向量 a1, a2 , 其中有一个向量是其余向量的线性组合.
解析几何
最后证明x,y由 e1,, e 2 r 唯一确定. 如果r xe1 ye 2 x ' e1 y ' e 2 , 则 (x x ' )e1 ( y y ' )e 2 0.
' y y ' 若x x ,则e1 e ,即e1与e 2共线, ' 2 xx 与定理的假设矛盾,所以x=x ',
证 :设P1,P2,P3三点共线,那么 P1P3, P2 P3共线从而 线性相关,所以存在不 全为0的实数m,n,使得 m P1P3 n P2 P3 0,即m(r3 r1) n(r3 r2) 0, 整理可得m r1 n r2 (m n ) r3 0, 令1 m,2 n,3 (m n),则有1,2,3 不全为0,使1 r1 2 r2 3 r3 0且1 2 3 0.
r xe
并且系数 x 被 e, r 惟一确定.
这时 e 称为用线性组合来表示共线向量的基底.
解析几何
证 :若r xe,则由数乘的定义知r与e共线. r ,当r与e同向时 e 反过来,若r与e共线,取x , r ,当r与e反向时 e 则有r xe.
a xb, 即a xb 0, a, b线性相关;若b 0, a, b显然 线性相关.
解析几何
八、共面向量的条件
定理 1.4.7
三向量共面的充要条件是它们线性相关.
定理 1.4.8
推论
空间任何四个向量总是线性相关.
空间四个以上向量总是线性相关.
A P1
e3
F
e2
C
E
e1
B 解析几何
取不共面的三矢量 AB e1 , AC e2 , AD e3 , 先求AP e2, e3线性表示的关系式 . 1用e1,
联接AF,因为AP 1是△AEF的中线,所以有 1 AP1 (AE AF ) . 2 又因为AF是△ACD的中线,所以又有 1 1 AF (AC AD) (e 2 e3) . 2 2
O
e2
P
r
E2
e1
E1
A
解析几何
反过来,设r xe1 ye 2,若x,y有一个是0, 例如x 0,则r ye 2与e 2共线,从而与e1, e2 共面.若xy 0,则xe1 // e1 , ye 2 // e 2 ,由向量加 法的平行四边形法则可知r与xe1,ye 2共 面,从而有r与e1, e2共面.
e1, e2 , e3 , r 惟一确定.
E3
向量 e1, e2 , e3 叫做空间向量的基底.
e3
r
E1
e1 O e2 E2
B
A
解析几何
例1 已知三角形OAB ,其中OA = a,OB = b ,而M 、N 分别是三角形OA,OB 两边上的点,且有 OM = λ a 0 < < 1 , ON = μb 0 < < 1,设AN 与BM 相交于P ,试把向量OP = p 分解成a 、 b 的线性组合.
一、向量的线性组合 向量的加法和向量的数乘统称为向量的线性运算.
定义 1.4.1 由向量 a1, a2 ,
, an 与实数 1 , 2 , n an ,
, n 所组成的向量
a 1 a1 2 a2
叫做向量的线性组合.
当向量 a 是向量 a1, a2 , 可以用向量 a1, a2 ,
解析几何
例2
证明四面体对边中点的连线交于一点,且互
D
相平分.
证 设四面体ABCD一组 对边AB, CD的中点E , F的连 线为EF , 它的中点为P 1 , 其余 两组对边中点连线的中点分 别为P2 , P 3 , 下只需证P 1, P 2, P 3 三点重合就可以了.
§1.4 向量的 线性关系与向量的分解
解析几何
一、向量的线性组合 二、共线向量的基底 三、共面向量的基底 四、空间向量的基底
五、向量的线性关系 六、向量线性相关的条件 七、共线向量的条件 八、共面向量的条件
解析几何
解析几何
1 1 而AE AB e1, 2 2 1 从而有AP1 (e1 e 2 e3) . 4 1 同理可得AP2 AP3 (e1 e 2 e3) . 4 所以AP1 AP2 AP3,P1,P2,P3,三点重合.
解析几何
例 3 设 OP 1, P 2, P 3 三点共线的充要条件 i r i (i 1,2,3) ,试证 P 是存在不全为零的实数 1 , 2 , 3 使得 1 r1 2 r2 3 r3 0 ,且
1 2 3 0 .
, an 线性相关的充要条件是
证:设a1, a 2 ,a n 线性相关,则(1)成立,且1,2 ,n中至少有一
1 2 n-1 个不是0,不妨设n 0,则有a n a1 a 2 a n-1; n n n
即a n 1 a1 2 a 2 n-1 a n-1,则有1 a1 2 a 2 n-1 a n-1 ( 1) a n 0. 因为1,2 n-1, 1不全为零,所以a1, a 2 ,a n 线性相关.
' 最后证明x的唯一性.若r xe x ' e,则(x x ) e 0,
而r 0,所以x x ' .
解析几何
三、共面向量的基底
定理 1.4.2 如果向量 e1 , e2 不共线,那么向量 r 与 e1 , e2 共面的 充要条件是 r 可以用向量 e1 , e2 线性表示,或者说向量 r 可以分解 成 e1 , e2 的线性组合,即
2, ,s,使得1 a1 2 a 2 s a s 0.则有1 a1 2 a 2
s a s 0a s+1 0a r 0.因为1,2, ,s, 0, 0中至 少有一个不是零,所以a1,, a 2 ,线性相关 ar .
推论 一组向量如果含有零向量,那么这组向量必线性相关.
同理y=y ',因此x,y被唯一确定.
解析几何
四、空间向量的基底
定理 1.4.3 如果向量 e1, e2 , e3 不共面,那么空间任意向量 r 可以由向量
e1, e2 , e3 线性表示,或者说空间任意向量 r 可以分解成向量 e1, e2 , e3 的线性 组合,即 C r xe1 ye2 ze3 , 并且其中系数 x, y, z 被 P
解析几何
五、向量的线性关系
定义 1.4.2 对于 n 个向量 a1, a2 ,
, an ,如果存在不全为零的 n 个数
1 , 2 , , n 使得
1 a1 2 a2
n an=0 ,
(1)
那么 n 个向量叫做线性相关,不是线性相关的向量叫做线性无关.
r xe1 ye2
并且系数 x, y 被 e1 , e2 惟一确定.
这时 e1 , e2 叫做平面上向量的基底.
解析几何
证:因为e1,不共线,所以有 e2 e1 0, e2 0.设r与e1, e2共面, 若r与e (或 e2)共线,由定理1.4.1,有r xe1 ye2,其中 1 y (或 0 x 0),若r与e1,都不共线,把它们归结到共 e2 同的起点O,并设OEi e ( 2 OP r,过P分别作OE 2, i i=1,), OE1的平行线并交OE1,OE 2于A,B.因为OA // e1 , OB // e 2 , 由定理1.4.1,可设OA xe1, OB ye 2, B 所以, OP OA OB, 即r xe1 ye 2 .
, an 的线性组合时,我们也说:向量 a
, an 线性表示.或者说,向量 a 可以分解成向量
a1, a2 ,
, an 的线性组合.
解析几何
二、共线向量的基底
定理 1.4.1 如果向量 e 0 ,那么向量 r 与向量 e 共线的充要条件是 r