数学“存在性”问题的解题策略(含解答)-
数列中的存在性问题 经典

专题:数列中的存在性问题一、单存在性变量解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。
例1、已知数列{na }的前n 项和为n S =235n n +,在数列{n b }中,1b =8,164n nb b +-=0,问是否存在常数c 使得对任意n ,log n c na b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由.解析:假设存在常数c 使得对任意n ,log n c na b +恒为常数M ,∵n S =235n n+,∴当n =1时,则1a =1S =8,当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +,当n =1适合, ∴n a =62n +,又∵164n n b b +-=0, ∴1n n b b +=164,∴数列{n b}是首项为8,公比为164的等比数列, ∴nb =118()64n -=962n -,则log n c n a b +=9662log 2n c n -++=62(96)log 2a n n ++-=6(1log 2)29log 2a a n -++,又∵对任意n ,log n c na b +恒为常数M ,∴6(1log 2)a -=0,解得c =2,∴M =29log 2a +=11,∴存在常数c =2使得对任意n ,log n c na b +恒为常数M =11.二、双存在型变量解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。
如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进行检验。
二次函数存在性问题专题复习(全面典型含答案)

中考数学专题复习——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来包括深圳在内各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
以下为几种典型的二次函数中出现的存在性问题,讲解后希望各位考生在以后的考试中如果遇到此类型时能够很顺畅的把过程写下来。
一、二次函数中相似三角形的存在性问题1.(2011枣庄10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.2.(2011临沂13分)如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、二次函数中面积的存在性问题3. (2011日照10分)如图,抛物线()20y ax bx a >=+与双曲线ky x=相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX 错误!未找到引用源。
存在性问题的解答技巧

存在性问题的解答技巧
存在性问题是指判断满足某种条件的事物或事件是否存在的问题,此类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高。
按照历年中考数学试题来看,存在性问题一般可以分为两类:肯定型和否定型。
解决存在性问题一般套路:假设存在→推理论证→得出结论。
简单地说就是若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
具体来说,我们可以归纳出三种解决存在性问题的解题策略:
1、直接求解法
就是直接从已知条件入手,逐步试探,求出满足条件的对象,使问题得到解决的解法。
2、假设求解法
先假设结论存在,再从已知条件和定义,定理,公理出发,进行演绎推理,若得到和题意相容的结论,则假设成立,结论也存在;否则,假设不成立,结论不存在。
3、反证法
反证法是证明否定型存在性问题的主要方法,特别是在无限个候选对象中,证明某种数学对象不存在时,逐一淘汰的方法几乎不能实行,更需要使用反证法。
一定要记住一点:解题的方法主要是建立方程模型,由方程有无符合条件的解来肯定“存在与否”的问题。
存在性问题本质上是指判断满足某种条件的事物或事件是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高。
不同的存在性问题解法不同,如按照解法及设问方式的不同将存在性问题分为代数方面的存在性问题(如方程根是否存在、最值是否存在等)、点的存在性问题(如构成特殊图形的点是否存在)等。
中考数学压轴题解题策略:相似三角形的存在性问题

相似三角形的存在性问题解题策略专题攻略相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6.应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组).例题解析例❶如图1-1,抛物线y=1x2-3x+4与X轴交于A、B两点(A点在B点左侧),与y轴交于点C.动82直线EF(EF//x轴)从点C开始,以每秒1个单位的速度沿y轴负方向平移,且分别交y轴、线段BC于E、F两点,动点P同时从点B出发,在线段0B上以每秒2个单位的速度向原点0运动.是否存在t,使得△匕卩卩与厶ABC相似.若存在,试求出t的值;若不存在,请说明理由.图1-1【解析】ABP卩与厶ABC有公共角ZB,那么我们梳理两个三角形中夹ZB的两条边.△ABC是确定的.由y=x2-x+4,可得A(4,0)、B(&0)、C(0,4).782于是得到BA=4,BC=4*5.还可得到C E=C0=1.EF OB2△BPF中,BP=21,那么BF的长用含t的式子表示出来,问题就解决了. 在RtAEFC中,CE=t,EF=21,所以CF=^5t.因此BF=处5-呂二*;5(4-1).于是根据两边对应成比例,分两种情况列方程BABP ①当—时,BCBF42t44_—.解得t—(如图1-2). 4冒55(4-1)3BABF ②当—时,BCBP4—〔5(4-1).解得1—20(如图1-3). 4f5217得顶点M(1,-图1-2 图1-3例❷如图2-1,在平面直角坐标系中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,ZAOB=120°.(1)这条抛【解析】AABC与AAOM中相等的一组角在哪里呢?本题由简到难,层层深入.第(1)题求出抛物线的解析式,得到顶点M的坐标,为第(2)题求ZAOM的大小作铺垫;求得了ZAOM的大小,第(3)题暗示了要在△ABC中寻找与ZAOM相等的角.(1)如图2-2,过点A作AH丄y轴,垂足为H.容易得到A(-1,3).再由A(-1,J3)、B(2,0)两点,可求得抛物线的解析式为y二辜x2-睾x.⑵由y吕x2一斗x召(x-1)2-斗,v33(3)由A (-1,\:'3)、B(2,0),可得ZABO=30°. 因此当点C 在点B 右侧时,ZABC=ZA0M=150°. 所以△ABC 与AAOM 相似,存在两种情况:① 当燮=_°A 仝时,BC =BA ==2.此时C(4,0)(如图2-3).BCOM J3弋3 BC OA —② 当==时,BC =x/3BA =\3x 2\;3=6.此时C (8,0)(如图2-4).BAOM图2-3.图2-4例❸如图3-1,抛物线y=ax 2+bx —3与x 轴交于A(l,0)、B(3,0)两点,与y 轴交于点D,顶点为C.(1)求此抛物线的解析式;(2)在x 轴下方的抛物线上是否存在点M,过M 作MN 丄x 轴于点N,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,求出点M 的坐标;若不存在,请说明理由.图3-1【解析】AAMN 是直角三角形,因此必须先证明△BCD 是直角三角形.一般情况下,根据直角边对应成比例分两种情况列方程.所以 tan ZBOM=.所以ZBOM=30。
解决存在性问题的几种常用方法

解决存在性问题的几种常用方法〔关键词〕数学教学;问题;存在;分类讨论法;解析法;比例线段法;图象法一、分类讨论法例1已知,在直角坐标系中,A、B两点是抛物线y=x2-(m-3)x-m与x轴的交点(A在B的右侧),x1、x2分别是A、B两点的横坐标,且|x1-x2|=3.(1)当m>0时,求抛物线的解析式;(2)如果(1)中所求抛物线与y轴交于点C,问y轴上是否存在点D(不与点C重合),使得以D、O、A为顶点的三角形与△AOC相似?若存在,请求出D点的坐标;若不存在,请说明理由.分析:要求抛物线的解析式,只需求出m的值,可通过条件“|x1-x2|=3”,结合根与系数的关系及根的判别式确定m的值为2.解:(1)略,所求抛物线的解析式为y=x2+x-2.(2)假设在y轴上存在点D,使得△DOA∽△AOC. 设点D的坐标为(0,y),由(1)知抛物线y=x2+x-2与y轴的交点C的坐标为(0,-2),与x轴的交点A的坐标为(1,0),如图①、②所示分以下两种情况讨论:①当∠ACO=∠ADO时,则△ACD为等腰三角形,此时AO垂直平分DC.∵点C、D关于原点对称,∴D1的坐标为(0,2).②当∠DAO=∠ACO时,有两种情况,如图②所示点D2、D3的位置,并且此时点D2与点D3关于原点对称,下面求D2点的坐标.∵△DAO∽△ACO ,∴OA2=OC·OD.∴OD=■=■,∴点D2的坐标为(0,■),而D3是D2关于原点的对称点,即D3的坐标为(0,-■),综上所述,D点存在,有3个,其坐标分别是(0,2)、(0,■)与(0,-■).评注:本题所探索的是点的存在性问题,用了分类讨论的方法,解题时要注意将任何可能的情况都要考虑到,否则易将D3漏解,而在探求此点时又利用了对称性原理巧妙地进行了解答.二、解析法例2 如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,顶点C在y 轴的负半轴上,tan∠ABC=■,点P在线段OC上,且PO,PC(PO<PC)是方程x2-12x+27=0的两根.(1)求P点的坐标;(2)求AP的长;(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在请直接写出直线PQ的解析式;若不存在,请说明理由.分析:该题前两问是常规求解问题,只需根据已知条件和已有知识进行推理论证,解答出结果即可,而最后一问将函数和几何的有关知识有机结合在一起,形成一道“是否存在”的综合题目,应以“假设存在,去伪存真”作为解答策略.解:(1)略,点P的坐标为(0,-3);(2)略;(3)假设存在,分两种情况讨论,如图③所示:(i)过P作PQ1∥AC交x轴于点Q1,由(1)(2)知,点A、C、P的坐标分别为(-9,0),(0,-12),(0,-3),设直线AC的解析式为y=k1x+b1,将点A、C的坐标分别代入解析式得-9k1+b1=0b1=-12 解得k1=-■b1=-12又∵AC∥PQ1,∴直线PQ1的解析式为y=-■x-3.(ii)过点C作CQ2∥AP交x轴于点Q2,设直线AP的解析式为y=k2x+b2,同(i),解得k2=-■,b2=-3. ∵CQ2 ∥AP, ∴CQ2的解析式为y=■x-12. 令y=0,得x=-36, ∴点Q2的坐标为(-36,0).再设直线PQ2的解析式为y=kx+b,将P(0,-3),Q2(-36,0)分别代入y=kx+b,可得k=■,b=-3,∴直线PQ2的解析式为y=-■x-3.三、成比例线段法例2中的第三问还可以用下面的方法解答.分两种情况:如图③所示:当PQ∥AC时,则由△OPQ∽△OCA得■=■,∴OQ=■=■ =■ ,∴点Q的坐标为(-■,0) ,再设PQ的解析式为y=kx+b,将点P、Q的坐标分别代入解析式,有b= -3-■k+b=0 解得b= -3k= -■∴直线PQ的解析式为y= -■x-3.当AP∥QC时,则由△OAP∽△OQC得■=■,∴OQ=■=■=36.∴点Q的坐标为(-36,0),利用待定系数法可确定此时直线PQ2的解析式为y=-■x-3.评注:此题在解关于“是否存在”的问题时解法灵活,既可以利用“解析法”中两直线平行的特点,并以一次项系数k相同作中间桥梁进行解答,又可以利用平行线等分线段定理确定线段的长度,进而得到解析式.四、图象法例3如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于0、M两点,OM=4,矩形ABCD的边BC在线段OM上,点A、O 在抛物线上.(1)请写出P、M两点的坐标,并求出抛物线的解析式;(2)设矩形ABCD的周长为L,求L的最大值;(3)连结OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ是等腰三角形,简要说明理由.分析:此题第一问可以直接将已知条件中的距离转化为点的坐标形式,再利用待定系数法确定解析式即可;第二问利用矩形的性质及抛物线的对称性,设点A的横坐标为xA,找出点A的坐标与矩形的长、宽之间的关系,列出L关于xA的二次函数关系式,从而求出最值;第三问直接通过作图的方法来探究“是否存在”.解:(1)略,点P的坐标为(2,4),点M的坐标为(4,0),抛物线的解析式为y=-x2+4x;(2)略,L的最大值为10;(3)假设存在点Q(除点M外),使得△OPQ是等腰三角形.若△OPQ是等腰三角形,OP可以为底,也可以为腰.①以OP为底,作OP的垂直平分线RS,可以交抛物线于Q1,Q2,∴这样的点存在,有两个.②以OP为腰时,可以以O为圆心,OP的长为半经作圆(除M点外)还有3个点,∴存在点Q,使△POQ为等腰三角形.评注:对“是否存在”的问题是通过猜测、分析、作图的方法,探究到结果,体现出数学图形的简洁性、直观性、形象性.。
存在性问题和最值问题的解法

“存在性”问题和“最值”问题的解决方法一、关于存在性问题1、什么样的情况会引发出“存在性问题?从一个整体情况或一个变化过程中,判断满足某种特殊要求的情况是否存在,并在存在时将其寻找出来,这样的问题就是“存在性”问题。
如:题1如某月的月历,像图中那样用方框框住4个数字,是否存在以下情况:使框住的4个数字和为100?为90?若存在,请写出这4个数字,若不存在,请说明理由。
题 2 如图(1),四边形ABCD 是边长为6的正方形,动点P从A 点P 出发,以每秒1个单位的速度沿AB 边向B 点运动,动点Q 从点B 出发,以每秒3个单位的速度沿边运动,两点同时出发,点P 到达B 处时两点运动停止,记Q P ,的运动时间为t 。
(1)是否存在时刻t ,使线段PQ 将正方形ABCD 的周长分为相等的两部分?若存在,求出t 的值;若不存在,请说明理由。
(2)是否存在时刻t ,,使线段PQ 将正方形ABCD 的面积分为1:2两部分,若存在,求出t 的值;若不存在,请说明理由。
(1) (2)题 3 如图(2),在ABC ∆中,︒=∠90C ,在斜边AB 上是否存在点O ,使以O 为圆心,以OA 为半径的圆,恰好与BC 相切?若存在,请作出⊙O (保留作图痕迹);若不存在,请说明理由。
像以上三个题目都属于“存在性”问题。
2、“存在性”问题的基本类型和解决方法 “存在性”问题大体可分为两类:Ⅰ、由数量关系确定的“存在性”问题(即要找的是满足一个“特殊”数量方面的要求); Ⅱ、由位置关系确定的“存在性”问题(即要找的是满足一个“特殊”位置方面的要求)。
(1)由数量关系确定的“存在性”问题这种类型的“存在性”问题,解决的方法主要是借助于构造方程。
例1 (见前面的题1)【观察与思考】第一,框住的4个数字,若设左上角的数字为a ,则这4个数字的和为164)8()7()1(+=++++++a a a a a 。
本题就是判断图中有无数字a ,使和164+a 分别为100,90?有这样的数字a 时,求出a 的值。
专题55 一次函数背景下的图形存在性问题(解析版)-中考数学解题大招复习讲义

例题精讲考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y=﹣x+6的图象与x轴、y轴分别交于A、B两点,M点在x轴上,并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为(﹣8,0)或(﹣2,0)或(18,0)或(﹣,0).解:一次函数y=﹣x+6中令x=0,解得y=6;令y=0,解得x=8,∴A(8,0),B(0,6),即OA=8,OB=6,在直角三角形AOB中,根据勾股定理得:AB=10,分四种情况考虑,当BM=BA时,由BO⊥AM,根据三线合一得到O为MA的中点,此时M1(﹣8,0);当AB=AM时,由AB=10,得到OM=﹣2或18,此时M2(﹣2,0),M3(18,0);当MA=MB时,∵A(8,0),B(0,6),∴AB的中点的坐标为(4,3),设直线AB的垂直平分线的解析式为y=x+b,代入(4,3)得3=+b,解得b=﹣,∴直线AB的垂直平分线的解析式为y=x﹣,令y=0,解得x=,此时M4(,0).综上,这样的M点有4个,分别为(﹣8,0)或(﹣2,0)或(18,0)或(,0).故答案为(﹣8,0)或(﹣2,0)或(18,0)或(,0).变式训练【变1-1】.如图,在平面直角坐标系中,直线MN的函数解析式为y=﹣x+3,点A在线段MN上且满足AN=2AM,B点是x轴上一点,当△AOB是以OA为腰的等腰三角形时,则B点的坐标为(2,0)或(,0)或(,0).解:∵在y=﹣x+3中,令x=0,则y=3;令y=0,则﹣x+3=0,解得x=3,∴N(3,0),M(0,3),∴OM=ON=3,∵AN=2AM,∴A(1,2),∴OA==,当AO=OB时,则OB=,∴点B的坐标为(﹣,0)或(,0);②当AO=AB时,设点B的坐标为(m,0),则=,整理得,(1﹣m)2=1,解得m=2或m=0(舍去),∴点B的坐标为(2,0).综上所述:点B的坐标为(2,0)或(,0)或(,0).【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.解:(1)联立两直线解析式成方程组,得,解得:,∴点C的坐标为(4,4);(2)设点P(m,0),而点C(4,4),点O(0,0);PC2=(m﹣4)2+16,PO2=m2,OC2=42+42=32;当PC=PO时,(m﹣4)2+16=m2,解得:m=4;当PC=OC时,同理可得:m=0(舍去)或8;当PO=OC时,同理可得:m=±4;故点P的坐标为(4,0)或(8,0)或(4,0)或(﹣4,0).考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.解:当△ABC为直角三角形时,设点C坐标为(x,0),分三种情况:①如果A为直角顶点,则AB2+AC2=BC2,即(2﹣5)2+(2﹣1)2+(2﹣x)2+22=(5﹣x)2+1,解得:x=,②如果B为直角顶点,那么AB2BC2=AC2,即(2﹣5)2+(2﹣1)2+(5﹣x)2+1=(2﹣x)2+22,解得x=,③如果C为直角顶点,那么AB2=AC2+BC2,即(2﹣5)2+(2﹣1)2=(2﹣x)2+22+(5﹣x)2+1,解得x=3或4,综上可知,使△PAB为直角三角形的点C坐标为(,0)或(,0)或(3,0)或(4,0).变式训练【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P 是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是(1,0)或(3,0).解:∵一次函数y=kx+1的图象过点A(1,2),∴2=k+1,解得k=1,∴一次函数的解析式为y=x+1.∴当∠APB=90°时,P1(1,0);当∠BAP=90°时,∵一次函数的解析式为y=x+1,∴设直线AP的解析式为y=﹣x+b,∵A(1,2),∴2=﹣1+b,解得b=3,∴直线AP的解析式为y=﹣x+3,∴当y=0时,x=3,∴P2(3,0).综上所述,点P的坐标是(1,0)或(3,0).【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x﹣2的图象与一次函数y=4x+b的图象交于点D,且点D的坐标为(﹣2,﹣4),∴关于x、y的方程组的解是,∴关于x、y的方程组的解是,故答案为:;(2)把点D的坐标代入一次函数y=4x+b中得:﹣8+b=﹣4,解得:b=4,∴B(0,4),∵A(0,﹣2),∴AB=4﹣(﹣2)=6,==6;∴S△ABD(3)存在,如图1,当点E为直角顶点时,过点D作DE⊥x轴于E,∵D(﹣2,﹣4),∴E(﹣2,0);当点C为直角顶点时,x轴上不存在点E;当点D为直角顶点时,过点D作DE⊥CD交x轴于点E,作DF⊥x轴于F,设E(t,0),当y=0时,4x+4=0,∴x=﹣1,∴C(﹣1,0),∵F(﹣2,0),∴CE=﹣1﹣t,EF=﹣2﹣t,∵D(﹣2,﹣4),∴DF=4,CF=﹣1﹣(﹣2)=1,在Rt△DEF中,DE2=EF2+DF2=42+(﹣2﹣t)2=t2+4t+20,在Rt△CDF中,CD2=12+42=17,在Rt△CDE中,CE2=DE2+CD2,∴(﹣1﹣t)2=t2+4t+20+17,解得t=﹣18,∴E(﹣18,0),综上,点E的坐标为:(﹣2,0)或(﹣18,0).考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.解:(1)将A(1,3)、B(﹣2,﹣1),代入y=kx+b得:,解得,∴一次函数的表达式为y=x+;(2)在y=x+中,令x=0得y=,∴OD=,=OD•|x A|=××1=,∴S△AODS△BOD=OD•|x B|=××2=,=S△BOD+S△AOD=;∴△AOB的面积S△AOB(3)存在,理由如下:在y=x+中,令y=0得y=﹣,∴C(﹣,0),设M(m,n),而B(﹣2,﹣1),O(0,0),①以OB、CM为对角线,则OB的中点即是CM的中点,如图:∴,解得,∴M(﹣,﹣1);②以BC、OM为对角线,则BC的中点即是OM的中点,如图:∴,解得,∴M(﹣,﹣1);③以BM、CO为对角线,则BM的中点即是CO的中点,如图:∴,解得,∴M(,1);综上所述,M的坐标为:(﹣,﹣1)或(﹣,﹣1);或(,1).变式训练【变3-1】.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).考点四:一次函数中矩形存在性问题【例4】.Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,在直角△AOB中,AB===10;(2)∵BC平分∠ABO,CD⊥AB,AO⊥BO,∴OC=CD,设OC=x,则AC=8﹣x,CD=x.∵△ACD和△ABO中,∠CAD=∠BAO,∠ADC=∠AOB=90°,∴△ACD相似于△ABO,∴,即,解得:x=3.即OC=3,则C的坐标是(﹣3,0).设AB的解析式是y=kx+b,根据题意得解得:则直线AB的解析式是y=x+6,设CD的解析式是y=﹣x+m,则4+m=0,则m=﹣4.则直线CE的解析式是y=﹣x﹣4;(3)①当AB为矩形的边时,如图所示矩形AM1P1B,易知BC的直线方程为y=2x+6,设M1(m,2m+6),P1(x,y),因为A(﹣8,0),B(0,6),则AM12=(m+8)2+(2m+6)2,=5m2+40m+100,BM12=m2+(2m+6﹣6)2=5m2,AB=10,根据AB2+AM12=BM12得100+5m2+40m+100=5m2,m=﹣5,∴M1(﹣5,﹣4),根据平移规律可以解得P1(3,2)②当AB为矩形的对角线时,此时有AB2=AM22+BM22,即100=5m2+40m+100+5m2,m =﹣4或m=0(舍去),∴M2(﹣4,﹣2),根据平移规律可以解得P2(﹣4,8)综上可得,满足条件的P点的坐标为P1(3,2)或P2(﹣4,8).变式训练【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)x2﹣4x+3=0,解得:x=3或1,故BC=1,OC=3,即点C(0,3)、点A(﹣1,0),则点B(﹣1,3),点D(3,0),点E(3,1),将B、D点的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线BD的表达式为:y=﹣x+…①;(2)同理可得:直线OE的表达式为:y=x…②,联立①②并解得:y=,即点H到x轴的距离为:;(3)直线BD的表达式为:y=﹣x+,则点F(0,),①当FD是矩形的一条边时,当点M在x轴上时,∵MF⊥BD,则直线MF的表达式为:y=x+,当y=0,x=﹣,即点M(﹣,0),点F向右平移3个单位向下平移单位得到D,则点M向右平移3个单位向下平移单位得到N,则点N(,﹣);当点M在y轴上时,同理可得:点N(﹣3,﹣);②当FD是矩形的对角线时,此时点M在原点O,则点N(3,);综上,点N的坐标为:(,﹣)或(﹣3,﹣)或(3,).考点五:一次函数中菱形存在性问题【例5】.如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.(1)求点C的坐标;(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M 的坐标;(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=x+6,令x=0,得到y=6,∴B(0,6),令y=0,得到x=﹣8,∴A(﹣8,0).∵A(﹣8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB==10,过点C作CH⊥AB于H,设OC=t,∵BC平分∠ABO,∠AOB=90°,∴CH=OC=t,=S△ABC+S△BCO,∵S△ABO∴OA•OB=AB•CH+OC•OB,∴6×8=10t+6t,∴t=3,∴OC=3,∴C(﹣3,0);(2)设线BC的表达式为:y=kx+b,∵B(0,6),C(﹣3,0),∴直线BC的表达式为:y=2x+6,设点M(m,2m+6)、N(n,2n+6),过点M作MF⊥x轴于点F,过点N作NE⊥x轴于点E,∵△AMN为等腰直角三角形,故AM=AN,∵∠NAE+∠MAF=90°,∠MAF+∠AMF=90°,∴∠NAE=∠AMF,∵∠AFM=∠NEA=90°,AM=AN,∴△FMA≌△EAN(AAS),∴EN=AF,MF=AE,即﹣2n﹣6=m+8,2m+6=8+n,解得:m=﹣2,n=﹣6,故点M的坐标为(﹣2,2)、点N(﹣6,﹣6);由于M,N的位置可能互换,故点N的坐标为(﹣2,2)、点M(﹣6,﹣6);综上所述,点M的坐标为(﹣2,2)或(﹣6,﹣6);(3)设点P(0,p),∴BP2=(p﹣6)2,AP2=82+p2,①当AB是边时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴BP=AB=10,BP′=AB=10,OB=OP″,∵B(0,6),∴P(0,16),P′(0,﹣4),P″(0,﹣6),∵A(﹣8,0),∴Q(﹣8,10),Q′(﹣8,﹣10),Q″(8,0);②当AB是对角线时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴AP=BP,∴BP2=AP2,∴(p﹣6)2=82+p2,解得p=﹣,∴P(0,﹣),∵A(﹣8,0),B(0,6),∴Q(﹣8,);综上所述,点Q的坐标为(﹣8,10)或(﹣8,﹣10)或(8,0)或(﹣8,).变式训练【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)∵点A(m,2)在直线y=x+4上∴m+4=2解得m=﹣2∴点A的坐标为(﹣2,2)设直线AB的解析式为y=kx+b∴解得∴直线AB的解析式为y=﹣2x﹣2;(2)如图1,由题意设点E的坐标为(a,a+4),则∵EF∥y轴,点F在直线y=﹣2x﹣2上∴点F的坐标为(a,﹣2a﹣2)∴EF=|a+4﹣(﹣2a﹣2)|=|3a+6|,∵以点O、C、E、F为顶点的四边形是平行四边形,且EF∥OC∴EF=OC∵直线y=x+4与y轴交于点C∴点C的坐标为(0,4)∴OC=4,即|3a+6|=4解得:a=﹣或a=﹣∴点E的坐标为(﹣,)或(﹣,);(3)如图2,当BC为对角线时,点P,Q都是BC的垂直平分线,且点P和点Q关于BC对称,∵B(0,﹣2),C(0,4),∴点P的纵坐标为1,将y=1代入y=x+4中,得x+4=1,∴x=﹣3,∴P''(﹣3,1),∴Q''(3,1)当CP是对角线时,CP是BQ的垂直平分线,设Q(m,n),∴BQ的中点坐标为(,),代入直线y=x+4中,得+4=①,∵CQ=CB,∴m2+(n﹣4)2=36②,联立①②得,(舍)或,∴Q'(﹣6,4),当PB是对角线时,PC=BC=6,设P(c,c+4),∴c2+(c+4﹣4)2=36,∴c=3(舍)或c=﹣3,∴P(﹣3,﹣3+4),设Q(d,e)∴(﹣3+0)=(0+d),(﹣3+4﹣2)=(e+4),∴d=﹣3,e=﹣3﹣2,∴Q(﹣3,﹣3﹣2),即:点Q的坐标为(3,1),(﹣6,4)或(﹣3,﹣3﹣2).1.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为(﹣8,0)(3,0)(2,0)(,0).解:当x=0时,y=4,当y=0时,x=﹣3,即A(﹣3,0),B(0,4),OA=3,OB=4,由勾股定理得:AB=5,有三种情况:①以A为圆心,以AB为半径交x轴于两点,此时AC=AB=5,C的坐标是(2,0)和(﹣8,0);②以B为圆心,以AB为半径交x轴于一点(A除外),此时AB=BC,OA=OC=3,C的坐标是(3,0);③作AB的垂直平分线交x轴于C,设C的坐标是(a,0),A(﹣3,0),B(0,4),∵AC=BC,由勾股定理得:(a+3)2=a2+42,解得:a=,∴C的坐标是(,0),故答案为:(﹣8,0)(3,0)(2,0)(,0).2.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标P1(4,0),P2(,0),P3(﹣,0),P4(,0).解:设P(x,0),当OA=AP时,∵A(2,1),∴P1(4,0);当OA=OP时,∵A(2,1),∴OA==,∴P2(,0),P3(﹣,0);当AP=OP时,∵P(x,0),(2,1),∴(2﹣x)2+12=x2,解得x=,∴P4(,0).综上所述,P点坐标为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).故答案为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).3.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为(3,2)(﹣3,2)(5,﹣2).解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).4.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(3,4),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.解:(1)∵正比例函数y=k1x的图象经过点A(3,4),∴3k1=4,∴k1=,∴正比例函数解析式为y=x.如图1中,过A作AC⊥x轴于C,在Rt△AOC中,OC=3,AC=4,∴AO==5,∴OB=OA=5,∴B(0,﹣5),∴,解得,∴一次函数的解析式为y=3x﹣5.(2)如图1中,过A作AD⊥y轴于D,∵A(3,4),∴AD=3,=;∴S△AOB(3)当OP=OA时,P1(﹣5,0),P2(5,0),当AO=AP时,P3(6,0),当PA=PO时,线段OA的垂直平分线为y=﹣,∴,满足条件的点P的坐标(﹣5,0)或(5,0)或(6,0)或.5.直线l1交x轴于点A(6,),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C 点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.解:∵点A(6,0),交y轴于B(0,6).∴OA=6,OB=6,∴tan∠OAB==,∴∠OAB=30°,∴∠OBA=60°,∵折叠△AOB,∴∠OBC=∠ABC=30°,∴BC=2OC,BO=OC=6,∴OC=2,∴点C(2,0),设直线BC解析式为:y=kx+b,解得:∴直线BC解析式为:y=﹣x+6;(2)当点M与点B重合时,由(1)可知:∠AMC=∠MAC=30°,∴CM=AC,∴△ACM是等腰三角形,∴当M为(0,6)时,△ACM是等腰三角形,∵OC=2,OA=6,∴AC=4,若AM=AC=4,如图1:过点M作MH⊥AC,∵∠MAH=30°,∴MH=AM=2,AH=2MH=6,∴OH=6﹣6或6+6,∴点M(6﹣6,2)或(6+6,﹣2)若AM=MC,如图2,过点M作MH⊥AC,∵AM=MC,MH⊥AC,∴AH=CH=2,∴OC=4,∵∠MAH=30°,∴AH=MH,∴MH=2,∴点M(4,2),综上所述:点M(6﹣6,2)或(6+6,﹣2)或(4,2)或(0,6).6.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P 为顶点的四边形是菱形,请直接写出点P的坐标.解:(1)令y=kx+8k=0,解得x=﹣8,故点A的坐标为(﹣8,0);(2)过点A作AD⊥AB交BC于点D,过点A作y轴的平行线交过点B与x轴的平行线于点M,交过点D与x轴的平行线于点N,∵∠ABC=45°,故△ABD为等腰直角三角形,则AD=AB,∵∠BAM+∠DAN=90°,∠DAN+∠ADN=90°,∴∠BAM=∠ADN,∵∠BMA=∠AND=90°,∴△BMA≌△AND(AAS),∴AN=BM=8,ND=AM=6,故点D的坐标为(﹣2,﹣8),设直线BC的表达式为y=kx+b,则,解得,故直线BC的表达式为y=7x+6;(3)设点M的坐标为(m,7m+6),点P(s,t),而点A、B的坐标分别为(﹣8,0)、(0,6),①当AB是边时,点A向右8个单位向上6个单位得到点B,同样,点M(P)向右8个单位向上6个单位得到点P(M),且AB=BP(AB=BM),则或,解得或或(不合题意的值已舍去);故点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2);②当AB是对角线时,由中点坐标公式和AM=BM得:,解得,故点P的坐标为(﹣7,7);综上,点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2)或(﹣7,7).7.如图,在平面直角坐标系中,一次函数的图象与x轴交于点A(﹣4,0),与y轴交于点B,且与正比例函数y=x的图象交于点C(m,6).(1)求一次函数的解析式;(2)求△BOC的面积;(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.解:(1)∵将点C(m,6)代入y=x,∴6=m,∴m=4,∴C(4,6),设一次函数的解析式为y=kx+b,∴,∴,∴y=x+3;(2)在y=x+3中,令x=0得y=3,∴B(0,3),=OB•|x C|=×3×4=6;∴S△BOC(3)在x轴上存在一点P,使得△ABP是等腰三角形,理由如下:∵A(﹣4,0),B(0,3),∴AB=5,OA=4,当B为等腰三角形顶角顶点时,P点与A点关于y轴对称,∴P(4,0);当A为等腰三角形顶角顶点时,AP=AB=5,∴P(﹣9,0)或P(1,0);当P为等腰三角形顶角顶点时,设P(t,0),∵PA=PB,∴(t+4)2=t2+9,解得t=﹣,∴P(﹣,0),综上所述:P点坐标为(﹣9,0)或(1,0)或(4,0)或(﹣,0).8.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标(2)问在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,说明理由.(3)问在x轴是否存在点P,使得△ABP为等腰三角形,求出点P坐标.(4)一条经过点D(0,2)和直线AB上的一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.解:(1)把点A(﹣6,0)代入y=x+m,得m=8,∴点B坐标为(0,8).(2)存在,设点C坐标为(a,0),由题意•|a+6|•8=16,解得a=﹣2或﹣10,∴点C坐标(﹣2,0)或(﹣10,0).(3)如图1中,①当AB=AP时,AP=AB==10,可得P1(﹣16,0),P2(4,0).②当BA=BP时,OA=OP,可得P3(6,0).③当PA=PB时,∵线段AB的垂直平分线为y=﹣x+,可得P4(,0),综上所述,满足条件的点P坐标为(﹣16,0)或(4,0)或(6,0)或(,0).(4)如图2中,设过点D的直线交AB于E,设E(b,),由题意BD•(﹣b)=××6×8,∴b=﹣4,∴点E坐标(﹣4,),设直线DE的解析式为y=kx+b则有,解得,∴这条直线的函数表达式y=﹣x+2.9.在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P(2,a).(1)求点A、B的坐标;(2)若Q为x轴上一动点,△APQ为等腰三角形,直接写出Q点坐标;(3)点C在直线AB上,过C作CE⊥x轴于E,交直线OP于D,我们规定若C,D,E 中恰好有一点是其他两点所连线段的中点,则称C,D,E三点为“和谐点”,求出C,D,E三点为“和谐点”时C点的坐标.解:(1)当x=0时,y=﹣x+2=2,∴点B的坐标为(0,2);当y=0时,有﹣x+2=0,解得:x=4,∴点A的坐标为(4,0);(2)∵一次函数y=﹣x+2的图象交直线y=kx于P(2,a).∴a=﹣×2+2=1,∴点P的坐标为(2,1),设点Q(m,0),而点A、P的坐标分别为:(4,0)、(2,1),则AP==,AQ=|4﹣m|,PQ=,当AP=AQ时,则=|4﹣m|,解得m=4±,∴点Q(4±,0);当AP=PQ时,=,解得m=0或4(舍去),∴点Q(0,0);当PQ=AQ时,即=|4﹣m|,解得:m=,∴点Q(,0);综上,点Q的坐标为(4±,0)或(0,0)或(,0);(3)∵y=kx过P(2,1).∴2k=1,解得k=,∴y=x,设点C的坐标为(n,﹣n+2),则点D的坐标为(n,n),点E的坐标为(n,0),∴CD=|﹣n+2﹣n|=|2﹣n|,DE=|n|,CE=|﹣n+2|=|n﹣2|,当D为CE的中点时,CD=DE,∴|2﹣n|=|n|,解得n=或4(舍去),∴点C的坐标为(,);当C为DE的中点时,CD=CE,∴|2﹣n|=|n﹣2|,解得n=或0(舍去),∴点C的坐标为(,);当E为CD的中点时,DE=CE,∴|n|=|n﹣2|,无解;综上,C,D,E三点为“和谐点”时C点的坐标为(,)或(,).10.如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)令y=0,,解得x=.令x=0,y=.∴A(,0),B(0,).=.∴△AOB的面积为12.(2)∵动点M从A点以每秒1个单位的速度沿x轴向左移动,∴AM=t.当0≤t≤时,OM=,OC=.∴==.当t>时,OM=t﹣.∴==.综上,△COM的面积S与M的移动时间t之间的函数关系式:S=.(3)在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形.①当AC,AM为菱形的边时,情况一:如图1,当点M在点A的左侧时,Rt△AOC中,=,∴NC=AC=.∵NC∥AM,∴点N(,).情况二,如图1′,当点M在点A的右侧时,由情况一同理可得点N的坐标为.②当AC为菱形的对角线时,如图2,此时M,O重合,四边形OANC为正方形,则点N(,).③如图3,当AC为菱形的边,AM为菱形的对角线时,此时点C,N关于x轴对称,∴点N(0,﹣).综上,在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形,此时点N的坐标为:(,),,(,),(0,﹣).11.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且OC=OB.(1)求点A的坐标及直线BC的函数关系式;(2)点M在x轴上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=﹣x+4,令x=0的y=4,令y=0得x=4,∴A(4,0),B(0,4),∴OB=OA=4,∵OC=OB,∴OC=3,∴C(﹣3,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=x+4.(2)如图1中,当点M在点A的左边时,∵OB=OA=4,∠AOB=90°,∴∠ABO=45°,∴∠CBO+∠MBA=∠MBA+∠MBO=45°,∴∠CBO=∠OBM,∵∠CBO+∠BCO=90°,∠BMO+∠OBM=90°,∴∠BCO=∠BMO,∴BC=BM,OC=OM=3,∴M(3,0),作点M关于直线AB的对称点N,作直线BN交x轴于M1,则∠M1BA=∠MBA,点M1满足条件.∵N(4,1),B(0,4),∴直线BN的解析式为y=﹣x+4,令y=0,得x=,∴M1(,0),综上所述,满足条件的点M的坐标为(3,0)或(,0).(3)如图2中,∵BC==5,当BC为菱形的边时,四边形CP1Q1B,四边形CP3Q3B,四边形BCQ2P2是菱形,此时Q1(﹣5,4),Q3(5,4),Q2(0,4),当BC是菱形的对角线时,四边形CP4BQ4是菱形,可得Q4(﹣,4).综上所述,满足条件的点Q的坐标为(﹣5,4)或(5,4)或(0,﹣4)或.12.已知,一次函数y=的图象与x轴、y轴分别交于点A、点B,与直线y=相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)求点C到直线l的距离.=S△BCP,求点P的坐标.(3)若S△AOC(4)若点E是直线y=上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,请直接写出点E的坐标.解:(1)∵一次函数y=的图象与x轴、y轴分别交于点A、点B,∴令y=0,则=0,∴x=8,令x=0,则y=6,∴点A、B的坐标分别为:(8,0)、(0,6);(2)解:得,,∴点C(3,),则C到直线l的距离为6﹣=;=×8×=15=S△BCP=×BP×(y P﹣y C)=BP×,(3)∵S△AOC解得:BP=,故点P(,6)或(﹣,6);(4)设点E(m,m)、点P(n,6);①当∠EPA=90°时,当点P在y轴右侧时,当点P在点E的左侧时,如图1,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即m﹣n=6,m﹣6=8﹣n,解得:m=,当点P在点E的右侧时,如图,同理可得m=16,当∠EAP=90°时,当点P在y轴左侧时,如图2,同理可得:m﹣8=6,m=8﹣n,解得:m=14,故点E(14,);故点E(,)或(14,)或(16,20);如图3,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14(不合题意舍去),故点E(2,);综上,E(,)或(16,20)或(2,)或(14,).13.如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.解:(1)∵直线y=﹣x+与y=x相交于点A,∴联立得,解得,∴点A(1,1),∵直线y=﹣x+与x轴交于点B,∴令y=0,得﹣x+=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(﹣2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB轴的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,﹣1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(﹣,﹣),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(,),③如图6,当OB=DB时,∵∠AOB=∠ODB=45°,∴DB⊥OB,∵OB=3,∴D(3,3),④如图7,当DO=DB时,作DE⊥x轴,交x轴于点E∵∠AOB=∠OBD=45°,∴OD⊥DB,∵OB=3,∴OE=,AE=,∴D(,).综上所述,在直线OA上,存在点D(﹣,﹣),D(,),D(3,3)或D(,),使得△DOB是等腰三角形,14.如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.解:(1)依题意得:,解得,∴所求的一次函数的解析式是y=﹣x+2.(2)观察图形可知:不等式(kx+b)﹣ax<0的解集;x<﹣1.(3)对于y=﹣x+2,令y=0,得x=2∴C(1,0),∴OC=2.=×2×3=3.∴S△AOC(4)①当点P与B重合时,OP1=OC,此时P1(0,2);②当PO=PC时,此时P2在线段OC的垂直平分线上,P2(1,1);③当PC=OC=2时,设P(m.﹣m+2),∴(m﹣2)2+(﹣m+2)2=4,∴m=2±,可得P3(2﹣,),P4(2+,﹣),综上所述,满足条件的点P坐标为:(1,1)或(0,2)或P(2+,﹣)或(2﹣,).15.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为﹣1;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.解:(1)把A(4,0)代入y=kx+4,得0=4k+4.解得k=﹣1.故答案是:﹣1;(2)∵在直线y=﹣x+4中,令x=0,得y=4,∴B(0,4),∵A(4,0),∴线段AB的中点P的坐标为(2,2),代入,得n=1,∴直线l2为,∵QM⊥x轴分别交直线l1、l2于M、N,Q(t,0),∴M(t,﹣t+4),,∴,MQ=|﹣t+4|=|t﹣4|,∵MN=2MQ,∴,分情况讨论:①当t≥4时,,解得:t=10.②当2≤t<4时,,解得:.③当t<2时,,解得:t=10>2,舍去.综上所述:或t=10.(3)在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(﹣1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为,将N(5m,3m+2)代入,得3m+2=﹣×5m+4解得,∴.16.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,2),Q3(1,﹣2),Q4(1,).17.如图1,在平面直角坐标系中.直线与x轴、y轴相交于A、B两点,动点C 在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当直线B′C′经过点D时,求点D的坐标;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°,∴∠BCO=∠CDE,在△BOC和△CED中,。
数学“存在性”问题的解题策略(含解答)-

数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
【典型例题】例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于 ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。
分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。
解:在△中,∠°,∵Rt ABC C B ==9035cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴,∵ ∴,,a b c ===91215设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()∴x x x x x x m m m 122212212222312920+=+-=+--+()[()]() =+-736312m m 由,x x c c 1222215+==有,即73631225736256022m m m m +-=+-= ∴,m m 124647==-∵不是整数,应舍去,m =-647当时,m =>40∆∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。
存在性问题

存在性问题所谓存在性问题是指根据题目所给的条件,探究是否存在符合要求的结论.(一)存在性问题的解决策略1、直接求解法存在性问题是探索型问题中的一种典型性问题.存在性问题探索的方向是明确的.探索的结果有两种:一种是存在:另一种是不存在.直接求解法就是直接从已知条件入手,逐步试探,求出满足条件的对象,使问题得到解决的解法.2、假设求解法先假设结论存在,再从已知条件和定义,定理,公理出发,进行演绎推理;若得到和题意相容的结论,则假设成立,结论也存在;否则,假设不成立,结论不存在.即假设结论存在,根据条件推理、计算,如果求得出一个结果,并根据推理或计算过程每一步的可逆性,证得结论存在;如果推得矛盾的结论或求不出结果,则说明结论不存在.(二)中考数学中的存在性问题的类型(1)肯定型存在性问题解决“肯定型存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.③验证取舍.结合点的运动范围,画图或推理,对结果取舍.例1.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA,CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.(2)否定型存在性问题例2如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.(3)讨论型存在性问题将问题看成求解题,进而从有解或无解的条件,来判明数学对象是否存在,这是解决讨论型存在性问题的主要方法.另外,先猜出对象可能存在或不存在,从而将讨论型存在性问题转化为肯定型或否定型处理,是解决讨论型存在性问题的又一重要方法.例3、如图,矩形ABCD中,AB=6,BC=23,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速动动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速动动,点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧,设动动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.2、定量分类1、(数值存在性问题)如图所示,直线l :y=3x+3与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折点A 落到点C ,抛物线过点B 、C 和D (3,0).(1)求直线BD 和抛物线的解析式.(2)若BD 与抛物线的对称轴交于点M ,点N 在坐标轴上,以点N 、B 、D 为顶点的三角形与△MCD 相似,求所有满足条件的点N 的坐标.(3)在抛物线上是否存在点P ,使S △PBD =6?若存在,求出点P 的坐标;若不存在,说明理由.2、(定值存在性问题)如图,直角梯形ABCD 中,AB ∥DC ,90DAB ∠=︒,24AD DC ==,6AB =.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A -C -B 的交点为Q .点M 运动的时间为t (秒).(1)当0.5t =时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值;(3)当t >2时,连接PQ 交线段AC 于点R .请探究CQ RQ 是否为定值,若是,试求这个定值;若不是,请说明理由.3、(极值存在性问题)如图,已知抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(4,﹣),且与y 轴交于点C (0,2),与x 轴交于A ,B 两点(点A 在点B 的左边).(1)求抛物线的解析式及A ,B 两点的坐标;(2)在(1)中抛物线的对称轴l 上是否存在一点P ,使AP+CP 的值最小?若存在,求AP+CP 的最小值,若不存在,请说明理由;(3)在以AB 为直径的⊙M 相切于点E ,CE 交x 轴于点D ,求直线CE 的解析式. B C D (备用图1) BC D (备用图2) Q A B CD l M P E4、(点存在性问题)如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点A (6,0),B (0.8),点C 的坐标为(0,m ),过点C 作CE ⊥AB 于点E ,点D 为x 轴上的一动点,连接CD ,DE ,以CD ,DE 为边作▱CDEF .(1)当0<m <8时,求CE 的长(用含m 的代数式表示);(2)当m=3时,是否存在点D ,使▱CDEF 的顶点F 恰好落在y 轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D 在整个运动过程中,若存在唯一的位置,使得▱CDEF 为矩形,请求出所有满足条件的m 的值.5.(直角三角形存在性问题)如图,在平面直角坐标系中,顶点为()3,4的抛物线交y 轴与A 点,交x 轴与B C 、两点(点B 在点C 的左侧),已知A 点坐标为()0,5-.(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线与点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴与⊙C 的位置关系,并给出证明.(3)在抛物线上是否存在一点P ,使ACP ∆是以AC 为直角边的直角三角形.若存在,求点P 的坐标;若不存在,请说明理由.。
中考数学存在性问题的经典方法总结

中考数学存在性问题的经典方法总结存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等。
函数综合题中,存在性问题是各地中考的热点。
这类题目中图形复杂,不确定因素较多,对学生的知识运用分析能力要求较高,且有一定的难度。
本节介绍几种存在性问题的经典方法,为以后二次函数中的存在性问题的解决提供帮助。
一、等腰三角形存在性问题解决等腰三角形存在性问题一般有几何法和代数法两种方法,把几何法和代数法相结合,可以使得解题又好又快。
1、代数法(盲解盲算法)如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.代数法的一般步骤:罗列三边长(的平方),分类列方程,解方程并检验.2、几何法(“两圆一线”法)如图,已知线段AB,在平面内找一点C,使得△ABC为等腰三角形,满足条件的点C的集合如下图所示(在以点A,B为圆心,AB长为半径的圆和线段AB的垂直平分线上,除了与AB在同一直线上的点外的所有点)二、直角三角形存在性问题解决直角三角形存在性问题一般有几何法和代数法两种方法,把几何法和代数法相结合,可以使得解题又好又快。
1、代数法(盲解盲算法)如果△ABC是直角三角形,那么存在①∠A为直角,②∠B为直角,③∠C为直角三种情况.代数法的一般步骤:罗列三边长(的平方),分类列方程,解方程并检验.2、几何法(“两线一圆”法)如果已知两个定点A、B,在平面内求找一点C,使得△ABC为直角三角形:分别过已知线段AB的两个端点作线段AB的垂线,再以已知线段AB为直径作圆,这两条直线和这个圆上(除了和A、B在同一直线上)的所有点均满足条件,如下图所示:。
数学教学存在的问题及改进措施(5篇)

数学教学存在的问题及改进措施(5篇)数学教学存在的问题及改进措施篇一兴趣是学习的最好的老师,所以改变小学学生对小学数学的学习态度,改变以往小学生对数学存在的偏见和讨厌,让学生懂得数学的价值和意义,使学生找到学习数学的乐趣和动力,这样就能使得学生在学习数学的过程中产生了良好的教学效果,取得理想的成绩。
所以希望教师在教学过程中能够合理的利用多媒体,响应新课改的要求,进行有特点的教学活动,改善学生们的教学环境和学习态度,使得小学数学的教学质量出现一个新的高度。
一、小学数学教学的现状1、缺少师生之间的互动,忽视了学生的重要作用:在数学课堂教学中,始终以老师为主体。
老师带领学生进行数学教学活动,却没有给学生自主学习和独立思考的机会,老师利用黑板和粉笔进行教学,对课本进行了详细的介绍和讲解。
但是在这个过程中,学生只关注了黑板上的画面,并没有去认真的思考问题,更是没有对其进行独立的研究。
学生只是在老师的引导下,对课文进行了简单的和表面的了解,在老师的牵动下对问题进行回答。
虽然这种学习方式能很快的将学习内容讲解完毕,但是却忽略了学习的渐进性特点,学生也没有从这样的教学模式中学习到什么技能和思维方式。
2、学生缺乏一定的创新意识和创新能力:小学数学的难点就是由于小学生还处在一个心智发展的阶段,在此时缺乏一定的想象力,所以很难将抽象的数学图案和理论知识结合起来。
但是数学知识他本就有具体性,即如果把抽象的数学图案转换成一定的数学模式,就会将知识具体化,形象化,这样有助于学生将数学概念形象化,容易将数学概念和数学现象结合起来,有助于学生能够更好更快的接受复杂的几何图案和数学公式,并且很清晰的找到彼此之间的联系,也培养了小学生们独立自主的创新意识以及创新能力。
3、教学资料单调,学生缺乏探索的领域:小学教师进行教学活动的资料基本上都是来自于教材,教师并没有去利用其他的工具进行详细的了解,即这样获取的数学知识的内容就会很少,根本不足以让学生真正地感受到数学文化的博大精深,学生走不进数学的天地,也就不能引起学生的兴趣。
等腰三角形存在性问题的解题策略探究

图3
图4
图5
第( 2 ) 题解等腰三角形 的问题 , 其 中①②用几何 说理 的方法 , 计算更简单 : 图3 , 当A P - = AD 时. A 垂直
思路 点 拨 :
、
1 . 用含t T l 的代数 式表示 AA P D的三边 长 , 为解 等 腰三角形做好准备。 2 . 探求 AA P D是 等腰 三角形 , 分三种 情况 利用 边相等列方程求 解。
解答 : ( 1 ) I N: )  ̄ J P C / / D B, 所 以 : — P M M f 。因
,—
—
.
戥 ——。
2 3
2 3
标; 若不存在 , 请说 明理由。
思路点拨 : 因为A、 C 位置确定 , 采用“ 两圆一线 ” 找到两 圆及一线与f 的交点 , 因本例是在对称 轴上确 定点, 所 以不太好确定点的坐标 , 我们可采用设未 知 数的方 法来 求。 设未知数 的方法有两种 : 一种是设 点 的坐标 , 一种是设某线段的长度 。 但 总之设未知数 后 都要利用几何条件及 图形特征列方程 ,利用代数方 法 求解 ,因为只有通过解方程 才2
考点聚焦
@
等 腰 三 角 形 存 在 性 问 题 的 解 题 策 略 探 究
■ 王 晓柯
近几年各地的数学中考中 ,探索等腰 三角形的 存 在性问题频频 出现 , 这类试题 的知识覆盖面较广 , 综合性较 强 , 题意构思精巧 , 要求学生有较 高的分析 问题 、 解决 问题 的能力 。 它符合课 标对学生能力 提高 的要求 。 学生初解此类 问题 时 , 一般靠直觉画图 , 或是 主 观猜测 , 往往会 出现漏解 、 错解 , 甚至在 坐标 系背景 下无从 下手等现象 。 根据笔者对此类 问题 的研究 , 现 将本 考点解题 策略整理 如下 : 先弄清一个基本 问题 的解题方法 : 已知 线段 A B, 在平 面内取 一点P , 使 AP A B 为等腰 三角形 。首 先, 因为没有说明谁为腰 , 谁 为底 , 因此要分类讨论 : 1 . 如果A 为底 ,  ̄ J I / ( g A B的垂直平 分线 , 点P 一定 在A 的垂直平分线上。 2 . 如果A 为腰 , 若 厶4 为顶角 , 则 以点A为圆心 , A B 长为半径画圆 , 点P一定在这个 圆上 。 3 . 如果A B 为腰 , 若 曰 为顶角 , 则 以点B 为 圆心 , A B 长为半径画圆 , 点P一定在这个圆上。 称这种方法 为“ 两圆一线” , 两圆即以两定点 为圆心 , 以定长为半 径画 的两个 圆 , 具体到实际问题可画出部分弧 , 一线 即给定线段 的垂直平分线 。即两 圆上 的点和线段垂 直平分线上 的点都符合要求 ,具体到题 目中会让在 指 定 范 围确 定 。 二 、探索 的等腰三角形有一条边是确定位置及 长度 的 , 确定 第三个顶点 的存 在 ( 一般会 指定 位置 ,
存在性问题的若干解法

,
。
:
: ,
`
,
,
.
一
“
”
一
`
’
J
`
’. “
`
”
了 1+
n Z
+
书 攀 寸
丫1
一
) 2 ) 16 ( :
`
了了 )
2
一 (8
了万 )
2
…
f (t )+ *
2;
一 ) (8
了百)
~
2
n
2 }) ( ( O十 i f 8 甲万 ) 即} 2 ) 式成 立 等 号 的条件是 由、 一
……
(2 )
得
、
n Z
,
、 、
,
.
,
,
,
、
,
质
。
; 存在 性 问 题 的结构 有 两 个 方面 二 方 面 要探 讨研究 的 对象是 否 存在 或 能 否 存 在 另 一
。
,
方 面 要 严格论 证探讨 的结论 正确 与 否
下 面 给 出 存在 性 问 题的几 种解 法
。
一 反证 法
在 所 给存在 性 问 题 的原命 题 不 易论证或 探讨 时 改 证它 的逆 否 命题 从 而 得 出正 确 结 论
一2 即
,
n
一 士 了 万这 与
一 篇
n
,
任 N 矛 盾 故 不 存 在 实数
t
,
( ) 任A 使得 复数 f t
。
二 数形 结 合法
根 据 题 目 中 已 知 条 件 把 所 给 的 方程 或 不 等式 与它 们 的 几 何意 义 相 联 系 即数 形 结
存在性问题专题 (含答案)

h 存在性问题专题 (含答案)1. 已知函数 ƒ x = x — t |x| t C R . (1)试讨论函数 ƒ x 的单调区间;(2)若 Et C 0th ,对于 6x C 1th ,不等式 ƒ x Σ x h a 都成立,求实数 a 的取值范围.2. 已知函数 ƒ x = x 3 — ax h h 10.(1)当 a = 1 时,求曲线 y = ƒ x 在点 h t ƒ h处的切线方程;(2)在区间 1th 内至少存在一个实数 x ,使得 ƒ x € 0 成立,求实数 a 的取值范围.3. 已知等差数列 a n 满足:a 1 = t ,a 5 = 0.数列 b n 的前 n 项和为 S n = h n —1 — 1 n C N ×(1)求数列 a n 和 b n 的通项公式;(2)令 c n = h a n ,试问:是否存在正整数 n ,使不等式 b n c n h 1 Σ b n h c n 成立?若存在,求出相应 n 的值;若不存在,请说明理由.4. 已知函数 ƒ x = lnx — 1 ax h — hx h 1,a C Rh(1)若 ƒ x 在 x = h 处的切线与直线 hx h y = 0 垂直,求 a 的值; (2)若 ƒ x 存在单调递减区间,求 a 的取值范围.5. 已知函数 ƒ x = x h — mx h n mtn C R .(1)若 n = h ,且不等式 ƒ x ≤ 0 在 0t 㔶 m 的最小值;(2)若 x 1,x h 是方程 ƒ x = 0 的两实根,且满足 0 € x 1 € h € x h € 㔶,试求 m h n 的范围.h 6. 已知函数 y = x h t 有如下性质:如果常数 t Σ 0,那么该函数在 0tx上是减函数,在 tt h œ上是增函数.(1)已知 ƒ x = 㔶x h —1hx —3 tx C 0t1 ,利用上述性质,求函数 ƒ x 的单调区间和值域;hxh1(2)对于(1)中的函数 ƒ x 和函数 g x =— x — ha ,若对任意 x 1 C 0t1 ,总存在 x h C 0t1 ,使得 g x h = ƒ x 1 成立,求实数 a 的值.7. 已知函数 ƒ x = x x hb,其中 b C R .(1)求 ƒ x 的单调区间;(2)设 b Σ 0,若 Ex C 1t 3,使 ƒ x ≤ 1,求 b 得取值范围.㔶㔶8. 设 ƒ x 是 R 上的奇函数,且对任意的实数 a ,b 当 a h b G 0 时,都有 ƒ a hƒ bΣ 0.(1)若 a Σ b ,试比较 ƒ a ,ƒ b 的大小;(2)若存在实数 1 t 3 使得不等式 ƒ x — c h ƒ x — c h Σ 0 成立,试求实数 c 的取值范围.h h9. 已知函数 ƒ x = x — 1 h x — a . (1)若 a =— 1,解不等式 ƒ x ≤ 3;(2)如果 Ex C R ,使得 ƒ x € h 成立,求实数 a 的取值范围.10. 已知函数 ƒ x = x — a — x — 㔶 x C Rta C R 的值域为 3t3 .(1)求实数 a 的值;(2)若存在 x 0 C R ,使得 ƒ x 0 ≤ hm — m h ,求实数 m 的取值范围.txh1 hh11. 设二次函数 ƒ x = ax h h bx h c atbtc C Rta G 0 满足条件:(a )当 x C R 时,ƒ x — 㔶 = ƒ h — x ,且ƒ x ≤ x ; h(b )当 x C 0th 时,ƒ x ≤;(c )ƒ x 在 R 上的最小值为 0.求最大的 m m Σ 1 ,使得存在 t C R ,只要 x C 1tm ,就有 ƒ x h t ≤ x .12. 已知函数 ƒ x = kx x h3kk Σ 0 .(1)若 ƒ x Σ m 的解集为 x x €— 3 或 x Σ— h ,求不等式 5mx h h k x h 3 Σ 0 的解集; h(2)若存在 x 0 Σ 3,使得 ƒ x 0 Σ 1 成立,求 k 的取值范围.13. 已知函数 ƒ x = x — 1 h x h 3 ,x C R .(1)解不等式 ƒ x ≤ 5;(2)若不等式 t h h 3t Σ ƒ x 在 x C R 上有解,求实数 t 的取值范围.14. 设 ƒ x = mx h h 3 m — 㔶 x — 9.(1)试判断函数 ƒ x 零点的个数; (2)若满足 ƒ 1 — x = ƒ 1 h x ,求 m 的值;(3)若 m = 1 时,存在 x C 0th 使 得 ƒ x — a Σ 0 成立,求 a 的取值范围.ha a 15. 已知正项数列 a n 的前 n 项的和为 S n ,且 p — 1 S n = p h — a n n C N ×tp Σ 0tp G 1 ,数列b n 满足 b n = hlog p a n .(1)分别求 a n 和 b n 的表达式 ; (2)设数列的前 n 项和 T n ,当 p = 1 时,求证: 0 € T n € 㔶 ; (3)是否存在正整数 M ,使得 n Σ M 时, a n Σ 1 恒成立?若存在,求出相应的 M 的值;若不存在,请说明理由.16. 设 x 1,x h 为函数 ƒ x = ax h h b — 1 x h 1 a Σ 0 两个不同零点,且满足 x h — x 1 = h .(1)若对任意 x C R 都有 ƒ h — x = ƒ h h x ,求 ƒ x ;(2)设 g x =— ƒ x h h x h — x ,试证明必存在 x 0 C R 使得 g x 0 ≤ 㔶 成立.17. 设函数 ƒ x = xe x ,g x = ax h h x(1)若 ƒ x 与 g x 具有完全相同的单调区间,求 a 的值; (2)若当 x ≤ 0 时恒有 ƒ x ≤ g x ,求 a 的取值范围.18. 已知公差不为 0 的等差数列 a n 的首项 a 1 = 1,前 n 项和为 S n ,且 a 1,a h ,a 㔶 成等比数列.(1)求数列 a n 的通项公式及 S n ;(2) 记 A = 1 h 1 h ... h 1 ,B = 1 h 1 h (1),当 n ≤ h 时,比较 A 与 B 的大小;S 1 S h S n1 n —1hhh(3)是否存在实数 k ,使得对任意的正整数 m ,n ,都有 a h h a h ≤ k · a h成立.若存在,求k 的最大值;若不存在,请说明理由.mnmhnb n a na19.已知函数ƒx = x —3 h hx h t ,t C R.(1)当t = 1 时,解不等式ƒ x ≤ 5;(2)若存在实数a 满足ƒ a h a —3 € h,求t 的取值范围.20.已知关于x 的不等式x — 1 — hx — 1 Σlog1a (其中a Σ0 ).3(1)当 a = 3 时,求不等式的解集;(2)若不等式有解,求实数 a 的取值范围.21.设函数ƒx = |ax — 1|.(1)若ƒ x ≤ h 的解集为— 6th ,求实数a 的值;(2)当 a = h 时,若存在x C R,使得不等式ƒ hx h 1 —ƒ x —1 ≤ 7 — 3m 成立,求实数m 的取值范围.22.设函数ƒx = x h h ax —lnx a C R .(1)若 a = 1,求函数y = ƒ x 的单调区间;(2)若函数ƒ x 在区间0t1 上是减函数,求实数a 的取值范围;(3)过坐标原点0 作曲线y = ƒ x 的切线,证明:切点的横坐标为1.ƒ x x23. 已知函数 ƒ x = x h h ax h b .(1)设 b = a ,若 |ƒ x | 在 x C 0t1 上单调递增,求实数 a 的取值范围. (2)求证:存在 x 0 C — 1t1 ,使 |ƒ x 0 | ≤ |a|.24. 已知命题 p 知 关于 x 的方程 a h x h h ax — h = 0 在 — 1t1 上有解;命题 q 知 只有一个实数 x 满足不等式 x h h hax h ha ≤ 0.若“p 或 q ”是假命题,求实数 a 的取值范围.25. 已 知 二 次 函 数 ƒ x = hx h h ax h b为 偶 函 数 , g x =h x = c x h 1 h c G h .关于 x 的方程 ƒ x = h x 有且仅有一根 1. h— 1 x h m ,(1)求 a ,b ,c 的值;(2)若对任意的 x C — 1t1 ,≤ g x 恒成立,求实数 m 的取值范围; (3) 令 x = h 数 m 的取值范围.,若存在 x 1tx h C 0t1 使得 x 1 — x h ≤ g m ,求实26. 设函数 ƒ x = px — p — hlnx ,其中 e 是自然对数的底数.x(1)当 p = 3 时,求函数 ƒ x 的极值h(2)若 ƒ x 在其定义域内为单调函数,求实数 p 的取值范围.(3)设 g x = he ,若在1te 上至少存在一点 x 0,使得 ƒ x 0 Σ g x 0 成立,求实数 p 的取值 范围.3 ƒ x ƒ 1 — xh 27. 已知函数 ƒ x = e x x h h ax h a .(1)当 a = 1 时,求函数 ƒ x 的单调区间;(2)若关于 x 的不等式 ƒ x ≤ e a 在 at h œ 上有解,求实数 a 的取值范围;(3)若曲线 y = ƒ x 存在两条互相垂直的切线,求实数 a 的取值范围;(只需直接写出结果)28. 已知函数 ƒ x = x h h a — 㔶 x h 3 — a .(1)若 ƒ x 在区间 0t1 上不单调,求 a 的取值范围;(2)若对于任意的 a C 0t 㔶 ,存在 x 0 C 0th ,使得 ƒ x 0 ≤ t ,求 t 的取值范围.29. 已知函数 ƒ x = mx 3h ax h h 1 — b h x ,mtatb C R .3(1)求函数 ƒ x 的导函数 ƒ' x ;(2)当 m = 1 时,若函数 ƒ x 是 R 上的增函数,求 z = a h b 的最小值;(3)当 a = 1,b = 时,函数 ƒ x 在 ht h œ 上存在单调递增区间,求 m 的取值范围.30. 已知 ƒ x = ax h h bx h c ,atbtc C R ,定义域为 — 1t1 .(1)当 a = 1,|ƒ x | ≤ 1 时,求证:|1 h c| ≤ 1;(2)当 b Σ ha Σ 0 时,是否存在 x C — 1t1 ,使得 |ƒ x | ≤ b ?31. 已知函数 ƒ x = alnx h x h h bx (a 为实常数).(1)若 a =— h ,b =— 3,求 ƒ x 的单调区间;(2)若 b = 0,a Σ— h e h 求函数 ƒ x 在 1t e 上的最小值及相应的 x 值;(3)设 b = 0,若存在 x C 1t e ,使得 ƒ x ≤ a h h x 成立,求实数a 的取值范围.32. 已知函数 ƒ x = lnx .x(1)记函数 F x = x h — x · ƒ x x C 1 th ,求函数 F x 的最大值;h(2)记函数 H x =tx ≤ st x t0 € x € st若对任意实数 k ,总存在实数 x 0,使得 H x 0 = k 成立,求实数 s 的取值集合.33. 已知过原点 0 的动直线 l 与圆 C 知 x h 1 h h y h = 㔶 交于 A ,B 两点.(1)若 |AB| = 15,求直线 l 的方程.(2)在 x 轴上是否存在定点 M x 0t0 ,使得当 l 变动时,总有直线 MA ,MB 的斜率之和为 0?若存在,求出 x 0 的值;若不存在,说明理由.34. 己知函数 ƒ x = mx h n e —x (mtn C R ,e 是自然对数的底).(1)若函数 ƒ x 在点 1t ƒ 1 处的切线方程为 x h e y — 3 = 0,试确定函数 ƒ x 单调区间; (2)① 当 n =— 1,m C R 时,若对于任意 x C 1 th ,都有 ƒ x ≤ x 恒成立,求实数 m 的最小h值;② 当 m = n = 1 时,设函数 g x = xƒ x h tƒ' x h e —x t C R ,是否存在实数 atbtc C 0t1 , 使得 g a h g b € g c ?若存在,求出 t 的取值范围;若不存在,说明理由.xheƒ1 g x hx35. 设 ƒ x = alnx h bx — b ,g x = ex ,其中 atb C R . e(1)求 g x 的极大值;(2)设 b = 1,a Σ 0,若 ƒ x h — ƒ x 1 €—立,求 a 的最大值;对任意的 x 1tx h C 3t 㔶 x 1 G x h 恒成( 3) 设 a =— h , 若对任意给定的 x 0 C 0te , 在区间 0te 上总存在 stt s G t , 使 ƒ s = ƒt = g x 0 成立,求 b 的取值范围.36. 已知函数 ƒ x = alnx — x h h ,其中 a G 0.(1)求 ƒ x 的单调区间;(2)若对任意的 x 1 C 1te ,总存在 x h C 1te ,使得 ƒ x 1 h ƒ x h = 㔶,求实数 a 的值.37. 已知函数 ƒ x = x h a · e —x .(1)当 a = e h 时,求 ƒ x 在区间 1t3 上的最小值; (2)求证:存在实数 x 0 C — 3t3 ,有 ƒ x 0 Σ a .38. 已知函数 ƒ x = 1 ax h — ha h 1 x h hlnx a C R .h(1)若曲线 y = ƒ x 在 x = 1 和 x = 3 处的切线互相平行,求 a 的值; (2)求 ƒ x 的单调区间;(3)设 g x = x h — hx ,若对任意 x 1 C 0th ,均存在 x h C 0th ,使得 ƒ x 1 € g x h ,求 a 的取值范围.1g x 1x39. 已知函数 ƒ x = a x — 1x— hlnx a C R .(1)若 a = h ,求曲线 y = ƒ x 在点 1t ƒ 1 处的切线方程;(2)求函数 ƒ x 的单调区间;(3)设函数 g x =— a .若至少存在一个 x 0 C 1te ,使得 ƒ x 0 Σ g x 0 成立,求实数 a 的取 值范围.40. 已知函数 ƒ x = ax h h hx — a e x ,g x = 1 ƒ lnx ,其中 a C R ,e = h.71tht … 为自然对数的h底数.(1)若函数 y = ƒ x 的图象在点 M h t ƒ h处的切线过坐标原点,求实数 a 的值;(2)若 ƒ x 在 — 1t1 上为单调递增函数,求实数 a 的取值范围; (3)当 a = 0 时,对于满足 0 € x 1 € x h 的两个实数 x 1tx h ,若存在 x 0 Σ 0,使得 g' x = g x 1 —g x hx 1—x h成立,试比较 x 0 与 x 1 的大小.41. 已知函数 ƒ x = x — alnx h 1ha xa C R .(1)求 ƒ x 的单调区间;(2)若在 1te e = h.71tht… 上存在一点 x 0,使得 ƒ x 0 ≤ 0 成立,求 a 的取值范围.42. 已知函数 ƒ x = e mx — lnx — h .(1)若 m = 1,证明:存在唯一实数 t C 1 t1 ,使得 ƒ' t = 0;h(2)求证:存在 0 € m € 1,使得 ƒ x Σ 0.x h y h h43.已知椭圆C知a hhb h= 1(a Σb Σ0)的离心率为C 上,直线PA 交x 轴于点M.,点P 0t1 和点A mtn (m G 0)都在椭圆h(1)求椭圆C 的方程,并求点M 的坐标(用m,n 表示).(2)设0 为原点,点 B 与点A 关于x 轴对称,直线PB 交x 轴于点N,问:y 轴上是否存在点Q,使得²0QM = ²0NQ ?若存在,求点Q 的坐标;若不存在,说明理由.44.已知函数ƒx = e x hx —1 —ax h a a C R ,e 为自然对数的底数.(1)当a=1 时,求函数ƒ x 的单调区间;(2)①若存在实数x,满足ƒ x € 0,求实数 a 的取值范围;②若有且只有唯一整数x0,满足ƒ x0€ 0,求实数a 的取值范围.45.已知函数ƒx = log a x h 1 a Σ1 ,若函数y = g x 的图象与函数y = ƒx 的图象关于原点对称.(1)写出函数g x 的解析式;(2)求不等式hƒ x h g x ≤ 0 的解集A;(3)问是否存在m C 0t h œ ,使不等式ƒ x h hg x ≤ log a m 的解集恰好是A ?若存在,请求出m 的值;若不存在,请说明理由.xe x46.已知函数ƒx = xh1(e 为自然对数的底数).e(1)求函数ƒ x 的最大值;(2)设函数x = xƒ x h tƒ' x h 1,存在实数x1,x h C 0t 1 ,使得h x1€ x h成立,求实数t 的取值范围.47.设函数ƒ x = mlnx —1 x h 1 . m C R .h hx(1)当m = 5时,求ƒ x 的极值;㔶(2)设A 、B 是曲线y = ƒ x 上的两个不同点,且曲线在A 、B 两点处的切线均与x 轴平行,直线AB 的斜率为k,是否存在m,使得m — k = 1 ? 若存在,请求出m 的值,若不存在,请说明理由.48.已知函数ƒx = x3 h 3h1 —a x h —3ax h 1,a Σ 0.(1)当 a = 1 时,求函数ƒ x 的单调减区间;(2)证明:对于任意正数a,存在正数p,使得当x C 0tp 时,有ƒx ≤ 1;(3)设(2)中的p 的最大值为g a ,求g a 的最大值.2 149. 设函数 ƒ x = lnx — ax h 1—a — 1.x(1)当 a = 1 时,过原点的直线与函数 ƒ x 的图象相切于点 P ,求点 P 的坐标; (2)当 0 € a € 1 时,求函数 ƒ x 的单调区间;h(3)当 a = 1 时,设函数 g x = x h — hbx — 5 ,若对于 6x 1 C 0te ,Ex h C 0t1 使 ƒ x 1 ≤31hg x h 成立,求实数 b 的取值范围(e 是自然对数的底数,e €h 1).50. 已知函数 ƒ x = ax — ha h 1 lnx — h ,g x =— halnx — h ,其中 a C R .xx(1)当 a = h 时,求曲线 y = ƒ x 在点 1t ƒ 1 处的切线方程;(2)当 a Σ 0 时,求 ƒ x 的单调区间;(3)若存在 x C 1 te h ,使不等式 ƒ x ≤ g x 成立,求 a 的取值范围.e51. 函数 y = Asin mx h A Σ 0tm Σ 0t0 ≤ ≤ π h在 x C 0t7π 内只取到一个最大值和一个最小值,且当 x = π 时,y max = 3;当 x = 6π 时,y min =— 3. (1)求出此函数的解析式; (2)求该函数的单调递增区间;(3)是否存在实数 m ,满足不等式 Asin m存在,求出 m 的范围(或值),若不存在,请说明理由.h Σ Asin mh ? 若52. 已知函数 ƒ x = x h — k h 1 x h 9,g x = hx — k ,其中 k C R .㔶(1)若 ƒ x 在区间 1t 㔶 上有零点,求实数 k 的取值范围;( )设函数 p x = ƒ x tx € 0t是否存在实数 k ,对任意给定的非零实数 x ,存在唯一的非零 g x tx ≤ 0t实数 x h x 1 G x h ,使得 p x 1 = p x h .若存在,求出 k 的值,若不存在,请说明理由.3 — m h h hm h 3 — m h h 㔶h㔶53. 已知函数 ƒ x = ln 1 h 1 ax h x h — ax ( a 为常数,a Σ 0 ).hh(1)当 y = ƒ x 在 x = 1 处取得极值时,若关于 x 的方程 ƒ x — b = 0 在 0th 上恰有两个不h相等的实数根,求实数 b 的取值范围;(2)若对任意的 a C 1th ,总存在 x 0 C 1 t1 ,使不等式 ƒ x 0 Σ m a hh ha — 3 成立,求实数 m 的取值范围.54. 已知函数 ƒ x = e x ,点 A at0 为一定点,直线 x = t t G a 分别与函数 ƒ x 的图象和 x 轴交于点 M ,N ,记 O AMN 的面积为 S t . (1)当 a = 0 时,求函数 S t 的单调区间;(2)当 a Σ h 时,若 Et 0 C 0th ,使得 S t 0 ≤ e ,求实数 a 的取值范围.55. 已知函数 ƒ x = x — alnx ,g x =— 1ha x(1)若 a = 1,求函数 ƒ x 的极值;a Σ 0 .(2)设函数 h x = ƒ x — g x ,求函数 h x 的单调区间; (3)若存在 x 0 C 1te ,使得 ƒ x 0 € g x 0 成立,求 a 的取值范围.56. 已知函数 ƒ x — lnx — ax h 1—a — 1 a C R .x(1)当 a ≤ 1 时,讨论 ƒ x 的单调性;h( 2) 设 g x = x h — hbx h 㔶. 当 a = 1 时, 若对任意 x 1 0th , 存在 x h C 1th , 使 ƒ x 1 ≤ g x h ,求实数 b 取值范围.57.已知二次函数ƒx = ax h h bx h c a Σ0 的图象过点1t0 .(1)记函数ƒ x 在0th 上的最大值为M,若M ≤ 1,求a 的最大值;(2)若对任意的x1 C 0th ,存在x h C 0th ,使得ƒ x1h ƒ x hΣ 3 a,求 b 的取值范围.h a58.设a 为正实数,函数ƒx = ax,g x = lnx.(1)求函数h x = ƒ x · g x 的极值;(2)证明:Ex0 C R,使得当x Σ x0时,ƒ x Σ g x 恒成立.59.设函数ƒ x = p x 1x —hlnx,g x = he(p 是实数,e 为自然对数的底数).x(1)若ƒ x 在其定义域内为单调函数,求p 的取值范围;(2)若在1te 上至少存在一点x0,使得ƒ x0Σ g x0成立,求p 的取值范围.60.设二次函数ƒx = ax h h bx h c atbtc C R 满足下列条件:①当x C R 时,其最小值为0,且ƒ x — 1 = ƒ — x — 1 成立;②当x C 0t5 时,x ≤ ƒ x ≤ h|x — 1| h 1 恒成立.(1)求ƒ 1 的值;(2)求ƒ x 的解析式;(3)求最大的实数m m Σ 1 ,使得存在t C R,只要当x C 1tm 时,就有ƒ x h t ≤ x 成立.61. 已知函数 ƒ x = e x ,A at0 为一定点,直线 x = t (t G a )分别与 ƒ x 的图象和 x 轴交于点 M ,N ,记 O AMN 的面积为 S t .(1)当 a = 0 时,求函数 S t 的单调区间;(2)当 a Σ h 时,若 Et0 S t 0 ≤ e ,求 a 的取值范围.62. 已知函数 ƒ x = ax h — ha h 1 x a C R .(1)当 a ≤ 0 时,讨论函数 ƒ x 的单调性;(2)设 g x = bx h ,当 a = 1 时,若对任意 x C 0th ,存在 x C 1th , 使 ƒ x ≤ g x , 求lnx h实数 b 的取值范围.1 h 1 h63. 已知函数 ƒ x = 1 ax h — a h 1 x h lnx ,g x = x h — hbx h 7.ht(1)当 a = 0 时,求曲线 y = ƒ x 在点 1t ƒ 1 处的切线方程;(2)当 a € 1 时,求函数 ƒ x 的单调区间;(3)当 a = 1 时,函数 ƒ x 在 0 th M ,若存在 g x ≤ M 成立,㔶求实数 b 的取值范围.0 0 64.已知函数ƒx = x·ex—aa € 0 .(1)当 a =—㔶时,试判断函数ƒ x 在—㔶t h œ 上的单调性;(2)若函数ƒ x 在x = t 处取得极小值,1 求实数t 的取值集合T;h 问是否存在整数m,使得m ≤ t hth1数m 的值;若不存在,请说明理由.ƒ t ≤ m h 1 对于任意t C T 恒成立.若存在,求出整65.设函数ƒx=a ln x h1—a x h—b x a G1,曲线y=ƒx在点1tƒ1处的切线斜率为0.h(1)求b;(2)若存在x ≤ 1,使得ƒx €a,求a 的取值范围.a—166.设函数ƒx = e x—1,x G 0.x(1)判断函数ƒ x 在0t h œ 上的单调性;(2)证明:对任意正数a,存在正数x,使不等式ƒ x —1 € a 成立.a 2 167. 已知 a Σ 0 且 a G 1,函数 ƒ x = log h .1—x(1)求 ƒ x 的定义域 D 及其零点;(2)讨论并证明函数 ƒ x 在定义域 D 上的单调性;(3)设 g x = mx h — hmx h 3,当 a Σ 1 时,若对任意 x 1 C — œt — 1 存在 x h C 3t 㔶 ,使得ƒ x 1 ≤ g x h ,求实数 m 的取值范围.68. 已知函数 ƒ x = log a h x .(1)判断并证明 ƒ x 的奇偶性;(2)若两个函数 F x 与 G x 在闭区间 ptq 上恒满足 F x — G x Σ h ,则称函数 F x 与G x在闭区间 p t q 上是分离的.是否存在实数 a 使得 y = ƒ x 的反函数 y = ƒ—1 x 与 g x = a x 在闭区间 1th 上分离?若存在,求出实数 a 的取值范围;若不存在,请说明理由.69. 已知函数 ƒ x = ax h — hax h b a Σ 0 在区间 — 1t 㔶 上有最大值 10 和最小值 1.设 g x = ƒ x .(1)求 a ,b 的值;(2)证明:函数 g x 在 bt h œ 上是增函数;(3)若不等式 g h x — k · h x ≤ 0 在 x C — 1t1 上有解,求实数 k 的取值范围.70. 已知函数 ƒ x = x 3 — k h — k h 1 x h h 5x — h t g x = k h x h h k x h 1,其中 k C R .(1)设函数 p x = ƒ x h g x .若 p x 在区间 0t3 上不单调,求 k 的取值范围;( )设函数 q x = g x t x ≤ 0,是否存在 k ,对任意给定的非零实数 x ,存在惟一的非零实 ƒ x t x € 0数 x h x h G x 1 ,使得 q' x h = q' x 1 成立?若存在,求 k 的值;若不存在,请说明理由.x h h 1xha hhhhxh71.已知函数ƒx = .(1)若ƒ' a = 1,求 a 的值;(2)设 a ≤ 0,若对于定义域内的任意x1,总存在x h使得ƒ x h€ ƒ x1,求a 的取值范围.72.设函数ƒx = x h —ax h lnx (a 为常数).(1)当 a = 3 时,求函数ƒ x 的极值;(2)当0 € a € h h 时,试判断ƒ x 的单调性;(3)若存在x0C 1th ,使不等式ƒ x0€ mlna 对任意a C 0t 1恒成立,求实数m 的取值范围.73.已知集合P = x 1≤ x ≤ h ,函数y = log ax h — hx h h 的定义域为Q.h(1)若P fi Q G t,求实数 a 的取值范围;(2)若方程log ax h — hx h h = h 在 1 th 内有解,求实数a 的取值的取值范围.h74.已知函数ƒx = ex,其导函数记为ƒ' x (e 为自然对数的底数).e(1)求函数ƒ x 的极大值;(2)解方程ƒƒx = x;(3)若存在实数x1tx h x1G x h使得ƒ x1 = ƒ x h,求证:ƒ' x1hx h€ 0.75.已知函数ƒx = lnx —x—1h.(1)求函数ƒ x 的单调递增区间;(2)证明:当x Σ 1 时,ƒ x € x —1;(3)确定实数k 的所有可能取值,使得存在x0Σ 1,当x C 1tx0,恒有ƒ x Σ k x — 1 .76.已知函数ƒx = 1h alnx a G 0ta C Rx(1)若 a = 1,求函数ƒ x 的极值和单调区间;(2)若在区间0te 上至少存在一点x0,使得ƒ x0€ 0 成立,求实数a 的取值范围.77.已知函数ƒx = x h —ax —aln x —1 a C R .(1)求函数ƒ x 的单调区间;h (2)试判断是否存在实数 a a ≤ 1 ,使y = ƒ x 的图象与直线y = 1 h ln无公共点(其中自然对数的底数e 为无理数且e = h.71tht…).78.设ƒ x = a h xlnx,g x = x3 —x h —3.x(1)当a = h 时,求曲线y = ƒ x 在x = 1 处的切线方程;(2)如果存在x1,x h C 0th 使得g x1— g x h≤ M 成立,求满足上述条件的最大整数M;(3)如果对任意的stt C 1 th 都有ƒ s ≤ g t 成立,求实数a 的取值范围.h79. 设函数 ƒ x = xhlnx,g x = ax3 — xh. (1)求函数 ƒ x 的最小值; (2)若存在 x C 0t h œ ,使 ƒ x Σ g x 成立,求实数 a 的取值范围;1(3)若使关于 x 的方程 ƒ x — g x = 0 在 e — 3ten (其中 e = h.71…… 为自然对数的底数)上 有解的 a 的最小值为 an,数列 an 的前 n 项和为 Sn,求证:Sn € 3.80. 已知函数 ƒ x = 1 axh — ha h 1 x h hlnx a C R .h(1)若曲线 y = ƒ x 在 x = 1 和 x = 3 处的切线互相平行,求 a 的值; (2)求 y = ƒ x 的单调区间; (3)设 g x = xh — hx,若对任意 x1 C 0th ,均存在 xh C 0th ,使得 ƒ x1 € g xh ,求 a 的取值范围.81. 已知函数 ƒ x = ex — axh h a — e h 1 x — 1(e 是自然对数的底数,a 为常数). (1)若函数 g x = ƒ x — 1 x ·ƒ' x 在区间 1t h œ 上单调递减,求 a 的取值范围.h(2)当 a C e — ht1 时,函数 ƒ x = ex — axh h a — e h 1 x — 1 在 0t1 上是否有零点?并说明 理由.2182. 设 x = 3 是函数 ƒ x = xh h ax h b e3—x x C R 的一个极值点.(1)求 a 与 b 的关系式(用 a 表示 b),并求 ƒ x 的单调区间;(2)设a Σ 0,g x = ah hh5 㔶ex.若存在 ɛ1,ɛhC 0t㔶 使得 |ƒ ɛ1— g ɛh| € 1 成立,求 a的取值范围.83. 已知函数 ƒ x = ax — lnx — 㔶 a C R . (1)讨论 ƒ x 的单调性; (2)当 a = h 时,若存在区间 mtn Š 1 t h œ ,使 ƒ x 在 mtn 上的值域是h的取值范围.k t k ,求 kmh1 nh184. 已知定义在 R 上的偶函数 ƒ x ,当 x C 0t h œ 时,ƒ x = ex. (1)当 x C — œt0 时,求过原点与函数 ƒ x 图象相切的直线的方程; (2)求最大的整数 m m Σ 1 ,使得存在 t C R,只要 x C 1tm ,就有 ƒ x h t ≤ ex.85. 设函数 ƒ x = a h lnx,g x = x3 — xh — 3.xh(1)讨论函数 ƒ x 的单调性;(2)若存在x1txhC—1 3t3,使得g x1 — g xh ≤ M 成立,求满足条件的最大整数M;(3)若对任意的 stt C 1 th ,都有 sƒ s ≤ g t 成立,求实数 a 的取值范围.32286. 数列an各项均为正数,a1=1,且对任意的hn C N×,有 anh1 = an h canh c Σ 0 .(1)求 c1hca1hc 1hcahh1 的值;a3(2)若c = 1 ,是否存在h016n C N×,使得an Σ 1,若存在,试求出n 的最小值,若不存在,请说明理由.87. 已知函数 ƒ x = axh h bx h c(a Σ 0),g x = ƒ x ·e—㔶x(e 为自然对数的底),当 — 1 ≤ x ≤ 1 时,|ƒ x | ≤ 1,且 a h b = h. (1)求 ƒ x ; (2)求函数 g x 可能的最大值和最小值; (3)若 Ex0 C R,当 x C — œtx0 ,g x ≤ ƒ' x 成立(ƒ' x 是 ƒ x 的导函数),求最大整数 x0.88. 已知函数 ƒ x = lnx.x(1)若关于 x 的不等式 ƒ x ≤ m 恒成立,求实数 m 的最小值;(2)对任意的 x1,xh C0th ,已知存在 x0 Cx1txh ,使得 ƒ' x0=ƒxh—ƒ x1 x —hx 1,求证:x0€x1xh.23答案1. (1) ƒ x = xh — txtx ≤ 0 ,— xh h txtx € 0当 t Σ 0 时,ƒ x 的单调增区间为 t t h œ , — œt0 ,单调减区间为 0t t .hh当 t = 0 时,ƒ x 的单调增区间为 — œt h œ .当 t € 0 时,ƒ x 的单调增区间为 0t h œ , — œt t ,单调减区间为 t t0 .h(2) 方法一:设 g x = ƒ x — x = xh — t h 1 xhtx C 0th .— xh h t — 1 x tx C — 1t0x C 0th 时,因为 th1 C 0th ,所以 gx = g th1 =— th1 h .hminh㔶x C — 1t0 时,因为 g — 1 =— t,g 0 = 0,所以 gmin x =— t .故只须 Et C 0th ,使得:—th1 㔶hΣa成立,即—1㔶≤a,—tΣ a0≤a所以 a ≤— 1 .㔶方法二:设 h t = ƒ x — x =— |x| ·t h x|x| — x,t C 0th .只须 h t max ≤ a ,对 x C — 1th 都成立.则只须 h 0 = x|x| — x ≤ a,对 x C — 1th 都成立.再设 m x = x|x| — x,x C — 1th ,只须 m x min ≤ a,易求得 a ≤— 1 .㔶 2. (1) 当 a = 1 时,ƒ' x = 3xh — hx,ƒ h = 1㔶.曲线 y = ƒ x 在点 htƒ h 处的切线斜率 k = ƒ' h = t,所以曲线 y = ƒ x 在点 htƒ h 处的切线方程为 y — 1㔶 = t x — h ,即 tx — y — h = 0. (2) 由已知,得 a Σ x3h10 = x h 10,xhxh设 g x = x h 10 1 ≤ x ≤ h , 则 g' x = 1 — h0.xhx3因为 1 ≤ x ≤ h,所以 g' x € 0,所以 g x 在 1th 上是减函数.所以 g x min = g h = 9,所以 a Σ 9.hh3. (1) 设数列 an 的公差为 d,由 a5 = a1 h 㔶d,得 d =— h,得 an =— hn h 10.由数列bn的前n和为Sn=hn—1—1 hn C N× 可知,当n=1时,b1=S1=1.h当 n ≤ h 时,bn = Sn — Sn—1 = hn—h.因为h1—h=1h=b1,所以n ≤ 1 时,bn = hn—h.故数列 an 的通项公式为 an =— hn h 10, bn 的通项公式为 bn = hn—h.(2) cn = han = h10—hn = 㔶5—n,bn = hn—h.假设存在正整数 n 使不等式 bncn h 1 Σ bn h cn 成立,即要满足 cn — 1 bn — 1 Σ 0.因为 cn,bn 需满足同时大于 1 或同时小于 1. 则由指数函数性质得 5 — n Σ 0t 或 5 — n € 0tn — h Σ 0. n — h € 0.24解得 h € n € 5.综上所述,存在正整数 n = 3,㔶 时,使不等式 bncn h 1 Σ bn h cn 成立.4. (1) 直线 hx h y = 0 的斜率 k =— h,若 曲线 ƒ x 在 x = h 处的切线与直线 hx h y = 0 垂直,则 ƒ' h = 1,hƒ x = lnx — 1 axh — hx h 1,hƒ' x = 1 — ax — h,x则 ƒ' h = 1 — ha — h = 1,解得 a =— 1.hh(2) 若 ƒ x 存在单调递减区间,即 ƒ' x = 1 — ax — h € 0 在 0t h œ 上有解,即 1 — h € ax,则xx设 g x = 1—hx,则 g x =xh1 — hxhaΣhxh t1 — h ·1 = 1 — 1 — 1 ≤— 1, 则xxxa Σ— 1.5. (1) 由 ƒ x ≤ 0 得 m ≤ x h h 在 0t㔶 上有解(易检验 x = 0 不是已知不等式的解),x则 m ≤ h h,即 m 的最小值为 h h.ƒ 0 Σ 0t n Σ 0t (2) 设 ƒ x = xh — mx h n,则由题意得 ƒ h € 0t 即 㔶 — hm h n € 0tƒ 㔶 Σ 0t 16 — 㔶m h n Σ 0.利用线性规划可得 m h n 的范围为 ht1㔶 .6. (1) y = ƒ x = 㔶 xh—1hx—3 = hx h 1 h 㔶 — t,hxh1hxh1设 u = hx h 1tx C 0t1 t1 ≤ u ≤ 3,则 y = u h 㔶 — ttu C 1t3 .u由已知性质得,当 1 ≤ u ≤ h,即 0 ≤ x ≤ 1 时,ƒ x 单调递减;h所以减区间为 0t 1 ;h当 h ≤ u ≤ 3,即 1 ≤ x ≤ 1 时,ƒ x 单调递增;h所以增区间为 1 t1 ;h由 ƒ 0 =— 3tƒ 1 =— 㔶tƒ 1 =— 11,h3得 ƒ x 的值域为 — 㔶t — 3(2) g x =— x — ha 为减函数,故 g x C — 1 — hat — ha tx C 0t1 .由题意,ƒ x 的值域是 g x 的值域的子集,所以 — 1 — ha ≤— 㔶.所以 a = 3.— ha ≤— 3h7. (1) ① 当 b = 0 时,ƒ x = 1.x故 ƒ x 的单调区区间为 — œt0 , 0t h œ ;无单调增区间.25②当 b Σ 0 时,ƒ'x=b—xh xhhb h.令 ƒ' x = 0,得 x1 = b,xh =— b. ƒ x 和 ƒ' x 的情况如下:x — œt — b — b — bt b bƒ' x—0h0ƒxk³bt h œ— kƒ x 和 ƒ' x 的情况如下:故 ƒ x 的单调减区间为 — œt — b , bt h œ ;单调增区间为 — bt b .③ 当 b € 0 时,ƒ x 的定义域为 D = x C Rh因为ƒ'x=b—x xhhbh€0在D 上恒成立,x Gt— b.故 ƒ x 的单调减区间 — œt — — b , — — bt — b ;无单调增区间.(2) 因为 b Σ 0,x C 1 t 3 ,㔶㔶所以 ƒ x ≤ 1 等价于 b ≤— xh h x,其中 x C 1 t 3 .㔶㔶设 g x =— xh h x,g x 在区间 1 t 3 上的最大值为 g 1 = 1.㔶㔶h㔶则“E C 1 t 3 ,使得 b ≤— xh h x”等价于 b ≤ 1.㔶㔶㔶所以,b 的取值范围是 0t 1 .㔶8. (1) 因为 ƒ x 是 R 上的奇函数,所以ƒ a—ƒ b a—b= ƒ ahƒ —b ah—bΣ 0t又因为 a Σ b,所以 a — b Σ 0,所 以 ƒ a — ƒ b Σ 0,即 ƒ a Σ ƒ b .(2) 由(1)知,a Σ b 时,都有 ƒ a Σ ƒ b ,所以 ƒ x 在 R 上单调递增. 因为 ƒ x 为奇函数,所以 ƒ x — c h ƒ x — ch Σ 0 等价于 ƒ x — c Σ ƒ ch — x ,所以不等式等价于 x — c Σ ch — x,即 ch h c € hx,因为存在实数 x C 1 t 3 使得不等式 ch h c € hx 成立,hh所以 ch h c € 3,即 ch h c — 3 € 0,解得 c 的取值范围为 — 1h 13 t 13—1 .hh9. (1) 若 a =— 1,ƒ x ≤ 3,即 为 x — 1 h x h 1 ≤ 3,当 x ≤— 1 时,1 — x — x — 1 ≤ 3,即有 x ≤— 3;h当 — 1 € x € 1 时,1 — x h x h 1 = h ≤ 3 不成立;当 x ≤ 1 时,x — 1 h x h 1 = hx ≤ 3,解得 x ≤ 3;h综上可得,ƒ x ≤ 3 的解集为 — œt — 3 U 3 t h œ ;hh(2) Ex C R,使得 ƒ x € h 成立,26即有 h Σ ƒ x min, 由函数 ƒ x = x — 1 h x — a ≤ x — 1 — x h a = a — 1 ,当 x — 1 x — a ≤ 0 时,取得最小值 a — 1 ,则 a — 1 € h,即 — h € a — 1 € h,解得 — 1 € a € 3.则实数 a 的取值范围为 — 1t3 .10. (1) 对于任意 x C R,ƒ x=x—a — x—㔶 C — a—㔶ta—㔶 ,可 知 a — 㔶 = 3,解得:a = 1 或 a = 7;(2) 依题意有 — 3 ≤ hm — mh, 即 mh — hm — 3 ≤ 0,解得:m C — 1t3 .11. 由(a)知,函数 ƒ x 的对称轴为 x =—1. 所以b = ha ……Ⓢ由(c)知,x =—1 时,y =0,即a — b h c = 0 ……Ⓢ a由(a)、(b)知 ƒ 1 = 1,即h b h c = 1 ……Ⓧ联立①、②、③得 所以1 11 a = 㔶tb = h tc = 㔶.ƒx 1 h 1 1 1h假设存在 t C R,只要 x C 1tm ,=㔶xhhxh㔶=㔶xh1.就有 ƒ x h t≤ x,即 1㔶x h t h 1 h ≤ x 恒成立.设g x = xh h h t — 1 x h t h 1 ht 只需证“存在 t C R,只要 x C 1tm ,g x = xh h h t — 1 x h t h 1 h ≤ 0 恒成立”,其充要条件为g 1 ≤ 0t g m ≤ 0.取 x = 1,有 解得1 㔶thhh≤1t— 㔶 ≤ t ≤ 0t27取 x = m,有 即1 㔶mhth1h≤mt解得mh — h 1 — t m h th h ht h 1 ≤ 0t所以 m ≤ 1 — t h — 㔶t.1 — t — — 㔶t≤ m ≤ 1 — t h — 㔶 tt因为 0 ≤— t ≤ 㔶,所以 m ≤ 1 h 㔶 h 㔶 = 9.故当 t =— 㔶 时,mmax = 9. 12. (1) 因为 k Σ 0,所以ƒxΣm¤ kxxh h3kΣm¤ mxh —kxh3km€0,因为不等式 mxh — kx h 3km € 0 的解集为 x x €— 3 或 x Σ— h ,所以 — 3,— h 是方程 mxh — kx h 3km = 0 的根,且 m € 0.所以k =— 5tm‹3k = 6k = ht m =— h t5所以 5mxh h k x h 3 Σ 0 ¤hxh — x — 3 € 0 ¤— 1 € x € 3.hh所以不等式 5mxh h k x h 3 Σ 0 的解集为 — 1t 3 .hh(2)因为ƒxΣ1¤ kxxh h3kΣ1kΣ0¤xh—kxh3k€0¤x—3kΣxh,存在 x0 Σ 3,使得 ƒ x0Σ1成立,即存在x0Σ3,使得kΣ 0x成 h 立.x0—3h令 g x = x ,x C 3t h œ , 则 k Σ g xx—3min.h令 x — 3 = t, 则 t C 0t h œ ,y = th3 = t h 9 h 6 ≤ httt ·9 h 6 = 1h.t当且仅当 t = 9 即 t = 3 即 x = 6 时等号成立.t所以 g x min = 1h,所以 k C 1ht h œ .13. (1) 原不等式等价于 x €— 3t或— h — hx ≤ 5— 3 ≤ x ≤ 1t 㔶≤ 5或x Σ 1t hx h h≤5t得73— h ≤ x €— 3 或 — 3 ≤ x ≤ 1 或 1 € x ≤ h t因此不等式的解集为 — 7 t 3 .hh(2) ƒ x = x — 1 h x h 3 ≤ x — 1 — x h 3 = 㔶,要使 th h 3t Σ ƒ x 在 x C R 上有解,只需 th h 3t 大于 ƒ x 的最小值,th h 3t Σ ƒ x min = 㔶 ‹ th h 3t — 㔶 Σ 0 ‹ t €— 㔶 或 t Σ 1.14. (1) (i)当 m = 0 时,ƒ x =— 1hx — 9 为一次函数,有唯一零点.(ii)当 m G 0 时,由 6 = 9 m — 㔶 h h 36m = 9 m — h h h 10t Σ 0,故 ƒ x 必有两个零点.(2) 由条件可得 ƒ x 的图象关于直线 x = 1 对称,所以 — 3 m— = 1 且 m G 0,解得 㔶hm281h m= .5(3) 依题原命题等价于 ƒ x — a Σ 0 有解,即 ƒ x Σ a 有 解. 所以 a € ƒ x max,因为 ƒ x 在 0th 上递减, 所以 ƒ x max = ƒ 0 =— 9,故 a €— 9. 15. (1) 当 n = 1 时,由 p — 1 a1 = ph — a1 ,得 a1 = p . 当 n ≤ h 时,p — 1 Sn = ph — an p — 1 Sn—1 = ph — an—1两式相减,整理得 an = 1 .an—1 pan = p1 pn—1 = ph—n ,从而bn= 㔶 — hn .(2) an 为等比数列, bn 为等差数列,由错位相减法,得Tn=㔶n hn—1.当 n = 1th 时, T1 = Th = 㔶 .当 n ≤ 3 时 , Tn = Tn—1 =hnh——3 n € 0 . 0 € Tn € T3 = 3 , 故 0 € Tn ≤ 㔶 . (3) 当 0 € p € 1 时,存在 M = h ,使得当 n Σ h 时, an Σ 1 恒成立. 当 p Σ 1 时,由 an = ph—n Σ 1 ,得 h — n Σ 0 即 n € h . 所以满足要求的 M 不存在 .16. (1) 由 ƒ h — x = ƒ h h x 得函数 ƒ x 关于 x = h 对称,则 — b—1 = h,ha又 xh — x1 = h 可知 x1 = 1,xh = 3,则 a h b — 1 h 1 = 0,解得 a = 1,b =— 1,则 ƒ x = 1 xh — 㔶 x h 1.3333gx = (2)=— a x — x1 x — xh h h xh — xa xh — xx—x1hh a≤axh—x1hha hht等号成立条件为x0=xhhx1—ha,h设函数 g x 的最大值为 h a ,则 h a = ahhhah=a1h1h =ah 1hh≤㔶,haa故必存在 x0 C R 使得 g x0 ≤ 㔶 成立. 17. (1) 因为 ƒ x = xex,所以 ƒ' x = ex h xex = 1 h x ex 当 x €— 1 时,ƒ' x € 0,所以 ƒ x 在 — œt —1 内单调递减;当 x Σ— 1 时,ƒ' x Σ 0,所以 ƒ x 在 — 1t h œ 内单调递增.又 g' x = hax h 1,由 g' — 1 =— ha h 1 = 0,得 a = 1,h此 时 g x = 1 xh h x = 1 x h 1 h — 1,hhh29显然 g x 在 — œt — 1 内单调递减,在 — 1t h œ 内单调递增,故 a = 1.h(2) 当 x ≤ 0 时恒有 ƒ x ≤ g x ,即 ƒ x — g x = x ex — ax — 1 ≤ 0 恒成立. 故只需 F x = ex — ax — 1 ≤ 0 恒成立,对 F x 求导数可得 F' x = ex —a. 因为 x ≤ 0,所以 F' x = ex — a,若 a ≤ 1,则当 x C 0t h œ 时,F' x Σ 0,F x 为增函数, 从而当 x ≤ 0 时,F x ≤ F 0 = 0,即 ƒ x ≤ g x ;若 a Σ 1,则当 x C 0tlna 时,F' x € 0,F x 为减函数,从而当 x C (0tlna쳌 时,F(x쳌 € F(0쳌 = 0,即 ƒ(x쳌 € g(x쳌,故 ƒ(x쳌 ≤ g(x쳌 不恒成立.故 a 的取值范围为:a ≤ 1.18. (1) 设公差为 d,由 a1,ah,a㔶 成等比数列得:ah = a a1 㔶,h即 1 h d h = 1 ·1 h 3d ,求得:d = 1 或 d = 0 舍去 .所以na=1hn—1·1=n,S=n1han·n=h1nnhh1.(2) A = 1 h 1 h … h 1 = h 1 h 1 h … h1 =h 1— 1 ,S1 ShSn1×h h×3n× nh1nh1B=1h1h…1 =1h1h…1 =h—1 =h 1— 1 ,a0h a1hanh—1h0 h1hn—1hn—1hn因为当 n ≤ h 时,hn Σ n h 1,即 1 — 1 Σ 1 — 1 .hnnh1所以 A € B.(3) 要使 ah h ah ≤ k ·ah mtn C Nh 成立,只须:k ≤ amh hahn mtn C Nh 恒成立,即 k ≤mnmhnahmhnahmhah n ahmhn min因为= amh hnahahmhnmhhnh mhn h=mhhnh mhhnhhhmn,又因为hmn ≤ mh h nh所以 mhhnhmhhnhhhmn≤ mh mhhhnhhn=h1 h当且仅当m = n 时等号成立所以 k ≤ 1 时,对任意的正整数 m,n,不等式 ah h ah ≤ k ·ah 都成立,hmnmhn即实数 k 存在,最大值为 1 .h19. (1) 当 t = 1 时,ƒ x = x — 3 h hx h 1 ,由 ƒ x ≤ 5 得 x — 3 h hx h 1 ≤ 5,当 x ≤ 3 时,不等式等价为 x — 3 h hx h 1 ≤ 5,即 3x ≤ 7,得 x ≤ 7,此时 x ≤ 3,3当 — 1 € x € 3 时,不等式等价为 — x — 3 h hx h 1 ≤ 5,即 x ≤ 1,此时 1 ≤ x € 3,h当 x €— 1 时,不等式等价为 3 — x — hx — 1 ≤ 5,解得 x ≤— 1,得 x ≤— 1,h综上,x ≤ 1 或 x ≤— 1,即不等式的解集为 — œt — 1 U 1t h œ .ƒ a h a — 3 = h a — 3 h ha h t(2)≤ ha h t — ha — 6= th6t则命题 ƒ a h a — 3 € h,等价为 ƒ a h a — 3 min € h,即 t h 6 € h,则 — h € t h 6 € h,即 — t € t €— 㔶,即 t 的取值范围是 — tt — 㔶 .20. (1) 当 a = 3 时, x — 1 — hx — 1 Σ— 1 ,30所以x≤1 x—1—hx—1Σ—1或x≤1h1 — x — 1 — hx Σ— 1或1€ x € 1h1 — x — hx — 1 Σ— 1所以x≤ 1h或1€ x € 1h,x Σ— 1 h — 3x Σ— 1所以 — 1 € x ≤ 1 或1 € x € 1,即 — 1 € x € 1,hh所以不等式的解集为 — 1t1 .— xt x ≤ 1(2) ƒ x = x — 1 — hx — 1 =h — 3xt 1 € x € 1hxt 所以 ƒ x C — œt 1 ,所以 ƒ x 的最大值为 1.x≤ 1hhh因为不等式有解,所以1 Σ log1a,所以1a Σ 1 h,即a Σ 3.h33321. (1) 显然 a G 0,当 a Σ 0 时,解集为 — 1 t 3 ,— 1 =— 6,3 = h,无解;aaaa当 a € 0 时,解集为 3 t — 1 ,令 — 1 = h,3 =— 6,a =— 1,aaaah综上所述,a =— 1.h(2) 当 a = h 时,令 h x = ƒ hx h 1 — ƒ x — 1 = |㔶x h 1| — |hx — 3| =— hx —㔶t x ≤— 1 t㔶6x — ht — 1 € x € 3 t㔶hhx h 㔶t x ≤ 3 .h由此可知,h x 在 — œt — 1 单调减,在 — 1 t 3 和 3 t h œ 单调增,㔶㔶hh则当 x =— 1 时,h x 取到最小值 — 7,㔶h由题意知,— 7 ≤ 7 — 3m,则实数 m 的取值范围是 — œt 7 .hh22. (1) a = 1 时 ,ƒ x = xh h ax — lnx x Σ 0 ,所 以 ƒ' x = hx h 1 — 1 = hx—1 xh1 ,xxx C 0t 1 ,ƒ' x € 0,x C 1 t h œ ,ƒ' x Σ 0,hhƒ x 的减区间为 0t 1 ,增区间 1 t h œ .hh(2) ƒ' x = hx h a — 1.x因为 ƒ x 在区间 0t1 上是减函数,所以 ƒ' x ≤ 0 对任意 x C 0t1 恒成立,即 hx h a — 1 ≤ 0 对任意 x C 0t1 恒成立,x所以 a ≤ 1 — hx 对任意 x C 0t1 恒成立,x令 g x = 1 — hx,x所以 a ≤ g x min,31易知 g x 在 0t1 单调递减,所 以 g x min = g 1 =— 1. 所以 a ≤— 1.(3) 设切点为 M ttƒ t ,ƒ' x = hx h a — 1,x切线的斜率 k = ht h a — 1,又切线过原点 k = ƒ t ,ttƒ t = ht h a — 1,即:th h at — lnt = hth h at — 1.tt所以 th — 1 h lnt = 0,存在性:t = 1 满足方程 th — 1 h lnt = 0,所以 t = 1 是方程 th — 1 h lnt = 0 的根.再证唯一性:设 t = th — 1 h lnt, ' t = ht h 1 Σ 0,tt 在 0t h œ 单调递增,且 1 = 0, 所以方程 th — 1 h lnt = 0 有唯一解.综上,切点的横坐标为 1.23. (1) ① 当 — a ≤ 0 即 a ≤ 0 时,只需 ƒ 0 = a ≤ 0 即可,h所以 a ≤ 0 满足题意.② 当 0 €— a € 1 即 — h € a € 0 时不合题意.h③ 当 — a ≤ 1 即 a ≤— h 时,只需 ƒ 0 = a ≤ 0 即可,h所以 a ≤— h.所以 a ≤— h 或 a ≤ 0.(2) 解法一:如果 |ƒ 1 | 与 |ƒ — 1 | 中有一个不小于 |a|,那么命题成立,而 |ƒ 1 | = |1 h a h b| ≤ |a| ¤ 1 h b 1 h ha h b ≤ 0,此不等式在平面直角坐标系下表示的区域记为M(图略),|ƒ — 1 | = |1 — a h b| ≤ |a| ¤ 1 h b 1 — ha h b ≤ 0,此不等式在平面直角坐标系下表示的区域记为 N(图略).由于 M U N = xty xty C R ,故 |ƒ 1 | ≤ |a| 与 |ƒ — 1 | ≤ |a| 至少有一个成立. 解法二:当 a = 0 时,|ƒ x0 | ≤ 0 显然成立. 当 a Σ 0,假设 6x C — 1t1 t|ƒ x | € a 恒成立,即 — a € ƒ x € x, 所 以 — a € ƒ 1 = 1 h a h b € at— a € ƒ — 1 = 1 — a h b € at 所 以 — 1 — ha € b €— 1t— 1 € b €— 1 h hat 所以 b C t.当 a €0 时,同理可得 b C t,故假设不成立,综上知原命题结论成立.24. 对于方程 ahxh h ax — h = 0.32。
中考数学存在性问题的解题策略

中考数学存在性问题的解题策略摘要:现今不仅是高考对考生很重要,更多的家长认为走进一所好的高中就有一只脚踏进了名牌大学的校门。
“存在性”问题是中考试题中最容易丢分的题型,本文简要分析中考数学存在性问题的解题策略。
关键词:存在性问题解题分析一、“存在性”问题“存在性”问题是指判断满足某种条件的某种事物是否存在的问题。
应对这种问题要求学生的知识覆盖面广,综合分析能力强,对整个知识的结构体系熟悉,解题的方法要灵活。
常见的解此类题的思路为:假设其存在→根据存在性推理论证→得出结论→是否与假设相符合→结论存在(看是否违背公理和定理),根据此思路具体做出判断,我们知道“存在性”问题的结论有两种可能,所以开放性强,我们需要假设存在后对其进行推理或者计算,所以对学生的基本能力要求较高,并且具备较强的探索性。
二、举例分析现在我们就以举例的方式来解析。
(2)首先分析其与x轴有两个交点,x1,x2的倒数和为2/3,根据这个可以得出一个式子。
那么我们知道此二次函数与x轴交点的横坐标就是一元二次方程的根。
那么此题就很容易得出答案了。
例2:已知x1、x2是一元二次方程ax²+bx+c=0(a≠0,c≠0)的两个实数根,且x1/x2=m/n(m≠0,n≠0)(1)试用m和n表示b²/ac的式子;(2)是否存在实数m和n,满足x1/x2=m/n,使b²/ac=6/5成立?若存在,求出m和n的值;若不存在,说明理由。
分析:这个题目存在两个可能性:即存在和不存在。
那么对于此类问题我们一般假设其存在(当然你也可以假设不存在,这样假设不好证明),然后根据已知的条件和有关的性质推理,求解;最后根据推理的过程得出结论。
若其与已知条件相符合,那么就说明假设存在,结论成立。
若地已知条件不相符合就说明结论不成立。
此题通过韦达定理得a、b、c、m、n的关系式,然后在假设已知的条件成立,写出关于m、n为根的一元二次方程。
数学存在性问题解决策略

探究1
如图,在平面直角坐标系中A、B分别在x轴、y
轴上,线段OA、OB的长(OA<OB)是方程 x2 18x 72 0
的两个根,点C是线段AB上的一点,AC:CB=3:2,过点C
作AB的垂线,交y轴于点D.
y
(1)求点C的坐标;
(2)求直线AD的解析式;
B
(3)在直线AD上是否存在点P, 使以O、A、P为顶点的三角形是等 腰三角形?若存在,请直接写出点 P的坐标;若不存在,请说明理由.
P为顶点的三角形是等腰三角形?若存在,请
B
直接写出点P的坐标;若不存在,请说明理由.
变式1:在问题(3)的条件下,在平 面内是否存在点Q,使以O、A、P、 Q为顶点的四边形是菱形?若存在, 请直接写出点Q的坐标;若不存在, 请说明理由.
C D
O
Ax
变式2 如图,在平面直角坐标系中A、B分别在x轴、y轴
P1
O
A
(P3) D
x
O
P2
P4 Ax
O
Ax
变式1
y
Q1
P1
A O
Q2
x P2
y y
P3 O
Q3
A xO
P4
Ax Q4
变式2
y
y
y
B
B
M3
B
C D
M1
D
C
C D
O
A
xO
A
M2
x
O
A
x
y
变式3
C D
y
N2 C
D
N1
O
A
x
O
A
x
y
数学存在性问题解决策略

x21x87 20
的两个根,点C是线段AB上的一点,AC:CB=3:2,过点C作AB的
垂线,交y轴于点D.
y
(1)求点C的坐标;
(2)求直线AD的解析式
B
及△ABD的面积.
(3)在直线AD上是否存在点P, 使以O、A、P为顶点的三角形是等
腰三角形?若存在,请直接写出点
P的坐标;若不存在,请说明理由.
Q3(6,6)
Q4(3,-3)
第9页,本讲稿共17页
变式2 如图,在平面直角坐标系中A、B分别在x轴、y轴上,线
段OA、OB的长(OA<OB)是方程
x21x87 20
的两个根,点C是线段AB上的一点,AC:CB=3:2,过点C作AB的
垂线,交y轴于点D.
y
(1)求点C的坐标;
(2)求直线AD的解析式及△ABD的面积.
C D
O
Ax
第3页,本讲稿共17页
探究1
y
作辅助线1:
以A为圆心,OA为半径画圆 ,交直线AD于点Px
P2
第4页,本讲稿共17页
探究1
y
作辅助线2:
B
以O为圆心,OA为半径
画圆,此时点P3与点D重合.
C
(P3)D
O
A
x
第5页,本讲稿共17页
探究1
作辅助线3: 作线段OA的垂直平分线
质和特征.
第15页,本讲稿共17页
课堂检测
已知:A(−3,6)C(3,0)。在坐标平面内是否存在点Q 和P(P在直线AC上),使以O、P、C、Q为顶点的四边形 是正方形。若存在,请直接写出点Q的坐标;若不存在, 请说明理由。
第16页,本讲稿共17页
第17页,本讲稿共17页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
【典型例题】例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于 ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。
分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。
解:在△中,∠°,∵Rt ABC C B ==9035cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴,∵ ∴,,a b c ===91215设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()∴x x x x x x m m m 122212212222312920+=+-=+--+()[()]()=+-736312m m 由,x x c c 1222215+==有,即73631225736256022m m m m +-=+-= ∴,m m 124647==-∵不是整数,应舍去,m =-647当时,m =>40∆∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。
例2. 22ky kx y P =+-如图:已知在同一坐标系中,直线与轴交于点,抛物2122(1)4(0)(0)y x k x k x A x B x C =-++线与轴交于,,,两点,是抛物线的顶点(1)求二次函数的最小值(用含k 的代数式表示) (2)若点A 在点B 的左侧,且x 1·x 2<0 ①当k 取何值时,直线通过点B ;②是否存在实数k ,使S △ABP =S △ABC ?如果存在,求出抛物线的解析式;如果不存在,请说明理由。
分析:本题存在探究性体现在第(2)问的后半部分。
认真观察图形,要使S △ABP =S △ABC ,由于AB=AB ,因此,只需两个三角形同底上的高相等就可以。
OP 显然是△ABP 的高线,而△ABC 的高线,需由C 作AB 的垂线段,在两个高的长中含有字母k ,就不难找到满足条件的k 值。
解:()()()11044414122∵,∴×最小值a y k k k =>=-+=--()()()()2214222由,得:y x k x k y x x k =-++=-- ①当时,,y x x k ===02212 ∵点A 在点B 左侧,∴,又∵,∴,x x x x x x 121212000<<<> ∴A (2k ,0),B (2,0), 将,代入直线B y kx k ()2022=+- 得:,∴222043k k k +-==- ∴当时,直线过点k B =-43(2)过点C 作CD ⊥AB 于点D 则CD k k =--=-|()|()1122∵直线交轴于,,y kx k y P k =+--22022() ∴OP k =-22若,则··△△S S AB OP AB CD ABP ABC ==1212∴OP=CD∴2212-=-kk () 解得:,k k 12122=-=由图象知,,∴取k k <=-012∴当时,△△k S S ABP ABC =-=12此时,抛物线解析式为:y x x =--22例3. 已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F 。
(1)当点P 在线段AB 上时,求证:PA ·PB=PE ·PF(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由。
()cos 34213若,∠,求⊙的半径AB EBA O ==分析:第(1)问是一个常规性等积式的证明问题,按一般思路,需要把它转化为比例式,再转化为证明两个三角形相似的问题,同学们不会有太大的困难。
难点在于让P 点沿BA 运动到圆外时,探究是否有共同的结论,符合什么共同的规律。
首先需要按题意画出图形,并沿用原来的思路、方法去探索,看可否解决。
第(3)问,从题意出发,由条件∠,欲求⊙的半径,启发我们作出直径为辅助线,使隐性的cos EBA O AH =13条件和结论显现出来。
证明:(1)(如图所示)∵BT 切⊙O 于B ,∴∠EBA=∠C , ∵EF ∥BC ,∴∠AFP=∠C ∠AFP=∠EBA 又∵∠APF=∠EPB ∴△PFA ∽△PBE ∴PA PE PFPB=∴PA ·PB=PE ·PF (2)(如图所示)当P 为BA 延长线上一点时,第(1)问的结论仍成立。
∵BT 切⊙O 于点B , ∴∠EBA=∠C∵EP ∥BC ,∴∠PFA=∠C ∴∠EBA=∠PFA 又∵∠EPA=∠BPE ∴△PFA ∽△PBE ∴PF PB PAPE=∴PA ·PB=PE ·PF(3)作直径AH ,连结BH ,∴∠ABH=90°, ∵BT 切⊙O 于B ,∴∠EBA=∠AHB ∵∠,∴∠cos cos EBA AHB ==1313∵∠∠sin cos 221AHB AHB += 又∵∠AHB 为锐角 ∴∠sin AHB =223在△中,∵∠,Rt ABH AHB ABAHAB sin ==42 ∴∠,AH ABAHB==sin 6∴⊙O 的半径为3。
例4. 已知二次函数y mx m x m =+-->2330()()(1)求证:它的图象与x 轴必有两个不同的交点;(2)这条抛物线与x 轴交于两点A (x 1,0),B (x 2,0)(x 1<x 2),与y 轴交于点C ,且AB=4,⊙M 过A 、B 、C 三点,求扇形MAC 的面积S 。
(3)在(2)的条件下,抛物线上是否存在点P ,使△PBD (PD ⊥x 轴,垂足为D )被直线BC 分成面积比为1:2的两部分?若存在,求出点P 的坐标;若不存在,说明理由。
分析:本题的难点是第(3)个问题。
我们应先假设在抛物线上存在这样的点P ,然后由已知条件(面积关系)建立方程,如果方程有解,则点P 存在;如果方程无解,则这样的点P 不存在,在解题中还要注意面积比为1:2,应分别进行讨论。
解:()()()()131230022∵∆=-+=+>>m m m m ∴它的图象与x 轴必有两个不同的交点。
()()()()233312y mx m x mx x =+--=-+ 令,则,,,y A x B x =00012()() ∵,x x m 120<>∴,x mx 2131==- ∴,,,A B m()()-103∵AB=4,OA=1, ∴,∴,∴,∴,OB mm B ===333130() ∴y x x =--223∵C (0,-3),∴OC=OB ,∴∠ABC=45°∴∠AMC=90°,设M (1,b ),由MA=MC ,得:()()11132222++=++b b∴b=-1,∴M (1,-1) ∴MA =++-=()()111522∴·扇形S MAC ==14542ππMA (3)设在抛物线上存在这样的点P (x ,y ),则过B (3,0),C (0,-3)的直线BC 的解析式为:y x BC PD E =-3,设与交于点①当S △PBE :S △BED =2:1时, PE=2DE ,∴PD=3DEPD 的长是P 点纵坐标的相反数,DE 的长是E 点纵坐标的相反数,且P 、E 两点横坐标相同∴,抛直线PD y x x DE y x =-=-++=-=-+2233 ∴-++=-+x x x 22333()解得:,不合题意,舍去x x 1323==() ∴P (2,-3)②当S △PBE :S △BED =1:2时,PE DE DP DE ==1232,∴ ∴-++=-+x x x 223323()解得:,不合题意,舍去x x 12123==()∴,P ()12154-∴抛物线上存在符合题意的点,或,P P ()()2312154--例5. 如图:二次函数的图象与轴相交于、两点,点在原y x bx c x A B A =++2点左边,点在原点右边,点,在抛物线上,,∠B P m AB PAO ()tan 1225==(1)求m 的值;(2)求二次函数的解析式;(3)在x 轴下方的抛物线上有一动点D ,是否存在点D ,使△DAO 的面积等于△PAO 的面积?若存在,求出D 点坐标;若不存在,说明理由。
解:(1)作PH ⊥x 轴于H ,在Rt △PAH 中∵∠tan PAO PH AH ==25∵,∴PH m AH m ==52∵P (1,m )在抛物线上,m=1+b+c , 设,,,,∵A x B x AB ()()12002= ∴||x x 212-=∴()x x x x 1221242+-= 令,得:y x bx c =++=002∴,,∴x x b x x c b c 1212242+=-=-=∵±±x b b c b =--=-24222且,∴,x x x b x b 12122222<=--=-+ ∵OH=1,∴AH -AO=1∵,AH m AO x b ==-=+52221 ∴52221m b -+=由:得:m b c m b b c m b c =++-+=-=⎧⎨⎪⎪⎩⎪⎪===-⎧⎨⎪⎪⎪⎩⎪⎪⎪1522214224254521252 b =-4()舍去 ∴m =2425()24521252y x x =+- (3)假设在x 轴下方的抛物线上存在点D (x 0,y 0), 使,则有:△△S S DAO PAO = S AO y S AO PH DAO PAO △△·,·==12120||||||||∴,||||y PH m 02425=== ∴,代入,得:y y x x 0002024*******=-=-- x x x x 020124521524253515--=-=-=-,解得:,∴满足条件的点有两个: D D ()()----352425152425,或, 例6. 如图,在平面直角坐标系O —XY 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y=ax 2+bx+c 经过点A 和B ,且12a+5c=0。