代数式化简求值题各版本通用

合集下载

第二讲:代数式的化简求值问题(部分含答案).docx

第二讲:代数式的化简求值问题(部分含答案).docx

第二讲:代数式的化简求值问题一、知识链接1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。

它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容2—。

2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。

注:一般來说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从屮体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。

二、典型例题例1.若多项式2处2 一兀2 +5兀+ 8_(7兀$ -3y + 5x)的值与x无关,求m2— \lm2 -(5/n —4)+m]的值.分析:多项式的值与x无关,即含x的项系数均为零I大I力2/??x2— %2 + 5x + 8 —(7兀$ —3y + 5兀)=(2加一+ 3y + 8 所以m=4将m=4 代人,m2 - \lm2 -(5/7? - 4)+ m = -m2 + 4/7? - 4 = -16 + 16-4 = -4利用“整体思想”求代数式的值例2・x=-2时,代数式加+bx3 +c兀-6的值为8 ,求当x二2时,代数式ax5 +bx 3 +cx-6的值。

分析:因为ax5 + bx3 + ex - 6 = 8当x=・2 日寸,一2。

一2% — 2。

一6二8 得至1」2。

+ 2% + 2。

+ 6二一8,所以20 + 2诂+ 2c = -8-6 = -14当x=2 时,ax5 +bx3 +cx-6 = 25tz + 23/? + 2c-6 = (-14)-6 = -20例3・当代数式%2 + 3兀+ 5的值为7时,求代数式3兀$ + 9兀- 2的值.分析:观察两个代数式的系数曲/+3兀+ 5 = 7 得*+3兀=2 ,利用方程同解原理,得3X2+9X =6整体代人,3兀2+9兀-2 = 4代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中Z-o例4・已知/+ —1 = 0,求/+2/+2007的值.分析:解法一(整体代人):由a2 +a-\ = 0得a3 +a2 -a = 0所以:/ + 2/ + 2007=a" + ci ~ + d ~ + 2007= a + / + 2007解法二(降作为刻画现实世界相等关系的数学模型,还具冇降次的功能。

代数式的化简求值问题(含答案)

代数式的化简求值问题(含答案)

第二讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。

它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。

2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。

注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。

二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx 所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。

分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.分析:观察两个代数式的系数2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。

化简求值练习题及答案

化简求值练习题及答案

化简求值练习题及答案化简求值练习题及答案化简求值是数学中的一项重要技巧,它可以将复杂的表达式简化为更简单的形式,并且得到准确的数值结果。

在学习化简求值的过程中,练习题是必不可少的。

下面,我将为大家提供一些化简求值练习题及其答案,希望能够帮助大家更好地掌握这一技巧。

1. 将以下表达式化简并求值:(2 + 3) × (4 - 1) ÷ 5答案:首先,根据运算的优先级,我们先计算括号内的表达式,即2 + 3 = 5,4 - 1 = 3。

然后,将结果代入原表达式中,得到5 × 3 ÷ 5 = 3。

2. 化简并求值:(8 - 4) × (7 + 2) ÷ 6答案:同样地,我们先计算括号内的表达式,即8 - 4 = 4,7 + 2 = 9。

然后,将结果代入原表达式中,得到4 × 9 ÷ 6 = 6。

3. 将以下表达式化简并求值:(10 + 5) × (6 - 3) × 2答案:首先,根据运算的优先级,我们先计算括号内的表达式,即10 + 5 = 15,6 - 3 = 3。

然后,将结果代入原表达式中,得到15 × 3 × 2 = 90。

4. 化简并求值:(12 - 7) × (9 + 4) × 3答案:同样地,我们先计算括号内的表达式,即12 - 7 = 5,9 + 4 = 13。

然后,将结果代入原表达式中,得到5 × 13 × 3 = 195。

通过以上几个例子,我们可以看到,化简求值可以将复杂的表达式简化为更简单的形式,从而更容易计算。

这在实际的数学运算中非常有用,尤其是在解决较为复杂的问题时。

除了简单的四则运算外,化简求值还可以应用于更复杂的数学问题中。

例如,我们可以利用化简求值的技巧来计算多项式的值。

下面,我将通过一个例子来说明这一点。

假设我们有一个多项式:f(x) = 2x^3 + 3x^2 - 4x + 1。

专题01代数式的求值与整式的化简求值(30题)(原卷版)

专题01代数式的求值与整式的化简求值(30题)(原卷版)

专题第01讲代数式的取值与整式的化简求值1.(2022秋•新华区校级期末)已知a﹣2b=3,则代数式2a﹣4b+1的值是()A.﹣5B.﹣2C.4D.72.(2022秋•裕华区校级期末)已知3x2﹣4x﹣7=0,则代数式6x2﹣8x﹣3的值为()A.0B.6C.﹣10D.113.(2022秋•建平县期末)如果代数式4y2﹣2y+5的值是7,那么代数式2y2﹣y+1的值等于()A.2B.3C.﹣2D.44.(2022秋•九龙坡区校级期末)如果代数式4y2﹣2y+5的值是7,那么代数式﹣2y2+y+2的值等于()A.8B.3C.1D.﹣45.(2022秋•铜梁区期末)已知2a2+a的值是5,则4a2+2a﹣4的值是()A.6B.10C.1D.26.(2023•昆明模拟)若多项式2a2﹣a+6的值为8,则多项式10+2a﹣4a2的值为()A.14B.12C.6D.﹣67.(2022秋•乐亭县期末)当x=1时,代数式ax3+bx+7的值为4,则当x=﹣1时,代数式ax3+bx+7的值为()A.4B.﹣4C.10D.118.(2022秋•皇姑区期末)已知x=2023时,代数式ax3+bx﹣3的值是2,当x=﹣2023时,代数式ax3+bx+7的值等于()A.﹣10B.4C.2D.﹣69.(2023•姑苏区校级二模)若a2﹣3a+2=0,则1+6a﹣2a2=()A.5B.﹣5C.3D.﹣310.(2023春•印江县月考)已知a2+a﹣1=0,根据已知条件,完成以下题目:(1)求2a2+2a的值;(2)求a3+2a2+2015的值.11.(2022秋•锦江区期末)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣2,b=﹣1.12.(2022秋•江阴市期末)先化简,再求值:(4a2﹣3a)﹣(2a2+a+1)+(2﹣a2﹣4a),其中a=﹣2.13.(2022秋•南通期末)先化简,再求值:2x2﹣3xy﹣4(x2﹣xy+1),其中.14.(2023春•无锡月考)先化简,再求值:x2﹣(2x2﹣4)+2(x2﹣y),其中x=﹣1,y=2.15.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3分)(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.16.(2022秋•东西湖区期末)已知A=3xy+5y2﹣2,B=2xy﹣2y2+3.(1)当x=﹣3,y=﹣2时,求2A﹣B的值;(2)若xy+3y2=4,求2A﹣B的值.17.(2022秋•江汉区期末)我们定义:对于数对(a,b),若a+b=ab,则(a,b)称为“和积等数对”.如:因为2+2=2×2,﹣3+=﹣3×,所以(2,2),(﹣3,)都是“和积等数对”.(1)下列数对中,是“和积等数对”的是;(填序号)①(3,1.5);②(,1);③(﹣,).(2)若(﹣5,x)是“和积等数对”,求x的值;(3)若(m,n)是“和积等数对”,求代数式4[mn+m﹣2(mn﹣3)]﹣2(3m2﹣2n)+6m2的值.18.(2022秋•道县期末)已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.(2022秋•射阳县校级期末)化简求值:求代数式7a2b+2(2a2b﹣3ab2)﹣(4a2b﹣ab2)的值,其中a,b满足.20.(2022秋•南阳期末)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)当x+y=,xy=﹣1,求2A﹣3B的值;(2)若2A﹣3B的值与x的取值无关,求2A﹣3B的值.21.(2022秋•沈丘县月考)已知A=2x2﹣x+y﹣3xy,B=x2﹣2x﹣y+xy.(1)化简A﹣2B;(2)当x+y=4,xy=﹣时,求A﹣2B的值.22.(2022秋•仪征市期末)已知代数式A=2x2+3xy+2y,B=x2﹣xy+x.(1)求A﹣2B;(3)当x=﹣1,y=3时,求A﹣2B的值;(3)若A﹣2B的值与x的取值无关,求y的值.23.(2022秋•新抚区期末)已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x+2.(1)当x=﹣1,y=2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.24.(2022秋•建平县期末)先化简,在求值:(1)(5a2﹣3b2)+(a2+b2)﹣(5a2+3b2)其中a=﹣1,b=1;(2)已知:A=2x2+3xy+2y,B=x2﹣xy+x,当x=﹣1,y=3时,A﹣2B的值.25.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.26.(2022秋•安乡县期末)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.27.(2022秋•大渡口区校级期末)已知A=x﹣xy+y,B=﹣x﹣3xy+2y.(1)当|x+1|+(y﹣2)2=0时,求2A+B的值;(2)若2A+B的值与y的取值无关,求x的值.28.(2022秋•茂南区期末)已知:A=2a2+3ab﹣1,B=a2+ab+1.(1)求A﹣2B的值;(2)若(a﹣1)2000+|b+2|=0,求(1)中A﹣2B的值.29.(2022秋•佛山期末)已知A=4a+2ab﹣3b+2,B=﹣a﹣15b+6ab.(1)当a+b=3,ab=2时,求2A﹣B的值;(2)若2A﹣B的值与a的取值无关,则b的值为,此时2A﹣B的值为.20.(2022秋•赣州期末)在某次作业中有这样一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b,把式子5a+3b=﹣4两边同乘以2,得10a+6b=﹣8.仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则a2+a+2018=.(2)已知a﹣b=﹣2,求3(a﹣b)﹣5a+5b+6的值.(3)已知a2+2ab=3,ab﹣b2=﹣4,求a2+ab+b2的值.。

代数式化简求值练习题.doc

代数式化简求值练习题.doc

代数式化简求值练习题1、-5ab+3ab、18p-9q+5-9qT0p3、-ab+ab-12521b2a4> 32-423625、2ab~5ab+3ab7、 18p-9q+5+9q~16p9、-11、 n-36、5x2yT2y2x4+3x4y2-6yx28、5a- 10、- 12、a+5 13、—7 14、2ab-15、 6a2-4ab-4 16、 3x- [5x-] 11217、3x-5x+20、 2a2-22、 x2+24、- (- [-])218、4-31、-* 3、-- 5、3_426、 -3+427、- {+ [-]} + {- [-]}28、2x2-12~8xy30、 y2-l32、 x+ [-6y+] 3334、 4-3536、 -3729、-2- [2b2-2ab]、 9x2- [x-] 、 -、 x+ [-]、 -3a+38、 - [-] 39、_341、 +2-442、-43、 -+4-24445、 7a+3a2+2a~a2+34647、 -4ab+8-2b2-9ab-849、 2y+6y+2xy-55051、 x-f+5x-4f52、-xy2+3xy 、 3a+2b-5a~b 、 3b-3a3+l+a3-2b 、3f+2f-7f 、 2a+3b+6a+9b-8a+12b53、 3pq+7pq+4pq+pq、 30a2b+2b2c-15a2b-4b2c55、7xy-8wx+5xyT2xy56、4+357、 4x~5859、 a+-061、 8x-263、 -6465、~6、4a-、 3一、 3x+l—2 、 n—3代数式求值合并同类项化简求值1、当x-2时,求代数式-3x2+5x-0. 5x2+xT的值、当p=3, q=3 时,求代数式 8p2-7q+6q-7p2-7 的值3、当x--5时,求代数式6x+2x2-3x+2x+l的值4、当x=2, y=~3时,求代数式4x2+3xy-x2-9的值5、当 m-6, n-2 时,求代数式 13m-32n-516n-6m的值6、当 m=5, p=]3, q=-32时,求代数式 3pq-45m-4pq的值7、当x=-2时,求代数式9x+6x2-3 的值8、当 x=l2时,求代数式14-的值9、当a=T, b=l时,求代数式+-的值10、当a=-2, b=2时,求代数式2-2-2ab2-2 的值11、当 X=-12,y=T时,求代数式2x2y+1的值12、当x=-2时,求代数式x+1X的值13、当 x--l, y-~2 时,求代数式 2xy+3x2y-6xy-4x2y 的值14、当 m-5, p-133,q=-2时,求代数式3pq-45m-4pq+m 的值15、当m2-mn-l, 4mn-3n2--2 时,求代数式m2+3mn-3n2 的值 16、当 x--l, y--2 时,求代数式 3-2xy+3yx2+6xy-4x2y 的值17、当x2-xy=3a, xy-y2=-2a 时,求代数式x2-y2 的值18、当 x=2004, y=T 时,求代数式 A=x2-xy+y2, B=-x2+2xy+y2, A+B 的值19、当a=5时,求代数式-的值20、当x=-2时,求代数式9x+6x2-3 的值21、当x=5时,求代数式1-4的值22、当 x=l2,时,求代数式-+的值23、当 x2+xy=2, y2+xy=5 时,求代数式 x2+2xy+y2 的值4、当a-b=4, c+d=-6时,求代数式-的值25、当 a=l,b=l时,求代数式a22+3ab~b2 的值26、当 a=17, b=143时,求代数式4+4-4的值27、当a=6, b=3时,求代数式ab?24的值28、当a--2,b-23时,求代数式112312a-2-的值3229、当a二,时,求代数式1—3的值30、当 2+ | y+1 I =0 时,求代数式 5xy2- [2x2y-]的值代数式求值合并同类项化简求值1、当x=~2, y=~4时,代数式x2-2xy+y2的值是2、在代数式 2x2y3-x3y+y4-5x4y3 中,其中 x-0, y=~2, 这个代数式的值为3、x=-2时,代数式x+的值是4、当x二5时,代数式x+4=5、代数式x2+2008的最小值是,此时x二6、已知:a2+3a+5=7,求 3a2+9a_2 的值7、已知 3a2_a_2-0,则 5+2a_6a2-8、己知:a, b互为相反数,c,dm=2,求代数式的值9、当a=~l, b=-6时,代数式a的值是10、当a=4, b=5, c二时,代数式1215142a?b- b?2cl2212251x25a?b+m2-cdl0mll 、当x+y-15, xy--10 时,求代数式 6x+5xy+6y 的值12、当a?b24=3时,求代数式-的值a?ba?b313、已知:a2+2a+l=0,求 2a2+4a-3 的值二、合并同类项:1、-5ab+3ab、 18p-9q+5-9q~10p3、-ab+ab-13256212b2a、 32-425 、2ab-5ab+3ab5x2yT2y2x4+3x4y2-6yx218p-9q+5+9qT6p8、5a-9、- 10、-11、n-312、 a+513、—7 14、2ab-15、 6a2-4ab-4 16、 3x- [5x-]17、 3x-5x+18、 4-319、A=x2+xy+y2, B--3xy-x2,求 B-AA-3B20、2a2-1、-I-22、 x2+23、--24、- (- [-]) 5、 3-426、-3+427、- {+ [-]} + (- [-])28、2x2--8xy、~2~ [_2b2-2ab]30、 y2- 1、 9x2- [x-]32、x+ [-6y+] 3、-34、 4-335、 x+ [-]36、—7、—3a+38、 - ] 9、 -340、A=4a2+5b, B=-3a2-2b,求 2A-B41、+2-442、-43、 -4-24、 -xy2+3xy245、 7a+3a2+2a-a2+346、 3a+2b_5a_b47、 -4ab+8-2b2-9ab-848> 3b-3a3+l+a3-2b 49、 2y+6y+2xy-0、 3f+2f-7f 12121251、 x-f+5x-4f、 2a+3b+6a+9b-8a+12b53、3pq+7pq+4pq+pq、30a2b+2b2cT5a2b-4b2c 55、7xy-8wx+5xyT2xy、4+357、 4x-、 4a-59、 a0、 362、-63、 -64、 3x+l-265、 -66、 n-367、 16a-88、 t+69、一7 0、 -+71、 -82、 4-773、 -2n-74、 a-+75、 -3+6s、 1—77、 3-、 14+379、 3+0、 -4+81、5x4+3x2yT0-3x2y+x4T、p2+3pq+6-8p2+pq83、— 4、——385、 2+3、 -3+487、3b2—b288> x+-89、 -2+90、 2a2—8ab91、-42++3、5x3+3x2y-10-3x2y+x3-1 4、-3-4 121316x3121423二、先化简,再求值1、当x-2时,求代数式-3x2+5x-0. 5x2+xT的值2、当 p=3, q=3 时,求代数式 8p2-7q+6q-7p2-7 的值3、当x--5时,求代数式6x+2x2-3x+2x+l的值4、当x=2, y=-3时,求代数式4x2+3xy-x2-9的值161346、当 m=5, p=, q=-时,求代数式 3pq-m-4pq 的值2527、当x=~2时,求代数式9x+6x2-3的值1118、当x二时,求代数式-的值425、当m=6, n=2时,求代数式m-n-n-m的值1332569、当a=T,b=l时,求代数式+-的值10、当a=-2, b=2时,求代数式2-2-2ab2-2的值11、当x=-,y=T时,求代数式2x2y+l的值12、当x=-2时,求代数式x+的值13、当 x--l, y--2 时,求代数式 2xy+3x2y-6xy-4x2y的值14、当 m=5, p二,q二-时,求代数式 3pq-m-4pq+m 的值15、当m2-mn-l, 4mn-3n2--2 时,求代数式m2+3mn-3n2 的值16、当x--l, y--2 时,求代数式3-2xy+3yx2+6xy-4x2y 的值17、当 x2-xy=3a, xy-y2=-2a 时,求代数式 x2-y2 的值18、当 x-2004, y--l 时,求代数式 A=x2-xy+y2,B=-x2+2xy+y2, A+B 的值19、当a=5时,求代数式-的值20、当x=~2时,求代数式9x+6x2-3的值31332451x1221、当x=5时,求代数式-4的值22、当x二,时,求代数式-+的值23、当x2+xy=2,y2+xy=5 时,求代数式x2+2xy+y2 的值24、当a-b=4, c+d=-6时,求代数式-的值1211426、当a=,b二时,求代数式4+4-4的值3121313121425、当 a=, b=l 时,求代数式 a2+3ab-b2 的值27、当a=6,b=3时,求代数式23ab?4122 的值 13321328、当 a=-2, b二时,求代数式a-2-的值29、当a二,时,求代数式1--3的值30、当 2+ | y+1 | =0 时,求代数式 5xy2- [2x2y-]的值。

化简求值练习题及答案

化简求值练习题及答案

化简求值练习题及答案化简求值练习题及答案在数学学习中,化简求值是一个重要的环节。

通过化简求值,我们可以将复杂的表达式简化为更简单的形式,并得出准确的结果。

本文将为大家提供一些化简求值练习题及答案,希望能帮助大家更好地掌握这一技巧。

一、整数运算1. 化简求值:(-8) + (-3) - (-5) + 2解答:根据整数的加减法规则,负数相加等于它们的绝对值相加,并保留原来的符号。

所以,(-8) + (-3) - (-5) + 2 = -8 - 3 + 5 + 2 = -42. 化简求值:(-9) × 4 ÷ (-2)解答:根据整数的乘除法规则,两个负数相乘等于它们的绝对值相乘,并保留正号;负数除以正数等于它们的绝对值相除,并保留负号。

所以,(-9) × 4 ÷ (-2) = 36 ÷ (-2) = -18二、分数运算1. 化简求值:(3/4) + (5/6) - (1/2)解答:首先需要找到这三个分数的最小公倍数,即12。

然后将每个分数的分子乘以12除以分母,得到通分后的分数。

所以,(3/4) + (5/6) - (1/2) = (9/12) + (10/12) - (6/12) = 13/122. 化简求值:(2/5) × (3/8) ÷ (4/9)解答:分数的乘除法规则很简单,分别将分子相乘或相除,分母相乘或相除即可。

所以,(2/5) × (3/8) ÷ (4/9) = (2 × 3) / (5 × 8) ÷ (4/9) = 6/40 ÷ (4/9) = (6/40) × (9/4) = 54/160 = 27/80三、代数式运算1. 化简求值:2x + 3y - x + 4y解答:根据代数式的加减法规则,相同字母项的系数相加或相减,字母部分保持不变。

所以,2x + 3y - x + 4y = x + 7y2. 化简求值:3(x - 2) - 2(3x + 1)解答:根据代数式的乘法规则,将括号内的表达式乘以外面的系数。

代数式化简求值的三种考法—2023-2024学年七年级数学上册(人教版)(解析版)

代数式化简求值的三种考法—2023-2024学年七年级数学上册(人教版)(解析版)

代数式化简求值的三种考法类型一、整体代入求值【答案】【分析】根据一元一次方程的解的定义,将3x =代入2mx n −=,得出32n m −=−,代入代数式,即可求解.【详解】解:∵3x =是关于x 的一元一次方程2mx n −=的解, ∴32m n −=,即32n m −=− ∴265n m −+=()()2352251n m −+=⨯−+=,故答案为:1.【点睛】本题考查了一元一次方程解的定义,代数式求值,整体代入解题的关键. 例2.已知代数式232a b −+的值为4,则代数式 2628b a −+的值为( ) A .4 B .8−C .12D .4−【答案】A【分析】由代数式232a b −+的值为4,可知23a b −的值,再观察题中的两个代数式23a b −和2628b a −+,可以发现226282(3)8b a a b −+=−−+,代入即可求解.【详解】解:∵代数式232a b −+的值为4,∴2324a b −+=,即232a b −=,∴2628b a −+22(3)8a b =−−+228=−⨯+4=,故选:A .【点睛】此题主要考查了代数式求值,代数式中的字母没有明确告知,而是隐含在题设中,首先应从题设入手,寻找要求的代数式与题设之间的关系,然后利用“整体代入法”求代数式的值.例3.已知535y ax bx cx =++−,当3x =时,7y =,那么3x =−时,y =( ) A .-3 B .-7 C .-17 D .7【答案】C【分析】把3x =,7y =代入计算得5333312a b c ++=,然后把3x =−代入原式化简,利用整体代入法即可得到答案.【详解】解:∵535y ax bx cx =++−中,当3x =时,7y =,∴5333357a b c ++−=, ∴5333312a b c ++=,把3x =−代入535y ax bx cx =++−,得 533335y b c a =−−−−, 53(333)5a b c =−++−125=−− 17=−;故选择:C.【点睛】本题考查了求代数式的值,解题的关键是利用整体代入法进行解题.【分析】根据绝对值的性质,求出,a b 可能取得值,根据0a b −<确定,a b 的值,再代数求值. 【详解】解:5a =,18b −=,5a ∴=±,18b −=±, 5a ∴=±,9b =或7−, 0a b −<Q ,∴当5a =,9b =时,5914a b +=+=;当5a =−,9b =时,594a b +=−+=. 故a b +的值为4或14.【点睛】本题考查了绝对值与代数式求值,解决本题的关键在于根据绝对值的性质求出,a b 的值,然后分情况讨论.【分析】先根据多项式乘以多项式运算法则,将括号展开,再将2a b −=,5ab =代入进行计算即可. 【详解】解:()()()444416416a b ab a b ab a b −+=+−−=+−−,∵2a b −=,5ab =, ∴原式5421619=−⨯−=−.故答案为:19−.【点睛】本题主要考查了多项式乘以多项式,解题的关键是掌握多项式乘以多项式,把前面一个多项式的每一项分别乘以后面一个多项式的每一项. 【变式训练3】已知a +b =2ab ,那么232a ab ba ab b++−+=( )A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b ++−+=2()3a b ab a b ab +++−=2232ab ab ab ab ⨯+−=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数. (1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x −时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值. 【答案】(1)0 (2)3e = (3) 6.5−【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1−,1,2−,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x −代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd =,且a b c d 、、、是互不相等的整数, ∴a b c d 、、、为1−,1,2−,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++ 43231111a b c d e =⨯+⨯+⨯+⨯+ 3a b c d e =++++ 30e =+27=,3e ∴=;(3)解:当=1x −时,4323ax bx cx dx e ++++()()()()43231111a b c d e =⨯−+⨯−+⨯−+⨯−+3a b c d e =−+−+14=,13a b c d ∴−+−=−, 0a b c d +++=, 6.5a c ∴+=−.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.【变式训练1】已知()20211232021012320211x a a x a x a x a x +=++++⋅⋅⋅+,则20212020201920181a a a a a −+−+⋅⋅⋅+的值为 .【答案】1【分析】分别令=1x −、0x =代入,求得对应代数式的值,求解即可.【详解】解:令=1x −,则()202101232020202110x a a a a a a +=−+−+⋅⋅⋅−=+,令0x =,则()2021011x a +==,∴2021202020192018100a a a a a a −+−+⋅⋅⋅+−=, ∴2021202020192018101a a a a a a −+−+⋅⋅⋅+==.故答案为:1.【点睛】此题考查了求代数式的值,解题的关键是给x 赋值,得到对应代数式的值. 【变式训练2】若()665432654321021x a x a x a x a x a x a x a −=++++++,则5310a a a a ++−=______. 【答案】365−【详解】解:令x=0,代入等式中得到:()61−=a ,∴0=1a , 令x=1,代入等式中得到:65432101①=++++++a a a a a a a , 令x=-1,代入等式中得到:66543210(3)②−−−−=+++a a a a a a a ,将①式减去②式,得到:65311(3)2()−−+=+a a a ,∴536113)3642(−+=+=−a a a ,∴53103641365++−=−−=−a a a a , 故答案为:365−.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =−时,可以得到432106a a a a a −+−+=−;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x −+−+−+−+−+−+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值; (3) 642a a a ++的值. 【答案】(1)4;(2)8;(3)0 【解析】(1)解:当1x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴0414a =⨯=;(2)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+①;当0x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432100+−++=−−a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=−=. 类型三、降幂思想求值例.若2230x x −+=,则3227122020x x x −++=_____; 【答案】2029【详解】解:∵2230x x −+=, ∴223x x −=−,∴3227122020x x x −++=x(2x2-4x -3x+12)+2020=x[2(x2-2x)-3x+12]+2020= x[2×(-3)-3x+12]+2020=x(-3x+6)+2020=-3(x2-2x)+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【分析】根据已知得到2232022x x −=,再将所求式子变形为()()22232320222020x x x x x x =−+−−−,整体代入计算即可.【详解】解:∵22320220x x −−=, ∴2232022x x −=, ∴32220252020x x x −−−322232*********x x x x x =−+−−−()()22232320222020x x x x x x =−+−−−2022202220222020x x =+−−2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键. 【变式训练2】如果2233x x −+的值为5,则2695x x −−的值为______. 【答案】1【详解】∵22335x x −+=,∴2232x x −=∴2695x x −−()23235x x =−−325=⨯−1=,故答案为:1. 【变式训练3】已知21x x +=,求43222023x x x x +−−+的值. 【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=, ∴43222023x x x x +−−+()22222023x x x x x =+−−+2222023x x x =−−+ 22023x x =−−+()22023x x =−++12023=−+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键. 【变式训练4】已知210x x −−=,则3222021x x −++的值是______. 【答案】2022【详解】解:∵210x x −−=,∴230x x x −−=, ∴32210x x −+−=,∴3221x x −+=,∴3222021120212022x x −++=+=,故答案为:2022.课后训练1.已知2|1|(2)0x y −++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +−−++的值. 【答案】-2 【详解】解:()2120x y −++=,()21020x y −≥+≥,.10x ∴−=,20y += 1x ∴=,2y =−因为a 与b 互为倒数,所以1ab = 因为c 与d 互为相反数,所以0c d += ∴原式()()()321213c d =−−−++()311=−−=-2.2.已知23a bc +=,222b bc −=−.则22543a b bc +−的值是( ) A .23− B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++−,再整体代入计算.【详解】解:∵23a bc +=,222b bc −=−, ∴22543a b bc +−225548a bc b bc =+−+()()22254a bc b bc =+−+()5342=⨯+⨯−158=−7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用. 3.已知21a a +=,那么3222023a a ++的值是( ) A .2021 B .2022 C .2023 D .2024【答案】D【分析】先将3a 降次为2a a −+,然后代入代数式,再根据已知条件即可求解. 【详解】解:∵21a a +=,∴21a a =−+,则32a a a =−+,∴3222023a a ++2222023a a a =−+++ 22023a a =++12023=+2024=,故选:D .【点睛】本题考查了已知代数式的值求代数式的值,解决本题的关键是要将未知代数式进行降幂.【分析】根据2330a a −−=得出233a a ∴−=,然后整体代入求解;【详解】2330a a −−=Q ,233a a ∴−=,∴()222021262320212320212015a a a a −+=−−+=−⨯+=,故答案为:2015.【点睛】本题考查了求代数式的值,根据已有的等式整体代入求值是解题的关键.【分析】根据互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,代入求值.【详解】解:由题意可知,互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,故原式20200(11)=−−.0=.故答案为:0.【点睛】本题考查相反数的性质,倒数的性质以及最大的负整数,熟练掌握知识点是解题的关键.【答案】【分析】先把1x =代入531ax bx cx +++,可得a b c ++的值,再把1x =−代入531ax bx cx +++得1a b c −−−+,变形后再次把a b c ++的值代入计算即可.【详解】把1x =代入531ax bx cx +++得,12023a b c +++=∴2022a b c ++=,再把1x =−代入531ax bx cx +++得()11a b c a b c −−−+=−+++20221=−+ 2021=−.【点睛】此题考查代数式求值,解题关键在于把x 的值代入和整体思想的应用.【答案】(1)37;17;(2)2n+【分析】(1)根据题意代入求值即可;(2)分别计算1(),()f n f n 的值,找到规律再求解【详解】(1)()2263661637f ==+; 221114417114f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭;(2)22222111(),()1111n n f n f n n n n ===+++1()()1f n f n \+=∴()()()()1111231231f f f f f f n f n ⎛⎫⎛⎫⎛⎫+++++⋅⋅⋅+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()1111231231f f f f f f n f n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++⋅⋅⋅+++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦11122n n =+⨯=+.【点睛】本题考查了代数式求值,分式的计算,理解题意,找到1()()1f n f n +=是解题的关键.【答案】【分析】把2x x +当整体代入求值,通过两次代入即可得出最后结果.【详解】解:230+−=x x ,23∴+=x x ,32225x x x +−+ 32225x x x x =++−+()2225x x x x x =++−+23x x +=,∴原式2325x x x =+−+25x x =++ 35=+8=,故答案为:8.【点睛】本题考查分解因式的应用,同时也要熟练运用整体代入的方法,快速分析出所需代入的整体是解题的关键.9.已知24a +=,()214b −=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b −=,∴a+2=±4,b−1=±2,∴a=2或a=−6,b=3或b=−1;∵0ab <,∴a=2,b=−1或a=−6,b=3,当a=2,b=−1时,则2(1)1a b +=+−=;当a=−6,b=3时,则633a b +=−+=−;故答案为:1或-3.。

代数式的化简求值问题典型例题

代数式的化简求值问题典型例题

代数式的化简求值问题典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.例2.x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式635-++cx bx ax 的值。

例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.例4. 已知012=-+a a ,求2007223++a a 的值.例5.(实际应用)A 和B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A 公司,年薪一万元,每年加工龄工资200元;B 公司,半年薪五千元,每半年加工龄工资50元。

从收入的角度考虑,选择哪家公司有利?例6.三个数a 、b 、c 的积为负数,和为正数,且bc bc ac ac ab ab c c b b a a x +++++=, 则 123+++cx bx ax 的值是_______ 。

另:观察代数式 bcbc ac ac ab ab c c b b a a +++++,交换a 、b 、c 的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a 、b 、c 再讨论。

有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质。

规律探索问题:例7.如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…. (1)“17”在射线 ____上, “2008”在射线___________上. (2)若n 为正整数,则射线OA 上数字的排列规律可以用含n 的 代数式表示为__________________________. 例8. 将正奇数按下表排成5列: 第一列 第二列 第三列 第四列 第五列第一行 1 3 5 7 第二行 15 13 11 9 第三行 17 19 21 23第四行 31 29 27 25根据上面规律,2007应在A .125行,3列 B. 125行,2列 C. 251行,2列 D . 251行,5列例9.(2006年嘉兴市)定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为k n 2(其中k 是使k n2为奇数的正整数),并且运算重复进行.例如,取n =26,则:若n =449,则第449次“F 运算”的结果是__________.A B D C E FO 1 7 2 8 3 9 4 10 511 6 12 26 13 44 11 第一次 F ② 第二次 F ① 第三次 F ② …和绝对值有关的问题(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。

2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)

2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)

2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。

它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。

2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。

注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。

二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式的值为8,求当x =2时,代数式的值。

分析: 因为当x=-2时, 得到,所以146822235-=--=++c b a当x=2时,=206)14(622235-=--=-++c b a例3.当代数式的值为7时,求代数式的值.分析:观察两个代数式的系数由 得 ,利用方程同解原理,得2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 整体代人,代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。

例4. 已知,求的值.分析:解法一(整体代人):由 得所以:解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。

化简代数式50道题

化简代数式50道题

化简代数式50道题一、化简下列代数式(1 - 20题带解析)1. 化简:3x + 2x- 解析:根据合并同类项的法则,同类项的系数相加,字母和指数不变。

这里3x和2x是同类项,将它们的系数3和2相加,得到(3 + 2)x=5x。

2. 化简:5a - 3a- 解析:5a和3a是同类项,按照合并同类项的方法,将系数相减,即(5 - 3)a = 2a。

3. 化简:4x+3y - 2x + y- 解析:- 合并同类项4x和-2x,得到(4 - 2)x = 2x。

- 然后,合并同类项3y和y,得到(3+1)y = 4y。

- 所以,化简后的结果为2x + 4y。

4. 化简:2a^2+3a^2- 解析:2a^2和3a^2是同类项,合并同类项时,系数相加,字母和指数不变,即(2 + 3)a^2=5a^2。

5. 化简:6xy-4xy- 解析:6xy和-4xy是同类项,将系数相减,得到(6 - 4)xy = 2xy。

6. 化简:3x^2y+2x^2y - 5x^2y- 解析:- 先合并3x^2y和2x^2y,系数相加得(3 + 2)x^2y=5x^2y。

- 再用5x^2y减去5x^2y,即(5 - 5)x^2y = 0。

7. 化简:4(a + b)-3(a + b)- 解析:- 把(a + b)看作一个整体,4(a + b)和-3(a + b)是同类项。

- 合并同类项得(4 - 3)(a + b)=a + b。

8. 化简:2m^2-3m + 4m^2-m- 解析:- 先合并同类项2m^2和4m^2,得到(2+4)m^2=6m^2。

- 再合并同类项-3m和-m,得到(-3 - 1)m=-4m。

- 所以化简结果为6m^2-4m。

9. 化简:3(a - b)+2(b - a)- 解析:- 先将2(b - a)变形为- 2(a - b)。

- 然后合并同类项3(a - b)和-2(a - b),得到(3-2)(a - b)=a - b。

初三代数式化简求值练习题

初三代数式化简求值练习题

初三代数式化简求值练习题1. 将下列代数式化简,并求值:a) 4a + 3b - 2a + 7bb) 5(x + 2y) - 2(3x - 5y)c) 3(x - 4) - x(2x - 3)d) 2(x + y) - 3(x - y) - 4x + 5ye) 2a(4b - 3c) - 3b(2a - c)2. 解答思路:在进行代数式的化简和求值时,需要注意以下几个步骤:步骤一:合并同类项,即将具有相同字母和相同幂数的项合并。

步骤二:根据乘法分配律,将括号内的式子与外部的系数进行分配。

步骤三:将得到的化简后的式子进行进一步计算,得到最终结果。

以下是对上述每个代数式化简和求值的详细步骤:3. 解题过程:a) 4a + 3b - 2a + 7b= (4a - 2a) + (3b + 7b)= 2a + 10bb) 5(x + 2y) - 2(3x - 5y)= 5x + 10y - 6x + 10y= -x + 20yc) 3(x - 4) - x(2x - 3)= 3x - 12 - 2x^2 + 3x= -2x^2 + 6x - 12d) 2(x + y) - 3(x - y) - 4x + 5y= 2x + 2y - 3x + 3y - 4x + 5y= -5x + 10ye) 2a(4b - 3c) - 3b(2a - c)= 8ab - 6ac - 6ab + 3bc= 2ab - 6ac + 3bc4. 结论:a) 4a + 3b - 2a + 7b = 2a + 10bb) 5(x + 2y) - 2(3x - 5y) = -x + 20yc) 3(x - 4) - x(2x - 3) = -2x^2 + 6x - 12d) 2(x + y) - 3(x - y) - 4x + 5y = -5x + 10ye) 2a(4b - 3c) - 3b(2a - c) = 2ab - 6ac + 3bc以上是对初三代数式化简求值练习题的解答过程和结果。

代数式的化简与求值习题打印版G6

代数式的化简与求值习题打印版G6

代数式的化简与求值(打印版)1.设a>b>0,a²+b²=82ab,则(a+b)/(a-b)的值等于________。

2.如果多项式p=a²+16b²+32a+32b+2624,则p的最小值是________。

3.已知a+(1/b)=b+(1/c)=c+(1/a),a≠b≠c,则a²b²c²=________。

4.一个正数x的两个平方根分别是a+86与a-183,则a值为________。

5.已知实数a满足|2661-a|+√(a-2467)=a,那么a-2661²=_______。

6.已知m是方程x²-2417x+3=0的一个根,则m²-2416m+7251/(m²+3)+53的值等于_______。

7.若x²+6x-224=0,则x³+45x²+10x+32=_______。

8.若a²+b-16a-18√b+145=0,则代数式a^(a+b)*b^(a-b)=________。

9.若m为实数,则代数式|m|+m的值一定是________。

10.若x<-26,则y=|161-|161+x||等于________。

11.已知非零实数a,b 满足|12a-68|+|b+28|+√[(a-3)*b²]+68=12a,则a+b等于________。

12.当x>162时,化简代数式√[x+18√(x-81)]+√[x-18√(x-81)]= ________。

13.将代数式x³+(2b+1)x²+(b²+2b-1)x+(b²-1)分解因式,得________。

14.已知a=-1+√6,则8a³+2a²-18a+72的值等于________.15.已知p是方程x²-1997x+1=0的一个根,则p²-1996p+1997/(p²+1)+185的值等于________。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)

代数式求值经典题型【编著】黄勇权 经典题型:1、x+x 1=3,求代数式x2-2x 1的值。

2、已知a+b=3ab ,求代数式b 1a 1+的值。

3、已知x 2-5x+1=0,求代数式x 1x +的值。

4、已知x-y=3,求代数式(x+1)2-2x+y (y-2x )的值。

5、已知x-y=2,xy=3,求代数式x 2-x y6+y 2的值。

6、已知y x =2,则x y-x 的值是多少?7、若2y 1x 1=+,求代数式:3y x y -3x y3x y -x ++的值。

8、已知5-x =4y-4-y2,则代数式2x-3+4y的值是多少?9、化简求值,12x x 1-x 2++÷)(1x 21+-,其中x=13-10、x 2-4x+1=0,求代数式:x 2+2x 1的值。

【答案】1、x+x 1 =3,求代数式:x 2-2x 1的值。

解:x2-2x 1=(x+x 1)(x-x 1)=(x+x 1)2x 1-x )(=(x+x 1)22x 12x +-=(x+x 1)4x 12x 22-++ =(x+x 1)4x1x 2-+)( 将x+x 1=3代入式中=3×432-=352、已知a+b=3ab ,求代数式:b 1a 1+的值。

解:b 1a 1+=ab b a +将a+b=3ab 代入式中 =3 3、已知x2-5x+1=0,求代数式:x1x +的值。

解:因x 2-5x+1=0, 等式两边同时除以x则有:x 0x 1x x 5x x 2=+-化简得:x-5+x 1=0把-5移到等号的右边,得:x1x +=5 4、已知x-y=3,求代数式:(x+1)2-2x+y (y-2x )的值。

解:(x+1)2-2x+y (y-2x )去括号,展开得 =x 2+2x+1-2x+y 2-2xy 合并同类项,+2x 与-2x 抵消 =x 2+1+y 2-2xy把+1移到最后,=x2+y2-2xy+1此三项结合=(x2-2xy+y2)+1=(x-y)2+1将x-y=3合代入式中=(3)2+1=3+1=45、已知x-y=2,xy=3,求代数式x2-x y6+y2的值。

整式的化简求值(五大题型50题)(原卷版)

整式的化简求值(五大题型50题)(原卷版)

(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x2y−[xy2+3(x2y−13xy2)],其中x=12,y=2.2.先化简,再求值:4x2﹣2xy+y2﹣(x2﹣xy+y2),其中x=﹣1,y=−1 2.3.(2022秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.4.(2022秋•邹城市校级期末)先化简,再求值:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2),其中x=﹣1,y=2.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.9.先化简,再求值:2(ab −32a 2+a ﹣b 2)﹣3(a ﹣a 2+23ab ),其中a =5,b =﹣2.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.12.(2022秋•绿园区期末)先化简,再求值:12m −(2m −23n 2)+(−32m +13n 2),其中m =−14,n =−12.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14xy2)−2(xy2−xy),其中x=12,y=﹣2.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1=.(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1=;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.28.(2022秋•西安期中)化简求值:−12(5xy −2x 2+3y 2)+3(−12xy +23x 2+y 26),其中x 、y 满足 (x +1)2+|y ﹣2|=0.29.(2022秋•公安县期中)先化简,再求值:4a 2b ﹣[﹣2ab 2﹣2(ab ﹣ab 2)+a 2b ]﹣3ab ,其中a =12,b =﹣4.30.(2022秋•海林市期末)先化简再求值:12a +2(a +3ab −13b 2)−3(32a +2ab −13b 2),其中a 、b 满足|a ﹣2|+(b +3)2=0.31.(2022秋•万州区期末)化简求32a 2b ﹣2(ab 2+1)−12(3a 2b ﹣ab 2+4)的值,其中2(a ﹣3)2022+|b +23|=0.32.(2022秋•偃师市期末)已知:(x−2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x2y−2xy2)−[(−x2y2+4x2y)−13(6xy2−3x2y2)],其中x是最大的负整数,y是绝对值最小的正整数.34.(2022秋•越秀区期末)已知代数式M=(2a2+ab﹣4)﹣2(2ab+a2+1).(1)化简M;(2)若a,b满足等式(a﹣2)2+|b+3|=0,求M的值.35.(2022秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.36.(2022秋•江都区期末)已知代数式A =x 2+xy ﹣12,B =2x 2﹣2xy ﹣1.当x =﹣1,y =﹣2时,求2A ﹣B 的值.37.已知:A =x −12y +2,B =x ﹣y ﹣1.(1)化简A ﹣2B ;(2)若3y ﹣2x 的值为2,求A ﹣2B 的值.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =xy 2−2(32xy 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.44.(2021秋•沂源县期末)已知多项式x2+ax﹣y+b与bx2﹣3x+6y﹣3差的值与字母x的取值无关,求代数式3(a2﹣2ab﹣b2)﹣4(a2+ab+b2)的值.45.(2022秋•大竹县校级期末)已知代数式x2+ax﹣(2bx2﹣3x+5y+1)﹣y+6的值与字母x的取值无关,求1 3a3−2b2−14a3+3b2的值.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2ab2−4(ab−34a2b)]+2ab2的值.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.。

代数式的化简求值问题(含答案)

代数式的化简求值问题(含答案)

第二讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。

它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。

2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。

注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。

二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。

分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。

代数式化简求值经典题各版本通用

代数式化简求值经典题各版本通用

代数式化简求值经典题各版本通用集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-代数式化简求值经典17题(各版本通用) 1、当x=-2时,求代数式9x+6x 2-3(x-32x 2)的值2、当x=21时,求代数式41(-4x 2+2x-8)-(21x-1)的值3、当a=-1,b=1时,求代数式(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)的值4、当x=-1,y=-2时,求代数式3-2xy+3yx 2+6xy-4x 2y 的值5、当x 2-xy=3a,xy-y 2=-2a 时,求代数式x 2-y 2的值6、当x=2004,y=-1时,求代数式A=x 2-xy+y 2,B=-x 2+2xy+y 2,A+B 的值7、当a=5时,求代数式(6a+2a 2+1)-(a 2-3a)的值8、当a-b=4,c+d=-6时,求代数式(b+c)-(a-d)的值9、当a=21,b=1时,求代数式a 2+3ab-b 2的值10、当a=71,b=314时,求代数式4(b+1)+4(1-a)-4(a+b)的值 11、当x=-2时,求代数式9x+6x 2-3(x-32x 2)的值 12、当x=5时,求代数式21(2x 2-6x-4)-4(-1+x+41x 2)的值 13、当x=21,时,求代数式(2x 2-x-1)-(x 2-x-31)+(3x 2-331)的值 14、当x 2+xy=2,y 2+xy=5时,求代数式x 2+2xy+y 2的值15、当a=-2,b=32时,求代数式21a-2(a-31b 2)-(23a-31b 2)的值16、当a=,时,求代数式1-(2a-1)-3(a+1)的值17、当(x+2)2+|y+1|=0时,求代数式5xy 2-[2x 2y-(2x 2y-xy 2)]的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档