2018年人教版七年级数学下册期末考试试卷

合集下载

2018-2019学年新人教版七年级下册期末数学试卷含答案

2018-2019学年新人教版七年级下册期末数学试卷含答案

2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分) 1. 下列调查,比较适合全面调查方式的是( )A. 乘坐地铁的安检B. 长江流域水污染情况C. 某品牌圆珠笔笔芯的使用寿命D. 端午节期间市场上的粽子质量情况 2. 下列命题中,假命题是( )A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行B. 在同一平面内,过一点有且只有一条直线与已知直线垂直C. 两条直线被第三条直线所截,同旁内角互补D. 两直线平行,内错角相等3. 下列四组值中,是二元一次方程x −2y =1的解的是( )A. {y =1x=0B. {y =−1x=1C. {y =1x=1D. {y =0x=14. 如图图形中,由∠1=∠2能得到AB//CD 的是( )A. B.C. D.5. 下列说法不正确的是( )A. 4是16的算术平方根B. 53是259的一个平方根 C. (−6)2的平方根−6 D. (−3)3的立方根−36. 已知a <b ,则下列不等式一定成立的是( )A. 12a <12bB. −2a <−2bC. a −3>b −3D. a +4>b +47. 某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A. 得分在70~80分的人数最多B. 该班的总人数为40C. 得分及格(≥60分)的有12人D. 人数最少的得分段的频数为28. 亮亮准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x −45≥300 B. 30x +45≥300 C. 30x −45≤300D. 30x +45≤300 9. 某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余.若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( )A. {12x −10y =0x+y=22B. {6x −10y =0x+y=22C.{24x −10y =0x+y=22D. {12x −20y =0x+y=2210. 已知点M(2m −1,1−m)在第四象限,则m 的取值范围在数轴上表示正确的是( )A.B.C.D.二、填空题(本大题共5小题,共15.0分) 11. √16的平方根是______.12. 如图,直线a//b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55∘,则∠2的度数为______.13. 点P(−5,1)到x 轴距离为______.14. 不等式3(x −1)≤5−x 的非负整数解有______个.15. 算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x ,y 的系数.因此,根据此图可以列出方程:x +10y =26.请你根据图2列出方程组______.三、解答题(本大题共8小题,共64.0分)16.计算:(1)3(√3+√2)−2(√3−√2)(2)|√2−3|+√(−3)2−(−1)2019+√−27317.用适当的方法解下列方程组:(1){x−2y=2y=5−x(2){3x−2y=72x−3y=318.解不等式组:{4x>2x−6x+13≥x−1,并把解集表示在数轴上.19.已知:如图的网格中,△ABC的顶点A(0,5)、B(−2,2).(1)根据A、B坐标在网格中建立平面直角坐标系并写出点C的坐标:(______,______);(2)平移三角形ABC,使点C移动到点F(7,−4),画出平移后的三角形DEF,其中点D与点A对应,点E与点B对应.(3)画出AB边上中线CD和高线CE;(利用网格点和直尺画图)(4)△ABC的面积为______.20.如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH//BC交AB于点H.(1)请你补全图形(不要求尺规作图);(2)求证:∠BDH=∠CEF.21.2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.(1)统计表中,a=______,b=______,c=______;(2)扇形统计图中,m的值为______,“C”所对应的圆心角的度数是______;(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?22.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.23.探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1//l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=______.(2)如图2,若AC//BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.过点P作PE//AC.∴∠A=______∴______//______∴∠B=______∵∠BPA=∠BPE−∠EPA∴______.(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180∘.【答案】 1. A 2. C 3. D 4. B 5. C 6. A 7. C8. B 9. A 10. B11. ±2 12. 35∘ 13. 1 14. 315. {x +y =18x+2y=2216. 解:(1)原式=3√3+3√2−2√3+2√2 =√3+5√2;(2)原式=3−√2+3+1−3 =4−√2. 17. 解:(1){x −2y =2 ②y=5−x ①把①代入②得 x −2(5−x)=2, 解得x =4把x =4代入得①,y =5−4=1, ∴原方程组的解为{y =1x=4;(2){3x −2y =7 ②2x−3y=3 ①解:由①得 6x −9y =9 ③ 由②得 6x −4y =14 ④ ③−④得−5y =−5, 解得 y =1,把y =1代入①得 2x −3=3, 解得x =1∴原方程组的解为{y =1x=3.18. 解:解不等式4x >2x −6,得:x >−3, 解不等式x+13≥x −1,得:x ≤2,∴不等式组的解集为:−3<x ≤2, 将不等式组解集表示在数轴上如图:19. 2;3;11220. 解:(1)如图所示,EF ,DH 即为所求;(2)∵DH//BC , ∴∠BDH =∠DBC , ∵BD ⊥AC ,EF ⊥AC , ∴BD//EF ,∴∠CEF =∠DBC , ∴∠BDH =∠CEF .21. 225;500;0.3;45;108∘22. 解:(1)设篮球每个x 元,排球每个y 元,依题意,得 {3x =5y 2x+3y=190, 解得,{y =30x=50,答:篮球每个50元,排球每个30元;(2)设购买篮球m 个,则购买排球(20−m)个,依题意,得 50m +30(20−m)≤800. 解得m ≤10, 又∵m ≥8, ∴8≤m ≤10.∵篮球的个数必须为整数, ∴m 只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个; ②购买篮球9,排球11个; ③购买篮球10个,排球10个, 以上三个方案中,方案①最省钱.23. ∠A +∠B ;∠1;PE ;BD ;∠EPB ;∠APB =∠B −∠1 【解析】1. 解:A 、乘坐地铁的安检,适合全面调查,故A 选项正确; B 、长江流域水污染情况,适合抽样调查,故B 选项错误;C 、某品牌圆珠笔笔芯的使用寿命,适合抽样调查,故C 选项错误;D 、端午节期间市场上的粽子质量情况,适于抽样调查,故D 选项错误. 故选:A .根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2. 解:∵如果两条直线都与第三条直线平行,那么这两条直线也互相平行, ∴选项A 是真命题;∵在同一平面内,过一点有且只有一条直线与已知直线垂直,∴选项B 是真命题;∵两条直线被第三条直线所截,同旁内角不一定互补, ∴选项C 是假命题;∵两直线平行,内错角相等, ∴选项D 是真命题. 故选:C .分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 3. 解:{y =0x=1是二元一次方程x −2y =1的解,故选:D .把x 与y 的值代入方程检验即可.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4. 解:A 、∠1、∠2是同旁内角,由∠1=∠2不能判定AB//CD ; B 、∠1、∠2是内错角,由∠1=∠2能判定AB//CD ;C 、∠1、∠2是内错角,由∠1=∠2能判定AC//BD ,不能判定AB//CD ; D ,∠1、∠2是同旁内角,由∠1=∠2不能判定AB//CD ; 故选:B .在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角.5. 解:4是16的算术平方根,故A 正确,不符合要求;53是259的一个平方根,故B 正确,不符合要求; (−6)2的平方根是±6,故C 错误,符合要求; (−3)3的立方根−3故D 正确,不符合要求. 故选:C .依据平方根、算术平方根、立方根的性质解答即可.本题主要考查的是立方根、平方根、算术平方根的性质,熟练掌握相关性质是解题的关键. 6. 解:∵a <b ,∴A 、12a <12b ,此选项正确;B 、−2a >−2b ,此选项错误;C 、a −3<b −3,此选项错误;D 、a +4<a +4,此选项错误; 故选:A .根据不等式的性质求解即可.本题考查了不等式的性质,利用不等式的性质是解题关键. 7. 解:A 、得分在70~80分的人数最多,正确; B 、该班的总人数为4+12+14+8+2=40,正确;C 、得分及格(≥60分)的有12+14+8+2=36人,错误;D 、人数最少的得分段的频数为2,正确; 故选:C .根据直方图即可得到每个分数段的人数,据此即可直接作出判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8. 解:x 个月可以节省30x 元,根据题意,得 30x +45≥300. 故选:B .此题中的不等关系:现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.本题主要考查由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 9. 解:设安排x 个工人加工桌子,y 个工人加工椅子, 由题意得{4×3x −10y =0x+y=22,即{12x −10y =0x+y=22.故选:A .设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可.本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子. 10. 解:∵点M(2m −1,1−m)在第四象限, ∴{1−m <0 ②2m−1>0 ①,由①得,m >0.5; 由②得,m >1, 在数轴上表示为:故选:B .根据第四象限内点的坐标特点列出关于m 的不等式组,求出m 的取值范围,并在数轴上表示出来即可.本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键. 11. 解:√16的平方根是±2.故答案为:±2根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 12. 解:∵AB ⊥BC ,∠1=55∘, ∴∠2=90∘−55∘=35∘. ∵a//b ,∴∠2=∠3=35∘. 故答案为:35∘.先根据∠1=55∘,AB ⊥BC 求出∠3的度数,再由平行线的性质即可得出结论. 本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等. 13. 解:点P(−5,1)到x 轴距离为1.故答案为1.根据点P(x,y)到x 轴距离为|y|求解.本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点. 14. 解:去括号,得:3x −3≤5−x ,移项,得:3x +x ≤5+3,合并同类项,得:4x ≤8,系数化为1,得:x ≤2,则不等式的非负整数解有0、1、2这3个,故答案为:3.根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15. 解:根据题意,图2可得方程组:{x +y =18x+2y=22,故答案为{x +y =18x+2y=22.由图1可得从左向右的算筹中,前两个算筹分别代表未知数x ,y 的系数,第三个算筹表示的两位数是方程右边的常数项:前面的表示十位,后面的表示个位,由此可得图2的表达式.本题考查了由实际问题抽象出二元一次方程组,主要培养学生的观察能力,关键是能够根据对应位置的算筹理解算筹表示的实际意义.16. (1)直接利用二次根式混合运算法则计算得出答案;(2)利用二次根式以及立方根、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17. 根据代入消元法或加减消元法,可得答案.本题考查了及二元一次方程组,利用代入消元法或加减消元法是解题关键. 18. 分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集再表示在数轴上即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 解:(1)平面直角坐标系如图所示,C(2,3),故答案为2,3.(2)平移后的△DEF如图所示.(3)AB边上中线CD和高线CE如图所示;(4)S△ABC=3×4−12×2×3−12×2×2−12×1×3=112.故答案为112.(1)根据点C的位置写出坐标即可;(2)根据点C的平移规律,画出对应点D、E即可;(3)根据中线、高的定义画出中线,高即可;(4)利用分割法求三角形面积即可;本题考查作图−平移变换,作图−基本作图等知识,解题的关键是理解题意,学会用分割法求三角形的面积,属于中考常考题型.20. (1)过E点作EF⊥AC,垂足为F,过点D作DH//BC交AB于点H.(2)利用DH//BC,可得∠BDH=∠DBC,依据BD⊥AC,EF⊥AC,即可得到BD//EF,进而得出∠CEF=∠DBC,即可得到∠BDH=∠CEF.本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21. 解:(1)b=50÷0.1=500,a=500−(50+75+150)=225,c=150÷500=0.3;故答案为:225,500,0.3;(2)m%=225500×100%=45%,∴m=45,“C”所对应的圆心角的度数是360∘×0.3=108∘,故答案为:45,108∘;(3)5000×0.45=2250,答:估计成绩在95分及以上的学生大约有2250人.(1)由A组频数及其频率求得总数b=500,根据各组频数之和等于总数求得a,再由频率=频数÷总数可得c;(2)D组人数除以总人数得出其百分比即可得m的值,再用360∘乘C组的频率可得;(3)总人数乘以样本中D组频率可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22. (1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.23. 解:(1)如图,过P作PE//l1,∵l1//l2,∴PE//l1//l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE//AC.∴∠A=∠1,∵AC//BD,∴PE//BD,∴∠B=∠EPB,∵∠APB=∠BPE−∠EPA,∴∠APB=∠B−∠1;故答案为:∠1,PE,BD,∠EPB,∠APB=∠B−∠1;(3)证明:如图3,过点A作MN//BC,∴∠B=∠1,∠C=∠2,∵∠BAC+∠1+∠2=180∘,∴∠BAC+∠B+∠C=180∘.(1)过P作PE//l1,根据平行线的性质得到∠APE=∠A,∠BPE=∠B,据此可得∠APB=∠APE+∠BPE=∠A+∠B;(2)过点P作PE//AC,根据平行线的性质得出∠A=∠1,∠B=∠EPB,进而得出∠APB=∠B−∠1;(3)过点A作MN//BC,根据平行线的性质进行推导即可.本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作平行线构造内错角.。

2018-2019学年人教版七年级数学下学期期末考试检测试卷

2018-2019学年人教版七年级数学下学期期末考试检测试卷

人教版七年级数学下学期期末考试检测试卷一、精心选一选(本大题10个小题,每小题4分,共40分,每小题均有A 、B 、C 、D 四个选项,有且只有一个选项是正确的,请在答题卡的相应位置填涂)1.如图,若△DEF 是由△ABC 沿BC 方向平移得到的,则平移的距离是A.线段BC 的长度B.线段BE 的长度C.线段EC 的长度D.线段EF 的长度2.在平面直角坐标系中,点P(1,-2)在A.第一象限B.第二象限C.第三象限D.第四象限3.为了解游客对“秀屿土海湿地公园、荔城花海山前村、涵江白塘秋月湖和城厢风景九龙谷”这四个风景区旅游的满意程度,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在城厢风景九龙谷调查400名游客;方案三:在秀屿土海湿地公园调查400名游客;方案四:在上述四个景区各调查100名游客,在这四个收集数据的方案中,最合理的是A.方案一B.方案二C.方案三D.方案四4.下列不等式中,不含有1-=x 这个解的是A.312-≤+xB.312-≥-xC.312≥+-xD.312≤--x 5.无理数7-在数轴上表示时的大概位置是A.E 点B.F 点C.G 点D.H 点6.如图,天平左盘中物体A 的质量为,mg ,天平右盘中每个砝码的质量都是1g,则m 的取值范围在数轴上可表示为7.如图,直线AB 、CD 相交于点O,OE ⊥AB 于O,∠EOC=35°,则∠AOD 的度数为A.125°B.115C.55°D.35°8.如果⎩⎨⎧-==21y x 是关于x 和y 的二元一次方程1=+y ax 的解,那么a 的值是A.3 B.1 C.-1 D.-39.已知四边形ABCD 是平行四边形(即AB ∥CD,AD ∥BC),则下列各图中∠1与∠2能用来说明命题“内错角相等”的反例的是10.王老师的数学课采用小组合作学习方式,把班上40名学生分成若干小组,如果要求每小组只能是5人或6人,则有几种分组方案A.4B.3C.2D.1二、精心填一填(本题共6个小题,每小题4分,共24分,请填在答题卡的相应位置上)11.4的算术平方根是_________.12.若点M ()34-+a a ,在y 轴上,则a 的值是_______.13.为了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,其中有30名学生的身高在165cm 以上,则该问题中的样本容量是_________.14.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数y x 、的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来就是,⎩⎨⎧=+=+1422732y x y x 类似地,图2所示的算筹图我们可以用方程组形式表述为__________.15.关于x 的不等式b ax >的解集是<ab x 写出一组满足条件的b a 、的值______.16.如图,点A 、B 为定点,直线l ∥AB,P 是直线l 上一动点,对于下列各值:①线段AB 的长;②△PAB 的周长;③△PAB 的面积;④∠APB 的度数,其中不会随点P 的移动而变化的是(填写所有正确结论的序号)______________.三、耐心做一做(本大题共9小题,共86分,请解答在答题卡的相应位置上,解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:31913-++-18.(本小题满分8分)解不等式组:(),<⎪⎩⎪⎨⎧-≥++132223x x x x 并将解集在数轴上表示.19.(本小题满分8分)读句画图,如图,直线CD 与直线AB 相交于C,根据下列语句画图:(1)过点P 作PQ ∥CD,交AB 于点Q ;(2)过点P作PR⊥CD,垂足为R.20.(本小题满分8分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器160台,A型号家用净水器进价是1500元/台,售价是2100元/台;B型号家用净水器进价是3500元/台,售价是4300元/台.为保证售完这160台家用净水器的利润不低于116000元,求A型号家用净水器最多能购进多少台?(注:利润=售价-进价)21.(小题满分8分)如图,已知∠EGB=90°,AD⊥BG,∠E=∠F.求证:AD是∠BAC平分线.22.(小题满分10分)某市第三中学组织学生参加生命安全知识网络测试.小明对七年级二班全体学生的测试成绩进行统计,并绘制了如图不完整的频数分布表和扇形统计图:根据图表中的信息解答下列问题:(1)七年级二班学生的人数为________,频数分布表中a的值为________;(2)已知该市共有80000名中学生参加这次安全知识测试,若规定80分以上(含80分)为优秀,佔计该市本次测试成绩达到优秀的人数;(3)小明通过该市教育网站搜索发现,全市参加本次测试的中学生中,成绩达到优秀有56320人.请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因。

2018年人教版七年级下学期数学期末试卷及答案

2018年人教版七年级下学期数学期末试卷及答案

2018年人教版七年级下学期数学期末试卷及答案2018年七年级下册数学期末试卷一、选择题1.计算6x÷2x的结果是A.2B.3x2C.3xD.322.已知一粒米的质量是0.千克,这个数字用科学记数法表示为A.21×10^-6千克B.2.1×10^-4千克C.2.1×10^-5千克D.2.1×10^-4千克3.如图,把一块含有45°的直角三角板的两个顶点放在直尺的对边上(直尺对边平行)。

如果∠1=20°,那么∠2的度数是A.20°B.25°C.30°D.45°4.下列计算正确的是A.(-3pq)^2=9p^2q^2B.a^2/a=aC.3a^-2=3/a^2D.(ab)^3=a^3b^35.如图所示,已知O是直线AB上一点,∠AOC=48°,OD平分∠BOC,则∠BOD的度数是A.64°B.66°C.68°D.72°6.XXX利用星期天搞社会调查活动,早晨8:30出发,出发时,钟表的时针和分针夹角的度数为A.75°B.60°C.45°D.30°7.为了解中学生获取信息的主要渠道,设置"A:报纸,B:电视,C:网络,D:身边的人,E:其他"五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是A.抽样调查,24B.普查,24C.抽样调查,26D.普查,268.如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上。

若∠1=70°,∠2=50°,则∠ABC等于A.95°B.100°C.110°D.120°9.XXX早晨匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,XXX离家的距离与时间x的关系的大致图象是10.表中给出的统计数据,表示皮球从高度xcm落下时与反弹到高度ycm的关系:x/cmy/cm402550306035804510055用关系式表示y与x的这种关系正确的是A.y=x-15B.y=1/2xC.y=2x+5D.y=1/(x+5)11.从一个边长为(a+3)cm的正方形纸片中剪去一个边长为3cm的正方形,剩余部分沿虚线又剪拼成一个长方形。

人教版2017-2018学年七年级(下册)期末数学试卷及答案

人教版2017-2018学年七年级(下册)期末数学试卷及答案

2017-2018学年七年级(下册)期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.22.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣33.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b4.将不等式组的解集表示在数轴上,下面表示正确的是()A.BC.D.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.6.方程组的解是()A.B.C.D.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是.12.方程组的解是.13.用不等式表示:x与5的差不大于x的2倍:.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED 为°.16.关于x的不等式组有三个整数解,则a的取值范围是.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).18.(6分)解二元一次方程组:.19.(7分)解不等式组.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.的值等于()A.4 B.﹣4 C.±2 D.2【分析】根据表示16的算术平方根,需注意的是算术平方根必为非负数求出即可.【解答】解:根据算术平方根的意义,=4.故选A.【点评】此题主要考查了算术平方根的定义,关键是掌握算术平方根的概念:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为.2.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3【分析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.【解答】解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.3.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.【点评】本题考查了不等式的性质,属于基础题.4.将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解集;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.在实数﹣、、π、中,是无理数的是()A.﹣B.C.πD.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:﹣、、是有理数,π是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.方程组的解是()A.B.C.D.【分析】利用代入法求解即可.【解答】解:,①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以,方程组的解是.故选D.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.7.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.10.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°【分析】先根据∠1=35°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出答案.【解答】解:∵AB⊥BC,∠1=35°,∴∠2=90°﹣35°=55°.∵a∥b,∴∠2=∠3=55°.故选C.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.二.填空题(共6小题,满分18分,每小题3分)11.﹣的立方根是﹣0.6.【分析】根据立方根的定义即可求解.【解答】解:﹣的立方根是﹣0.6,故答案为﹣0.6.【点评】本题主要考查了立方根的概念,如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根,比较简单.12.方程组的解是.【分析】根据观察用加减消元法较好,①+②消去y,解出x的值,再把x的值代入①,解出y.【解答】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【点评】此题考查的是解二元一次方程组,解题的关键是用加减消元法求解.13.用不等式表示:x与5的差不大于x的2倍:x﹣5≤2x.【分析】x与5的差为x﹣5,不大于即小于等于,x的2倍为2x,据此列不等式.【解答】解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x【点评】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是把文字语言的不等关系转化为用数学符号表示的不等式,注意抓住关键词语,弄清不等关系.14.课间操时,小颖、小浩的位置如图所示,小明对小浩说,如果我的位置用(0,0)表示,小颖的位置用(2,1)表示,那么小浩的位置可以表示成(4,3).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:确定平面直角坐标系中x轴为从下数第一条横线,y轴为从左数第一条竖线,小明的位置为原点,从而可以确定小浩位置点的坐标为(4,3).故答案为:(4,3).【点评】此题主要考查了根据坐标确定点的位置,由已知条件正确确定坐标轴的位置是解决本题的关键.15.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为114°.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114.【点评】本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.16.关于x的不等式组有三个整数解,则a的取值范围是﹣<a≤﹣.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a 的范围.【解答】解:∵解不等式①得:x>2,解不等式②得:x<10+6a,∴不等式组的解集为2<x<10+6a,方程组有三个整数解,则整数解一定是3,4,5.根据题意得:5<10+6a≤6,解得:﹣<a≤﹣.故答案是:﹣<a≤﹣.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三.解答题(共9小题,满分72分)17.(6分)(1)20170﹣|﹣sin45°|cos45°+﹣(﹣)﹣1(2).【分析】(1)根据特殊角的函数值即可求出答案.(2)先化简原方程组,然后根据二元一次方程组的解法即可【解答】解:(1)原式=1﹣+3+4=8﹣=(2)原方程组化为①﹣②得:4x=﹣4x=﹣1将x=﹣1代入①中,y=解得:【点评】本题考查学生的计算能力,解题的关键熟练运用运算法则,本题属于基础题型.18.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(7分)解不等式组.【分析】分别求出求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式①,得x<1.解不等式②,得x≥0,故不等式组的解集为0≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(7分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了200名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为126度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示;(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300人故答案为:(1)200;(3)126【点评】本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型.21.(7分)如图,已知∠1+∠2=180°,∠B=∠3,求证:DE∥BC.【分析】根据同旁内角互补,两直线平行由∠1+∠2=180°得AB∥EF,再根据平行线的性质得∠B=∠EFC,而∠B=∠3,所以∠3=∠EFC,然后根据平行线的判定方法即可得到结论.【解答】证明:∵∠1+∠2=180°,∴AB∥EF,∴∠B=∠EFC,∵∠B=∠3,∴∠3=∠EFC,∴DE∥BC.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.22.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED 交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.23.(10分)学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?【分析】先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.【解答】解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x≤,x≤17,答:最多还能买词典17本.【点评】本题是一元一次不等式的应用,列不等式时要先根据“至少”、“最多”、“不超过”、“不低于”等关键词来确定问题中的不等关系,本题要弄清数量、单价、总价和书名,明确数量×单价=总价;在确定最后答案时,要根据实际意义,不能利用四舍五入的原则取整数值.24.(10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.25.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.【点评】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.。

2018年最新人教版七年级数学下册期末考试试卷

2018年最新人教版七年级数学下册期末考试试卷

2018年人教版七年级下册数学期末试卷一、选择题(24分)1.9的平方根是()A.±3 B.C.3 D.2.在平面直角坐标系中,点P(﹣5,0)在()A.第二象限B.x轴上C.第四象限D.y轴上3.在实数,,,,3.14中,无理数有()A.1个 B.2个 C.3个 D.4个4.如图,AO⊥CO,直线BD经过O点,且∠1=20°,则∠COD的度数为()A.70°B.110°C.140° D.160°5.若与|2a﹣b+1|互为相反数,则(b﹣a )2017的值为()A.﹣1 B.1 C.52015 D.﹣520156.已知方程组的解满足x+y=2,则k的算术平方根为()A.4 B.﹣2 C.﹣4 D.27.为了了解2017年我市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是()A.21000名学生是总体B.每名学生是总体的一个个体C.1000名学生的视力是总体的一个样本D .上述调查是普查8.如图,建立适当的直角坐标系后,正方形网格上的点M,N坐标分别为(0,2),(1,1),则点P的坐标为()A.(﹣1,2)B.(2,﹣1)C.(﹣2,1)D.(1,﹣2)9.若a>b,则下列式子正确的是()A.﹣5a >﹣5b B.a﹣3>b﹣3 C.4﹣a>4﹣b D.a<b10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15°B.25°C.30°D.35°11.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.B.C.D.12.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是()A.(2015,0)B .(2015,1)C.(2015,2)D.(2016,0)二、填空题(18分)13.计算﹣=.14.若点P(a,4﹣a)是第一象限的点,则a的取值范围是.15.如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为.16.二元一次方程3x+2y=11的所有正整数解是.17.如图,已知直线AE∥BC,AD平分∠BAE,交BC于点C,∠BCD=140°,则∠B 的度数为.18.已知,关于x的不等式组的正整数解共有2个,那么a的取值范围是.三、解答题(58分)19.(4分)计算:+﹣.20.(4分)解方程组.21.(5分)解不等式:x﹣,并将它的解集在数轴上表示出来.22.(5分)如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:AC∥DF.将过程补充完整.解:∵∠1=∠2()∠1=∠3()∴∠2=∠3()∴∥()∴∠C=∠ABD ()又∵∠C=∠D()∴∠D=∠ABD()∴AC∥DF()23.(8分)随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表:数据段频数频率30﹣40100.0540﹣5036c50﹣60a0.3960﹣70b d70﹣80200.10总计2001(1)表中a、b、c、d分别为:a=;b=;c=;d=.(2)补全频数分布直方图;(3)如果某天该路段约有1500辆通过,汽车时速不低于60千米即为违章,通过该统计数据估计当天违章车辆约有多少辆?24.(8分)如图,将△ABC中向右平移4个单位得到△A′B′C′.①写出A、B、C的坐标;②画出△A′B′C′;③求△ABC的面积.25.(8分)已知方程组的解x为非正数,y为负数,求符合条件的整数a的值.26.(8分)如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,求证:AD平分∠BAC.27.(8分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?。

2018年人教版七年级数学下册期末试题及答案

2018年人教版七年级数学下册期末试题及答案

2018 年七年级数学下册期末测试题一、选择题(此题共40 分,每题 4 分)下边各题均有四个选项,此中只有一个..是切合题意的.1. 9 的平方根是().A.B.C.D.2.计算的结果是().A. B. C. D.3.以下检查中,适合采纳全面检查方式的是().A.检查春节联欢晚会在北京地域的收视率B.认识全班同学参加社会实践活动的状况C.检查某品牌食品的蛋白质含量D.认识一批手机电池的使用寿命4.若,则点P(,)所在的象限是().A.第一象限B.第二象限 C .第三象限D.第四象限5.以下各数中的无理数是().A.B.C.D.6.如图,直线a∥ b, c 是截线.若∠2=4∠1,则∠ 1 的度数为().A. 30°B.36°C.40°D.45°7.若,则以下不等式中,正确的选项是().A. B.C.D.8.以下命题中,真命题是().A.相等的角是对顶角B.平行于同一条直线的两条直线相互平行C.同旁内角互补D.垂直于同一条直线的两条直线相互垂直9.若一个等腰三角形的两边长分别为 4 和 10,则这个三角形的周长为().A.18 B .22 C .24 D .18或 2410.若对于的不等式的解集是,则对于的不等式的解集是().A.B.C.D.二、填空题(此题共22 分, 11~15 题每题 2 分, 16~18 题每题 4 分)11.语句“x的 3 倍与 10 的和小于或等于7”用不等式表示为.12.如图,直线AB, CD订交于点 O,EO⊥ AB,垂足为 O.若∠ EOD=20°,则∠ COB的度数为°.13.一个多边形的每一个外角都等于40°,则它的边数为.14.若,且a,b 是两个连续的整数,则的值为.15.在直角三角形ABC中,∠ B=90°,则它的三条边AB, AC,BC中,最长的边是.16.服饰厂为了预计某校七年级学生穿每种尺码校服的人数,从该校七年级学生中随机抽取了50名学生的身高数据(单位:cm),绘制成了下边的频数散布表和频数散布直方图.(1)表中 =,=;( 2)身高知足的校服记为L 号,则需要订购 L 号校服的学生占被检查学生的百分数为.17.在平面直角坐标系中,点A的坐标为(,).若线段A B∥ x 轴,且 AB的长为4,则点 B 的坐标为.18.在平面直角坐标系xOy中,直线 l 经过点 A(,),点 A1, A2, A3, A4, A5,按如下图的规律摆列在直线 l 上.若直线 l 上随意相邻两个点的横坐标都相差 1、纵坐标也都相差1,则A的坐标为;8若点n(为正整数)的横坐标为2014,则 =.A三、解答题(此题共18 分,每题 6 分)19.解不等式组20.已知:如图,AB∥ DC, AC和 BD订交于点 O, E 是 CD上一点, F 是 OD上一点,且∠1=∠ A.(1)求证:FE∥OC;(2)若∠B=40°,∠ 1=60°,求∠OFE的度数.21.先化简,再求值:,此中,.解:四、解答题(此题共11 分,第 22 题 5 分,第 23 题 6 分)22.某校学生会为认识该校同学对乒乓球、羽毛球、排球、篮球和足球五种球类运动项目的喜爱情况(每位同学一定且只好从中选择一项),随机选用了若干名同学进行抽样检查,并将检查结果绘制成了如图1,图 2 所示的不完好的统计图.( 1)参加检查的同学一共有______ 名,图 2 中乒乓球所在扇形的圆心角为_______°;(2)在图 1 中补全条形统计图(标上相应数据);(3)若该校共有 2400 名同学,请依据抽样检查数据预计该校同学中喜爱羽毛球运动的人数.23.如图,在平面直角坐标系xOy中,△ ABC三个极点的坐标分别为A(,),B(,), C(,).将△ ABC向右平移5 个单位长度,再向下平移 4 个单位长度,获得△,其中点,,分别为点A, B, C的对应点.(1)请在所给坐标系中画出△,并直接写出点的坐标;(2)若AB边上一点P经过上述平移后的对应点为(,),用含,的式子表示点 P的坐标;(直接写出结果即可)( 3)求△的面积.解:(1)点的坐标为;( 2)点P的坐标为;( 3)五、解答题(此题共19 分,第 25 题 5 分,第 24、26 题每题 7 分)24.在一次知识比赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮番答题,每人都要回答 20 个题,每个题回答正确得m分,回答错误或放弃回答扣n 分.当甲、乙两人恰巧都答完12 个题时,甲答对了9 个题,得分为39 分;乙答对了10 个题,得分为46 分.(1)求m和n的值;(2)规定此环节得分不低于 60 分能晋级,甲在剩下的比赛中起码还要答对多少个题才能顺利晋级?解:25.阅读以下资料:某同学碰到这样一个问题:如图1,在△中,= ,是△的高.P 是边上一ABC AB AC BD ABC BC点, PM, PN分别与直线AB,AC垂直,垂足分别为点M, N.求证:.他发现,连结AP,有,即.由AB=AC,可得.他又画出了当点P 在的延伸线上,且上边问题中其余条件不变时的图形,如图 2 所示.他CB猜想此时BD, PM, PN之间的数目关系是:.请回答:(1)请补全以下该同学证明猜想的过程;证明:连结 AP.∵,∴.∵AB=AC,∴.(2)参照该同学思虑问题的方法,解决以下问题:在△ ABC中, AB=AC=BC,BD是△ ABC的高. P 是△ ABC所在平面上一点,PM,PN,PQ分别与直线 AB, AC, BC垂直,垂足分别为点M, N, Q.①如图3,若点P 在△ABC的内部,则BD,PM,PN,PQ之间的数目关系是:;②若点 P 在如图4所示的地点,利用图 4 研究得出此时BD, PM, PN, PQ之间的数目关系是:.26.在△ABC中,BD,CE是它的两条角均分线,且BD,CE订交于点 M,MN⊥ BC于点 N.将∠ MBN记为∠ 1,∠MCN记为∠ 2,∠CMN记为∠ 3.( 1)如图 1,若∠A=110°,∠BEC=130°,则∠ 2=°,∠ 3-∠ 1=°;( 2)如图 2,猜想∠ 3-∠ 1 与∠A的数目关系,并证明你的结论;( 3)若∠BEC=,∠BDC=,用含和的代数式表示∠3-∠ 1 的度数.(直接写出结果即可)解:( 2)∠ 3-∠ 1 与∠A的数目关系是:.证明:( 3)∠ 3-∠ 1=.2018 年七年级数学下册期末测试1.已知,是正整数.( 1)假如整数,则知足条件的的值为;( 2)假如整数,则知足条件的有序数对(,)为.二、解答题(此题7 分)2.已知代数式.(1)若代数式M的值为零,求此时,,的值;(2)若,,知足不等式,此中,,都为非负整数,且为偶数,直接写出,,的值.解:三、解决问题(此题7 分)3.在平面直角坐标系xOy 中,点A在x轴的正半轴上,点B的坐标为( 0,4),均分∠交BC ABO x轴于点(, 0).点P 是线段AB上一个动点(点P不与点,重合),过点P作的垂线分C A B AB 别与 x 轴交于点 D,与 y 轴交于点 E, DF均分∠ PDO交 y 轴于点 F.设点 D的横坐标为t .11DFCB22DF CB3MPMCEBCOE 12DF CB3E参照答案及评分标准3032211 1521618411121101314 1115AC161155224%112132172184029218619246201ABDC=1A C1= A1= C23FE OC2ABDCD= B4B=40°D=40°OFEDEFOFE= D+ 151=60°OFE=40°+60°=100° 6213456四、解答题(此题共11 分,第 22 题 5 分,第 23 题 6 分)22 1 200 72224352018年人教版七年级数学下册期末试题及答案2400288231232P43 H H H6五、解答题(此题共19 分,第 25 题 5 分,第 24、26 题每题 7 分)24123 m5 n224 56 676251AP132018年人教版七年级数学下册期末试题及答案AB=AC24526120552 231A3ABC BD CEMNBC NMNCABC537参照答案及评分标准一、填空题(此题 6 分)11 722710284062二、解答题(此题7 分)213527三、解决问题(此题7 分)311xOy A x B0 4 DPABPDPBO1BCABO DFPDOFDODF CB22DFCBDFCB3 DFCBQ2ABO2018年人教版七年级数学下册期末试题及答案APDBC ABO DF PDO4 CBOQCDDF CB5 3E71。

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。

【精品】初中数学七年级人教版下册2018年期末考试试题解析

【精品】初中数学七年级人教版下册2018年期末考试试题解析

初中数学七年级期末综合检测题一、选择题(每小题3分,共24分)1. 下列说法不正确的是( )A. 4是16的算术平方根B. 是的一个平方根C. (-6)2的平方根为-6D. (-3)3的立方根为-3【答案】 C【解析】试题分析:A、因为42=16,所以4是16的算术平方根,正确;B、因为,所以的平方根是±,所以是的一个平方根,正确;C、(-6)2=36,36的平方根是±6,此项错误;D、(-3)3的立方根-3正确.故选C.点睛:本题考查了算术平方根,平方根和立方根的定义,熟练掌握概念是解题的关键.2. 将点P(-2,-3)向左平移1个单位,再向上平移3个单位,所得到的点的坐标为( )A. (-3,0)B. (-1,6)C. (-3,-6)D. (-1,0)【答案】 A【解析】试题分析:向左平移1个单位,则点的横坐标减一,向上平移3个单位,则点的纵坐标加三.考点:点的平移3. 为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类球的喜爱情况,小李采用了抽样调查.在绘制扇形图时,由于时间仓促,足球、网球的信息还没有绘制完成,如图1所示,根据图中信息,这批被抽样调查的学生中最喜欢足球的人数一定不可能是( )A. 100B. 200C. 260D. 400【答案】 D【解析】试题分析:根据题意得:320÷32%=1000(人),喜欢羽毛球的人数为1000×15%=150(人),喜欢篮球的人数为1000×25%=250(人),∴喜欢足球、网球的总人数为1000﹣320﹣250﹣150=380(人),这批被抽样调查的学生最喜欢足球的人数不可能是400人.故选D.考点:扇形统计图.4. 如图,直线c与直线a、b相交,不能判断直线a、b平行的条件是( )A. ∠2=∠3B. ∠1=∠4C. ∠1+∠3=180°D. ∠1+∠4=180°【答案】 D【解析】试题分析:如图,A、∵∠2=∠3,而∠2=∠5,∴∠5=∠3,∴a∥b,故此项能判断a∥b;B、∵∠1=∠4,而∠1=∠6,∴∠4=∠6,∴a∥b,故此项能判断a∥b;C、∵∠1+∠3=180°,而∠1+∠5=180°,∴∠5=∠3,∴a∥b,故此项能判断a∥b;D、∵∠1+∠4=180°,而∠1=∠6,∴∠4+∠6=180°,此时不能判断a∥b.故选D.点睛:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.5. 超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中每组含左端点,不含右端点).这个时间段内顾客等待时间不少于 6 min的有( )A. 5人B. 7人C. 16人D. 33人【答案】 B【解析】分析:分析频数直方图,找等待时间不少于6分钟的小组,读出人数再相加可得答案.详解:由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人.。

2018年初一下学期,期末数学试题,word版含答案

2018年初一下学期,期末数学试题,word版含答案

2018年初一数学第二学期期末考试试卷注意事项:1、本试卷共三大题29小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题纸范围内,答在本试卷上无效。

2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。

一、选择题(本大题共8小题,每小题3分,共24分)把下列各题中正确答案前面的字母填涂在答题纸上.1.下列事件是必然事件的是A .三角形的内角和是360°B .打开电视机,正在直播足球比赛C .1+3 >2D .抛掷1个均匀的骰子,6点向上2.甲型H1N1.流感病毒的直径大约为0.00000008米,用科学记数法表示为A .0.8×10-7米B .8×10-8米C .8×10-9米D .8×10-7米3.下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=414m;④(xy 2)3=x 3y 6,他做对的个数是 A .0 B .1 C .2 D .34.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于A .65°B .55°C .45°D .50°5.学校为了了解300名初一学生的体重情况,从中抽取30名学生进行测量,下列说法正确的是A .总体是300B .样本容量为30C .样本是30名学生D .个体是每个学生6.下列长度的三条线段,能组成三角形的是A .1,2,3B .1,4,2C .2,3,4D .6,2,37.如果100x 2-kxy +9y 2是一个完全平方式,那么K 的值为A .3600B .60C .±100D .±608.如图,在AB 、AC 上各取一点E 、D ,使AE =AD ,连结BD 、CE 相交于点O ,再连结AO 、BC ,若∠1=∠2,则图中全等三角形共有A .5对B .6对C .7对D .8对二、填空题(本大题共10小题,每小题3分,共30分)9.若一个多边形的内角和是它外角和的3倍,则这个多边形是 ▲ 边形.10.分解因式:a4-1=▲.11.计算:(-2a5)÷(-a)2=▲.12.如图,AB//CD,∠B=75°,∠D=35°,则∠E的度数为=▲.13.已知二元一次方程2x+3y=4,用x的代数式表示y,则y=▲.14.如图,△ABC中,∠C=90°,DB平分∠ABC,E为AB中点,DE⊥AB,若BC=5 cm,则AB=▲ cm.15.已知关于x、y的方程组3326x ayx by-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩则a+b=▲.16.化简:(x+y)2-3(x2-2y2)=▲.17.如果2x÷16y=8,则2x-8y=▲.18.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为▲.三、解答题(本大题共11小题,共76分)19.计算:(本题共2小题,每小题4分,满分8分)(1)-3(a4)3+(-2a3)2·(-a2)3(2)(-14)0+(-2)2+(13)-220.因式分解(本题共2小题,每小题4分,满分8分)(1)3a(x-y)-5b(y-x)(2)a3b+2a2b-3ab21.解下列方程组:(本题共2小题,每小题4分,满分8分)(1)5616795x yx y+=⎧⎨-=⎩(2)1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩22.(本题满分5分)作图与探究(不写作法,保留作图痕迹,并用0.5毫米黑色签字笔描深痕迹)如图,∠DBC和∠ECB是△ABC的两个外角°(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(2)过点P分别画直线AB、AC、BC的垂线段PM、PN、PQ,垂足为M、N、Q;(3) PM、PN、PQ相等吗?(直接写出结论,不需说明理由)23.(本题满分5分)如图,AB=AD,AC=AE,∠BAD=∠CAE,则∠B与∠D相等吗?请说明理由.24.(本题共2小题,每小题5分,满分10分)(1)先化简,再求值:(2a+b)(2a-b)+3(2a-b)2+(-3a)(4a-3b),其中a=-1,b=2.(2)已知:a m=2,a n=4,a k=32,求a3m+2n-k的值25.(本题满分6分)把一堆书分给几名学生,如果每人分到4本,那么多4本;如果每人分到5本,那么最后1名学生只分到3本.问:一共有多少名学生?多少本书?26.(本题满分6分)如图,线段AC、BD相交于点O,OA=OC,OB=OD.(1)求证:△OAB≌△OCD;(2)过点O任意作一条与AB、CD都相交的直线MN,交点分别为M、N,试问:OM=ON成立吗?若成立,请进行证明;若不成立,请说明理由.27.(本题满分7分)某初中对该校八年级学生的视力进行了检查,发现学生患近视的情况严重.为了进一步查明情况,校方从患近视的16岁学生中随机抽取了一个样本,对他们初患近视的年龄进行了调查,并制成频率分布表和频率分布直方图(部分),如图所示(各组含最大年龄,不含最小年龄).(1)频率分布表中a、b、c的值分别为a=▲,b=▲,c=▲;(2)补全频率分布直方图;(3)初患近视两年内属于假性近视,若及时矫正,则视力可恢复正常.请你计算在抽样的学生中,经矫正可以恢复正常视力的人数占总人数的百分比.28.(本题满分6分)某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人;(2)班人数略多,有50多人.如果两个班都以班为单位分别购票,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.29.(本题满分7分)已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:;BE=CF,EF=BE AF②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件▲,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).。

2018-2019学年人教版七年级下册期末检测数学试题(含答案)

2018-2019学年人教版七年级下册期末检测数学试题(含答案)

2018-2019学年七年级下学期期末检测数学试题一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. a2⋅a3=a6B. (a2)3=a5C. 2a2+3a2=5a6D. (a+2b)(a−2b)=a2−4b22.下列图形中,不是轴对称图形的是()A. B. C. D.3.如图,已知AB∥CD,CE、AE分别平分∠ACD、∠CAB,则∠1+∠2=()A. 45∘B. 90∘C. 60∘D. 75∘4.能判断两个三个角形全等的条件是()A. 已知两角及一边相等B. 已知两边及一角对应相等C. 已知三条边对应相等D. 已知三个角对应相等5.如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依据是()A. SASB. ASAC. AASD. SSS6.小明有两根长度分别为5cm和8cm的木棒,他想钉一个三角形的木框.现在有5根木棒供他选择,其长度分别为3cm、5cm、10cm、13cm、14cm.小明随手拿了一根,恰好能够组成一个三角形的概率为()A. 25B. 12C. 35D. 17.如果a=355,b=444,c=533,那么a、b、c的大小关系是()A. a>b>cB. c>b>aC. b>a>cD. b>c>a8.如图所示,从边长为a的大正方形中挖去一个边长是b的小正方形,小明将图a中的阴影部分拼成了一个如图b所示的矩形,这一过程可以验证()A. a2+b2−2ab=(a−b)2B. a2+b2+2ab=(a+b)2C. 2a2−3ab+b2=(2a−b)(a−b)D. a2−b2=(a+b)(a−b)9.下列说法正确的是()①同角或等角的余角相等;②角是轴对称图形,角平分线是它的对称轴;③等腰三角形顶角的平分线、底边上的中线、底边上的高重合,即“三线合一”;④必然事件发生的概率为1,不可能事件发生的概率为0.A. ①②③④B. ①②③C. ①③④D. ②③④10.如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,则∠A与∠1、∠2之间的数量关系是()A. 2∠A=∠1−∠2B. 3∠A=2(∠1−∠2)C. 3∠A=2∠1−∠2D. ∠A=∠1−∠2二、填空题(本大题共6小题,共18.0分)11.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB边的距离是______.12.如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并各自延长,使PC=PA,PD=PB,连接CD,测得CD长为10m,则池塘宽AB为______m.13.如果9a2-ka+4是完全平方式,那么k的值是______.14.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=DE;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件是______.(填写序号)15.设a、b、c是△ABC的三边,化简:|a+b-c|-|c-a-b|=______.16.一个三角形内有n个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有101个点时,此时有______个小三角形.三、计算题(本大题共2小题,共12.0分)17.先化简,再求值:[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x、y满足:x2+y2-4x+6y+13=018.如图,用一段长为60m的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设与墙平行的篱笆AB的长为xm,菜园的面积为ym2.(1)试写出y与x之间的关系式;(2)当AB的长为10m,菜园的面积是多少?四、解答题(本大题共7小题,共56.0分)19.计算:|-3|+(-1)2013×(π-3)0-(-1)-3220.解答题(1)若3a=5,3b=10,则3a+b的值.(2)已知a+b=3,a2+b2=5,求ab的值.21.如图,AD、BC相交于点O,AD=BC,∠1=∠2,求证:AC=BD.22.一天,王亮同学从家里跑步到体育馆,在那里锻炼了一阵后又走到某书店去买书,然后散步走回家如图反映的是在这一过程中,王亮同学离家的距离s(千米)与离家的时间t(分钟)之间的关系,请根据图象解答下列问题:(1)体育馆离家的距离为______千米,书店离家的距离为______千米;王亮同学在书店待了______分钟.(2)分别求王亮同学从体育馆走到书店的平均速度和从书店出来散步回家的平均速度.23.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.24.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2-1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=______.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=______.(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为______度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D 三点不重合),请直接写出∠APC与α、β之间的数量关系.答案和解析1.【答案】D【解析】【分析】本题考查了平方差,利用了平方差公式,同底数幂的乘法,幂的乘方.根据同底数幂的乘法,可判断A,根据幂的乘方,可判断B,根据合并同类项,可判断C,根据平方差公式,可判断D.【解答】解:A.底数不变指数相加,故A错误;B.底数不变指数相乘,故B错误;C.系数相加字母部分不变,故C错误;D.两数和乘以这两个数的差等于这两个数的平方差,故D正确.故选D.2.【答案】A【解析】【分析】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.3.【答案】B【解析】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵CE、AE分别平分∠ACD、∠CAB,∴∠1=∠BAC,∠2=∠ACD,∴∠1+∠2=∠BAC+∠ACD=(∠BAC+∠ACD)=×180°=90°.故选:B.由AB∥CD,根据两直线平行,同旁内角互补,可得∠BAC+∠ACD=180°,又由CE、AE分别平分∠ACD、∠CAB,可得∠1=∠BAC,∠2=∠ACD,则可求得∠1+∠2的度数.此题考查了平行线与角平分线的性质.题目比较简单,注意数形结合思想的应用.4.【答案】C【解析】解:A、已知两角及一边相等,位置关系不明确,不能准确判定两个三个角形全等,故选项错误;B、已知两边及一角对应相等,位置关系不明确,不能准确判定两个三个角形全等,故选项错误;C、已知三条边对应相等,可用SSS判定两个三个角形全等,故选项正确;D、已知三个角对应相等,AAA不能判定两个三个角形全等,故选项错误.故选:C.三角形全等条件中必须是三个元素,并且一定有一组对应边相等.做题时要根据已知条件结合判定方法逐个验证.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.【答案】D【解析】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;在△OCD与△O′C′D′,O′C′=OC,O′D′=OD,C′D′=CD,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:D.我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.6.【答案】A【解析】解:小明随手拿了一根,有五种情况,由于三角形中任意两边之和要大于第三边,任意两边之差小于第三边,故只有这根是5cm或10cm,∴小明随手拿了一根,恰好能够组成一个三角形的概率=.故选:A.根据构成三角形的条件,确定出第三边长,再由概率求解.用到的知识点为:概率=所求情况数与总情况数之比;三角形两条较小的边的边长之和应大于最长的边的边长.7.【答案】C【解析】【分析】本题考查了幂的乘方,关键是掌握.根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可.【解答】解:,,,∵,∴.故选C.8.【答案】D【解析】解:由题可知a2-b2=(a+b)(a-b).故选:D.利用正方形的面积公式可知阴影部分面积为a2-b2,根据矩形面积公式可知阴影部分面积为(a+b)(a-b),二者相等,即可解答.此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.9.【答案】C【解析】解:①同角或等角的余角相等,正确;②角是轴对称图形,角平分线所在直线是它的对称轴,错误;③等腰三角形顶角的平分线、底边上的中线、底边上的高重合,即“三线合一”,正确;④必然事件发生的概率为1,不可能事件发生的概率为0,正确.故选:C.根据余角性质、轴对称定义、等腰三角形的性质及确定性事件的定义逐一判断可得.本题主要考查余角与补角、等腰三角形,解题的关键是掌握余角性质、轴对称定义、等腰三角形的性质及确定性事件的定义.10.【答案】A【解析】解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∴∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.∴∠A=(∠1-∠2),即2∠A=∠1-∠2.故选:A.根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.本题考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.11.【答案】2【解析】解:过D作DE⊥AB于E,则DE的长度就是D到AB边的距离.∵AD平分∠CAB,∠ACD=90°,DE⊥AB,∴DC=DE=2(角平分线性质),故答案为:2.过D作DE⊥AB于E,得出DE的长度是D到AB边的距离,根据角平分线性质求出CD=ED,代入求出即可.本题考查了对角平分线性质的应用,关键是作辅助线DE,本题比较典型,难度适中.12.【答案】10【解析】解:在△APB和△DPC中,∴△APB≌△DPC(SAS);∴AB=CD=10米(全等三角形的对应边相等).答:池塘两端的距离是10米.故答案为:10这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB=CD.方案的操作性强,需要测量的线段和角度在陆地一侧即可实施.本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.13.【答案】±12【解析】解:∵9a2-ka+4是完全平方式,∴k=±12,故答案为:±12利用完全平方公式的结构特征判断就确定出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.【答案】①③④【解析】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④;故答案为①③④.∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.15.【答案】0【解析】解:根据三角形的三边关系,两边之和大于第三边,得a+b-c>0,c-a-b<0,故|a+b-c|-|c-a-b|=a+b-c+c-a-b=0.故答案为:0.根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.此题考查三角形三边关系,注意三角形的三边关系和绝对值的性质的综合运用.16.【答案】203【解析】解:观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),当n=101时,y=3+2(101-1)=203,故答案为:203;观察图形,不难发现:内部每多一个点,则多2个三角形,则易写出y=3+2(n-1),从而利用规律解题.此题考查规律型中的图形变化问题,解题关键是结合图形,从特殊推广到一般,建立函数关系式.17.【答案】解:原式=(x 2-4y 2-x 2-8xy -16y 2)÷3y =-2x -5y , 已知等式x 2+y 2-4x +6y +13=0,变形得:(x -2)2+(y +3)2=0,可得x -2=0且y +3=0,解得:x =2,y =-3,则原式=-4+15=11.【解析】原式中括号中利用平方差公式,完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把已知等式变形求出x 与y 的值,代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 18.【答案】解:(1)因为与墙平行的篱笆AB 的长为xm ,所以与墙垂直的篱笆AD 的长为60−x 2m , 则长方形的面积y =x •60−x 2=-12x 2+30x ;(2)当x =10时,y =-12×102+30×10=250,答:当AB的长为10m,菜园的面积是250m2.【解析】(1)根据矩形的面积公式,可得函数解析式;(2)根据自变量与函数值得对应关系,可得答案.本题考查了二次函数的应用,矩形的面积公式得出函数解析式是解题关键.19.【答案】解:原式=3-1+8=10.【解析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:(1)∵3a=5,3b=10,∴3a+b=3a×3b=5×10=50;(2)∵a+b=3,a2+b2=5,∴ab=12[(a+b)2-(a2+b2)]=12(32-5)=2.【解析】(1)直接利用同底数幂的乘法运算法则计算得出答案;(2)利用完全平方公式将原式变形得出答案.此题主要考查了同底数幂的乘法运算以及完全平方公式,正确将原式变形是解题关键.21.【答案】证明:在△ABC与△BAD中,{AD=BC ∠1=∠2 BA=AB,所以△ABC≌△BAD(SAS),所以AC=BD.【解析】由全等三角形的判定定理SAS证得△ABC≌△BAD,则该全等三角形的对应边相等,得证.考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.22.【答案】2.5 1.5 30【解析】解:(1)体育馆离家的距离为2.5千米,书店离家的距离为1.5千米;王亮同学在书店待了80-50=30分钟;(2)从体育馆到书店的平均速度v=千米/分钟,从书店散步到家的平均速度v=千米/分钟.故答案为:2.5;1.5;30.(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;根据观察函数图象的横坐标,可得体育馆与书店的距离,观察函数图象的横坐标,可得在书店停留的时间;(2)根据观察函数图象的纵坐标,可得路程,根据观察函数图象的横坐标,可得回家的时间,根据路程与时间的关系,可得答案.本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.23.【答案】解:数量关系为:BE=EC,位置关系是:BE⊥EC.证明如下:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=CD=12AC,∵AC=2AB,∴AB=AD=DC,∵在△EAB和△EDC中{AE=DE∠EAB=∠EDC AB=DC,∴△EAB ≌△EDC (SAS ),∴EB =EC ,且∠AEB =∠DEC ,∴∠BEC =∠DEC +∠BED =∠AEB +∠BED =90°,∴BE ⊥EC .【解析】数量关系为:BE=EC ,位置关系是:BE ⊥EC ;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB ≌△EDC 即可证明.本题主要考查了全等三角形的判定与应用,证明线段相等的问题一般的解决方法是转化为证明三角形全等.24.【答案】(1)232-1;(2)332−12 ;(3)(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16).当m ≠n 时,原式=1m−n (m -n )(m +n )(m 2+n 2)(m 4+n 4)(m 8+n 8)(m 16+n 16)=m 32−n 32m−n ; 当m =n 时,原式=2m •2m 2•2m 4•2m 8•2m 16=32m 31.【解析】解:(1)原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=232-1;故答案为:232-1;(2)原式=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=; 故答案为:;(3)见答案.(1)原式变形后,利用题中的规律计算即可得到结果;(2)原式变形后,利用题中的规律计算即可得到结果;(3)分m=n 与m≠n 两种情况,化简得到结果即可.此题考查了平方差公式,弄清题中的规律是解本题的关键.25.【答案】一(1)110(2)∠APC =α+β,理由:如图2,过P 作PE ∥AB 交AC 于E ,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)如图所示,当P在BD延长线上时,∠CPA=α-β;如图所示,当P在DB延长线上时,∠CPA=β-α.【解析】(1)解:过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=α+β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)如图所示,当P在BD延长线上时,∠CPA=α-β;如图所示,当P在DB延长线上时,∠CPA=β-α.(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。

2018年江西省人教版七年级数学下学期期末试卷word版含答案

2018年江西省人教版七年级数学下学期期末试卷word版含答案

2018年江西省人教版七年级数学下学期期末试卷一、选择题(本大题共6小题,每小题3分,共18分)1.在平面直角坐标系中,点M(﹣2,3)在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.在下列四个汽车标志图案中,图案的形成过程可由平移得到的是()A. B. C. D. 3.下列调查适合作抽样调查的是() A.了解长沙电视台“天天向上”栏目的收视率 B.了解初三年级全体学生的体育达标情况 C.了解某班每个学生家庭电脑的数量 D.“辽宁号”航母下海前对重要零部件的检查4.已知方程组:的解是:,则方程组:的解是()A. B. C. D. 5.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;3)(∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是() A.1 B.2 C.3 D.4 6.若关于x的不等式的整数解共有4个,则m的取值范围是() A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7 二、填空题(本大题共6小题,每小题3分,共18分)b7.在两个连续整数a 和b之间(a<b),那么a= .8.写出二元一次方程2x﹣y=2的一个正整数解:. 19.有一个数值转换器,原理如下:当输入x为64时,输出的y 的值是.10.不等式组的解集是0<x<2,那么a+b的值等于.11.如图a是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b,则图b中的∠EGF的度数是.12.已知|x|=,y是4的平方根,且|y﹣x|=x﹣y,x+y的值为.三、解答题(本大题共5小题,每题6分,共24分)13.解方程组.201514.计算:(﹣1)++|1﹣|﹣. 15.已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值. 16.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由. 17.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,总支出44000元.其中种茄子每亩支出1700元,每亩获纯利2400元;种西红柿每亩支出1800元,每亩获纯利2600元.问王大伯一共获纯利多少元? 2四、(本大题共2小题,每题7分,共14分) 18.已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0) B(3,0) C(5,5)△A′B′C′ A′(4,2)B′(7,b)C′(c,7) (1)观察表中各对应点坐标的变化,并填空:a= ,b= ,c= ; (2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是. 19.某地区为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图 20.某旅行社带一旅游团来宜春明月山游玩,晚上入住温汤某酒店,现需要订9个房间,酒店房间分为两种:A种房间200元/间,B种房间160/间,在费用不超过1700元的情况下,要求A种房间的数量不少于B种房间数量的一半.若设订A种房间x间,请你解答下列问题:(1)共有几种符合题意的订房方案?写出解答过程.(2)根据计算判断:哪种订房方案更省钱? 21.我们用[a]表示不大于a的最大整数,例如:[3。

2018年人教版七年级数学下册期末测试题(三套)word版含答案

2018年人教版七年级数学下册期末测试题(三套)word版含答案

2018年人教版七年级数学下册期末测试题一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,C 1A 1小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩CB AD21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2018年新人教版七年级(下)数学期末试卷(含答案解析)

2018年新人教版七年级(下)数学期末试卷(含答案解析)

2018年新人教版七年级(下)数学期末试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(共10小题)1.下列实数中,是无理数的为()A.0 B.﹣1.5 C.D.2.点P(﹣4,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.的算术平方根是()A.B.±2 C.﹣ D.4.若a>b,则下列式子中错误的是()A.a﹣2>b﹣2 B.﹣2a>﹣2b C.2a>2b D.>5.如图,下列推理错误的是()A.∵∠1=∠2,∴a∥b B.∵b∥c,∴∠2=∠4C.∵a∥b,b∥c,∴a∥c D.∵∠2+∠3=180°,∴a∥c6.下列方程是二元一次方程的是()A.2x﹣xy=5 B.+3y=1 C.x+=2 D.x2﹣2y=07.不等式2x﹣3<1的解集在数轴上表示为()A. B. C.D.8.已知,则a+b等于()A.3 B.C.2 D.19.为了检查一批零件的质量,从中抽取10件,测得它们的长度,下列叙述正确的是()A.这一批零件的质量全体是总体B.从中抽取的10件零件是总体的一个样本C.这一批零件的长度的全体是总体D.每一个零件的质量为个体10.学习了平行线后,小龙同学想出了“过已知直线m外一点P画这条直线的平行线的新方法”,他是通过折一张半透明的正方形纸得到的观察图(1)~(4),经两次折叠展开后折痕CD所在的直线即为过点P的已知直线m的平行线.从图中可知,小明画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④二.填空题(共5小题)11.若a是33的立方根,的平方根是b,则=.12.不等式组的整数解是.13.(﹣0.7)2的平方根是.14.已知点P(﹣3,3),Q(n,3)且PQ=6,则n的值等于.15.点P(m﹣1,m﹣3)在第四象限内,则m取值范围是.三.解答题(共9小题)16.(1)解不等式:﹣≤x﹣1,并把解集在数轴上表示出来.(2)解方程组.17.解不等式组,并判断2是否为此不等组的解.18.求下列各式的值:(1)(2)(+)﹣19.完成证明,说明理由.已知:如图,BC∥DE,点E在AB边上,DE、AC交于点F,∠1=∠2,∠3=∠4,求证AE∥CD.证明:∵BC∥DE(已知),∴∠4=().∵∠3=∠4(已知),∴∠3=().∵∠1=∠2(已知),∴∠1+∠FCE=∠2+∠FCE().即∠FCB=,∴∠3=∠ECD().∴AE∥CD().20.如图,a∥b,BC平分∠ABD,DE⊥BC,若∠1=56°,求∠2的度数.21.如图,在平面直角坐标系中,△ABC顶点A的坐标是(1,3),顶点B的坐标是(﹣2,4),顶点C的坐标是(﹣2,﹣1),现在将△ABC平移得到△A′B′C′,平移后点B和点A刚好重合.其中点A′,B′,C′分别为点A,B,C的对应点.(1)在图中画出△A′B′C′;(2)直接写出A′、C′点的坐标;(3)若AB边上有一点P,P点的坐标是(a,b),平移后的对应点是P′,请直接写出P′点的坐标.22.养牛场原有30头大牛和15头小牛,1天约用饲料675千克;一周后又购进12头大牛和5头小牛,这时1天约用饲料940千克.(1)一头大牛和一头小牛每天约用饲料各多少千克?(2)养牛场因市场拓展需要,准备再购进同品种的大牛和小牛若干头,其中新购进的小牛的数量是新购进的大牛数量的2倍还少3头,要求这时养牛场每天所用饲料总数不得超过1100千克,问最多可以再购进多少头大牛?23.我区为了解七年级学生每天参加体育锻炼的时间情况,随机选取部分学生进行调查,以下是根据调查结果绘制的统计图表的一部分:根据以上信息,解答下列问题:(1)被调查的学生中,每天参加体育锻炼的时间不少于90分钟学生数占被调查总人数的百分比为%,每天参加体育锻炼的时间不足60分钟的有人;(2)被调查的学生总数为人,统计表中m的值为,统计图中D 类所对应扇形圆心角的度数为;(3)我区共有2440名七年级学生,根据调查结果,估计我区七年级学生每天参加体育锻炼的时间不少于60分钟的人数.24.已知,在平面直角坐标系xOy中,△ABC的顶点坐标为A(﹣2,0),B(2,m),C(5,0)(1)如图1,当m=4时,①△ABC的面积为;=S△BCE,请②点E为线段OC上一个动点,连结BE并延长交y轴于点D,使S△ADE求出点D的坐标;(2)如图2,当m>0时,点F、N分别为线段AB、BC上一点,且满足AF=3BF,BN=2CN,连结CF、AN交于点P,请直接写出四边形BFPN的面积(用含有m的式子表示).2018年新人教版七年级(下)数学期末试卷(含答案解析)参考答案与试题解析一.选择题(共10小题)1.下列实数中,是无理数的为()A.0 B.﹣1.5 C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,即为有理数;B、﹣1.5是负分数,即为有理数;C、是无理数;D、=3,是整数,即为有理数;故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.点P(﹣4,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(﹣4,﹣3)所横纵坐标分别为(负,负),符合在第四象限的条件,故选C.【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.的算术平方根是()A.B.±2 C.﹣ D.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵()2=,∴=,即的算术平方根是.故选:D.【点评】本题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根,要注意平方根和算术平方根的区别.4.若a>b,则下列式子中错误的是()A.a﹣2>b﹣2 B.﹣2a>﹣2b C.2a>2b D.>【分析】依据不等式的性质求解即可.【解答】解:A、由不等式的性质1可知A正确,与要求不符;B、由不等式的性质3可知B错误,与要求相符;C、由不等式的性质2可知C正确,与要求不符;D、由不等式的性质2可知D正确,与要求不符.故选:B.【点评】本题主要考查的是不等式的基本性质,熟练掌握不等式的性质是解题的关键.5.如图,下列推理错误的是()A.∵∠1=∠2,∴a∥b B.∵b∥c,∴∠2=∠4C.∵a∥b,b∥c,∴a∥c D.∵∠2+∠3=180°,∴a∥c【分析】由平行线的判定与性质得出选项A、B、C正确,D错误;即可得出结论.【解答】解:∵∠1=∠2,∴a∥b,选项A正确;∵b∥c,∴∠2=∠4,选项B正确;∵a∥b,b∥c,∴a∥c,选项C正确;∵∠2+∠3=180°,∴b∥c,选项D错误;故选:D.【点评】本题考查了平行线的判定与性质、平行线公理;熟练掌握平行线的判定与性质是解决问题的关键.6.下列方程是二元一次方程的是()A.2x﹣xy=5 B.+3y=1 C.x+=2 D.x2﹣2y=0【分析】根据二元一次方程的定义作出判断.【解答】解:A、该方程的未知数项的最高次数是2,属于二元二次方程,故本选项错误;B、该方程符合二元一次方程的定义,故本选项正确;C、该方程属于分式方程,故本选项错误;D、该方程的未知数项的最高次数是2,属于二元二次方程,故本选项错误;故选:B.【点评】本题考查了二元一次方程的定义.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.7.不等式2x﹣3<1的解集在数轴上表示为()A. B. C.D.【分析】先解不等式得到x<2,用数轴表示时,不等式的解集在2的左边且不含2,于是可判断D选项正确.【解答】解:2x<4,解得x<2,用数轴表示为:.故选:D.【点评】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心;二是定方向,定方向的原则是:“小于向左,大于向右”.8.已知,则a+b等于()A.3 B.C.2 D.1【分析】①+②得出4a+4b=12,方程的两边都除以4即可得出答案.【解答】解:,∵①+②得:4a+4b=12,∴a+b=3.故选:A.【点评】本题考查了解二元一次方程组的应用,关键是检查学生能否运用巧妙的方法求出答案,题目比较典型,是一道比较好的题目.9.为了检查一批零件的质量,从中抽取10件,测得它们的长度,下列叙述正确的是()A.这一批零件的质量全体是总体B.从中抽取的10件零件是总体的一个样本C.这一批零件的长度的全体是总体D.每一个零件的质量为个体【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、这一批零件的长度是总体,故A不符合题意;B、从中抽取的10件零件的长度是总体的一个样本,故B不符合题意;C、这一批零件的长度的全体是总体,故C符合题意;D、每一个零件的长度为个体,故D不符合题意;故选:C.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.学习了平行线后,小龙同学想出了“过已知直线m外一点P画这条直线的平行线的新方法”,他是通过折一张半透明的正方形纸得到的观察图(1)~(4),经两次折叠展开后折痕CD所在的直线即为过点P的已知直线m的平行线.从图中可知,小明画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④【分析】根据折叠可直接得到折痕AB与直线m之间的位置关系是垂直,折痕CD与第一次折痕之间的位置关系是垂直;然后根据平行线的判定条件可得③∠3=∠1可得AB∥CD;④∠4=∠2,可得AB∥CD.【解答】解:第一次折叠后,得到的折痕AB与直线m之间的位置关系是垂直;将正方形纸展开,再进行第二次折叠(如图(4)所示),得到的折痕CD与第一次折痕之间的位置关系是垂直;∵AB⊥m,CD⊥m,∴∠1=∠2=∠3=∠4=90°,∵∠3=∠1,∴AB∥CD(同位角相等,两直线平行),故③正确.∵∠4=∠2,∴AB∥CD(内错角相等,两直线平行),故④正确.故选:C.【点评】此题主要考查了平行线的判定,以及翻折变换,关键是掌握平行线的判定定理.二.填空题(共5小题)11.若a是33的立方根,的平方根是b,则=或1.【分析】根据a是33立方根,的平方根是b,可以求得a、b的值,从而可以求得的值.【解答】解:∵a是33的立方根,的平方根是b,∴a=,b=,∴当a=3,b=2时,,当a=3,b=﹣2时,,故答案为:或1.【点评】本题考查立方根、平方很、算术平方根,解答本题的关键它们各自的含义.12.不等式组的整数解是﹣1,0.【分析】首先解不等式组求得不等式的解集,然后确定解集中的整数解即可.【解答】解:,解①得:x≥﹣1,解②得:x<1,则不等式组的解集是:﹣1≤x<1,则整数解是:﹣1,0.故答案是:﹣1,0.【点评】本题考查了不等式组的整数解,正确解不等式组是解题的关键.13.(﹣0.7)2的平方根是±0.7.【分析】根据平方根的定义解答即可.【解答】解:∵(﹣0.7)2=(±0.7)2,∴(﹣0.7)2的平方根是±0.7.故答案为:±0.7.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数.14.已知点P(﹣3,3),Q(n,3)且PQ=6,则n的值等于3或﹣9.【分析】根据点P(﹣3,3),Q(n,3)且PQ=6,可以得到|﹣3﹣n|=6,从而可以解答本题.【解答】解:∵点P(﹣3,3),Q(n,3)且PQ=6,∴|﹣3﹣n|=6,解得,n=3或n=﹣9,故答案为:3或﹣9.【点评】本题考查两点间的距离公式,解题的关键是明确题意,找出所求问题需要的条件.15.点P(m﹣1,m﹣3)在第四象限内,则m取值范围是1<m<3.【分析】根据第四象限内点的坐标特点列出关于m的不等式组,求出m的取值范围即可.【解答】解:∵点P(m﹣1,m﹣3)在第四象限,∴,解得1<m<3.故答案为:1<m<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三.解答题(共9小题)16.(1)解不等式:﹣≤x﹣1,并把解集在数轴上表示出来.(2)解方程组.【分析】(1)根据解一元一次不等式的步骤,求出不等式的解集,并把解集在数轴上表示出来即可;(2)这两个方程未知数x的系数相同,直接选择相减便可求解.【解答】解:(1)不等式两边同时乘于6,得3x﹣(x﹣2)≤6x﹣6,移项并合并,得﹣4x≤﹣8,系数化为1,得x≥2.故不等式的解集在数轴上表示如图所示:(2),①﹣②得4y=12,解得y=3.把y=3代入①,得3x﹣3=5,解得x=.所以这个方程组的解是.【点评】此题考查了一元一次不等式,要掌握解一元一次不等式的步骤,会将解集在数轴上表示出来,注意x≥2要用实心的圆点.同时考查了解二元一次方程组,若两方程两个未知数的系数相等或互为相反数时,可以直接将两个方程组相加减.17.解不等式组,并判断2是否为此不等组的解.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再判断2是否在此范围内即可.【解答】解:解不等式①得,x<3;解不等式②得,x≥0.∴不等式组的解集为:0≤x<3.∵2≈2×1.732=3.464>3,∴2不是此不等组的解.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.求下列各式的值:(1)(2)(+)﹣【分析】(1)根据平方根的概念即可求出答案.(2)根据二次根式的运算法则即可求出答案.【解答】解:(1)原式=±0.7(2)原式=+﹣=【点评】本题考查学生的运算能力,解题的关键是熟练运用学生的运算法则,本题属于基础题型.19.完成证明,说明理由.已知:如图,BC∥DE,点E在AB边上,DE、AC交于点F,∠1=∠2,∠3=∠4,求证AE∥CD.证明:∵BC∥DE(已知),∴∠4=∠FCB(两直线平行,同位角相等).∵∠3=∠4(已知),∴∠3=∠FCB(等量代换).∵∠1=∠2(已知),∴∠1+∠FCE=∠2+∠FCE(等式的性质).即∠FCB=∠ECB,∴∠3=∠ECD(等量代换).∴AE∥CD(内错角相等,两直线平行).【分析】先用平行线得到∠4=∠FCB,再用等式性质,最后用平行线的判定即可.【解答】证明:∵BC∥DE(已知),∴∠4=∠FCB(两直线平行,同位角相等).∵∠3=∠4(已知),∴∠3=∠FCB(等量代换).∵∠1=∠2(已知),∴∠1+∠FCE=∠2+∠FCE(等式的性质).即∠FCB=∠ECD,∴∠3=∠ECD(等量代换).∴AE∥CD(内错角相等,两直线平行).故答案为:∠FCB,两直线平行,同位角相等,∠FCB,等量代换,等式的性质,∠ECD,等量代换,内错角相等,两直线平行.【点评】此题是平行线的性质是判定,还用到等式的性质,解本题关键是熟练运用平行线的性质和判定.一道中考常考题.20.如图,a∥b,BC平分∠ABD,DE⊥BC,若∠1=56°,求∠2的度数.【分析】根据平行线的性质得到∠1=∠ABD=56°,由角平分线的定义得到∠EBD=∠ABD=28°,根据三角形的内角和即可得到结论.【解答】解:∵a∥b,∴∠ABD=∠1=56°,∵BC平分∠ABD,∴∠CBD=28°,∵DE⊥BC,∴∠2=90°﹣∠CBD=62°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和,熟练掌握平行线的性质是解题的关键.21.如图,在平面直角坐标系中,△ABC顶点A的坐标是(1,3),顶点B的坐标是(﹣2,4),顶点C的坐标是(﹣2,﹣1),现在将△ABC平移得到△A′B′C′,平移后点B和点A刚好重合.其中点A′,B′,C′分别为点A,B,C的对应点.(1)在图中画出△A′B′C′;(2)直接写出A′、C′点的坐标;(3)若AB边上有一点P,P点的坐标是(a,b),平移后的对应点是P′,请直接写出P′点的坐标.【分析】(1)将△ABC平移得到△A′B′C′,平移后点B和点A刚好重合,据此可得△A′B′C′;(2)依据平移后点B和点A刚好重合,即可得到平移后,对应点的横坐标增加3,纵坐标减小1,再根据顶点A的坐标是(1,3),顶点C的坐标是(﹣2,﹣1),即可得到A′、C′点的坐标;(3)依据平移的规律,即可得到P′点的坐标.【解答】解:(1)△A′B′C′如图:(2)∵平移后点B和点A刚好重合,∴平移后,对应点的横坐标增加3,纵坐标减小1,又∵顶点A的坐标是(1,3),顶点C的坐标是(﹣2,﹣1),∴A′、C′点的坐标分别为(4,2),(1,﹣2);(3)∵P点的坐标是(a,b),∴平移后的对应点P′的坐标是(a+3,b﹣1).【点评】此题主要考查了作图﹣﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.养牛场原有30头大牛和15头小牛,1天约用饲料675千克;一周后又购进12头大牛和5头小牛,这时1天约用饲料940千克.(1)一头大牛和一头小牛每天约用饲料各多少千克?(2)养牛场因市场拓展需要,准备再购进同品种的大牛和小牛若干头,其中新购进的小牛的数量是新购进的大牛数量的2倍还少3头,要求这时养牛场每天所用饲料总数不得超过1100千克,问最多可以再购进多少头大牛?【分析】(1)设每头大牛1天约需饲料xkg,每头小牛1天约需饲料ykg,根据题意列出方程组,求出方程组的解得到x与y的值;(2)设这次购买的牛中大牛有a头,根据不等关系:新购进的小牛的数量是新购进的大牛数量的2倍还少3头,要求这时养牛场每天所用饲料总数不得超过1100千克,列出不等式求解即可.【解答】(1)解:设一头大牛每天约用饲料x千克,一头小牛每天约用饲料y千克.,解得,答:大牛每天约用饲料20千克,小牛每天约用饲料5千克;(2)设新购进大牛a头,小牛(2a﹣3)头.20a+5(2a﹣3)≤1100﹣940,解得a≤5,∵a取整数,∴a=5答:最多可以购进5头大牛.【点评】此题考查了一元一次不等式的应用,二元一次方程组的应用,找出题中的等量关系和不等关系是解本题的关键.23.我区为了解七年级学生每天参加体育锻炼的时间情况,随机选取部分学生进行调查,以下是根据调查结果绘制的统计图表的一部分:根据以上信息,解答下列问题:(1)被调查的学生中,每天参加体育锻炼的时间不少于90分钟学生数占被调查总人数的百分比为15%,每天参加体育锻炼的时间不足60分钟的有60人;(2)被调查的学生总数为240人,统计表中m的值为84,统计图中D 类所对应扇形圆心角的度数为90°;(3)我区共有2440名七年级学生,根据调查结果,估计我区七年级学生每天参加体育锻炼的时间不少于60分钟的人数.【分析】(1)由扇形图可得E组的百分比,将表格中A、B人数相加即可得;(2)由B组人数及其百分比可得总人数,总人数减去其余四组人数之和即可得C组人数,用360度乘以D人数占总人数的比例可得;(3)总人数乘以样本中C、D、E组人数占样本容量的比例可得.【解答】解:(1)由扇形统计图知,每天参加体育锻炼的时间不少于90分钟学生数占被调查总人数的百分比为15%,每天参加体育锻炼的时间不足60分钟的有24+36=60人,故答案为:15,60;(2)被调查的学生总数为36÷15%=240(人),m=240﹣(24+36+60+36)=84,统计图中D类所对应扇形圆心角的度数为360°×=90°,故答案为:240、84、90°;(3)2440×=1830(人),答:锻炼不少于60分钟的约为1830人.【点评】本题考查的是频数分布直方图和扇形统计图的综合运用.读懂统计图,从统计图表中得到必要的信息是解决问题的关键.24.已知,在平面直角坐标系xOy中,△ABC的顶点坐标为A(﹣2,0),B(2,m),C(5,0)(1)如图1,当m=4时,①△ABC的面积为14;=S△BCE,请②点E为线段OC上一个动点,连结BE并延长交y轴于点D,使S△ADE求出点D的坐标;(2)如图2,当m>0时,点F、N分别为线段AB、BC上一点,且满足AF=3BF,BN=2CN,连结CF、AN交于点P,请直接写出四边形BFPN的面积(用含有m的式子表示).【分析】(1)①利用三角形的面积公式计算即可;②设出点D坐标,表示BD的解析式,进而得出点E坐标,表示出AE,CE,最后用三角形的面积公式建立方程求解即可;=S△ABC=××7m=,同理S△BFC=S△ABC=(2)如图3,由BN=2CN得:S△ABN=3S△BFP,S△BPN=2S△PNC,设S△BFP=a,S△PNC=b,则S△AFP=3a,××7m=,S△AFPS△BPN=2b,列方程组可得a、b的值,可得结论.【解答】解:(1)①如图1,过点B作BH⊥AC于D,当m=4时,B(2,4),∴BH=4,∵A(﹣2,0),C(5,0),∴AC=7,=AC×BH=×7×4=14,∴S△ABC故答案为:14;②如图2,设D(0,b),∵B(2,4),设直线BD的解析式为:y=kx+b把B(2,4)代入得:4=2k+bk=∴直线BD的解析式为y=x+b,∴E(,0),∴AE=+2,CE=5﹣,=AE×OD=(+2)×(﹣b),∴S△ADES△BCE=CE×|y B|=(5﹣)×4,=S△BCE,∵S△ADE∴(+2)×(﹣b)=(5﹣)×4,b2+b﹣20=0∴b=4(舍)或b=﹣5,∴D(0,﹣5);(2)如图3,∵BN=2CN,∴BN=BC,=S△ABC=××7m=,∴S△ABN∵AF=3BF,∴BF=AB,=S△ABC=××7m=,∴S△BFC连接BP,∵AF=3BF,BN=2CN,=3S△BFP,S△BPN=2S△PNC,∴S△AFP设S=a,S△PNC=b,则S△AFP=3a,S△BPN=2b,△BFP∴,解得:,=S△BFP+S△BPN=a+2b=+2×=.∴S四边形BFPN【点评】此题是三角形与点的坐标的综合题,主要考查了三角形的面积公式,待定系数法;解②的关键是用面积相等建立方程,解(2)的关键是利用同高三角形面积的比等于对应底边的比.。

2018年七年级(下)期末数学试卷含答案

2018年七年级(下)期末数学试卷含答案

2018年七年级(下)期末数学试卷一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为.17.观察下列图形的构成规律,根据此规律,第8个图形中有个圆.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)20.(4分)计算:.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.七年级(下)期末数学试卷参考答案与试题解析一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个【分析】根据整式的运算法则即可求出答案.【解答】解:①原式=2ab,故①错误;②原式=﹣6x2y2,故②错误;③原式=﹣64c,故③错误;④原式=(﹣ab2)2=a2b4,故④正确;故选(C)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b【分析】分别根据零指数幂,负指数幂、乘方的运算法则计算,然后再比较大小.【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣()2=﹣;c=(﹣)﹣2=(﹣3)2=9,d=(﹣)0=1,∵﹣<0.09<1<9,∴b<a<d<c,故选:B.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°【分析】两人互相看时,说明方向正好是相反关系,故小颖应在小明的南偏西70°.【解答】解:∵小明处在小颖的北偏东70°方向上,∴小颖应在小明的南偏西70°,故选:C.【点评】此题主要考查了方向角,关键是掌握方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【解答】解:A、只有锐角三角形三条高都在三角形内,故本选项错误;B、三角形三条中线相交于一点正确,故本选项正确;C、三角形的三条角平分线一定都在三角形内,故本选项错误;D、三角形的角平分线是线段,故本选项错误.故选B.【点评】本题考查了三角形的高线、中线、角平分线,是基础题,熟记概念是解题的关键.6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°【分析】根据三角形的内角和等于180°,当三个角都相等时每个角等于60°,所以最大的角不小于60°.【解答】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C.【点评】本题主要考查三角形内角和定理的运用.7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到AB=BE=EC,∠ABC=∠DBE=∠C,根据直角三角形的判定得到∠A=90°,计算即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴AB=BE=EC,∠ABD=∠DBE=∠C,∴∠A=90°,∴∠C=30°,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.【分析】一开始是匀速行进,随着时间的增多,行驶的距离也将由0匀速上升,停下来修车,距离不发生变化,后来加快了车速,距离又匀速上升,由此即可求出答案.【解答】解:由于先匀速再停止后加速行驶,故其行驶距离先匀速增加再不变后匀速增加.故选B.【点评】本题考查了函数的图象,应首先看清横轴和纵轴表示的量,然后根据实际情况进行确定.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.【分析】找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.【解答】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选B.【点评】此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为 2.04×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00204=2.04×10﹣3,故答案为:2.04×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=50°.【分析】根据两直线平行,同位角相等可得∠1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:如图,∵AB∥CD,∠C=50°,∴∠1=∠C=50°,∴∠A+∠E=∠1=50°.故答案为:50°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为8或9或10.【分析】根据三角形的三边关系即可确定a的范围,则a的值即可求解.【解答】解:a的范围是:9﹣2<a<9+2,即7<a<11,则a=8或9或10.故答案为:8或9或10.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为y=x2+6x.【分析】增加的面积=边长为3+x的新正方形的面积﹣边长为3的正方形的面积,把相关数值代入即可求解.【解答】解:由正方形边长3,边长增加x,增加后的边长为(x+3),则面积增加y=(x+3)2﹣32=x2+6x+9﹣9=x2+6x.故应填:y=x2+6x.【点评】解决本题的关键是得到增加的面积的等量关系,注意新正方形的边长为3+x.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=1.【分析】由Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,可得S△ABC=AC•BC=(AC+BC+AB)•r,继而可求得答案.【解答】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,=AC•BC=(AC+BC+AB)•r,∴S△ABC∴3×4=(3+4+5)×r,解得:r=1.故答案为:1.=【点评】此题考查了角平分线的性质.此题难度适中,注意掌握S△ABCAC•BC=(AC+BC+AB)•r.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为22cm或14cm.【分析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,可得x﹣6=2或6﹣x=2,继而可求得答案.【解答】解:设腰长为xcm,根据题意得:x﹣6=2或6﹣x=2,解得:x=8或x=4,∴这个等腰三角形的周长为:22cm或14cm.故答案为:22cm或14cm.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握方程思想与分类讨论思想的应用.17.观察下列图形的构成规律,根据此规律,第8个图形中有65个圆.【分析】观察图形可知,每幅图可看成一个正方形加一个圆,利用正方形的面积计算可得出结果.【解答】解:第一个图形有2个圆,即2=12+1;第二个图形有5个圆,即5=22+1;第三个图形有10个圆,即10=32+1;第四个图形有17个圆,即17=42+1;所以第8个图形有82+1=65个圆.故答案为:65.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是115°.【分析】根据角平分线的定义求出∠EBC的度数,根据线段垂直平分线的性质得到EB=EC,求出∠C的度数,根据邻补角的概念计算即可.【解答】解:∵BE是∠ABC的平分线,∠ABC=50°,∴∠EBC=25°,∵AD垂直平分线段BC,∴EB=EC,∴∠C=∠EBC=25°,∴∠DEC=90°﹣25°=65°,∴∠AEC=115°,故答案为:115°.【点评】本题考查的是线段垂直平分线的概念和性质以及等腰三角形的性质,掌握线段垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)【分析】直接利用同底数幂的乘法、幂的乘方与积的乘方以及合并同类项的知识求解即可求得答案.【解答】解:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)=x8+x8﹣x8﹣x8=0.【点评】此题考查了同底数幂的乘法、幂的乘方与积的乘方.此题比较简单,注意掌握指数与符号的变化是解此题的关键.20.(4分)计算:.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,同底数幂相乘底数不变指数相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:=﹣a4b2c.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)【分析】先去小括号,再合并同类项,再根据单项式除以单项式的法则计算即可.【解答】解:原式=﹣[a2+2ab+b2﹣a2+2ab﹣b2]÷4ab=﹣4ab÷4ab=﹣1.【点评】本题考查了整式的除法.解题的关键是注意灵活掌握去括号法则、单项式除单项式的法则.22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣10m2n3+8m3n2;(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.【点评】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.【分析】原式前两项利用完全平方公式化简,最后一项利用平方差公式化简,去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=x6+4x3+4﹣x6+4x3﹣4﹣2x4+32=8x3﹣2x4+32,当x=时,原式=1﹣+32=32.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.【分析】(1)根据垂直的定义可得∠1+∠AOC=90°,再求出∠2+∠AOC=90°,然后根据平角等于180°列式求解即可;(2)根据垂直的定义可得∠AOM=∠BOM=90°,然后列方程求出∠1,再根据余角和邻补角的定义求解即可.【解答】解:(1)∵OM⊥AB,∴∠AOM=∠1+∠AOC=90°,∵∠1=∠2,∴∠NOC=∠2+∠AOC=90°,∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∵∠1=∠BOC,∴∠BOC=∠1+90°=3∠1,解得∠1=45°,∠AOC=90°﹣∠1=90°﹣45°=45°,∠MOD=180°﹣∠1=180°﹣45°=135°.【点评】本题考查了垂线的定义,邻补角的定义,是基础题,熟记概念并准确识图,找准各角之间的关系是解题的关键.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.【分析】由全等三角形的判定定理SSS证得△ABC≌△DEF,则对应角∠BCA=∠EFD,易证得结论.【解答】证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.【点评】本题考查了全等三角形的判定与性质,平行线的判定.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.【分析】首先根据角平分线的定义,可得:∠1=∠ABD,∠2=∠BDC,然后根据等量代换,求出∠ABD+∠BDC=180°,即可判断出AB∥CD.【解答】证明:直线AB、CD的位置关系为:AB∥CD,理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠1=∠ABD,∠2=∠BDC.∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,∴AB∥CD.【点评】此题主要考查了平行线的判定,解答此题的关键是熟练掌握角平分线定义和平行线的判定方法.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?【分析】O是AB、A′B′的中点,得出两组对边相等,又因为对顶角相等,通过SAS得出两个全等三角形,得出AA′、BB′的关系.【解答】解:数量关系:AA′=BB′;理由如下:∵O是AB′、A′B的中点,∴OA=OB′,OA′=OB,在△A′OA与△BOB′中,,∴△A′OA≌△BOB′(SAS),∴AA′=BB′.【点评】本题考查最基本的三角形全等知识的应用;用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,是一种很重要的方法,注意掌握.28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.【分析】首先可判断△ABC是等腰直角三角形,连接AD,根据全等三角形的判定易得到△ADE≌△CDF,继而可得出结论.【解答】证明:连AD,如图所示:∵AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形,∵D为BC中点,∴AD=DC,AD平分∠BAC,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是利用等腰直角三角形的性质得出证明全等需要的条件,难度一般.。

人教版2018-2019学年七年级第二学期期末数学试卷及答案详解

人教版2018-2019学年七年级第二学期期末数学试卷及答案详解

人教版2018-2019学年七年级第二学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)下面四个图形中,1∠与2∠是邻补角的是( )A .B .C .D .2.(3175-,π,0.9,1.010010001⋯(每两个1之间0的个数依次加1)中,无理数有( ) A .2个B .3个C .4个D .5个3.(3分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是( )A .同位角B .内错角C .对顶角D .同旁内角4.(3分)如图,直线//a b ,170∠=︒,那么2∠的度数是( )A .130︒B .110︒C .70︒D .80︒5.(3分)下列命题:①相等的两个角是对顶角;②若12180∠+∠=︒,则1∠与2∠互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行,其中假命题有( ) A .1个B .2个C .3个D .4个6.(3分)若12x y =-⎧⎨=⎩是关于x .y 的方程220x y a -+=的一个解,则常数a 为( )A .1B .2C .3D .47.(3分)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等8.(3分)下列说法正确的是( ) A .3-是9-的平方根 B .3是2(3)-的算术平方根C .2(2)-的平方根是2D .8的立方根是2±9.(3分)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120︒,为使管道对接,另一侧铺设的角度大小应为( )A .120︒B .100︒C .80︒D .60︒10.(3分)下列说法正确地有( ) (1)点(1,)a -一定在第四象限 (2)坐标轴上的点不属于任一象限(3)若点(,)a b 在坐标轴的角平分线上,则a b =(4)直角坐标系中,在y 轴上且到原点的距离为5的点的坐标是(0,5) A .1个B .2个C .3个D .4个二、填空题(共6小题,每小题3分,满分18分)11.(3 .12.(3分)点(3,1)A m m ++在x 轴上,则点A 坐标为 . 13.(3分)结合下面图形列出关于未知数x ,y 的方程组为 .14.(3分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=度.15.(3分)一个正数x的平方根是23a-与5a-,则a=.16.(3分)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(1,2)-,写出“兵”所在位置的坐标.三、解答题(共6小题,满分52分)17.(10分)计算:(1;(2-18.(6分)解方程组:23, 511,y xx y=-⎧⎨+=⎩①②.19.(7分)根据解答过程填空:如图,已知DAF F∠=∠,B D∠=∠,那么AB与DC平行吗?解:DAF F∠=∠(已知)∴//()(D DCF∴∠=∠)又(D B∠=∠)∴∠DCF=∠(等量代换)//(AB DC∴)20.(9分)已知ABC ∆在平面直角坐标系中的位置如图所示.将ABC ∆向右平移6个单位长度,再向下平移6个单位长度得到△111A B C .(图中每个小方格边长均为1个单位长度). (1)在图中画出平移后的△111A B C ;(2)直接写出△111A B C 各顶点的坐标.1A ;1B ;1C ; (3)求出ABC ∆的面积.21.(9分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)求A ,B 两种品牌的足球的单价.(2)求该校购买20个A 品牌的足球和2个B 品牌的足球的总费用.22.(11分)已知, 直线//AB CD ,E 为AB 、CD 间的一点, 连接EA 、EC . (1) 如图①, 若20A ∠=︒,40C ∠=︒,则AEC ∠= ︒. (2) 如图②, 若A x ∠=︒,C y ∠=︒,则AEC ∠= ︒.(3) 如图③, 若A α∠=,C β∠=,则α,β与AEC ∠之间有何等量关系 . 并简要说明 .参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1.(3分)下面四个图形中,1∠与2∠是邻补角的是( )A .B .C .D .【分析】根据邻补角的定义,相邻且互补的两个角互为邻补角进行判断. 【解答】解:A 、B 选项,1∠与2∠没有公共顶点且不相邻,不是邻补角; C 选项1∠与2∠不互补,不是邻补角;D 选项互补且相邻,是邻补角.故选:D .【点评】本题考查邻补角的定义,是一个需要熟记的内容.2.(3175-,π,0.9,1.010010001⋯(每两个1之间0的个数依次加1)中,无理数有( ) A .2个B .3个C .4个D .5个【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.2175-是有理数,π无理数,0.9是有理数,1.010010001⋯(每两个1之间0的个数依次加1)是无理数.故选:B .【点评】本题主要考查的是无理数的概念,熟练掌握无理数的常见类型是解题的关键. 3.(3分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是( )A .同位角B .内错角C .对顶角D .同旁内角【分析】拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角.【解答】解:角在被截线的内部,又在截线的两侧,符合内错角的定义, 故选:B .【点评】本题主要考查了内错角的定义.4.(3分)如图,直线//a b ,170∠=︒,那么2∠的度数是( )A .130︒B .110︒C .70︒D .80︒【分析】先根据平行线的性质得到3170∠=∠=︒,然后根据邻补角的定义求解. 【解答】解://a b , 3170∴∠=∠=︒, 21803110∴∠=︒-∠=︒.故选:B .【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.(3分)下列命题:①相等的两个角是对顶角;②若12180∠+∠=︒,则1∠与2∠互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行,其中假命题有( ) A .1个B .2个C .3个D .4个【分析】根据对顶角的定义对①进行判断;根据补角的定义对②进行判断;根据平行线的性质对③进行判断;根据垂线段公理对④进行判断;根据余角的定义对⑤进行判断;根据经过直线外一点,有且只有一条直线与这条直线平行可对⑥进行判断. 【解答】解:相等的两个角不一定为对顶角,所以①为假命题; 若12180∠+∠=︒,则1∠与2∠互为补角,所以②为真命题; 两直线平行,同旁内角互补,所以③为假命题;垂线段最短,所以④为真命题;同角或等角的余角相等,所以⑤为真命题;经过直线外一点,有且只有一条直线与这条直线平行,所以⑥为真命题. 故选:B .【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)若12x y =-⎧⎨=⎩是关于x .y 的方程220x y a -+=的一个解,则常数a 为( )A .1B .2C .3D .4【分析】将1x =-,2y =代入方程中计算,即可求出a 的值.【解答】解:将1x =-,2y =代入方程220x y a -+=得:2220a --+=, 解得:2a =. 故选:B .【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.(3分)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等【分析】由已知可知DPF BAF ∠=∠,从而得出同位角相等,两直线平行. 【解答】解:DPF BAF ∠=∠, //AB PD ∴(同位角相等,两直线平行). 故选:A .【点评】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键. 8.(3分)下列说法正确的是( ) A .3-是9-的平方根 B .3是2(3)-的算术平方根C .2(2)-的平方根是2D .8的立方根是2±【分析】依据平方根、算术平方根、立方根的定义求解即可. 【解答】解:A 、负数没有平方根,故A 错误;B 、3是2(3)-的算术平方根,故B 正确;C 、2(2)-的平方根是2±,故C 错误;D 、8的立方根是2,故D 错误.故选:B .【点评】本题主要考查的是平方根、立方根的定义和性质,熟练掌握平方根、立方根的定义和性质是解题的关键.9.(3分)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120︒,为使管道对接,另一侧铺设的角度大小应为( )A .120︒B .100︒C .80︒D .60︒【分析】根据两直线平行,同旁内角互补解答. 【解答】解:铺设的是平行管道,∴另一侧的角度为18012060︒-︒=︒(两直线平行,同旁内角互补).故选:D .【点评】本题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键. 10.(3分)下列说法正确地有( )(1)点(1,)a-一定在第四象限(2)坐标轴上的点不属于任一象限(3)若点(,)a b在坐标轴的角平分线上,则a b=(4)直角坐标系中,在y轴上且到原点的距离为5的点的坐标是(0,5)A.1个B.2个C.3个D.4个【分析】根据各象限内点的坐标特征以及坐标轴上点到坐标特征对各小题分析判断即可得解.【解答】解:(1)点(1,)a-一定在第四象限,错误,a-不一定是负数;(2)坐标轴上的点不属于任一象限,正确;(3)若点(,)a b在坐标轴的角平分线上,则a b=-;=或a b=,错误,应该是a b(4)直角坐标系中,在y轴上且到原点的距离为5的点的坐标是(0,5),错误,点的坐标为-;(0,5)或(0,5)综上所述,说法正确的是(2)共1个.故选:A.【点评】本题考查了点到坐标,熟记各象限内点的坐标特征以及坐标轴上点到坐标特征是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(33.即可.=.3故答案为:3.【点评】此题主要考查了算术平方根的定义,是基础题型,比较简单.12.(3分)点(3,1)++在x轴上,则点A坐标为(2,0).A m m【分析】根据x轴上点的纵坐标等于零,可得m的值,根据有理数的加法,可得点A的横坐标.【解答】解:由(3,1)A m m++在x轴上,得m+=,10解得1m=-,m+=-+=,3132(2,0)A .故答案为:(2,0).【点评】本题考查了点的坐标,利用x 轴上点的纵坐标等于零得出a 的值是解题关键.13.(3分)结合下面图形列出关于未知数x ,y 的方程组为 250325x y x y +=⎧⎨=+⎩ .【分析】根据图形,可以列出相应的方程组.【解答】解:由图可得,250325x y x y +=⎧⎨=+⎩, 故答案为:250325x y x y +=⎧⎨=+⎩. 【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.(3分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠= 65 度.【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【解答】解:根据题意得21∠与130︒角相等,即21130∠=︒,解得165∠=︒.故填65.【点评】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.15.(3分)一个正数x 的平方根是23a -与5a -,则a = 2- .【分析】根据正数的两个平方根互为相反数列式计算即可得解. 【解答】解:正数x 的平方根是23a -与5a -,2350a a ∴-+-=,解得2a=-.故答案为:2-.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.(3分)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(1,2)-.-,写出“兵”所在位置的坐标(2,3)【分析】以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.【解答】解:建立平面直角坐标系如图,兵的坐标为(2,3)-.故答案为:(2,3)-.【点评】本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键.三、解答题(共6小题,满分52分)17.(10分)计算:(1;(2-【分析】(1)首先计算开方,然后从左向右依次计算即可.(2)首先计算乘法,然后应用加法交换律和加法结合律计算即可.【解答】解:(1=+-0.562=4.5(2-=(=+-=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)解方程组:23, 511,y xx y=-⎧⎨+=⎩①②.【分析】方程组利用代入消元法求出解即可.【解答】解:将①代入②得:52311x x+-=,解得:2x=,将2x=代入①得:1y=,故方程组的解为:21xy=⎧⎨=⎩.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(7分)根据解答过程填空:如图,已知DAF F∠=∠,B D∠=∠,那么AB与DC平行吗?解:DAF F∠=∠(已知)∴AD//()(D DCF∴∠=∠)又(D B∠=∠)∴∠DCF=∠(等量代换)//(AB DC∴)【分析】根据平行线的判定定理和性质定理证明即可 .【解答】解:DAF F ∠=∠(已 知)//AD BC ∴(内 错角相等, 两直线平行)D DCF ∴∠=∠(两 直线平行, 内错角相等)又D B ∠=∠(已 知)B DCF ∴∠=∠(等 量代换)//AB DC ∴(同 位角相等, 两直线平行) ,故答案为:AD ;BC ;内错角相等, 两直线平行;两直线平行, 内错角相等;已知;B ;同位角相等, 两直线平行 .【点评】本题考查的是平行线的性质和判定, 掌握平行线的判定是由角的数量关系判断两直线的位置关系, 平行线的性质是由平行关系来寻找角的数量关系是解题的关键 .20.(9分)已知ABC ∆在平面直角坐标系中的位置如图所示.将ABC ∆向右平移6个单位长度,再向下平移6个单位长度得到△111A B C .(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△111A B C ;(2)直接写出△111A B C 各顶点的坐标.1A (4,2)- ;1B ;1C ;(3)求出ABC ∆的面积.【分析】(1)根据图形平移的性质画出△111A B C 即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)利用正方形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)如图,△111A B C即为所求;(2)由图可知,1(4,2)A-;1(1,4)B-;1(2,1)C-.故答案为:(4,2)-;(1,4)-;(2,1)-.;(3)1117 331312232222 ABCS∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.21.(9分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B 品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.【分析】(1)设A品牌的足球的单价为x元/个,B品牌的足球的单价为y元/个,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B 品牌的足球共需360元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总价=单价⨯数量,列式计算,即可求出结论.【解答】解:(1)设A品牌的足球的单价为x元/个,B品牌的足球的单价为y元/个,根据题意得:2338042360x y x y +=⎧⎨+=⎩, 解得:40100x y =⎧⎨=⎩. 答:A 品牌的足球的单价为40元/个,B 品牌的足球的单价为100元/个.(2)204021001000⨯+⨯=(元).答:该校购买20个A 品牌的足球和2个B 品牌的足球的总费用是1000元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据总价=单价⨯数量,列式计算.22.(11分)已知, 直线//AB CD ,E 为AB 、CD 间的一点, 连接EA 、EC .(1) 如图①, 若20A ∠=︒,40C ∠=︒,则AEC ∠= 60 ︒.(2) 如图②, 若A x ∠=︒,C y ∠=︒,则AEC ∠= ︒.(3) 如图③, 若A α∠=,C β∠=,则α,β与AEC ∠之间有何等量关系 . 并简要说明 .【分析】首先都需要过点E 作//EF AB ,由//AB CD ,可得////AB CD EF .(1) 根据两直线平行, 内错角相等, 即可求得AEC ∠的度数;(2) 根据两直线平行, 同旁内角互补, 即可求得AEC ∠的度数;(3) 根据两直线平行, 内错角相等;两直线平行, 同旁内角互补, 即可求得AEC ∠的度数 .【解答】解: 如图, 过点E 作//EF AB ,//AB CD ,////AB CD EF ∴.(1)20A ∠=︒,40C ∠=︒,120A ∴∠=∠=︒,240C ∠=∠=︒,1260AEC ∴∠=∠+∠=︒;(2)1180A ∴∠+∠=︒,2180C ∠+∠=︒,A x ∠=︒,C y ∠=︒,12360x y ∴∠+∠+︒+︒=︒,360AEC x y ∴∠=︒-︒-︒;(3)A α∠=,C β∠=,1180A ∴∠+∠=︒,2C β∠=∠=,1180180A α∴∠=︒-∠=︒-,12180AEC αβ∴∠=∠+∠=︒-+.【点评】此题考查了平行线的性质: 两直线平行, 内错角相等;两直线平行,同旁内角互补 . 解此题的关键是准确作出辅助线: 作平行线, 这是此类题目的常见解法 .。

2018年新人教版七年级下册数学期末试卷及答案00

2018年新人教版七年级下册数学期末试卷及答案00

学校: 考号: 年级: : 卷首寄语:亲爱的同学们,进入初中后,初一的学习生活即将过去。

在这学期里,你一定有许多收获,下面是检验我们学习效果的时候了,相信你会很棒!加油!!本试卷一共四大题,26小题,总分120分,答题时间为90分钟.一、精心挑选,小心有陷阱哟!(本大题共10小题,每小题3分,共30分.每小题四个选项中只有一个正确,请把正确选项的代号写在题后的括号内)1. 在平面直角坐标系中,点P (-3,4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是( )A .300名学生是总体B .每名学生是个体C .50名学生是所抽取的一个样本D .这个样本容量是50 3.导火线的燃烧速度为0.8cm /s ,爆破员点燃后跑开的速度为5m /s ,为了点火后能够跑到150m 外的安全地带,导火线的长度至少是( )A .22cmB .23cmC .24cmD .25cm4.不等式组⎩⎨⎧+-ax x x <<5335的解集为4<x ,则a 满足的条件是( )A .4<aB .4=aC .4≤aD .4≥a5.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个 6.下列运动属于平移的是( )A .荡秋千B .地球绕着太阳转C .风筝在空中随风飘动D .急刹车时,汽车在地面上的滑动 7.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 8.已知实数x ,y 满足()0122=++-y x ,则y x -等于( ) A .3 B .-3 C .1 D .-19.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(-1,0)C .(-1,1)D .(1,-1)10.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是( )C .1.2元/支,2.6元/本D .1.2元/支,3.6元/本二、细心填空,看谁又对又快哟!3分,共24分)11.已知a 、b 为两个连续的整数,且=+b a .12.若()0232=++-n m ,则n m 2+的值是______.13.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为 .14.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 人.15.16.已知P (a -1,3)向右平移3个单位得到P (2,4-b ),则2005()a b +的值为________.17.已知一个正数的两个平方根分别是22a -和4a -,则a 的值是________.18.请写出一个以31x y =⎧⎨=⎩的二元一次方程组 ____________________.三、认真答一答(本大题共4个小题,19、20题5分,21、22题7分,共24分)19. 解方程组⎩⎨⎧=-=+.1123,12y x y x20. 解不等式组:()20213 1.x x x ->⎧⎪⎨+-⎪⎩,≥并把解集在数轴上表示出来.21. 如图所示,直线a 、b 被c 、d 所截,且c a ⊥,c b ⊥,170∠=°,求∠3的大小.22.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是.四.实践与应用(本大题共4小题,23、24、25三小题每题10分,26题12分,共42分)23.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC的面积.24.今年春季我县大旱,导致大量农作物减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的产量分别是多少千克?25.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?26.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A 、B 、C 、D 分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B 的部分补充完整;(3)图2中的色素含量为D 的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其BAC中不合格的产品有多少袋?七年级数学答案11.7;12.-1;13.︒50;14.216;15. 9.16 17 1816.解:.112312⎩⎨⎧=-=+②①y x y x ①+②,得4x =12,解得:x =3.(3分)将x =3代入①,得9-2y =11,解得y =-1.(3分)所以方程组的解是⎩⎨⎧-==13y x .(2分)17.解:由20x ->,得 2.x >(2分)由()2131x x +-≥,得223 1.x x +-≥解得 3.x ≤(2分)∴不等式组的解集是2 3.x <≤(2分)在数轴上表示如下:(2分)18.解:∵c a ⊥,c b ⊥,∴a ∥b .(3分)∴∠1=∠2.(2分)又∵∠2=∠3,∴∠3=∠1=700.(3分)19.解:(1)24人;(3分)(2)100;(2分)(3)360人.(3分)20.答案:解:(1)点A 、B 、C 分别在第三象限、第一象限和y 轴的正半轴上, 则A (-2,-2),B (3,1),C (0,2); (2)∵把△ABC 向上平移2个单位,再向左平移1个单位得到△A ′B ′C ′, ∴横坐标减1,纵坐标加2,即A ′(-3,0),B ′(2,3),C (-1,4);=721.解:设去年第一块田的花生产量为x 千克,第二块田的花生产量为y 千克,根据题意,得470(180%)(190%)57x y x y +=⎧⎨-+-=⎩解得 100370x y =⎧⎨=⎩100(180%)20⨯-=,370(190%)37⨯-=答:该农户今年第一块田的花生产量是20千克,第二块田的花生产量是37千克. (设未知数1分,列方程4分,解方程4分,答1分)22.解:设丁丁至少要答对x 道题,那么答错和不答的题目为(30-x )道.(1分) 根据题意,得()100305>x x --.(4分)解这个不等式得6130>x .(3分)x 取最小整数,得22=x .(1分)答:丁丁至少要答对22道题.(1分) 23.答案:(1)20袋;(3分) (2)图略;(3分) (3)5%;(3分)(4)10000×5%=500.(3分)24.答案:(1)∵2+(-2)=0,而且23=8,(-2)3=-8,有8-8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(5分)(2)由(1)验证的结果知,1-2x+3x-5=0,∴x=4,∴1211-=-=-x。

2018-2019学年新人教版七年级数学下册期末测试卷(含答案)

2018-2019学年新人教版七年级数学下册期末测试卷(含答案)

2018-2019学年新人教版七年级数学下册期末测试卷(含答案)2018-201年七年级(下)期末数学试卷一、选择题(每小题3分,满分30分)1.如图,已知AB∥CD,∠2=100°,则下列正确的是()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°2.下列二元一次方程组的解为的是()A。

B。

C。

D.3.下面四个图形中,∠1与∠2为对顶角的图形是()A。

B。

C。

D.4.在-2.3.14这4个数中,无理数是()A。

-2 B。

C。

D。

3.145.下列不等式中一定成立的是()A。

5a>4a B。

-a>-2a C。

a+2<a+3 D。

<6.以下问题,不适合使用全面调查的是()A。

对旅客上飞机前的安检B。

航天飞机升空前的安全检查C。

了解全班学生的体重D。

了解广州市中学生每周使用手机所用的时间7.如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD的周长为()A.14B.5C.7D.98.已知x、y满足方程组A.3B.12C.10D.89.XXX家位于公园的正东100米处,从XXX家出发向北走250米就到XXX家,若选取XXX家为原点。

分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(-250,-100)B.(100,250)C.(-100,-250)D.(250,100)10.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32B.0.2C.40D.0.25二、填空题(每小题3分,满分24分)11.4的平方根是2.12.若P(4,-3),则点P到x轴的距离是3.13.当x<-4时,式子3x-5的值大于5x+3的值。

14.已知是方程3mx-y=-1的解,则m=1/3.15.如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD=56度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年人教版七年级下册
数学期末试卷
一.选择题.(本大题共12小题,每小题2分,共24分)
1.下列计算正确的是()
A.=±3 B.|﹣3|=﹣3 C.=3 D .﹣32=9
2.下列调查中,调查方式选择合理的是()
A.为了了解某一品牌家具的甲醛含量,选择全面调查
B.为了了解某公园的游客流量,选择抽样调查
C.为了了解神州飞船的设备零件的质量情况,选择抽样调查
D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查
3.在下列各数中:,3.1415926,,﹣,,﹣,0.5757757775…(相邻两个5之间的7的个数逐次加1),无理数的个数()
A.1 B.2 C.3 D.4
4.若m>﹣1,则下列各式中错误的是()
A.6m>﹣6 B.﹣5m<﹣5 C.m+1>0 D.1﹣m<2
5.如图,下列条件中不能判定AB∥CD的是()
A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180°D.∠3=∠5
6.下列语句:
①相等的角是对顶角;
②如果两条直线被第三条直线所截,那么同位角相等;③过直线外一点有且只有一条直线与已知直线平行;
④平行线间的距离处处相等.
其中正确的命题是()
A.①②B.②③C.③④D.①④
7.二元一次方程组的解满足2x﹣ky=10,则k的值等于()
A.4 B.﹣4 C.8 D.﹣8
8.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.
问:牛、羊各直金几何?”
译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、
每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为()A.B.
C.D.
9.如果P(a+b,ab)在第二象限,那么点Q(a,﹣b)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限
10.如图,AB∥CD,EF与AB 、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=20°,则∠EPF=()
A.70°B.65°C.55°D.45°
11.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()
A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23
12.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:
①∠BOE=70°②OF平分∠BOD ③∠POE=∠BOF④∠POB=2∠DOF
其中正确的结论的个数为()
A.4 B.3 C.2 D.1
二、填空(16分)
13.若是方程ax﹣y=3的解,则a=.
14.﹣1的相反数是.
15.如图,计划把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.
16.若x、y为实数,且|x+3|+=0,则()2017的值为.
17.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为.18.在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是.
19.若的整数部分为.
20.如图,把矩形ABCD沿EF对折后两部分重合,若∠1=50°,则∠AEF=.
三、解答题(本大题共8小题,共60分)
21.(6分)计算:+4+|2﹣3|
22.(6分)解方程组.
23.(6分)解不等式组,并将它的解集在数轴上表示出来.
24.(6分)完成下面的证明:
已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°,
证明:过点C作CF∥AB.
∵AB∥CF(已知),
∴∠B=().
∵AB∥DE,CF∥AB(已知),
∴CF∥DE ()
∴∠2+ =180°()
∵∠2=∠BCD﹣∠1,
∴∠D+∠BCD﹣∠B=180°().
25.(8分)如图,直角坐标系中,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,1),B(2,3).
(1)请在图中画出△AOB关于y轴的对称△A′OB′,点A′的坐标为,点B′的坐标为;
(2)请写出A′点关于x轴的对称点A′'的坐标为;(3)求△A′OB′的面积.
26.(8分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:
(1)这次被调查的学生共有人.
(2)请将统计图2补充完整.
(3)统计图1中B项目对应的扇形的圆心角是度.
(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.
27.(10分)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.28.(10分)2台大收割机和5台小收割机均工作2天共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5天,共收割小麦8公顷.
(1)1台大收割机和1台收割机每天各收割小麦多少公顷?
(2)设大收割机每台租金600元/天,小收割机每台租金120元/天,某农场准备租用两种收割机共15台,要求大收割机的数量不少于小收割机的一半,若每天总租金不超过5000元,若设大收割机要a台,①共有几种租赁方案?写出解答过程;②那种租赁方案每天收割小麦最多?。

相关文档
最新文档