高数-对弧长的曲线积分
华南理工大学高数答案第9章
第九章 曲线积分与曲面积分作业13 对弧长的曲线积分1.计算d Lx s ⎰,其中L 为直线y x =及抛物线2y x =所围成的区域的整个边界.解:L 可以分解为[]1:,1,0,1L y x y x '==∈及[]22:,2,0,1L y x y x x '==∈1211d d d LL L x s x s x s x x x x =+=+⎰⎰⎰⎰⎰()()113222001121d 1414883212x x x x =++=+⋅+=+2.4433d L x y s ⎛⎫+ ⎪⎝⎭⎰,其中L 为星形线33cos ,sin x a t y a t = =在第一象限内的弧π02t ⎛⎫≤≤ ⎪⎝⎭.解:L 为33cos ,sin ,0,,2x a t y a t t π⎡⎤= =∈⎢⎥⎣⎦223cos sin ,3sin cos ,3sin cos dx dya t t a t t ds a t tdt dt dt=-== 原式()4722442233031cossin 3sin cos 1sin 2sin 222a t t a t tdt a t tdt ππ⎛⎫=+⋅=- ⎪⎝⎭⎰⎰()7772223333003311cos 2cos 2cos 2cos 2883a t d t a t t a ππ⎛⎫=-+=-+= ⎪⎝⎭⎰ 3.计算d xyz s Γ⎰,其中Γ折线ABC ,这里A ,B ,C 依次为点)3,4,1(),3,2,1(),0,0,0(.解:[]:,,2,3,0,1,123x y zAB x t y t z t t ds =====∈= []:1,3,,2,4,BC x z y t t ds dt ===∈=[]:,,4,3,0,1,143x y zCA x t y t z t t ds =====∈=142d d d 231318ABBCxyz s xyz s xyz s t t t t dt Γ=+=⋅⋅+⋅⋅=⎰⎰⎰⎰⎰4.()22d xy z s Γ+⎰,其中Γ为螺线cos ,sin ,x t t y t t z t = ==上相应于t 从0变到1的一段弧.解:Γ为[]cos ,sin ,,0,1,x t t y t t z t t ds = ==∈=()()112222201d (222x y z s t t t t Γ+=⋅=+-+⎰⎰⎰ ()()1532222122222253t t ⎡⎤=+-⋅+==⎢⎥⎣⎦5.计算22d Lx y s +⎰,其中L :0,22>=+a ax y x .解:将L 参数化,22cos ,sin cos ,cos ,cos ,x r t y r t r ar t r a t x a t ==⇒===cos sin ,,,sin 2,cos 2,22y a t t t dx a tdt dy a tdt ds adt ππ⎡⎤=∈-=-==⎢⎥⎣⎦222222222d 2cos 2sin 2Lx y s a tdt a ta ππππ-+====⎰⎰⎰6.计算22ed x y Ls +⎰,其中L 为圆周222a y x =+,直线x y =及x 轴在第一象限内所围成的扇形的整个边界.解:边界曲线需要分段表达,从而需要分段积分[]12:0,0,,;:sin,cos ,0,,;4L y x a ds dx L x a t y a t t ds adt π⎡⎤=∈===∈=⎢⎥⎣⎦2123:,,;L y xx ds L L LL ⎡=∈==++⎢⎣⎦从而22400ed 4aax yxax aLa s e dx e adt e e ππ+=+⋅+=++⎰⎰⎰112244a a a a aa a e e e e e ππ=-++-=+-作业14 对坐标的曲线积分1.计算下列第二型曲线积分:(1) ()()d d L x y x x y y ++-⎰,其中L 为按逆时针方向绕椭圆22221x y a b+=一周;解:L 为cos ,sin ,:02x a t y b t t π==→原式()()20sin cos sin cos cos sin a t a t b t b t a t b t dt π=-++-⎡⎤⎣⎦⎰ 22222200sin 2cos 2sin 2cos 20224a b ab t a b ab t t dt t ππ⎛⎫⎛⎫++=-=+= ⎪ ⎪⎝⎭⎝⎭⎰(2)()d d 1d x x y y x y z Γ+++-⎰,其中Γ是从点()1,1,1到点()2,3,4的一段直线;解:Γ是111,1,12,13,:01213141x y z x t y t z t t ---===+=+=+→--- 原式()()()1121231121t t t t dt =+++++++-⎡⎤⎣⎦⎰()()1126146713t dt t t=+=+=⎰(3)d d d y x x y z Γ-+⎰,其中Γ是圆柱螺线2cos ,2sin , 3 x t y t z t ===从0t =到2πt =的一段弧;解:Γ是2cos ,2sin , 3 ,:02x t y t z t t π===→原式()()202sin 2sin 2cos 2cos 3t t t t dt π=--+⎡⎤⎣⎦⎰ ()()2200432dt t πππ=-+=-=-⎰(4) 计算曲线积分(12e )d (cos e )d y y Lxy x y x y +--⎰,其中L 为由点A (-1, 1)沿抛物线2y x =到点O (0, 0), 再沿x 轴到点B (2, 0)的弧段.解:由于积分曲线是分段表达的,需要分段积分2:,:10AO y x x =-→;:0,:02OB y x =→原式222221(12e )d (cos e )2dx (e )d x x xx x x x x x -=+--+⎰⎰2223221(12e 2cos 2e )d d x x x x x x x x -=+-++⎰⎰()222004211113sin e d de 21sin1sin11xx x x xx x xee ----=-+++=-++=+-⎰⎰2. 设力F 的大小等于作用点的横坐标的平方,而方向依y 轴的负方向,求质量为m 的质点沿抛物线21x y -=从点()1,0移动到点()0,1时,力F 所作的功.解:{}{}{}2220,10,,,,:1,:01F x x ds dx dy L x y y =-=-==-→()()11352240028123515L L y y W Fds x dy y y dy y ⎛⎫==-=--+=--+=- ⎪⎝⎭⎰⎰⎰3.把对坐标的曲线积分()(),d ,d LP x y x Q x y y +⎰化成对弧长的曲线积分,其中L为:(1) 在xOy 平面内沿直线从点()0,0到点()1,1; (2) 沿抛物线2y x =从点()0,0到点()1,1.解:(1):,:01,0;L y x x dx ds =→>==()()()(),,,d ,d ,,d L L P x x Q x x P x y x Q x y y P x x Q x x x +⎡⎤+=+=⎡⎤⎣⎦⎰⎰⎰(2)2:,:01,0;L y x x dx ds =→>=()()()()22,2,,d ,d ,2,d L L P x x xQ x x P x y x Q x y y P x x xQ x x x +⎡⎤⎡⎤+=+=⎣⎦⎰⎰⎰作业15 格林公式及其应用1.填空题(1) 设L 是三顶点(0, 0), (3, 0), (3, 2)的三角形正向边界,(24)d (536)d Lx y x y x y -+++-=⎰12 .(2) 设曲线L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形边界,d d L x yx y ++⎰不能直接用格林公式的理由是_所围区域内部有不可导的点_.(3)相应于曲线积分(,,)d (,,)d (,,)d LP x y z x Q x y z y R x y z z++⎰的第一型的曲线积分是⎰. 其中L 为从点(1, 1 ,1)到点(1, 2, 3)的直线段. 2.计算33(e sin )d (ecos )d x xLI y y x y x y =-++⎰,其中L 是沿半圆周x =从点),0(a A -到点),0(a B 的弧.解:L 加上:0,:BA x x a a =→-构成区域边界的负向()3322(e sin )d (e cos )d 3cos axxLDaI y y x y x y x y d ydy σ-=-++=-+-⎰⎰⎰⎰34230233cos 2sin 4a aaa d r dr ydy a πππθ-=-+=-+⎰⎰⎰v3.计算e 31d e 33d xy xy Ly x y x x x y y ⎡⎤⎡⎤+-+++-+⎣⎦⎣⎦⎰,其中L 为椭圆 22221x y a b+=正向一周. 解:原式()()e 33e 31xy xyD x x y y x y dxdy x y ⎡⎤∂∂=+-+-+-+⎢⎥∂∂⎣⎦⎰⎰ 44Ddxdy ab π==⎰⎰4.计算曲线积分[]()sin d ()cos πd ,LI f x y x f x y x y '=+-⎰其中)(x f '为连续函数,L 是沿圆周222(1)(π)1πx y -+-=+按逆时针方向由点(2,2π)A 到点)0,0(O 的一段弧.解:令1:,:02L y x x π=→ 则,原式()[]111π()sin d ()cos πd L L L L DI dxdy f x y x f x y x y +'=-=--+-⎰⎰⎰⎰⎰()222π1()sin ()cos ππd 2f x x f x x x x ππππ'⎡⎤=-⋅+-+-⎣⎦⎰ ()()222422223π1()sin ππ1222222x f x x ππππππππ⎡⎤=-⋅+--=-⋅++=-⎢⎥⎣⎦5.计算22d d L x y y xx y -+⎰,其中L 为(1)圆周()()22111x y -+-=(按反时针方向);解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,而且原点不在该圆域内部,从而由格林公式,原式0= (2)闭曲线1x y +=(按反时针方向).解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,但所围区域内部的原点且仅有该点不满足格林公式条件,从而可作一很小的圆周220.01x y +=(1L 也按反时针方向),在圆环域上用格林公式得, 原式()1122d d d d 1001120.01L L Dx y y xx y y xdxdy x y π--===+=+⎰⎰⎰⎰ 6.证明下列曲线积分在xOy 平面内与路径无关,并计算积分值: (1)()()(),0,0e cos d sin d a b x y x y y -⎰;解:由于()()e sin e sin e cos x xx y y y x y∂∂-=-=∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿折线()()()0,00,,b a b →→积分即可, 原式()()0sin e cos d cos 11cos cos 1bax a ay dy b x b e b e b =-+=-+-=-⎰⎰ (2)()()()()2,14231,023d 4d xy yx x xy y -++-⎰;解:由于()()233442423x xy x y xy y x y∂∂-=-=-+∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿直线10,1,:122110x y y x x --==-→--积分也可, 原式=()()()24321211341d x x x x x x x ⎡⎤---++--⎣⎦⎰()()243213235141d x x x x x ⎡⎤=-+----⎣⎦⎰()()2543213115x x x x x ⎡⎤=-+----=⎣⎦ (3)()()()()π,20,0ecos d e sin d yy x m x x my y -+-⎰.解:由于()()e sin e cos e cos y y y x my x x m x y∂∂-==-∂∂在全平面连续,从而该曲线积分在xOy 平面内与路径无关,沿折线()()()0,0,0,2ππ→→积分即可,原式()()20cos e sin d y ex m dx my y ππ=-+-⎰⎰()2200sin 2my x mx π⎛⎫=-+- ⎪⎝⎭2m m π=--7.设()f x 在(),-∞+∞上具有连续导数,计算()()2221d 1d L y f xy x x y f xy y y y +⎡⎤+-⎣⎦⎰, 其中L 为从点23,3⎛⎫ ⎪⎝⎭到点()1,2的直线段.解:由于()()()()2222111y f xy x y f xy f xy xyf xy x y y y y ⎡⎤+⎧⎫∂∂'⎡⎤-=+-=⎨⎬⎢⎥⎣⎦∂∂⎩⎭⎣⎦在右半平面连续,从而该曲线积分右半平面内与路径无关,沿曲线12:2,,:31L xy y x x==→积分即可,原式()()()()2122232421122d d 22x f f x x x x x x x⎡⎤-+⎢⎥-⎣⎦+⎰13xdx =⎰1232x ⎛⎫= ⎪⎝⎭1942-==- 8.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数的全微分,并求出它的一个原函数:(1)()()e e d e 1e d x y x yx y x x y ⎡⎤⎡⎤+-+-+⎣⎦⎣⎦;解:由于()()e 1e e e x y x yx y x e e x y x y∂∂⎡⎤⎡⎤-+=-=+-⎣⎦⎣⎦∂∂在全平面连续,从而该曲线积分在xOy 平面内是某一函数的全微分,设这个函数为(),u x y , 则()(),e 1e ,e e x y x y u u u u du dx dy x x y x y y x∂∂∂∂=+=-+=+-∂∂∂∂ 从而()()()e 1e e 1e x y x yu x dy y x g x ⎡⎤=-+=-++⎣⎦⎰()()()e e e e =e x y x y x ux y y g x g x x x∂''=+-=-+⇒∂ ()=e x x x x x g x xd xe e dx xe e c =-=-+⎰⎰,()()1e 1e x y u x y x c =+--++(2)()()223238d 812e d yx y xy x x x y y y ++++;解:由于()()32222812e 31638y x x y y x xy x y xy x y∂∂++=+=+∂∂在全平面连续,从而该曲线积分在xOy 平面内是某一函数的全微分,设这个函数为(),u x y , 则原式3223224d 412e d yydx y x x dy x dy y y =++++()3322224d 412de yydx x dy y x x dy d y =++++⎰()()()32241212e d yyd yx d x y d ye y =++-⎰()32241212e y y d yxx y ye =++-可取32241212e yyu yx x y ye =++-(3)()()222cos cos d 2sin sin d x y y x x y x x y y ++-解:可取折线()()()0,0,0,x x y →→作曲线积分()()22202d 2sin sin d sin cos yx u x x y x x y y y x x y =+-=+⎰⎰9.设有一变力在坐标轴上的投影为2,28X x y Y xy =+=-,这变力确定了一个力场,证明质点在此场内移动时,场力所作的功与路径无关.证:{}2,28F x y xy =+-,质点在此场内任意曲线L 移动时,场力所作的功为()()228Lw x y dx xy dy =++-⎰由于()2282xy y x y x y∂∂⎡⎤-==+⎣⎦∂∂在全平面连续,从而质点在此场内移动时,场力所作的功与路径无关.作业16 对面积的曲面积分1.计算下列对面积的曲面积分: (1)()d xy yz zx S ∑++⎰⎰,其中∑为锥面z =被柱面222x y ax +=所截得的有限部分; 解:∑为x y z z z ===dS ==,:02cos ,22D r a ππθθ≤≤-≤≤原式2cos 2302d d cos a Dzx S x y d r dr πθπθθ∑-==⎰⎰⎰⎰⎰⎰()()42242422cos cos 12sin sin sin 4a d d πππθθθθθθ--+=⎰⎰ (2)()222d xy z S ∑++⎰⎰,其中∑为球面2222x y z ax ++=.解:∑为两块y y x a x x =±==dS ==,:0,02D r a θπ≤≤≤≤原式12222d 2d Da a ax S ax S ∑∑+=+=⎰⎰⎰⎰22Da a +2334aDaad πθ=⎰223340=888a d a r aa a πππ--=-=2.计算d y S ∑⎰⎰,∑是平面4=++z y x 被圆柱面122=+y x截出的有限部分.解:∑为两块4,1,1x y z x y z z =--=-=-,dS =,:01,02D r θπ≤≤≤≤原式D=13220sin 03ar d r dr ππθθθ==⋅=⎰ (或由()(),,,,x y z x y z ∈∑⇒-∈∑,而积分微元反号推出)3.求球面2222a z y x =++含在圆柱面ax y x =+22内部的那部分面积. 解:∑为两块x y z z z ===dS ==,:0,02D r a θπ≤≤≤≤原式12d 2DS dS ∑∑=+=⎰⎰⎰⎰cos 22=2a ad πθπθ-⎰⎰()()cos 222202=2sin 41242a ad a a a d a a ππθππθθθπ-⎛⎫-=-=- ⎪⎝⎭⎰⎰⎰4.设圆锥面z =()a h 为圆锥面的底面半径,为高,其质量均匀分布,求它的重心位置.解:设密度为单位1,由对称性可设重点坐标为()00,0,zDDzdS ∑==⎰⎰200ad r dr πθ==⎰⎰DDdS dxdy ∑==⎰⎰ad rdr πθπ==⎰⎰023h z ==,故重点坐标为20,0,3h ⎛⎫ ⎪⎝⎭5.求抛物面壳()2212z x y =+()01z ≤≤的质量,此壳的密度按规律z ρ=而变更. 解:(2212Dm dS x y ρ∑==+=⎰⎰⎰⎰2012d r π=⎰()()22532200222(1112253515t t t πππ⎛⎫⎡⎤=+-=+-+=- ⎪⎢⎥ ⎪⎣⎦⎝⎭⎰作业17 对坐标的曲面积分1.d d d d d d z x y x y z y z x ∑++⎰⎰,其中∑是柱面221x y +=被平面0z =及3z =所截得的在第一卦限内的部分前侧.解::01,03,cos 0,0yz y z x D y z x x α=≤≤≤≤>==原式=d d d d d d 0d d yzzxD D z x y x y z y z x y z z x ∑∑∑++=++⎰⎰⎰⎰⎰⎰⎰⎰13100032d 262yz D y z dy π====⎰2.计算曲面积分2()d d d d z x y z z x y ∑+-⎰⎰,其中∑为旋转抛物面221()2z x y =+下侧介于平面0z =及2z =之间的部分. 解:22221(),,,:4;2x y xy z x y z x z y D x y =+==+≤:02,yz x D z y =≤≤≤原式=1122()d d ()d d d d zx y z z x y z z x y ∑∑∑+++-⎰⎰⎰⎰⎰⎰((22221d d d d ()d d 2yz yz zxD D D z y z z y z x y z x =-++⎰⎰⎰⎰⎰⎰22222300112d ()d d 222yzzx D D y z x y z x dz d r dr πθ=++=+⎰⎰⎰⎰⎰224232000222824z dz r dr z πππππ=+=+⋅=⎰⎰3.计算d d d d d d xy y z yz z x xz x y ∑++⎰⎰其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧.解:分片积分。
同济六版高数练习册答案第十章曲线积分与曲面积分
第十章曲线积分与曲面积分§ 1对弧长地曲线积分计算公式:无论是对弧长还是对坐标地曲线积分重要地是写出曲线地参数方程x =x t L :y =y tx = x(t ) L:<y = y(t )"z(t )Lf x,y,z ds - 注意:上限一定要大于下限1.计算下列对弧长地曲线积分<1) \(x 2y 2)2ds ,其中 L 为圆周 x 2y 2=a 2; 解:法一:Q|jx2+y 2)2ds = |J L (a 2)2ds二玄仁 ds =a 4(2二a) =2二a 5法二:_L x =acosv L: 0 心::2二,匸(x 2 y 2)2ds2二 2 2 2 2 2[a cos : a si n ] -asi na cos d :2二 5 . 5ad^ - 2「a<2) \e x yds ,其中L 为圆周x 2■ y 2=a 2,直线y=x 及x 轴在第一象限内所围成地扇形ba 兰t 兰b ,则(f (x, y ps= f a f(x (t ), y(tddbafxt ,y t ,zt解:忆e 拧%s = ( & +廟+ J BO 卅“ ds ,其中故口 e^iyds=e a(2+ — a) -2匕 4<3) L xds ,其中L 为抛物线y =2x 2-1上介于x =0与x=1之间地一段弧;「X =x解:由 L:20<x<1,得、y=2x -1l xds 二 ° x 1亠〔4x 2dx2 3_2(1+16x)2o_17用-1 -32-48<4) L y 2ds ,其中 L 为摆线地一拱 x =a(t - si nt), y =a(1 - cost)(0 — t — 2二); 解: .L y 2ds = :0〔a(1-cost)『」a 1-cost ]2a si nt^dt2TI 5=V2a 3「(1 —cost)2dtx = x x = a cos—— x = x 、2 OA: ,0_x_a ,AB:,0, BO: 0_x a y =0 y =as in 4 y = x 2f e x 旳 ds =『少尺 J 12 +02 dxoA-0aoa二ABey ds 二ABe ds二 e ABds4<或]e x 七ds■AB=[4 e ' 严"巧塔“巧 J (一 a sin 盯 + (acos日 j d 日JI4 e a ad ) 4a 二 BO-a-2-2匸2a 一2 2 -------- ■ 2 e x 2 x 2,12 12dx 0-1 a二5二 迈a 3 : (2sin 2*)2dt =8a 3J6a 3siJI353= 32a 2sin 如-32a」0x 2+y 2+z 2=22 2]x = cosT解:由」 丫,得2X 2+Z2=2,令 < 厂 0兰日兰2兀y = xz = \ 2 sin 71x= cos 日sin 5 -dt <令—-v4 2 256 3a5 3 15<5) “L xyds ,其中L 为圆周x 2 y 2 =a 2 ; 解:利用对称性J |xyds = 4jJxyds ,其中 Lix = a cos 日 0<6y = a sinJI< 一2[xy ds = 4『xy ds = 4 fxyds迟,=4 02 (acos R(asin v) (-asin v)2 (acosv)2dv"a 3jcosrsin=2a 3sin =-2a 3<6)-x 2y 22ds ,其中-为曲线 z 2X =e t cost ,y =e t si nt ,z =e t 上相应于 t 从 0 变到 2 地------ 2 -- 1 ---- 2 ---- cost )]2 +[(£ sin t )]2 +e 2t dte tcost ]亠[d sin t ]亠[d =—fe^dt =^(1 —e‘) 2 02<7)广yds ,其中-为空间圆周:x 2 + y 2 + z 2 =2』=x弧段; 解:故丫: * y = cos日0兰日乞2兀.故z = J2s in。
对弧长的曲线积分
函数f (x, y)在L上连续: >0,>0,当点(x, y), (x0 , y0 ) L,且 (x x0 )2 ( y y0 )2 时,总有 f (x, y) f (x0 , y0 ) . (5)可积性.若函数 f (x, y)在有限长光滑曲线 L上连续,则
B,
第i段弧M
i
1
M
的长度记为
i
si
,
(i
1,, n).
n
任取点(i ,i ) M i1M i ,作积分和 I n f (i ,i )si ,并令
max
1in
si
.如果无论如何分割,无论如何i取1 点,极限
n
lim
0
i 1
f (i ,i )si
存在,则称此极限值为 函数f (x, y)在曲线L上的对弧长的曲线
圆关于平面z y对称,关于平面 z x对称,关于平面y x对称,
故 x2ds y 2ds z 2ds 1 (x2 y 2 z 2 )ds 1 a2ds
L
L
L
3L
3L
2 a3.
3
例28.4 计算I L xds,其中L为双纽线
(x2 y2) 2 a2(x2 y2) (a 0)
L
L
a
(4)若光滑曲线 L : x x( y), y [c, d], f (x, y)在L上连续,则
f (x, y)ds
f (x( y), x)ds
d
f (x( y), y)
1 x2 ( y)dy.
L
L
c
(5)若光滑曲线 L : r r( ), [, ], f (x, y)在L上连续,则
其中, i [ti1, ti ], i 1,2,, n.
高数第十一章复习
曲线积分
习题课
高等数学
1
知识梳理 一、 两类曲线积分
定义 对弧长的曲线积分 ∫ f ( x, y)ds
L
对坐标的曲线积分
∫ P( x, y)dx = lim ∑P(ξ ,η )∆x λ
L →0
n
= lim∑ f (ξi ,ηi )∆Si
λ→0
i =1
n
∫ Q( x, y)dy = lim ∑Q(ξ ,η )∆y λ
(7)求 )
其中
是以 点 A(1,0) , B(0,1) , C(-1,0) 为 y
B (0,1)
顶点的三角形的正向边界曲线. 顶点的三角形的正向边界曲线 解 上式积分 =
C (-1,0) o
x
A(1,0)
由格林公式,得 由格林公式,
高等数学
13
例2.螺旋形弹簧一圈的方程为 螺旋形弹簧一圈的方程为
二、四个等价命题
条件:在单连通区域 内 条件:在单连通区域G内,函数P ( x , y ) , Q ( x , y ) 具有一阶 连续偏导数 以下四个命题等价: 以下四个命题等价: 内与路径无关; 1 曲线积分 ∫ Pdx + Qdy 在G 内与路径无关;
L
2
∫
∂Q ∂P 3 在 G 内恒成立 内恒成立; = ∂x ∂y 4 Pdx + Qdy = du( x , y ), 即Pdx + Qdy 为某一 u( x , y )的全微分 的全微分.
此时不能用格林公式
2 xy − 3 y x 2 − 5x dx + 2 dy 解 ∫ 2 2 2 x +y L x + y 1 = 2 ∫ (2 xy − 3 y )dx + (x 2 − 5 x )dy a L 1 = 2 ∫∫ [(2 x − 5 ) − (2 x − 3 )]dxdy a x 2 + y 2 ≤a 2
高数第十一章曲线积分与曲面积分 (1)
( )
10
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
例1 计算
L
yds, 其中L是抛物线y x 上点
2
O(0,0)与点B(1,1)之间的一段弧.
解
L 1
yds
0
1
y
y x2
0
x
2
2 1 ( x ) dx 2
B
x 1 4 x 2 dx
i 1 n
y
B
L M n 1
( i , i ) M i M2 M i 1 M A 1
o
x
3
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
如果当各小弧段的 长度的最大值 0时, 这和的极限存在 , 则称此极限为函数 f ( x , y ) 在曲线弧 L上对弧长的曲线积分或 第一类曲 线积分, 记作 f ( x , y )ds, 即
x ( t ), L的参数方程为 ( t )其中 y ( t ), ( t ), ( t )在[ , ]上具有一阶连续导数 , 且
2 ( t ) 2 ( t ) 0,则曲线积分 f ( x , y )ds
L
存在,且
L
f ( x , y )ds
曲线积分与曲面积分
定义 设L为xoy面内一条光滑曲线弧 ,函数f ( x , y )
在L上有界.用L上的点M 1 , M 2 ,, M n1把L分成n 个小段.设第i个小段的长度为 si , 又( i , i )为第 i个小段上任意取定的一 点, 作乘积f ( i , i ) si , 并作和 f ( i , i ) si ,
高数曲线积分习题讲解
第二类(对坐标的)曲线积分
变力做功问题 W = F d r
F (P,Q, R) r (dx,dy,dz)
n
定义
f ( x , y , z )ds lim 0 i1
f ( i , i , i ) si
n
Pdx
Qdy
Rdz
lim
0
i1
[ P ( i ,i ,
i )xi
Q ( i ,i , i )yi R( i ,i , i )zi ]
证:由对坐标的曲线积分的物理意义知,力F 沿右半平面任意有向
路径
L
所作的功为
W
LF dr
L
k
3
( xdx
ydy)
令
P
kx
3 ,
ky
Q 3 , 则
P y
kx
3
2
y
3kxy
3 ,
Q x
3kxy
3
,
P = Q . y x
所以此力场中场力所作的功与所取得路径无关.
例8.设曲线积分L xy2dx y(x)dy与路径无关,其中(x)具有连续的导数,
弧微分:ds x2(t) y2(t) z2(t) dt
f ( x, y, z)ds
f [ x(t ), y(t ), z(t )]
x2 (t ) y2 (t ) z2 (t )dt
2 间接计算: 化为第二类曲线积分.
注:利用对称性,质心公式等简化计算。
(ii)第二类曲线积分 1 直接计算 写出参数方程 x x(t), y y(t), z z(t);
2. 习题
例1. 计算 x2 y2ds,其中L 为圆周 x2+ y2 ax(a 0). L y
第10章-曲线积分与曲面积分 高等数学教学课件
f (x, y) d s
f (x, y) d s.
L( A,B)
L( B, A)
性质2 设, 为常数,则
L[ f (x, y) g(x, y)]d s L f (x, y)d s L g(x, y)d s.
性质3 若积分路径L可分成两段光滑曲线弧L1,L2, 则
f (x, y) d s f (x, y) d s f (x, y) d s.
把 L分成n个有向小弧段
¼ A0 A1, ¼ A1A2,L , ¼ Ai1Ai ,L , ¼ An1An, (A0(x0, y0) A, An (xn, yn) B).
令xi xi xi1, yi yi yi1,在¼ Ai1Ai上任取点Mi (i ,i ), i 1, 2,L , n,若当小弧段的长度的最大值 0时,和
若L是闭曲线,即L的两个端点重合,那么f (x, y)
在闭曲线L上对弧长的曲线积分记为
ÑL f (x, y) d s.
函数f (x, y, z)在曲线弧上对弧长的曲线积分为
n
f (x, y, z) d s lim 0
i 1
f (xi , yi , zi )si.
性质1 对弧长的曲线积分与曲线L的方向无关,即
方程为x =a cos t, y =a sin t, z = kt, 0 t 2p, k>0.
解 Q x' t asint, y' t a cost, z' t k,
[x '(t)]2 [( y '(t)]2 [z '(t)]2 a2 k2 ,
(x2 y2 z2 ds 2p (a2 k 2t2 ) a2 k 2 dt
d r d xi d yj d zk,即有
同济大学第五版高等数学(下)课件D101对弧长和曲线积分
曲线积分与流量的关系:在流体力学中, 曲线积分可以表示液体在某一段管道中 的流量,即单位时间内液体流经管道的 体积。
弧长的实际应用
计算曲线长度: 弧长是曲线的 基本属性,可 以用于计算曲
线的长度。
确定物体运动 轨迹:弧长可 以用于确定物 体在曲线上的
运动轨迹。
优化设计:弧长 可以用于优化设 计,例如在桥梁、 道路、管道等工 程中,通过调整 弧长来优化结构。
PPT,a click to unlimited possibilities
汇报人:PPT
ห้องสมุดไป่ตู้录
弧长的定义
弧长的定义:弧长是曲线上的点与定点(起点)之间的直线距离 弧长的计算方法:弧长可以通过曲线的方程和参数来计算 弧长的几何意义:弧长表示曲线上的点与定点之间的直线距离,是曲线的基本属性之一 弧长在几何中的应用:弧长可以用于计算曲线的长度、面积等几何量
曲线积分的物理意义
弧长:描述曲线 长度,常用于解 决曲线长度的测 量或计算问题。
曲线积分:表示 曲线上的某种物 理量,如质量、 面积等,常用于 解决曲线上的物 理量计算问题。
物理意义:弧长 和曲线积分在物 理中具有实际意 义,如曲线上的 力、速度、加速 度等都可以通过 曲线积分来描述。
应用领域:弧长 和曲线积分在物 理学、工程学、 经济学等领域都 有广泛的应用, 如流体力学、电 磁学、经济学等。
曲线积分表示曲线围成的面积
曲线积分的几何意义
曲线积分表示曲线围成的质量
添加标题
添加标题
曲线积分表示曲线围成的体积
添加标题
添加标题
曲线积分表示曲线围成的重心位置
弧长和曲线积分的几何关系
弧长:表示曲线上的线段长度
华南理工大学高数下答案(第九章曲线积分与曲面积分)
华南理工大学高数下答案(第九章曲线积分与曲面积分)、计算对弧长的曲线积分C,其中曲线C是y0某2a的一段弧a0某2aco2解:C的参数方程为y2acoin2原式202aco24a2cod4a244332、计算某yd,其中L星形线某aco3t,yain3t在第一象限的弧L0t272intcot解:原式2acotint3acotintdt3aa3060664443733、计算某yzd,其中为折线ABC,这里A,B,C依次为点0,0,0,1,2,3,1,4,3某t某1解:AB段参数方程y2t0t1,BC段参数方程y22t0t1 z3z3t原式AB某yzdBC某yzd3dt1212tdt1121412t6t18004、计算某2y2d,其中为螺旋线某tcot,ytint,zt上相应于t从0到1的弧。
解:方法一原式tt111112222tdtt2t2t2dt0202221t02111原式lnt4204220方法二、原式tt1112tdt22211u11201u1202211220原式方法三、原式lnu121202ln224tt34222因为tt422lnt11所以lntt421111lntln1ln原式422205、计算L,其中L:某2y2a某a02某aco2解:某ya某raco,曲线L的参数方程为yainco22原式22aco2a220cod2a26、计算L,其中L为圆周某2y2a2,直线y某,y0在第一象限内所围成的扇形的边界。
解:如右图,线段OA的参数方程为某t0t2yt某acot弧AB的参数方程为0t4yaint线段OB的参数方程为某t0tay0aat原式4eadtedt000a4etaet00ae1aaaaaee1ea24427、求曲线某at,ya2at,zt30t1的质量,其密度。
23解:m1aut2020a20a1u23aa388h3a1lnh823ln3a168、求半径为a,中心角为的均匀圆弧(线密度1)的质心。
高数下第十一章曲线积分与曲面积分
L:yx2,x从 0变1,到
原式 1(2xx2x22x)dx 0
4 1 x3dx 1. 0
整理课件
y x2
B(1,1)
A(1,0)
23
(2) 化为y的 对积. 分 L:xy2,y从 0变1到 ,
原式 1(2y2y2yy4)dy 0 5 1 y4dx1. 0
( 3 ) 原式 OA2xydxx2dy AB2xydxx2dy
解 记 L所 围 成 的 闭 区 域 为 D,
令 Px2yy2, Qx2 xy2, 则 当 x2y20时 ,有 Q x(x y22 yx22)2 P y.
整理课件
37
y
(1) 当(0,0)D时,
L
xdy ydx
D
由格林公式知 L x2 y2 0 o
x
(2) 当 (0,0) D 时 ,
作 位 于 D 内 圆 周 l:x 2 y 2 r2 , y L
xydx xydx
L
AB
1 y2y(y2)dy 1
2 1 y4dy 4 .
1
5
整理课件
B(1,1)
y2 x
A(1,1)
20
例2 计算y2dx,其中 L为 L
(1)半径为 a、圆心为原点、针按方逆向时绕行 的上半圆 ; 周 (2)从点A(a,0)沿x轴到点 B(a,0)的直线. 段
解 (1) L: x y a ascions,
整理课件
28
练习题:
1、 xydx,其中L 为圆周( x a)2 y 2 a 2 (a 0)及 L x 轴所围成的在第一象限内的区域的整个边界(按
逆时针方向绕行);
2、
(x
L
y)dx ( x x2 y2
大学高数第十章曲线积分与曲面积分课后参考答案及知识总结
,
原式=
注:利用二重积分的被积函数的奇偶性及积分区域的对称性有 .
★★4.利用曲线积分,求星形线 所围成图形的面积。
解:由公式
★★5.求双纽线 所围区域的面积。
解:双纽线的极坐标方程为:
由图形的对称性知:
★★6.计算 ,其中 为圆周 的顺时针方向。
解: 参数方程为: 变化从 到
原式
原式
法二: 线积分与路径无关。
原式 =
★★15.利用曲线积分,求下列微分表达式的原函数:
(1) ;
(2) ;
(3) .
解:(1) ,
是某函数的全微分
.
(2)
是某函数的全微分
.
(3)
是某函数的全微分
★★16.设有一变力在坐标轴上的投影为 , ,改变力确了一个力场.
证明质点在此场内移动时,场力所作的功与路径无关.
(1)螺旋形弹簧关于 轴的转动惯量 ;
(2)螺旋形弹簧的重心.
解:
(1)
.
(2)
螺旋形弹簧关于 平面的静力矩分别为:
同法得:
.
,
.
提高题
★★★1.计算 ,其中 为正向圆周 ,直线 及 轴在第一项限内所围成的扇形的整个边界.
解: 与 在第一象限的交点为 .
如图:
;
; .
则原式
★★★★2.计算 ,其中 为圆柱面 与锥面 的交线.
解:摆线的参数方程为:
原式
★★5.计算曲线积分 ,其中 为螺旋线 上相应于 从 到 的一段弧。
解:
原式
★★6.计算曲线积分 ,其中 为折线 ,这里 , , , 依次为点 , , , .
解:如图,原式=
高数 第十章 曲线积分与曲面积分
计算
定积分
计算
Stokes公式 计算 曲面积分 Gauss公式
重积分
16
积分概念的联系
定积分
f ( M )d lim f ( M ) i , f ( M )点函数
0
i 1
n
当 R1上区间 a, b]时, f ( M )d f ( x )dx. [
5
基本问题: 如何熟练掌握各种积分的计算
首先判断准确要求的是哪一类积分 重要的是牢牢记住各种积分的计算方法
1、I
L
f ( x , y )ds 代入曲线的方程以及ds,从而化为定积分解之
2、I Pdx Qdy 代入曲线的方程,化为定积分解之 L
P Q 闭合 y x 非闭
( y 2 z 2 ) dS; I z
( x 2 y 2 ) dS
曲面质心: 曲面形心:
x
x
dS ; y
S
;y
ydS ydS
dS ; z
S
;z
dS S
dS zzdS
15
(二)各种积分之间的联系
积分是
P cos Q cos R cos ds
,其中, ,为有向曲面上点
x, y, z 处的
法方向 的方向角。
20
2.选择以下各题中给出的四个结论中一个正确的结论:
(1)设曲面是上半球面 : x 2 y 2 z 2 R 2 , z 0, 曲面 1 是 曲面在第一卦限中的部分 , 则有 C .
条 件 等
高数-对弧长的曲线积分讲解
质量m。如图11-1所示。
L
A
o
x
图11-1
2. 曲线形构件的质量(2)
(1) 分割: 在L上取点M1, M2, …, Mn-1 , 把L分 成n小段, 记第i小段的长度为 si
(2)近似:
m ( , )s
i
i
i
i
n
n
(3) 求和:
m
m i
(
i
,
i
)
s i
i 1
(x, y) L 。
A L f (x, y)ds
x
L
y
6. 对弧长的曲线积分的计算(1)
定理1 设 f (x, y)在曲线 L上连续, L的参数方程为
x (t),
y
(t
),
( t )
其中 (t), (t) 在[, ]上具有一阶连续导数, 且 2(t)
谢 谢!
i 1
y B
M n1
Mi
(i
,i )
M
i
si
1
L
M2
M1 A
o
图11-1
x
n
(4)
取极限:m
lim 0
i 1
( i
, i
)s i
,其中 max{s1,s2,
, sn}
3. 对弧长的曲线积分的定义(1)
定义:设L为 xoy 面内的一条光滑曲线弧,函数 f (x, y) 在 L 上有界。在
思考
(1) L能否为空间曲线?
(2) 定义的条件能否适当减弱?
(3) 可积条件?
高数-对弧长的曲线积分
o z
x
B
M n1
弧 上对弧长的曲线积分为
n
f
(
x,
y,
z)ds
lim
0
i 1
f
(i
,i
,
i
)
si
.
(i ,i , i ) Mi
0 M2
si
M i 1
y
A M1
x
(6) 函数f ( x, y)在闭曲线 L上对弧长的
曲线积分记为 L f ( x, y)ds. 三、第一类曲线积分的性质
( y0 Y )
L f ( x, y)ds f [(t), (t)] (t)2 (t)2d t
公式的其它几种情形
( 3 ) 若 f ( x, y) 1, 则有
n
L
f ( x, y)ds
lim
0
i 1
f
(
i
,i
)
si
n
lim
0
si
i 1
s
(曲线弧 L 的长度)
即曲线弧 L 的长度 Lds
可看作
x
y
t,
(t),
( x0 t X ),
f ( x, y) f [x, ( x)],
d s (t)2 (t)2d t 1 (t)2d t 1 ( x)2d x
所以有
L f ( x, y)ds xX0 f [ x, ( x)] 1 2( x)dx.
( x0 X )
L f ( x, y)ds f [(t), (t)] (t)2 (t)2d t
解
(3)将 表
示成参数方程
x
a cos
高等数学曲线积分与曲面积分
︵
︵
(补充)
机动 目录 上页 下页 返回 结束
7/37
(5)比较性质
特别地,有
机动 目录 上页 下页 返回 结束
(二)、对弧长曲线积分的计算
8/37
复习 平面曲线的弧长公式
1.直角坐标: 其中
弧长公式 ——弧微分(弧长元素)
即
——弧长元素
2.参数方程:
3.极坐标:
——弧长公式 ——弧长元素
——弧长公式
13/37
(1,2) 到(1,2)一段.
【解Ⅰ】 I
2
y
1 ( y)2dy 0.
2
2
【解Ⅱ】I
1
4xds
1
(
4x)ds
0
0
其中 ds 1 ( 4x)2dx
【例3】 求I xyzds, 其中 : x a cos , y a sin ,
r 2( ) r2( )d .
L
【推广】 : x (t), y (t), z (t). ( t )
f ( x, y, z)ds Γ为空间曲线
f [(t), (t),(t)] 2(t) 2(t) 2(t)dt
L
L1
L2
(2) 设 L是有向曲线弧, L是与L方向相反的
有向曲线弧, 则
P( x, y)dx Q( x, y)dy P( x, y)dx Q( x, y)dy
L
L
【注意】
主要的区别
• 对坐标的曲线积分无比较性质!
• 对坐标的曲线积分必须注意积分弧段的方向 !
机动 目录 上页 下页 返回 结束
高数同济第六版下高等数学2第十一章答案[1]
⾼数同济第六版下⾼等数学2第⼗⼀章答案[1]习题11-1 对弧长的曲线积分1.计算下列对弧长的曲线积分:(1)22x y Leds +?,其中L 为圆周222x y a +=,直线y x =及x 轴在第⼀象限内所围成的扇形的整个边界;(2)2x yzds Γ,其中Γ为折线ABCD ,这⾥A 、B 、C 、D 依次为点(0,0,0)、(0,0,2)、(1,0,2)、(1,3,2);(3)2Ly ds ?,其中L 为摆线的⼀拱(sin )x a t t =-,(1cos )y a t =-(02)t π≤≤.2.有⼀段铁丝成半圆形y =,其上任⼀点处的线密度的⼤⼩等于该点的纵坐标,求其质量。
解曲线L 的参数⽅程为()cos ,sin 0x a y a π==≤≤ds ad ??==依题意(),x y y ρ=,所求质量22sin 2LM yds a d a π===?? 习题11-2 对坐标的曲线积分1.计算下列对坐标的曲线积分:(1)22()Lxy dx -?,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的⼀段弧;(2)22()()Lx y dx x y dy x y+--+?,其中L 为圆周222x y a +=(按逆时针⽅向绕⾏);(3)(1)xdx ydy x y dz Γ+++-?,其中Γ是从点(1,1,1)到点(2,3,4)的⼀段直线;(4)dx dy ydz Γ-+?,其中Γ为有向闭折线ABCA ,这⾥A 、B 、C 依次为点(1,0,0)、(0,1,0)、(0,0,1);2.计算()()Lx y dx y x dy ++-?,其中L 是:(1)抛物线2y x =上从点(1,1)到点(4,2)的⼀段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到(4,2)的折线;(4)曲线221x t t =++,21y t =+上从点(1,1)到点(4,2)的⼀段弧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(i 1,2, , n) , 如果当各小弧段的长度的最大值 并作和 f ( i ,i )si 。
i 1
上述和式的极限总存在, 则称此极限为函数f ( x, y ) 在曲线弧 0 时, 记作 f ( x, y)ds ,即 L上对弧长的曲线积分或第一类曲线积分,
L
积分弧段
2 y x 其中L是抛物线 上点(0,0)与点(1,1)之间的一段曲线弧。
例3 求
x 2 y 2 z 2 ds,
其中 为螺旋线: x = acost , y = asint , z = bt , 0 t 2。
8. 作业
教材 P190 第三题: (1)、 (3) 、(5)、(8)
b a
(2)
(3)
设L: x = x ( y ) (c y d), 则有
L
f x, y ds f x y , y 1 x2 y dy
d c
设L: r = r ( ) ( ), 则有
f x, y ds f r cos , r sin r 2 r 2 d
强调:对弧长的曲线积分,默认 f ( x, y )在光滑曲线L上连续。
3. 对弧长的曲线积分的定义(5)
(4) 与定积分的区别:
——定积分是一元函数在直线区间上作积分和式、取极限; 曲线积分是二元函数在弧段上作积分和式、取极限。 ——定积分中dx表示区间自变量的增量,可正可负; 曲线积分中 ds 表示弧长微元,是个正数。 ——定积分为有向的; 曲线积分为无向的。
1 2 n
si
o
z
注意:为研究方便,默认L为平面曲线
3. 对弧长的曲线积分的定义(4)
(2) 定义的条件可适当减弱:
——对 L 的要求可减弱为:L 为平面上可求长的曲线段。
f ( x, y) 是定义在 L 上的函数。 ——对 f ( x, y) 的要求可减弱为:
(3) 可积条件:
若 f ( x, y)在光滑曲线L 上连续,则 f ( x, y)在L上必可积。
L L
4. 对弧长的曲线积分的性质(3)
性质5
L
ds L0 , 其中L0表示L的长度。
特别地:
f ( x, y )ds表示 f ( x, y) 在闭曲线弧 L 上对弧长的曲线积分。
L
5. 对弧长的曲线积分的意义
物理意义: 当
f ( x, y) 表示L的线密度时,
L所在曲线形构件的质量 m
设 f ( x, y, z ) 为定义在空间曲线 L上的函数, 则函数 f ( x, y, z ) 在曲线弧 L 上对弧长的曲 线积分为:
f ( , , ) s f ( x, y, z ) ds lim i 1
n
L
y
L
( , , )
i i i
0
i
i
i
i
max{ s , s ,, s }。
L
f ( x, y )ds lim f (i ,i )si 。
0
i 1
n
被积函数
积分和式
3. 对弧长的曲线积分的定义(2)
思考
(1) L能否为空间曲线? (2) 定义的条件能否适当减弱? (3) 可积条件? (4) 与定积分的区别?
3. 对弧长的曲线积分的定义(3)
(1) 若L为空间曲线:
yBLA Nhomakorabeao
x
图11-1
2. 曲线形构件的质量(2)
y
(1) 分割: 在L上取点M1, M2, …, Mn-1 , 把L分 成n小段, 记第i小段的长度为 si
m ( , ) s
i i i
M n1
B
( i ,i ) si M i 1
L
i
Mi
(2)近似:
谢 谢!
定义:设L为 xoy 面内的一条光滑曲线弧, 函数 f ( x, y ) 在 L 上有界。 在
L 上任意插入一点列 M1 , M 2 ,, M n1 把 L 分成 n 小段。 设第 i 个小段的
又 ( i , i ) 为第 i 个小段上任意取定的一点, 作乘积 f (i ,i )si 长度 si 。
y
x
L
6. 对弧长的曲线积分的计算(1)
定理1 设 f (x, y)在曲线 L上连续, L的参数方程为
x (t ), ( t ) y (t ),
其中 (t), (t) 在[, ]上具有一阶连续导数, 且 2(t)
+ 2(t) 0, 则曲线积分 L f x, y ds存在,且
第一节
对弧长的曲线积分
1. 知识回顾
对弧长的曲线积分
1. 二重积分:
平面闭区域
定积分的积分区域:数轴上的[a,b]
一段曲线弧?
2. 三重积分:
空间闭区域
2. 曲线形构件的质量(1)
假设一曲线形构件所处的位置在xOy 平面内
的一条光滑曲线弧L上,它的端点是A、B。若该 构件的线密度为 ( x, y ), 其中 (x, y) L ,求该构件的 质量m。如图11-1所示。
4. 对弧长的曲线积分的性质(1)
性质1 设k为常数,则
性质2
L
kf x, y ds k f x, y ds 。
L
f L
x, y g x , y ds L f x, y ds L g x, y ds 。
4. 对弧长的曲线积分的性质(2)
L
f ( x, y)ds 。
几何意义: 当
柱面的面积
f ( x, y) 表示立于L上的柱面在点 ( x, y)处的高时,
z
由 L上方、曲线 z f ( x, y) 所围的
z f ( x, y)
A f ( x, y ) ds
L
A f ( x, y ) ds ,
L
( x, y) L 。
性质3 将L分成两段光滑曲线弧L1与L2, 则
L
性质4
f
x, y ds L
f
1
x, y ds L
f
2
x, y ds 。
f (x, y) g (x, y), 则
L
f
x, y ds L g x, y ds。
特别地,有
。 | f ( x, y )ds | | f ( x, y ) |ds
L
f x, y ds f t , t 2 t 2 t dt
( )
(1)
注意:积分上限要大于下限
6. 对弧长的曲线积分的计算(2)
设L: y = y ( x ) (a x b), 则有
L
L
f x, y ds f x, y x 1 y2 x dx
M2
(3) 求和:
m m ( , )s
i 1 i i 1 i i
n
n
M1 A
i
o
图11-1
x
(i ,i )si ,其中 max{s1 , s2 , , sn } (4) 取极限:m lim 0 i 1
n
3. 对弧长的曲线积分的定义(1)
(4)
设L: x =(t), y =(t), z =(t) ( t ), 则有
L
f x, y, z ds f t , t , t 2 t 2 t 2 t dt
(5)
7. 练习
例1 计算L yds,