人教版八年级数学上册-同步练习:全等三角形

合集下载

人教版八年级上册数学 第12章 全等三角形 单元同步练习题

人教版八年级上册数学  第12章  全等三角形   单元同步练习题

人教版八年级上册数学第12章全等三角形单元同步练习题一.选择题1.已知,△ABC≌△DEF,∠A=80°,∠B=60°,则∠F的度数是()A.30°B.40°C.70°D.80°2.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.73.如图,B,C,D三点在同一直线上,CE=BC,∠B=∠E添加下列条件仍不能证明△ECD≌△BCA的是()A.∠A=∠D B.AB=DE C.∠ACB=∠DCE D.AC=CD4.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB的度数为()A.66°B.56°C.50°D.45°5.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD、CE相交于点F,则图中共有几对全等三角形()A.6 B.5 C.4 D.36.如图,在△ABC中,CD平分∠ACB,若AC=6,S△ACD:S△BCD=3:5,则BC的长为()A.10 B.8 C.6 D.47.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为40和28,则△EDF的面积为()A.12 B.6 C.7 D.88.如图,在△ABC和△EDA中,AC=AE=10,∠CDE=∠BAE,AB=DE,CD=6,则BC的长为()A.2 B.3 C.4 D.59.如图,△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,D,E在同一条直线上,若∠CAE+∠ACE+∠ADE=130°,则∠ADE的度数为()A.50°B.65°C.70°D.75°二.填空题10.如图,△ABC与△DCE为直角三角形,且BC=CE,若要判定△ABC≌△DCE,可补充的一个条件为.11.如图,△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE垂足为F,DE交CB的延长线于点G,连接AG,若S四边形DGBA=6,AF=3,则FG的长是.212.如图,已知AB=DC,AD=BC,E、F是BD上的两点,且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=.13.如图,Rt△ABC中,∠C=90°,AC=15,BC=8,AB=17,利用尺规在AC,AB上分别截取AD,AE.使DE为长的半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC AD=AE,分别以D,E为圆心,以大于12于点G,点P为边AB上的一动点,则GP的最小值为.14.如图,已知CE平分∠ACD,OE平分∠AOB,EF⊥OA,下面四个结论:①DE平分∠CDB;②∠OED=∠∠AOB;④S△CEF+S△DEG=S△CDE其中正确的是.(填序号)OCD;③∠CED=90°+1215.如图,已知∠POQ,以点O为圆心,适当长为半径作弧,两弧分别交OP,OQ于点M,N;分别以点M,N为圆心,以大于1MN的长为半径作弧,两弧交于点C;作射线OC.连接CM,CN,过点C作CA⊥OP交OP2于点A,作CB⊥OQ交OQ于点B.已知CM=10,AC=8,△OCM的周长为36,△OAC的周长为40,则BN 的长为.三.解答题16.如图,AC与BD交于点E,已知AB=CD,AC=BD.(1)求证:∠A=∠D;(2)若AC=7,BE=3,求DE的长.17.如图,点A,B在射线OM上,点C,D在射线ON上,已知AB=CD,S△ABP=S△CDP,求证:点P在∠MON 的平分线上.18.如图,在△ABC和△DEC中,AB与DE交于点O.已知AB=DE,AC=DC,BC=EC.(1)求证:∠A=∠D;(2)连接CO,若AC⊥BC,∠A=30°,∠BCE=40°,求∠COD的度数.19.如图,在四边形ABCD中,已知BC=CD.(1)用直尺和圆规作出∠BCD的平分线CE交AD于点E;(保留作图痕迹,不写作法)(2)在(1)的条件下、连接BE,求证:BE=DE.20.如图,在△ABC中,AB=AC,∠BAC=80°,点D为△ABC内一点,∠ABD=∠ACD=20°,E为BD延长线上的一点,且AB=AE.(1)求证DE平分∠ADC;(2)请判断AD,BD,DE之间的数量关系,并说明理由.21.实验中学打算举办校园文化艺术节,琪琪同学负责此次艺术节宣传板的制作任务.如图,将该宣传板垂直于地面放置时,点A,C,E到地面的距离分别是60cm,20cm,80cm,过点A作AF⊥BD,交DB的延长线于点F.过点C作CG⊥BD于点G,已知AB=BC且AB⊥BC,CD=DE且CD⊥DE.(1)求证:△ABF≌△BCG;(2)请你帮琪琪同学计算出这块宣传板的面积.。

八年级数学上册《第十二章 全等三角形》同步练习题及答案(人教版)

八年级数学上册《第十二章 全等三角形》同步练习题及答案(人教版)

八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版)1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。

(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2、全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等。

3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、单选题1.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=()A.95°B.120°C.55°D.60°2.如图,点B、F、C、E在一条直线上,AB∥DE,AC∥DF,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.BF=EC3.如图,已知,要说明,还需从下列条件①,②,③,④中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个4.如图,将两块直角三角尺的直角顶点O叠放在一起,若∠AOD=130°,则∠BOC的度数为()A.40°B.45°C.50°D.60°5.如图,AB=AD,∠BAC=∠DAC=25°,则∠BCA的度数为()A.25°B.50°C.65°D.75°6.如图,方格纸中有四个相同的正方形,则∠1+∠2+∠3为()A.90°B.120°C.135°D.150°7.如图,是的平分线,D,E,F分别是射线、射线、射线上的点,连接.若添加一个条件使,则这个条件可以为()A.B.C.D.8.如图,已知的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则的面积是()A.64 B.48 C.32 D.42二、填空题9.如图,已知∠ACB=∠DBC,请增加一个条件,使△ABC≌△DCB,你添加的条件为.10.如图,AC=DB,AO=DO,则、两点之间的距离为.11.如图,点在等边三角形内部, AD=AE ,若,则需添加一个条件:.12.如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是.13.如图,在中,AB=AC,分别过点B、C作经过点A的直线的垂线段、CE,若厘米,厘米,则的长为.三、解答题14.如图,在△ABC中,AC=BC,直线l经过点C,过A、B两点分别作直线l的垂线AE、BF,垂足分别为E、F,AE=CF,求证:∠ACB=90°15.如图,已知DE⊥AE,DF⊥AF,且DE=DF,B、C分别是AE、AF上的点,AB=AC求证:DB=DC16.如图,点B,F,C,E在一条直线上,FB=CE,AB//ED,AC//FD,交于O,求证:OA=OD.17.如图,在中,点D是线段上一点,以为腰作等腰直角,使于点G,交于点F.求证:.18.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)△ABD和△ECB全等吗?请说明理由;(2)若∠BDC=65°,求∠ADB的度数.参考答案1.B2.B3.C4.C5.D6.C7.A8.C9.AC=BD(答案不唯一)10.5511.或或或等12.213.14厘米14.证明:在Rt△ACE和Rt△CBF中∴Rt△ACE≌Rt△CBF(HL)∴∠EAC=∠BCF∵∠EAC+∠ACE=90°∴∠ACE+∠BCF=90°∴∠ACB=180°-90°=90°.15.解:∵DE⊥AE,DF⊥AF,且DE=DF∴AD平分∠FAE∴∠CAD=∠BAD又AD=AD,AB=AC∴△ACD≌△ABD∴DB=DC.16.证明:∴∵∴∵∴在和中∴∴在和中∴∴.17.证明:∵∴∵,即∴∴∵∴∴∵∴.18.(1)解:△ABD和△ECB全等,理由如下:∵AD∥BC∴∠ADB=∠CBE在△ADB和△EBC中∴△ADB≌△EBC(ASA);(2)解:∵△ADB≌△EBC ∴BC=BD∴∠BDC=∠BCD=65°∴∠DBC=50°∴∠ADB=50°.。

人教版初中数学八年级上册《12.1 全等三角形》同步练习卷(含答案解析

人教版初中数学八年级上册《12.1 全等三角形》同步练习卷(含答案解析

人教新版八年级上学期《12.1 全等三角形》同步练习卷一.选择题(共10小题)1.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°2.如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,点E在线段AB上,若∠AED+∠BCE=52°,则∠ACD的大小为()A.25°B.26°C.27°D.28°3.若△ABC≌△DEF,∠A=60°,∠B=50°,那么∠F的度数是()A.120°B.80°C.70°D.60°4.如图,△ABC≌△DEF,则下列结论正确的是()A.∠E=60°B.∠F=50°C.x=18D.x=205.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A.120°B.125°C.130°D.135°6.如图,△ABC≌△DCB,∠A=80°,∠DBC=40°,则∠DCA的度数为()A.20°B.25°C.30°D.35°7.如图,△ABC≌△DCB,若AC=10,DE=3,则CE的长为()A.6B.7C.8D.98.如图,已知△ABC≌△DBE,点A,C分别对应点D,E,BC交DE于点F,∠ABD=∠E,若BE=10,CF=4,则EF的长为()A.4B.5C.6D.79.若△ABC≌△MNP,∠A=∠M,∠C=∠P,AB=4cm,BC=2cm,则NP=()A.2cm B.3cm C.4cm D.6cm10.△ABC≌△DEF,下列结论中不正确的是()A.AB=DE B.BE=CF C.BC=EF D.AC=DE二.填空题(共4小题)11.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD=.12.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=30°,∠E=70°,则∠ADC的度数是.13.如图,若△ABC≌△ADE,且∠B=65°,则∠BAD=.14.如图所示,已知△ABC≌△EDC,∠E=∠A=30°,∠D=50°,则∠BCE=.人教新版八年级上学期《12.1 全等三角形》同步练习卷参考答案与试题解析一.选择题(共10小题)1.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.【点评】本题考查了三角形内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠B=∠D,∠E=∠C是解此题的关键,注意:全等三角形的对应边相等,对应角相等.2.如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,点E在线段AB上,若∠AED+∠BCE=52°,则∠ACD的大小为()A.25°B.26°C.27°D.28°【分析】由全等可得∠B=∠DEC,∠DCE=∠ACB,且∠AEC=∠B+∠BCE=∠AED+∠DEC,可得∠AED=∠BCE=26°,即可求∠ACD的度数【解答】解∵△ABC≌△DEC∴∠B=∠DEC,∠DCE=∠ACB∵∠AEC=∠B+∠BCE=∠AED+∠DEC∴∠AED=∠BCE.且∠AED+∠B CE=52°∴∠BCE=∠AED=26°∵∠DCE=∠ACB∴∠DCA=∠BCE=26°故选:B.【点评】本题考查了全等三角形的性质,利用全等三角形对应角相等解决问题是本题的关键.3.若△ABC≌△DEF,∠A=60°,∠B=50°,那么∠F的度数是()A.120°B.80°C.70°D.60°【分析】根据全等三角形的性质得出∠F=∠C,即可得出选项.【解答】解:∵∠A=60°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=70°,∵△ABC≌△DEF,∴∠F=∠C,∵∠C=70°,∴∠F=70°,故选:C.【点评】本题考查了全等三角形的性质的应用,能熟记全等三角形的性质定理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.4.如图,△ABC≌△DEF,则下列结论正确的是()A.∠E=60°B.∠F=50°C.x=18D.x=20【分析】根据全等三角形的对应边相等、对应角相等判断即可.【解答】解:∵△ABC≌△DEF,∴∠E=∠B=50°,A错误;∵△ABC≌△DEF,∴∠F=∠C=60°,B错误;EF=BC=20,即x=20,C错误、D正确;故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.5.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A.120°B.125°C.130°D.135°【分析】根据全等三角形的判定定理可得出△BCA≌△BDE,从而有∠3=∠CAB,这样可得∠1+∠3=90°,根据图形可得出∠2=45°,这样即可求出∠1+∠2+∠3的度数.【解答】解:在△ABC与△BDE中,∴△BCA≌△BDE(SAS),∴∠3=∠CAB,在RT△ABC中可得∠1+∠3=90°,由图可知,∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:D.【点评】此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定△BCA≌△BDE,这要求学生熟练掌握全等三角形的判定定理.6.如图,△ABC≌△DCB,∠A=80°,∠DBC=40°,则∠DCA的度数为()A.20°B.25°C.30°D.35°【分析】根据全等三角形的性质得到∠D=∠A=80°,∠ACB=DBC=40°,根据三角形内角和定理求出∠DCB,计算即可.【解答】解:∵△ABC≌△DCB,∴∠D=∠A=80°,∠ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=∠DCB﹣∠ACB=20°,故选:A.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.7.如图,△ABC≌△DCB,若AC=10,DE=3,则CE的长为()A.6B.7C.8D.9【分析】根据全等三角形的对应边相等解答.【解答】解:∵△ABC≌△DCB,∴AB=DC,∠A=∠D,在△ABE和△DCE中,,∴△ABE≌△DCE,∴AE=DE=3,∴CE=AC﹣AE=7,【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.8.如图,已知△ABC≌△DBE,点A,C分别对应点D,E,BC交DE于点F,∠ABD=∠E,若BE=10,CF=4,则EF的长为()A.4B.5C.6D.7【分析】根据全等三角形性质,可得:∠ABC=∠DBE,进而得出∠ABD=∠FBE,得出∠FBE=∠E,得出BF=EF即可.【解答】解:∵△ABC≌△DBE,∴∠ABC=∠DBE,BE=BC,∴∠ABC﹣∠DBF=∠DBE﹣∠DBF,即∠ABD=∠FBE,∵∠ABD=∠E,∴∠FBE=∠E,∴BF=EF=BC﹣CF=10﹣4=6,故选:C.【点评】本题考查了全等三角形性质,关键找出对应边和对应角.求线段的大小往往利用全等三角形的性质求解.9.若△ABC≌△MNP,∠A=∠M,∠C=∠P,AB=4cm,BC=2cm,则NP=()A.2cm B.3cm C.4cm D.6cm【分析】根据全等三角形的对应边相等,即可解答出;【解答】解:∵△ABC≌△MNP,∠A=∠M,∠C=∠P,∴∠B=∠N,BC=NP,∵BC=2,∴NP=2.【点评】本题主要考查了全等三角形的性质,即全等三角形的对应边相等.10.△ABC≌△DEF,下列结论中不正确的是()A.AB=DE B.BE=CF C.BC=EF D.AC=DE【分析】根据全等三角形的性质即可判断;【解答】解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BE=CF,故A,B,C正确,故选:D.【点评】本题考查全等三角形的性质,解题的关键是熟练掌握全等三角形的性质,属于中考常考题型.二.填空题(共4小题)11.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD=45°.【分析】根据三角形的内角和等于180°求出∠BCD,再根据全等三角形对应角相等可得∠ABC=∠BCD,然后列式进行计算即可得解.【解答】解:∵∠BDC=35°,∠DBC=50°,∴∠BCD=180°﹣∠BDC﹣∠DBC=180°﹣35°﹣50°=95°,∵△ABC≌△DCB,∴∠ABC=∠BCD=95°,∴∠ABD=∠ABC﹣∠DBC=95°﹣50°=45°.故答案为:45°.【点评】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=30°,∠E=70°,则∠ADC的度数是65°.【分析】由全等三角形的性质可求得∠B和∠BAC的度数,由角平分线可求得∠BAD的度数,利用三角形的外角可求得∠ADC的度数.【解答】解:∵△ABC≌△EDF,∴∠B=∠EDA=30°,∠BAC=∠E=70°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=35°,∴∠ADC=∠B+∠BAD=30°+35°=65°,故答案为:65°.【点评】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键,即对应角相等、对应边相等.13.如图,若△ABC≌△ADE,且∠B=65°,则∠BAD=50°.【分析】由全等三角形的性质可知AB=AD,再根据等腰三角形的性质和三角形内角和定理即可得到答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∴∠B=∠ADB,∵∠B=65°,∴∠BAD=180°﹣2×65°=50°,故答案为50°.【点评】本题主要考查的是全等三角形的性质:对应角相等,仔细读图,利用图形上的关系做题时比较好的一种方法.14.如图所示,已知△ABC≌△EDC,∠E=∠A=30°,∠D=50°,则∠BCE=20°.【分析】根据全等三角形的性质可得∠DCE=∠BCA,再根据三角形内角和定理计算出∠DCE=100°,进而可得∠BCA的度数,然后根据平角定义可得答案.【解答】解:∵△ABC≌△EDC,∴∠DCE=∠BCA,∵∠E=30°,∠D=50°,∴∠DCE=100°,∴∠BCA=100°,∴∠BCE=100°+100°﹣180°=20°,故答案为:20°.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.。

数学人教版八年级上册第12章第一节全等三角形同步练习(精品测试卷)

数学人教版八年级上册第12章第一节全等三角形同步练习(精品测试卷)
(2)如图(3)所示,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,那么(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
第二套与三角形有关的线段专题训练试题
一、填空题
1.在△ABC是AB=5,AC=3,BC边的中线的取值范围是__________.
【答案】1<x<4
三角形内角和定理、三角形的角平分线、中ห้องสมุดไป่ตู้和高
点评:本题是基础题,考查了三角形的内角和等于180°以及角平分线的定义,准确识别图形是解题的关键.
4.∠A+∠B+∠C+∠D+∠E+∠F的度数=_____.
【答案】360°
【解析】
【分析】
连接CD,根据三角形的内角和定理即可证得∠A+∠B=∠BDC+∠ACD,则∠A+∠B+∠C+∠D+∠E+∠F=∠BDC+∠ACD+∠ACF+∠BDE+∠E+∠F=∠EDC+∠FCD+∠E+∠F,根据四边形的内角和定理即可求解.
【答案】D
【解析】
∵BE为△ABC的高,∠BAC=50°,
∴∠ABE=90°-50°=40°,
∵CF为△ABC的高,
∴∠BFC=90°,
∴∠BHC=∠ABE+∠BFC=40°+90°=130°.
故选D.
12.下列长度的三条线段不能组成三角形的是( )
5.如图,AD是△ABC 角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD的面积为.
【答案】10.
【解析】
如图,
过点D作DE⊥AB于E,DF⊥AC于F,

人教初中数学八上《全等三角形》 同步练习(打印版)

人教初中数学八上《全等三角形》 同步练习(打印版)

全等三角形一.基础知识1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。

2、一个图形经过______、______、_________后所得的图形与原图形。

3、把两个全等的三角形重合在一起,重合的顶点叫做,重合的边叫做,重合的角叫做。

“全等”用“”表示,读作。

4、全等三角形有这样的性质:全等三角形的相等,相等。

二、基础训练5、如图所示,△ABC≌△DEF,对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____;对应边有:____和____,____和____,_____和_____.6、如图(1),点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠A OB与________,∠OBA与________,∠BAO与________.7、如图(2),已知△ABC中,AB=3,AC=4, ∠ABC=118°,那么△ABC沿着直线AC翻折,它就和△ADC重合,那么这两个三角形________,即____________所以DA=______,∠ADC=_____°。

8、如图△ ABD ≌△CDB,若AB=4,AD=5,BD=6,则BC= ,CD=______,三、拓展与提高9、如图,已知△ABC≌△ADE,∠C=∠E,BC=DE,其它的对应边有:,对应角有:。

想一想: ∠ BAD= ∠ CAE吗?为什么?CABDE10、找一找:请指出下列全等三角形的对应边和对应角 1、 △ ABE ≌ △ ACF对应角是: ;对应边是: 。

2、 △ BCE ≌ △ CBF对应角是: ;对应边是: 。

数学新人教版八年级上册同步练习_全等三角形的判定

数学新人教版八年级上册同步练习_全等三角形的判定

第十三章全等三角形(两套同步练习)11.2 全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.C B A12.2 全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?21ED CA11.2 全等三角形的判定(ASA ,AAS )1、已知AB=B A '',∠A=∠A ',∠B=∠B ',则△ABC ≌△C B A '''的根据是( ) A.SAS B.SSA C.ASA D.AAS2、△ABC 和△DEF 中,AB=DE ,∠B=∠E ,要使△ABC ≌△DEF ,则下列补充的条件中错误的是( )A.AC=DFB.BC=EFC.∠A=∠DD.∠C=∠F3、如图1,AD 平分∠BAC ,AB=AC ,则图中全等三角形的对数是( )A.2B.3C.4D.54、如图2,已知AB ∥CD ,欲证明△AOB ≌△COD ,••可补充条件________.(填写一个适合的条件即可)5、如图3,AB ⊥AC ,BD ⊥CD ,∠1=∠2,欲得到BE=CE ,•可先利用_______,证明△ABC ≌△DCB ,得到______=______,再根据___________•证明________•≌________,即可得到BE=CE .6、如图4:已知⊿ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下五个结论:①AE=CF ;②∠APE=∠CPF ;③⊿EPF 是等腰直角三角形;④EF=AP ;⑤ABC S S ∆=21AEPF 四边形.当∠EPF 在⊿ABC 内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中始终正确的序号有__________.7、如图5,AC=AE ,∠C=∠E ,∠1=∠2,求证△ABC ≌△ADE .8、已知:如图,AB ∥CD ,DF 交AC 于E ,交AB 于F ,DE=EF.求证:AE=EC.9、如图,已知BD=CE ,∠1=∠2,那么AB=AC ,你知道这是为什么吗?11.2三角形全等的判定(HL )◆随堂检测1. 如图,AC=AD ,∠C ,∠D 是直角,你能说明BC 与BD2.如图,两根长相等的绳子,一端系在旗杆上,另一端分别固定在地面的两个木桩上, 两根木桩到旗杆底部的距离相等吗?请说明理由。

人教版八年级数学上册(RJ)专题练习:全等三角形

人教版八年级数学上册(RJ)专题练习:全等三角形

专题练习:全等三角形基础训练1.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是(D)(第1题图)A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD2.下列说法正确的是(D)A. 两个等边三角形一定全等B. 腰对应相等的两个等腰三角形全等C. 形状相同的两个三角形全等D. 全等三角形的面积一定相等3.如图,正方形ABCD中,点E是AD边中点,BD,CE交于点H,BE,AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB =∠EHD.其中正确的个数是(D)A. 1B. 2C. 3D. 4(第3题图)4.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE ⊥EF ,AE =EF ,现有如下结论:①BE =12GE ;②△AGE≌△ECF;③∠FCD=45°;④△GBE ∽△ECH.其中,正确的结论有(B)A. 1个B. 2个C. 3个D. 4个(第4题图)5.如图,在方格纸中,以AB 为一边作△ABP,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有(C)(第5题图)A. 1个B. 2个C. 3个D. 4个6.如图,已知点B ,C ,F ,E 在同一直线上,∠1=∠2,BC =EF ,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是CA =FD(不唯一)(只需写出一个即可).(第6题图)7.如图,已知△ABC≌△ADE,若AB =7,AC =3,则BE 的值为__4__.(第7题图)8.在△ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC≌△DEF,则∠DEF =40°.9.如图,在△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D,AB =DC.(1)求证:△ABE≌DCE.(2)当∠AEB=50°,求∠EBC 的度数.(第9题图)解:(1)在△ABE 和△DCE 中, ∵⎩⎪⎨⎪⎧∠A =∠D,∠AEB =∠DEC,AB =DC ,∴△ABE ≌△DCE(AAS). (2)∵△ABE≌△DCE,∴BE =EC ,∴∠EBC =∠ECB.∵∠EBC +∠ECB=∠AEB=50°,∴∠EBC =25°.拓展提高10.用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB 的依据是(A)(第10题图)A. SSSB. SASC. ASAD. AAS 11.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( C )(第11题图)A. ①B. ②C. ③D. ①和②12.如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连结BE ,FE ,则∠EBF 的度数是( A )A. 45°B. 50°C. 60°D. 不确定(第12题图)13.如图,正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上.若CE =35,且∠ECF=45°,则CF 的长为(A)A. 210B. 3 5C. 5310D. 1035(第13题图)14.如图,以△ABC 的三边为边分别作等边△ACD,△ABE ,△BCF ,则下列结论:①△EBF≌△DFC;②四边形AEFD 为平行四边形;③当AB =AC ,∠BAC =120°时,四边形AEFD 是正方形.其中正确的结论是 ①②(请写出正确结论的序号).(第14题图)15.如图,点B,E,C,F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF或AB∥DE),使△ABC≌△DEF.(第15题图)16.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是__50__.(第16题图)17.如图,在正方形ABCD的边BA的延长线上作等腰直角△AEF,连结DF,延长BE交DF于点G.若FG=6,EG=2,则线段AG的长为(第17题图)18.如图,已知点D在△ABC的BC边上,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)求证:AE=DF.(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.(第18题图)解:(1)证明:∵DE∥AC, ∴∠ADE =∠DAF. 同理∠DAE=∠FDA. 又∵AD=DA ,∴△ADE ≌△DAF(ASA), ∴AE =DF.(2)若AD 平分∠BAC ,四边形AEDF 是菱形,理由如下: ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形, ∵AD 平分∠BAC, ∴∠EAD =∠DAF. 又∵∠DAE=∠FDA,∴∠DAF =∠FDA.∴AF=DF. ∴平行四边形AEDF 为菱形.19.如图,过∠AOB 平分线上一点C 作CD∥OB 交OA 于点D ,E 是线段OC 的中点,请过点E 画直线分别交射线CD ,OB 于点M ,N ,探究线段OD ,ON ,DM 之间的数量关系,并证明你的结论.(第19题图)解:线段OD ,ON ,DM 之间的数量关系是:OD =DM +ON. 证明:∵OC 是∠AOB 的平分线, ∴∠DOC =∠COB.又∵CD∥OB,∴∠DCO =∠COB, ∴∠DOC =∠DCO, ∴OD =CD =DM +CM.∵E 是线段OC 的中点,∴CE =OE.∵CD ∥OB ,∴CM ON =CEOE,∴CM =ON.又∵OD=DM +CM , ∴OD =DM +ON. 20.如图,在四边形ABCD 中,点E 在AD 上,其中∠BAE=∠BCE=∠ACD =90°,且BC =CE ,求证:△ABC≌△DEC.(第20题图)解:∵∠BCE=∠ACD=90°, ∴∠3+∠4=∠4+∠5, ∴∠3=∠5.在△ACD 中,∵∠ACD =90°, ∴∠2+∠D=90°.∵∠BAE =∠1+∠2=90°, ∴∠1=∠D.在△ABC 和△DEC 中, ∵⎩⎪⎨⎪⎧∠1=∠D,∠3=∠5,BC =CE ,∴△ABC ≌△DEC(AAS).。

8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)

8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)

8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△ABE≌△CDF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NMEDB CA6.【2012·泸州】如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E﹨A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A﹨B的两端开一条隧道,施工队要知道A﹨B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A﹨B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边﹨直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E,C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠ABE=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒ (2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,M∵△AEB由△ADC旋转而得,∴△AEB≌△ADC.∴∠3=∠1,∠6=∠C.∵AB=AC,AD⊥BC,∴∠2=∠1,∠7=∠C.∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM=∠ABN.又∵AB=AB,∴△AMB≌△ANB.∴AM=AN.6.证明:∵△ABC和△EDC是等边三角形,∴∠BCA=∠DCE=60°.∴∠BCA-∠ACD=∠DCE-∠ACD,即∠BCD=∠ACE.在△DBC和△EAC中,BC=AC,∠BCD=∠ACE,DC=EC,∴△DBC≌△EAC(SAS).∴∠DBC=∠EAC.又∵∠DBC=∠ACB=60°,∴∠ACB=∠EAC.∴AE∥BC.7.B 解析:∵滑梯﹨墙﹨地面正好构成直角三角形,又∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF.∴∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.故选B.8.解:在△ABC和△CED中,AC=CD,∠ACB=∠ECD,EC=BC,∴△ABC≌△CED.∴AB=ED.即量出DE的长,就是A﹨B两端的距离.9.解:对.理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACB AC AC CAB CAB =⎧⎪=⎨⎪=⎩∠∠′,,∠∠′, ∴△ABC ≌△AB′C (ASA ). ∴AB′=AB .。

人教版八年级上数学《12.1全等三角形》同步测试(含答案解析)

人教版八年级上数学《12.1全等三角形》同步测试(含答案解析)

12.1 全等三角形基础闯关全练拓展训练1.如图,已知△ABC≌△DCB,AB=10,∠A=60°,∠ABC=80°,那么下列结论中错误的是( )A.∠D=60°B.∠DBC=40°C.AC=DBD.BE=102.如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,则AC的长为.3.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数;(2)求CE的长.4.如图,△ABF≌△CDE,∠B和∠D是对应角,AF和CE是对应边.(1)写出△ABF和△CDE的其他对应角和对应边;(2)若∠B=30°,∠DCF=40°,求∠EFC的度数;(3)若BD=10,EF=2,求BF的长.能力提升全练拓展训练1.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为( )A.3B.4C.5D.3或4或52.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x-2,2x-1,3,若这两个三角形全等,则x= .3.若A(2,0),B(0,4),C(2,4),D为坐标平面内一点,且△ABC与△ACD全等,则D点的坐标为.三年模拟全练拓展训练1.(2017内蒙古赤峰宁城期末,7,★☆☆)如图,在△ABC中,∠A=30°,∠ABC=50°,∠ACB=100°.若△EDC≌△ABC,且A、C、D在同一条直线上,则∠BCE=( )A.20°B.30°C.40°D.50°2.(2017河南周口太康期中,12,★★☆)已知△ABC≌△DEF,BC=EF=5 cm,△ABC的面积是20 cm2,那么△DEF 中EF边上的高是cm.3.(2018吉林四平伊通期末,16,★★★)如图,A、C、N三点在同一直线上,在△ABC中,∠A∶∠ABC∶∠ACB=3∶5∶10,若△MNC≌△ABC,则∠BCM∶∠BCN= .五年中考全练核心素养全练拓展训练1.长为1的一根绳恰好可围成两个三边长都不相等的全等三角形,则其中一个三角形的最长边x的取值范围为( )A.≤x<B.≤x<C.<x<D.<x<2.如图,△ABE≌△EDC,E在BD上,AB⊥BD,B为垂足.(1)试问:AE和EC相等吗?AE和CE垂直吗?(2)分别将图中的△ABE绕点E按顺时针方向旋转,分别画出满足下列条件的图形并说出此时△ABE与△EDC 中相等的边和角.①使AE与CE重合;②使AE与CE垂直;③使AE与EC在同一直线上.12.1 全等三角形答案基础闯关全练拓展训练1.D ∵∠A=60°,∠ABC=80°,∠A+∠ABC+∠ACB=180°,∴∠ACB=40°,∵△DCB≌△ABC,∴∠D=∠A=60°,∠DBC=∠ACB=40°,BD=AC,故A,B,C正确,故选D.2.答案15解析∵△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,∴AC=EF,EF=AE-AF=20-5=15,∴AC=15.3.解析(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°-42°=138°.(2)∵△ABE≌△ACD,∴AB=AC=9,AE=AD=6,∴CE=AC-AE=9-6=3.4.解析(1)其他对应角:∠BAF和∠DCE,∠AFB和∠CED;其他对应边:AB和CD,BF和DE.(2)∵△ABF≌△CDE,∠B=30°,∴∠D=∠B=30°,∵∠DCF=40°,∴∠EFC=∠D+∠DCF=30°+40°=70°.(3)∵△ABF≌△CDE,∴BF=DE,∴BF-EF=DE-EF,∴BE=DF,∵BD=10,EF=2,∴DF=BE=4,∴BF=BE+EF=4+2=6.能力提升全练拓展训练1.B ∵△ABC≌△DEF,∴EF=BC.∵AB=2,AC=4,∴4-2<BC<4+2,即2<BC<6,又由已知得EF的长为整数,∴EF=BC=3或4或5,又∵△DEF的周长为偶数,所以EF=4.故选B.2.答案 3解析∵△ABC与△DEF全等,∴3x-2=7且2x-1=5,此时x=3,或3x-2=5且2x-1=7,此时不存在满足条件的x.故答案为3.3.答案(4,4)或(0,0)或(4,0)解析如图所示,仅D1(4,4),D2(0,0),D3(4,0)满足题意.三年模拟全练拓展训练1.A ∵△EDC≌△ABC,∴∠DCE=∠ACB=100°.∵A、C、D在同一条直线上,∴∠ACD=180°,∴∠BCE=∠ACB+∠DCE-∠ACD=20°.2.答案8解析∵△ABC≌△DEF,BC=EF=5 cm,△ABC的面积是20 cm2,∴BC·h=20(h为△ABC中BC边上的高),∴h=8 cm,则△DEF中EF边上的高是8 cm.3.答案1∶4解析∵∠A∶∠ABC∶∠ACB=3∶5∶10,∠A+∠ABC+∠ACB=180°,∴∠A=30°,∠ABC=50°,∠ACB=100°.∵△MNC≌△ABC,∴∠N=∠ABC=50°,∠M=∠A=30°,∴∠MCA=∠M+∠N=80°,∴∠BCM=20°,∠BCN=80°,∴∠BCM∶∠BCN=1∶4.五年中考全练核心素养全练拓展训练1.C 由题意可得两个三角形的周长相等,且为.设三角形中除最长边x外,另外两边为y,z,则x+y+z=,∵y+z>x,∴x<,又x>y,x>z,∴x>.综上可得<x<,故选C.2.解析(1)AE和EC相等且垂直.∵△ABE≌△EDC,∴AE=EC,∠A=∠CED,∵AB⊥BD,∴∠A+∠AEB=90°,∴∠CED+∠AEB=90°, ∴∠AEC=180°-90°=90°,∴AE⊥CE.(2)如图所示,相等的边有AB=ED,AE=EC,BE=DC;相等的角有∠BAE=∠DEC,∠ABE=∠EDC,∠AEB=∠ECD.。

人教版八年级上册数学全等三角形的判定同步练习(含答案)

人教版八年级上册数学全等三角形的判定同步练习(含答案)

人教版八年级上册数学12.2 全等三角形的判定同步练习一、单选题1.在下列各组图形中,是全等图形的是( )A .B .C .D . 2.已知图中的两个三角形全等,则∠α的度数是( )A .72°B .60°C .58°D .50° 3.如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒ 4.如图,在ABC 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30 5.如图,已知∠ABC ∠∠CDE ,其中AB =CD ,不正确的是( )A .AC =CEB .∠BAC =∠DCE C .∠ACB =∠ECD D .∠B =∠D 6.如图,ABC DEC ≌△△,点A 和点D 是对应顶点,点B 和点E 是对应顶点,过点A 作AF CD ⊥,垂足为点F ,若65BCE ∠=︒,则CAF ∠的度数为( )A .30B .25︒C .35︒D .65︒ 7.如图,A ABC B C '''≌△△,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .60°B .100°C .120°D .135° 8.如图,△ABC ≌△ADE ,如果AB =5cm ,BC =7cm ,AC =6cm ,那么DE 的长是( )A .6cmB .5cmC .7cmD .无法确定二、填空题 9.如图,△EFG∠∠NMH ,△EFG 的周长为15cm ,HN=6cm ,EF=4cm ,FH=1cm ,则HG= ______ .10.如图,若∠ABC∠∠A 1B 1C 1,且∠A =110°,∠B =40°,则∠C 1=______°.11.如图,已知△ABC ∠∠BAD .若∠DAC =20°,∠C =88°,则∠DBA =________°.12.如图,∠ABD∠∠AC E,A E=3cm,AC=6 cm,则CD=__________cm.13.如图∠ABC,使A与D重合,则∠ABC______∠DBC,其对应角为_____,对应边是_______.14.如图,已知∠ABC∠∠DBC,∠A=45°,∠ACD=76°,则∠DBC的度数为_________°.15.如图△ACB∠A′CB′,∠A′CB=30°,∠ACB′=110°,则∠ACA′的度数是________度.16.已知△ABC∠∠DEF,若∠B=40°,∠D=30°,则∠F=________°.三、解答题17.如图,C为BE上一点,点A,D在线段BE的两侧,若△ABC∠∠CED,试说明:AB∠ED.18.如图,ABE DCE △≌△,点E 在线段AD 上,点F 在CD 延长线上,F A ∠=∠,求证:AD BF ∥.19.已知:如图,::3:10:5ABC A B C A BCA ABC ''∆∆∠∠∠=≌,,求A B BC ''∠∠,的度数.20.如图,已知∠ABF∠∠CDE.(1)若∠B =30°,∠DCF =40°,求∠EFC 的度数;(2)若BD=10,EF=2,求BF 的长.答案第1页,共1页 参考答案:1.C2.A3.C4.D5.C6.B7.C8.C9.4cm10.3011.3612.313. ∠ ∠A =∠D ,∠ABC =∠DBC ;∠ACB =∠DCB AB =DB ,AC =DC ,BC =BC . 14.9715.4016.11019.30A '∠=︒,50B BC '∠=︒20.(1)70°;(2)6.。

人教版八年级数学上册全等三角形同步训练习题

人教版八年级数学上册全等三角形同步训练习题

人教版八年级数学上册12.1《全等三角形》同步训练习题一.选择题(共12小题)1.(2015秋•蓟县期中)下列各组的两个图形属于全等图形的是()A. B.C. D.2.(2015春•山亭区期末)下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个3.(2015春•太康县期末)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.54.(2015春•泰山区期末)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个 B.2个C.3个 D.4个5.(2015秋•武平县校级月考)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°6.(2015春•东莞校级期末)如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15° B.20° C.25° D.30°7.(2015秋•南通校级期中)如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC 的度数等于()A.120°B.70° C.60° D.50°.8.(2015秋•淮安校级月考)如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD9.(2015秋•赵县校级月考)如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE 上,则∠BAD的度数为()A.15°B.20°C.25°D.30°10.(2015秋•德州校级月考)若△ABC≌△DEF,△ABC的周长为100,AB=30,EF=25,则AC=()A.55 B.45 C.30 D.2511.(2015秋•邗江区校级月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或512.(2014春•兴化市校级月考)△ABC≌△A1B1C1,其中△ABC三边为x、6、3,另一个△A1B1C1三边为3、y、8.那么2x+y()A.8 B.6 C.22 D.24二.填空题(共11小题)13.(2015•柳州)如图,△ABC≌△DEF,则EF= .14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE= .15.(2015春•黄冈校级期末)△ABC中,∠A:∠C:∠B=4:3:2,且△ABC≌△DEF,则∠DEF= .16.(2015春•衡阳县期末)如图,已知△ACE≌△DBF,CF=BF,AE=DF,AD=8,BC=2,则AC= .17.(2015秋•南江县校级期中)已知△ABC≌△DEF,且△DEF的周长为12,若AB=5,BC=4,AC= .18.(2015秋•泰兴市校级月考)如图,△ABC≌△ADE,BC的延长线交DE于F,∠B=30°,∠AED=110°,∠DAC=10°,则∠DFB的度数为.19.(2015秋•乐陵市校级月考)已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是厘米.20.(2015秋•泰兴市校级月考)如图所示,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,∠DEF的度数是.21.(2014春•榆树市期末)如图,已知△ABC≌△CDA,∠BAC=60°,∠DAC=23°,则∠D= .22.(2015春•苏州期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB= .23.(2015秋•都匀市期中)如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x ﹣1,3,若这两个三角形全等,则x= .三.解答题(共7小题)24.(2015春•太康县期末)如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.25.(2015春•安岳县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.26.(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.27.(2014秋•泰山区校级期中)已知在△ABC中,∠A=90°,D,E分别是边BC,AC上的点,且DE⊥BC于D,△ADB≌△EDB≌EDC,则∠C的度数为多少?.DE与DC之间有怎样的数量关系?说明理由.28.(2014秋•扶沟县期中)如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.29.(2014秋•盐城期中)如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?30.(2012春•永春县期中)如图,已知△ABC中,AB=AC=10厘米,BC=8cm,点D为AB的中点,点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由点C向点A点以a厘米/秒运动,设运动的时间为t秒,(1)求CP的长;(2)若以C、P、Q为顶点的三角形和以B、D、P为顶点的三角形全等,且∠B和∠C是对应角,求a 的值.人教版八年级数学上册12.1《全等三角形》同步训练习题参考答案一.选择题(共12小题)1.(2015秋•蓟县期中)下列各组的两个图形属于全等图形的是()A. B.C.D.选D2.(2015春•山亭区期末)下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个【考点】全等图形.【分析】分别利用全等图形的概念以及全等三角形的判定方法进而判断得出即可.【解答】解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)两角和一边对应相等的两个三角形全等,是一角的对边或两角的夹边对应相等,正确;(4)全等三角形对应边相等,正确.所以有3个判断正确.故选:C.【点评】此题主要考查了全等图形的概念与性质,正确掌握判定两三角形全等的方法是解题关键.3.(2015春•太康县期末)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.5【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.4.(2015春•泰山区期末)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的性质.【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键.5.(2015秋•武平县校级月考)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以∠BAD=∠CAE,然后求出∠BAD 的度数,再根据△ABG和△FDG的内角和都等于180°,所以∠DFB=∠BAD.【解答】解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=(∠BAE﹣∠DAC)=(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.【点评】本题主要利用全等三角形对应角相等的性质,准确识图也是考查点之一.6.(2015春•东莞校级期末)如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,∵∠BED+∠CED=180°,∴∠A=∠BED=∠CED=90°,在△ABC中,∠C+2∠C+90°=180°,∴∠C=30°.故选D.【点评】本题主要考查全等三角形对应角相等的性质,做题时求出∠A=∠BED=∠CED=90°是正确解本题的突破口.7.(2015秋•南通校级期中)如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC 的度数等于()A.120°B.70°C.60°D.50°.【考点】全等三角形的性质.【分析】利用三角形内角和定理得出∠BAN的度数,再利用全等三角形的性质得出∠MAC的度数.【解答】解:∵∠ANC=120°,∴∠ANB=180°﹣120°=60°,∵∠B=50°,∴∠BAN=180°﹣60°﹣50°=70°,∵△ABN≌△ACM,∴∠BAN=∠MAC=70°.故选:B.【点评】此题主要考查了全等三角形的性质,得出∠BAN的度数是解题关键.8.(2015秋•淮安校级月考)如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.【点评】本题考查了全等三角形的性质和平行线的判定的应用,注意:全等三角形的对应角相等,对应边相等.9.(2015秋•赵县校级月考)如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE 上,则∠BAD的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】先由△ABC≌△DEF,根据全等三角形的性质得出∠B=∠E=60°,∠C=∠F=40°,由DF∥BC,得出∠1=∠C,等量代换得到∠1=∠F,那么AC∥EF,于是∠2=∠E=60°.由三角形内角和定理求出∠BAC=180°﹣∠B﹣∠C=80°,于是∠BAD=∠BAC﹣∠2=20°.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∠C=∠F=40°,∵DF∥BC,∴∠1=∠C,∴∠1=∠F,∴AC∥EF,∴∠2=∠E=60°.∵∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∴∠BAD=∠BAC﹣∠2=80°﹣60°=20°.故选B.【点评】本题考查了全等三角形的性质,平行线的判定与性质,三角形内角和定理,求出∠2=∠E=60°是解题的关键.10.(2015秋•德州校级月考)若△ABC≌△DEF,△ABC的周长为100,AB=30,EF=25,则AC=()A.55 B.45 C.30 D.25【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF=25,再根据三角形的周长公式列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=25,∵△ABC的周长为100,AB=30,∴AC=100﹣30﹣25=45.故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等.11.(2015秋•邗江区校级月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或5【考点】全等三角形的性质.【专题】动点型.【分析】分两种情况讨论:①若△BPD≌△CPQ,根据全等三角形的性质,则BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),根据速度、路程、时间的关系即可求得;②若△BPD≌△CQP,则CP=BD=6厘米,BP=CQ,得出,解得:v=3.【解答】解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴,解得:v=3;∴v的值为:2.25或3,故选C.【点评】此题考查了线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.12.(2014春•兴化市校级月考)△ABC≌△A1B1C1,其中△ABC三边为x、6、3,另一个△A1B1C1三边为3、y、8.那么2x+y()A.8 B.6 C.22 D.24选C二.填空题(共11小题)13.(2015•柳州)如图,△ABC≌△DEF,则EF= 5 .【考点】全等三角形的性质.【分析】利用全等三角形的性质得出BC=EF,进而求出即可.【解答】解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.【点评】此题主要考查了全等三角形的性质,得出对应边是解题关键.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE= 30°.【考点】全等三角形的性质.【专题】证明题.【分析】由△ABC≌△ADE可得∠BAC=∠DAE=60°,由D是∠BAC的平分线上一点可得∠BAD=∠DAC=∠BAC=30°,即可得∠CAE的度数.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=∠BAC=30°,∴∠CAE=∠DAE﹣∠DAC=60°﹣30°=30°.故答案填:30°.【点评】本题考查了全等三角形的性质及角平分线的性质,熟练掌握三角形全等的性质是解题的关键.15.(2015春•黄冈校级期末)△ABC中,∠A:∠C:∠B=4:3:2,且△ABC≌△DEF,则∠DEF= 40°.【考点】全等三角形的性质.【分析】先由△ABC中,∠A:∠C:∠B=4:3:2及三角形内角和定理求出∠B的度数,再根据全等三角形的对应角相等求出∠DEF.【解答】解:∵△ABC中,∠A:∠C:∠B=4:3:2,∴∠B=180°×=40°,∵△ABC≌△DEF,∴∠E=∠B=40°.故答案为:40°.【点评】本题考查了全等三角形的性质的应用,掌握全等三角形的对应角相等是解题的关键.也考查了三角形内角和定理.16.(2015春•衡阳县期末)如图,已知△ACE≌△DBF,CF=BF,AE=DF,AD=8,BC=2,则AC= 5 .【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等可得AC=DB,再求出AB=CD=(AD﹣BC)=3,那么AC=AB+BC,代入数值计算即可得解.【解答】解:∵△ACE≌△DBF,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD,∵AD=8,BC=2,∴AB=(AD﹣BC)=×(8﹣2)=3,∴AC=AB+BC=3+2=5.故答案为5.【点评】本题考查了全等三角形对应边相等的性质,熟记性质并求出AB=CD是解题的关键.17.(2015秋•南江县校级期中)已知△ABC≌△DEF,且△DEF的周长为12,若AB=5,BC=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形的周长相等求出△ABC的周长,根据三角形的周长公式计算即可.【解答】解:∵△ABC≌△DEF,△DEF的周长为12,∴△ABC的周长为12,又AB=5,BC=4,∴AC=3,故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的周长相等,面积相等是解题的关键.18.(2015秋•泰兴市校级月考)如图,△ABC≌△ADE,BC的延长线交DE于F,∠B=30°,∠AED=110°,∠DAC=10°,则∠DFB的度数为50°.【考点】全等三角形的性质.【分析】设AD与BF交于点M,要求∠DFB的大小,可以在△DFM中利用三角形的内角和定理求解,转化为求∠AMC的大小,再转化为在△ACM中求∠ACM就可以.【解答】解:设AD与BF交于点M,∵△ABC≌△ADE,∴∠AED=∠ACB=110°,∴∠ACM=180°﹣110°=70°,∠AMC=180°﹣∠ACM﹣∠DAC=180°﹣70°﹣10°=100°,∴∠FMD=∠AMC=100°,∴∠DFB=180°﹣∠D﹣∠FMD=180°﹣100°﹣30°=50°.故答案为:50°.【点评】本题考查了全等三角形的性质,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.19.(2015秋•乐陵市校级月考)已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是 3 厘米.【考点】全等三角形的性质.【分析】根据三角形的面积公式求出△ABC边BC上的高,再根据全等三角形对应边上的高相等解答.【解答】解:设△ABC边BC上的高为h,则△ABC的面积=BC•h=×6h=9,解得h=3,∵△ABC≌△DEF,BC=EF,∴EF边上的高是3cm.故答案为:3.【点评】本题主要考查了全等三角形对应边上的高相等的性质.20.(2015秋•泰兴市校级月考)如图所示,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,∠DEF的度数是35°.【考点】全等三角形的性质.【分析】由△ACB的内角和定理求得∠CAB=25°;然后由全等三角形的对应角相等得到∠EAD=∠CAB=25°.则结合已知条件易求∠EAB的度数;最后利用△AEB的内角和是180度和图形来求∠DEF的度数.【解答】解:∵∠ACB=105°,∠B=50°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣50°﹣105°=25°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=25°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=10°,∴∠EAB=25°+10°+25°=60°,∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣60°﹣50°=70°,∴∠DEF=∠AED﹣∠AEB=105°﹣70°=35°.故答案为:35°.【点评】本题考查全等三角形的性质.全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.21.(2014春•榆树市期末)如图,已知△ABC≌△CDA,∠BAC=60°,∠DAC=23°,则∠D= 97°.【考点】全等三角形的性质.【分析】先由全等三角形的对应角相等得出∠BAC=∠DCA=60°,然后在△ADC中根据三角形内角和定理求出∠D的度数.【解答】解:∵△ABC≌△CDA,∴∠BAC=∠DCA=60°,∵∠DAC=23°∴∠D=180°﹣∠DCA﹣∠DAC=97°.故答案为97°.【点评】本题考查了全等三角形的性质及三角形内角和定理,根据全等三角形的对应角相等得出∠BAC=∠DCA=60°,是解题的关键.22.(2015春•苏州期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB= 66°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠E,再求出∠ACF,然后根据三角形的内角和定理列式计算即可得解.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.【点评】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.23.(2015秋•都匀市期中)如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x ﹣1,3,若这两个三角形全等,则x= 3 .【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形的对应边相等得到3x﹣2=7且2x﹣1=5或3x﹣2=5且2x﹣1=7,然后分别解两方程求出满足条件的x的值.【解答】解:∵△ABC与△DEF全等,∴3x﹣2=7且2x﹣1=5,解得x=3,或3x﹣2=5且2x﹣1=7,没有满足条件的x的值.故答案为:3.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的对应边上的高、中线以及对应角的平分线相等.三.解答题(共7小题)24.(2015春•太康县期末)如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠C=∠D,∠OBC=∠OAD,再根据三角形的内角和等于180°表示出∠OBC,然后利用四边形的内角和等于360°列方程求解即可.【解答】解:∵△OAD≌△OBC,∴∠C=∠D,∠OBC=∠OAD,∵∠0=65°,∴∠OBC=180°﹣65°﹣∠C=115°﹣∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,∴65°+115°﹣∠C+135°+115°﹣∠C=360°,解得∠C=35°.【点评】本题考查了全等三角形的性质,三角形的内角和定理,四边形的内角和定理,熟记性质与定理并列出关于∠C的方程是解题的关键.25.(2015春•安岳县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.【考点】全等三角形的性质.【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可.【解答】解:(1)∵△ABC≌△DEB,∴AB=DE=7,BE=BC=4,∴AE=AB﹣BE=7﹣4=3;(2)∵△ABC≌△DEB,∴∠A=∠D=35°,∠DBE=∠C=60°,∴∠DFA=∠A+∠AEF=∠A+∠D+∠DBE=130°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角和对应边相等分析.26.(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出即可,根据全等得出∠ACB=∠DCE,都减去∠ACE即可.【解答】解:AB的对应边为DE,∵△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD=40°.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.27.(2014秋•泰山区校级期中)已知在△ABC中,∠A=90°,D,E分别是边BC,AC上的点,且DE⊥BC于D,△ADB≌△EDB≌EDC,则∠C的度数为多少?.DE与DC之间有怎样的数量关系?说明理由.【考点】全等三角形的性质;含30度角的直角三角形.【分析】根据全等三角形的象征得出∠A=∠DEB=∠DEC=90°,∠ABD=∠EBD=∠C,跟即三角形内角和定理求出∠C=30°,根据含30度角的就三角形性质得出即可.【解答】解:当∠C=30°时,△ADB≌△EDB≌EDC,DC=2ED,理由是:∵△ADB≌△EDB≌△EDC,∴∠A=∠DEB=∠DEC=90°,∠ABD=∠EBD=∠C,∵∠A=90°,∴∠C+∠ABC=90°,∴3∠C=90°,∴∠C=30°,∵∠DEC=90°,∴DC=2DE.【点评】本题考查了全等三角形的性质,含30度角的直角三角形性质的应用,注意:全等三角形的对应边相等,题目比较好,难度适中.28.(2014秋•扶沟县期中)如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠BEA=∠CDE=100°,同时利用三角形的内角和求出∠DEC=45°,再根据角的计算得出即可.【解答】解:∵△EAB≌△DCE,∴∠BEA=∠CDE=100°,∵∠A=∠C=35°,∠CDE=100°,∴∠DEC=180°﹣100°﹣35°=45°,∵∠DEB=10°,∴∠BEC=45°﹣10°=35°,。

人教版八年级上册12.2全等三角形判定同步练习(包含答案)

人教版八年级上册12.2全等三角形判定同步练习(包含答案)

12.2全等三角形判定知识要点:三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、单选题1.如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC = 2.如图所示,则下面图形中与图中△ABC 一定全等的三角形是( )A .B .C .D .3.如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是( )A.90°B.120°C.135°D.150°4.有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边B.角边角C.边边边D.角角边5.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN是A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧6.如图,已知,,,则图中全等三角形的总对数是A.3 B.4 C.5 D.67.如图,FE=BC,DE=AB,∠B=∠E=40°,∠F=70°,则∠A=( )A.40°B.50°C.60°D.70°8.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD等于()A.2cm B.3cm C.4cm D.5cm9.如图,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( )A.大于100 m B.等于100 mC.小于100 m D.无法确定10.如图,AB⊥BC且AB=BC,DE⊥CD且DE=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.36 B.48 C.72 D.108二、填空题11.如图,若AB=AD,加上一个条件_____,则有△ABC≌△ADC.12.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=__________.13.如图,已知∠1=∠2=90°,AD=AE,那么图中有____对全等三角形.14.如图,Rt∆ABC 中,∠BAC = 90°,AB =AC ,分别过点B、C 作过点A 的直线的垂线BD、CE ,垂足分别为D、E ,若BD = 4,CE=2,则DE= (_________)15.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE ,垂足分别为E ,D ,AD =25,DE =17,则BE =______.三、解答题16.如图,点E ,F 在CD 上,AD CB ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.17.已知:如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .证明:(1)PD=PE .(2)AD=AE .18.已知:如图,AE ∥CF ,AB=CD ,点B 、E 、F 、D 在同一直线上,∠A=∠C .求证:(1)AB∥CD;(2)BF=DE.19.如图,点M.N在线段AC上,AM=CN,AB∥CD,AB=CD.请说明△ABN≌△CDM的理由;答案1.D 2.B3.A4.A5.D6.D7.D8.C9.B10.C11.BC =DC12.150°13.314.615.816.解:AF 与BE 平行且相等,因为AD CB ,所以C D ∠=∠.因为DE CF =,所以CE DF =.又因为A B ∠=∠,所以AFD BEC ∆≅∆.所以AF BE =,AFD BEC ∠=∠.所以AF BE .17.解:证明:(1)连接AP .在△ABP 和△ACP 中,AB=AC PB=PC AP=AP ⎧⎪⎨⎪⎩,∴△ABP ≌△ACP (SSS ).∴∠BAP=∠CAP ,又∵PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,∴PD=PE (角平分线上点到角的两边距离相等).(2)在△APD 和△APE 中,∵90PAD PAE ADP AEP AP AP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△APD ≌△APE (AAS ),∴AD=AE ;18.解:(1)∵AB ∥CD ,∴∠B=∠D .在△ABE 和△CDF 中,A CAB CD B D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ),∴∠B=∠D ,∴AB ∥CD ;(2)∵△ABE ≌△CDF ,∴BE=DF .∴BE+EF=DF+EF ,∴BF=DE .19.∵AM=CN∴AM+MN=CN+MN即AN=CM∵AB ∥CD∴∠A=∠C在△ABN 和△CDM 中=AN CMA C AB CD=⎧⎪∠∠⎨⎪=⎩∴△ABN ≌△CDM (SAS )人教版八年级上册12.2全等三角形判定同步练习(包含答案)11 / 11。

12.1 全等三角形 人教版数学八年级上册同步练习(含答案)

12.1 全等三角形 人教版数学八年级上册同步练习(含答案)

第十二章全等三角形12.1 全等三角形第1课时认识全等三角形1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌△ADE,若∠D=∠B,∠C=∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC的最大边,AE是△AED的最大边,∠BAC与∠EAD是对应角,且∠BAC=25°,∠B=35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵△ABC≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)。

人教版数学八年级上册:12.1 全等三角形 同步练习(附答案)

人教版数学八年级上册:12.1 全等三角形  同步练习(附答案)

第十二章 全等三角形 12.1 全等三角形1.下列各图形中,不是全等图形的是( )2.如图是全等形的是 .① ② ③ ④ ⑤ ⑥⑦ ⑧ ⑨ ⑩ ⑪ ⑫3.已知△ABC ≌△EDF ,则对应边为 ,对应角为 .4.如图,△AOC 与△BOD 全等,用符号“≌”表示这两个三角形全等,已知∠A 与∠B 是对应角,写出其余的对应角和对应边.第4题图 第5题图 第7题图 5.如图,点E ,F 在线段BC 上,△ABF 与△DCE 全等,点A 与点D ,点B 与点C 是对应顶点,AF 与DE 交于点M ,则∠DCE =( )A .∠B B .∠AC .∠EMFD .∠AFB 6.已知△ABC ≌△A′B′C′,点A 与点A′,点B 与点B′是对应顶点,△A′B′C′的周长为9 cm ,AB =3 cm ,BC =4 cm ,则A′C′= cm.7.如图,△ABC ≌△DEF ,根据图中提供的信息,得x = .8.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1.若这两个三角形全等,则x 等于( )A.73B .4C .3D .3或739.如图,△ABC ≌△DEF ,BE =4,AE =1,则DE 的长是( )A .5B .4C .3D .2第9题图第10题图10.如图,△ACB ≌△DCE,∠BCE=25°,则∠ACD 的度数为( ) A.20° B.25°C.30° D.35°11.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( ) A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE第11题图第12题图12.如图,把△ABC沿直线BA翻折至△ABD,那么△ABC和△ABD是全等图形(填“是”或“不是”);若△ABC的面积为10,则△ABD的面积为.13.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为.14.如图,已知△ABD≌△ACD,且B,D,C在同一条直线上,那么AD与BC是怎样的位置关系?为什么?15.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC,DE相交于点F,求∠DFB 的度数.16.如图,A,D,E三点在同一直线上,且△BAD≌△ACE.(1)你能说明BD,DE,CE之间的数量关系吗?(2)请你猜想△ABD满足什么条件时,BD∥CE?参考答案 1.A2.①和⑨;②和③;④和⑧;⑤和⑦;⑪和⑫.3.AB 与ED ,AC 与EF ,BC 与DF ,∠A 与∠E ,∠B 与∠D ,∠C 与∠F . 4.解:△AOC ≌△BOD.∵∠A 与∠B 是对应角, ∴其余的对应角是:∠AOC 与∠BOD ,∠ACO 与∠BDO ;对应边是:OA 与OB ,OC 与OD ,AC 与BD. 5.A 6.2cm . 7.20. 8.C 9.A 10.B 11.D 12.10 13.30°.14.解:AD ⊥BC.理由如下:∵∠ADB 与∠ADC 是对应角,且∠ADB +∠ADC =180°, ∴∠ADB =∠ADC =90°. ∴AD ⊥BC.15.解:∵△ABC ≌△ADE ,∴∠B =∠D ,∠BAC =∠DAE.又∠BAD =∠BAC -∠CAD ,∠CAE =∠DAE -∠CAD , ∴∠BAD =∠CAE.∵∠DAC =60°,∠BAE =100°,∴∠BAD =12(∠BAE -∠DAC)=20°.∵在△ABG 和△FDG 中, ∠B =∠D ,∠AGB =∠FGD , ∴∠DFB =∠BAD =20°.16.解:(1)BD =DE +CE.理由:∵△BAD ≌△ACE , ∴BD =AE ,AD =CE.∴BD =AE =AD +DE =CE +DE , 即BD =DE +CE.(2)△ABD 满足∠ADB =90°时,BD ∥CE , 理由:∵△BAD ≌△ACE ,∴∠E =∠ADB =90°(添加的条件是∠ADB =90°). ∴∠BDE =180°-90°=90°=∠E. ∴BD ∥CE.即当∠ADB =90°时,BD ∥CE.。

人教版 八年级数学上册 第12章 全等三角形 同步训练(含答案)

人教版 八年级数学上册  第12章 全等三角形 同步训练(含答案)

人教版八年级数学第12章全等三角形同步训练一、选择题1. 在如图所示的三角形中,与图中的△ABC全等的是()2. 如图所示,AC,BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于点E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个3. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4. 下列四个图形中,属于全等图形的是()A.③和④B.②和③C.①和③D.②和④5. 如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF的是()A.∠A=∠D B.BC=EFC.∠ACB=∠F D.AC=DF6. 如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE7. 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,BC =7,BD=4,则点D到AB的距离是()A.3 B.4C.5 D.78. 如图,△ABC的外角平分线BD,CE相交于点P,若点P到AC的距离为3,则点P到AB的距离为()A.1 B.2 C.3 D.49. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误10. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题11. 已知△ABC的三边长分别是6,8,10,△DEF的三边长分别是6,6x-4,4x+2.若两个三角形全等,则x的值为________.12. 如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC =DB,③AB=DC,其中不能判定△ABC≌△DCB的是________(只填序号).13. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.15. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED 与AB相交于点G.若∠ACD=40°,则∠AGD=________°.16. 如图所示,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB,BC上沿A→B→C 运动. 当OP=CD时,点P的坐标为.17. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.三、解答题18. 如图,A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF.求证:DE=CF.19. 如图,△ABC≌△EBD,则∠1与∠2相等吗?若相等,请证明;若不相等,请说明理由.20. 如图所示,∠BAC=∠BCA,AD为△ABC中BC边上的中线,延长BC至点E,使CE=AB,连接AE.求证:∠CAD=∠CAE.人教版八年级数学第12章全等三角形同步训练-答案一、选择题1. 【答案】C2. 【答案】D[解析] 与已知三角形全等的三角形有△DCB,△BAD,△DCE,△CDA.3. 【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.4. 【答案】D[解析] 图形②和图形④放在一起,可以完全重合,因此是全等图形.5. 【答案】D[解析] 已知∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用“ASA”可得△ABC≌△DEF;添加BC=EF,利用“SAS”可得△ABC≌△DEF;添加∠ACB=∠F,利用“AAS”可得△ABC≌△DEF;添加AC=DF,不能证明△ABC≌△DEF.故选D.6. 【答案】B7. 【答案】A8. 【答案】C[解析] 如图,过点P作PQ⊥AC于点Q,PW⊥BC于点W,PR⊥AB 于点R.∵△ABC的外角平分线BD,CE相交于点P,∴PQ=PW,PW=PR.∴PR=PQ.∵点P到AC的距离为3,∴PQ=3.∴PR=3,则点P到AB的距离为3.9. 【答案】A[解析] AB=b,AB是斜边,小惠作的斜边长是b符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.10. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.二、填空题11. 【答案】2[解析] 由全等三角形的对应边相等可知有以下两种情况:①4x +2=10,解得x =2; 6x -4=8, 解得x =2.由于2=2,所以此种情况成立. ②4x +2=8,解得x =32; 6x -4=10,解得x =73.由于32≠73,所以此种情况不成立. 综上所述,x 的值为2.12. 【答案】②[解析] ∵已知∠ABC =∠DCB ,且BC =CB ,∴若添加①∠A =∠D ,则可由“AAS”判定△ABC ≌△DCB ; 若添加②AC =DB ,则属于“SSA”,不能判定△ABC ≌△DCB ; 若添加③AB =DC ,则可由“SAS”判定△ABC ≌△DCB.13. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).14. 【答案】2[解析] ∵CF ∥AB ,∴∠A =∠FCE.在△ADE 和△CFE 中,⎩⎨⎧∠A =∠FCE ,∠AED =∠CEF ,DE =FE ,∴△ADE ≌△CFE(AAS). ∴AD =CF =3.∴BD =AB -AD =5-3=2.15. 【答案】40 [解析] 在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,∴△ABC ≌△DEC(SSS). ∴∠A =∠D.又∵∠AFG =∠DFC , ∴∠AGD =∠ACD =40°. 16. 【答案】(2,4)或(4,2)17. 【答案】7[解析] 过点P 作PF ⊥BC 于点F ,PG ⊥AB 于点G ,连接AP .∵△ABC 的两条外角平分线BP ,CP 相交于点P ,∴PF=PG=PE=2.∵S △BPC =2,∴BC ·2=2,解得BC=2.∵△ABC 的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.三、解答题18. 【答案】证明:∵A 、C 、D 、B 四点共线,且AC =BD , ∴AC +CD =BD +CD ,即AD =BC ,(2分) 在△ADE 和△BCF 中,⎩⎨⎧∠A =∠BAD =BC∠ADE =∠BCF, ∴△ADE ≌△BCF(ASA ),(4分) ∴DE =CF.(6分)19. 【答案】解:∠1=∠2.证明:∵△ABC ≌△EBD ,∴∠A =∠E. 在△AOF 中,∠1=180°-∠A -∠AOF , 在△EOB 中,∠2=180°-∠E -∠BOE. 又∵∠AOF =∠BOE(对顶角相等), ∴∠1=∠2.20. 【答案】证明:如图,延长AD 到点F ,使得DF =AD ,连接CF.∵AD 为△ABC 中BC 边上的中线,∴BD =CD. 在△ADB 和△FDC 中,⎩⎨⎧AD =FD ,∠ADB =∠FDC ,BD =CD ,∴△ADB ≌△FDC(SAS). ∴AB =CF ,∠B =∠DCF. ∵CE =AB ,∴CE =CF.∵∠ACE =∠B +∠BAC ,∠ACF =∠DCF +∠BCA ,∠BAC =∠BCA , ∴∠ACE =∠ACF.在△ACF 和△ACE 中,⎩⎨⎧AC =AC ,∠ACF =∠ACE ,CF =CE ,∴△ACF ≌△ACE(SAS). ∴∠CAD =∠CAE.。

人教版八年级数学上册 12.1 全等三角形 同步训练(含答案)

人教版八年级数学上册 12.1 全等三角形 同步训练(含答案)

人教版八年级数学上册12.1 全等三角形同步训练一、选择题1. 下列各组的两个图形属于全等图形的是()2. 已知图中的两个三角形全等,则∠α的度数为 ()A.105°B.75°C.60°D.45°3. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C=24°,则∠B′的度数为()A.150°B.120°C.90°D.60°4. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°5. 如图,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是()A.5B.8C.10D.156. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC7. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.58. 如图,已知点A,B,C,D在同一条直线上,△AEC≌△DFB.如果AD=37 cm,BC=15 cm,那么AB的长为()A.10 cmB.11 cmC.12 cmD.13 cm9. 如图,△ACB≌△A'CB',∠ACA'=30°,则∠BCB'的度数为()A.20°B.30°C.35°D.40°10. 如图所示,已知△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB的度数为 ()A.40°B.50°C.55°D.60°二、填空题11. 如图,△ABC≌△DEF,根据图中提供的信息,得x=________.12. 已知△ABC≌△A'B'C',∠A=90°,∠B'=30°,AC=15 cm,则∠C'=,B'C'=.13. 如图,△ABC≌△ADE,BC的延长线交DE于点G,∠CAB=54°,∠DAC=16°,则∠DGB=°.14. 已知△ABC≌△DEF,若△ABC的周长为16,AB=6,AC=7,则EF=________.15. 已知△ABC的三边长分别是6,8,10,△DEF的三边长分别是6,6x-4,4x+2.若两个三角形全等,则x的值为________.16. 已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1.若这两个三角形全等,则x的值为.三、解答题17. 如图所示,已知△ABD≌△ACD,且点B,D,C在同一条直线上,那么AD 与BC有怎样的位置关系?为什么?18. 如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,AD=DC =2.4,BC=4.1.(1)若∠ABE=150°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.19. 如图,在△ACE中,CD⊥AE于点D,B是AE延长线上一点,连接BC,取BC上一点F.若∠ACB=90°,△ACD≌△ECD,△CEF≌△BEF.(1)求∠B的度数;(2)求证:EF∥AC.人教版八年级数学上册12.1 全等三角形同步训练-答案一、选择题1. 【答案】A2. 【答案】 B3. 【答案】B[解析] ∵∠A=36°,∠C=24°,∴∠B=120°.∵△ABC≌△A′B′C′,∴∠B=∠B′=120°.4. 【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.5. 【答案】A[解析] ∵△ABC≌△EDF,AC=15,∴EF=AC=15.∵EC=10,∴CF=EF-EC=15-10=5.6. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.7. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.8. 【答案】B[解析] ∵△AEC≌△DFB,∴AC=DB.∴AC-BC=DB-BC,即AB=CD.∵AD=37 cm,BC=15 cm,∴AB==11(cm).9. 【答案】B[解析] 由△ACB≌△A'CB',得∠ACB=∠A'CB'.由等式的基本性质,得∠ACB-∠A'CB=∠A'CB'-∠A'CB.所以∠BCB'=∠ACA'=30°.10. 【答案】D[解析] 因为△ABC≌△ADE,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.二、填空题11. 【答案】2012. 【答案】60°30 cm13. 【答案】70[解析] ∵△ABC≌△ADE,∴∠B=∠D.∵∠GFD=∠AFB,∴∠DGB=∠F AB.∵∠F AB=∠DAC+∠CAB=70°,∴∠DGB=70°.14. 【答案】3[解析] ∵△ABC的周长为16,AB=6,AC=7,∴BC=3.∵△ABC≌△DEF,∴EF=BC=3.15. 【答案】2[解析] 由全等三角形的对应边相等可知有以下两种情况:①4x+2=10,解得x=2;6x-4=8,解得x=2.由于2=2,所以此种情况成立. ②4x +2=8,解得x =32; 6x -4=10,解得x =73.由于32≠73,所以此种情况不成立. 综上所述,x 的值为2.16. 【答案】4[解析] ∵△ABC 的三边长分别为6,7,10,△DEF 的三边长分别为6,3x-2,2x-1,这两个三角形全等,∴3x-2=10,2x-1=7,解得x=4;还可以是3x-2=7,2x-1=10,这种情况不成立.三、解答题17. 【答案】解:AD ⊥BC.理由:∵△ABD ≌△ACD , ∴∠ADB =∠ADC.又∵∠ADB +∠ADC =180°, ∴∠ADB =∠ADC =90°. ∴AD ⊥BC.18. 【答案】解:(1)∵∠ABE =150°,∠DBC =30°, ∴∠ABD +∠CBE =120°.∵△ABC ≌△DBE ,∴∠ABC =∠DBE.∵∠ABD =∠ABC -∠DBC ,∠CBE =∠DBE -∠DBC , ∴∠ABD =∠CBE =60°, 即∠CBE 的度数为60°. (2)∵△ABC ≌△DBE ,∴DE =AC =AD +DC =4.8,BE =BC =4.1.∴△DCP 与△BPE 的周长和=DC +DP +BP +CP +PE +BE =DC +DE +BC +BE =15.4.19. 【答案】解:(1)∵△ACD≌△ECD,∴∠A=∠DEC. ∵△CEF≌△BEF,∴∠ECB=∠B.∵∠DEC=∠ECB+∠B,∴∠A=2∠B.∵∠ACB=90°,∴∠A+∠B=90°.∴2∠B+∠B=90°.∴∠B=30°.(2)证明:∵△CEF≌△BEF,∴∠EFB=∠EFC.而∠EFB+∠EFC=180°,∴∠EFB=90°.∴∠ACB=∠EFB.∴EF∥AC.。

最新人教版八年级数学上册课时同步练:全等三角形的判定(含答案)

最新人教版八年级数学上册课时同步练:全等三角形的判定(含答案)

课时同步练:全等三角形的判定基础题训练(一):限时35分钟1.如图,在△ABC和△DBE中,点D在边AC上,BC与DE交于点P,AB=DB,∠A=∠BDE,∠ABD=∠CBE.(1)求证:BC=BE;(2)若AD=DC=2.5,BC=4,求△CDP与△BEP的周长之和.2.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.3.如图,已知AD=AE,BD和CE相交于点O,BD=CE,∠B=∠C.求证:AB=AC.小明同学的证明过程如下框.小明同学的证法是否正确?若正确,请在方框内打“√”;若错误,请写出你的证明过程.4.已知两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:①BD平分∠ADC;②AO=CO=AC;③AC⊥BD;④S四边形ABCD=AC•BD.(1)在以上结论中,正确的有(只填序号);(2)请选择一个你认为正确的结论进行证明.5.如图,△ACD中,∠ACD=60°,以AC为边作等腰三角形ABC,AB=AC,E、F分别为边CD、BC上的点,连结AE、AF、EF,∠BAC=∠EAF=60°(1)求证:△ABF≌△ACE;(2)若∠AED=70°,求∠EFC的度数;(3)请直接指出:当F点在BC何处时,AC⊥EF?6.填空:把下面的推理过程补充完整,并在括号内注明理由,如图,已知△ABC中,E、F分别是AB、AC上的两点,且EF∥BC,D为EF上一点,且BD=CD,ED=FD,请说明BE=CF.解:∵BD=CD(已知)∴∠DBC=∠DCB()∵EF∥BC(已知)∴∠EDB=∠DBC∠FDC=()∴∠EDB=∠FDC(等量代换)在△EBD和△FCD中,∴△EBD≌△FCD()∴BE=CF()7.如图,点P是△ABC内一点,E、F分别是边AC、BC上的两点,连接PE、PF,且PE=PF,点D为AC延长线上一点,连接PD,且DE=BF,∠AEP+∠BFP=180°.(1)求证:△DEP≌△BFP;(2)已知AB=AE+BF,若∠ACB=80°,求∠APB的度数.基础题训练(二):限时35分钟8.如图,在∠ABC=90°,∠DBE=90°,BA=BC,BD=BE,连接AE、CD,AE所在直线交CD于点F,连接BF.(1)连接AD,EC,求证:AD=EC;(2)若BF⊥AF,求证:点F为CD的中点.9.在△ABC和△ADE中,点E在BC边上,∠EAC=∠DAB,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=70°,求∠BAD的度数.10.(1)如图1,已知,AB∥CD,AD∥BC.求证:△ABC≌△CDA;(2)如图2,已知AB=DC,AE=DF,BF=CE.求证:AF=DE.11.如图,边长为a的正方形ABCD被两条与正方形的边平行的线段EF,GH分割成四个小矩形,EF与GH交于点P,连接AF,AH.(1)若BF=DH,求证:AF=AH.(2)连接FH,若∠FAH=45°,求△FCH的周长(用含a的代数式表示).12.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE 于点D,CE⊥DE于点E,AD=CE.(1)若BC在DE的同侧(如图①).求证:AB⊥AC.(2)若BC在DE的两侧(如图②),其他条件不变,(1)中的结论还成立吗?(不需证明)13.如图,已知BC是△ABD的角平分线,BC=DC,∠A=∠E=30°,∠D=50°.(1)写出AB=DE的理由;(2)求∠BCE的度数.14.如图,点M是线段AB中点,AD、BC交于点N,连接AC、BD、MC、MD,∠1=∠2,∠3=∠4.(1)求证:△AMD≌△BMC;(2)图中在不添加新的字母的情况下,请写出除了“△AMD≌△BMC”以外的所有全等三角形,并选出其中一对进行证明.15.已知,如图,△ABC中,AB=AC,∠ABC=30°,过点B作BD ⊥AB交CA延长线于点D,过点C作CE⊥AC交BA延长线于点E,点F为AE中点,连接CF.(1)求证:AD=BF;(2)请直接写出长度等于CF的线段(线段CF本身除外).参考答案1.(1)证明:∵∠ABD=∠CBE,∴∠ABC=∠DBE,∵∠A=∠BDE,AB=BD,∴△ABC≌△DBE(SAS),∴BC=BE;(2)∵△ABC≌△DBE,∴DE=AC=AD+DC=2.5+2.5=5,BE=BC=4,∴△CDP和△BEP的周长和=DC+DP+CP+BP+PE+BE=DC+DE+BC+BE=15.5.2.解:(1)AD∥BE,理由:∵AB∥CD,∴∠B=∠DCE,∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE;(2)∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA).3.解:小明同学的证法不正确.证明:∵∠B=∠C,∠BOE=∠COE,∴∠BDC=∠BEC,∴∠ADB=∠AEC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AB=AC.4.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠BDA=∠BDC,故①正确,∵DA=DC,∴DO⊥AC,∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②③正确;四边形ABCD的面积=S△ADB+S△BCD=DB×OA+DB×OC=AC•BD,故④正确;故答案为①②③④5.(1)证明:∵∠BAC=∠EAF=60°,∴∠BAC﹣∠CAF=∠EAF﹣∠CAF,∴∠EAC=∠BAF,∵AB=AC,∴∠B=∠ACB=(180°﹣6°)÷2=60°,∵∠ACD=60°,∴∠ACD=∠D,在△CAE和△BAF中,,∴△CAE≌△BAF.(2)解:∵△CAE≌△BAF,∴AE=AF,∠AEC=∠AFB,∴∠AEF=∠AFE=(180°﹣60°)÷2=60°,∵∠AEC+∠AED=∠AFC+∠AFB=180°,∴∠AED=∠AFC=70°,∴∠EFC=∠AFC﹣∠AFE=70°﹣60°=10°.(3)解:当F点是BC的中点时,AC⊥EF.理由:∵△CAE≌△BAF.∴AE=AF,CE=BF,∵BF=CF,∴CE=CF,∴AC⊥EF.6.解:∵BD=CD(已知)∴∠DBC=∠DCB(等边对等角)∵EF∥BC(已知)∴∠EDB=∠DBC∠FDC=∠DCB(两直线平行,内错角相等)∴∠EDB=∠FDC(等量代换)在△EBD和△FCD中,,∴△EBD≌△FCD(SAS)∴BE=CF(全等三角形的对应边相等),故答案为:等边对等角;∠DCB;两直线平行,内错角相等;SAS;全等三角形的对应边相等.7.(1)证明:∵∠AEP+∠BFP=180°,∠AEP+∠DEP=180°,∴∠DEP=∠BFP,∴DE=BF,PE=FP,∴△DEP≌△BFP.(2)解:∵△DEP≌△BFP,∴BF=DE,PB=PD,∠D=∠FBP,∵AB=AE+BF=AE+DE=AD,AP=AP,∴△APD≌△APB,∴∠D=∠ABP=∠FBP,∠PAD=∠PAB,∵∠ACB=80°,∴∠CAB+∠CBA=100°,∴∠PAB+∠PBA=50°,∴∠APB=130°.8.证明:(1)∵∠ABC=90°,∠DBE=90°,∴∠ABD=∠EBC,又∵AB=BC,BD=BE,∴△ABD≌△BEC,∴AD=EC.(2)如图2中:作CP⊥BF交BF的延长线于P,作DN⊥BF于N.∵∠ABC=90°,BF⊥AE∴∠ABF+∠A=90°,∠ABF+∠PBC=90°∴∠A=∠PBC,且AB=BC,∠P=∠AFB=90°∴△ABF≌△BPC∴BF=CP∵∠DBN+∠EBF=90°,∠DBN+∠BDN=90°,∴∠BDN=∠EBF,∵∠DNB=∠BFE=90°,BD=BE,∴△DNB≌△BFE,∴DN=BF=CP,∵∠DNF=∠FPC,∠DEN=∠PFC,∴△PFC≌△NFD,∴DF=FC即点F是CD中点.9.证明:(1)∵∠EAC=∠DAB,∴∠BAC=∠DAE,在△ABC和△ADE中∵,∴△ABC≌△ADE;(2)∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=70°,∴∠CAE=180°﹣∠C﹣∠AEC=40°,∴∠BAD=40°.10.(1)证明:∵AB∥CD,∴∠BAC=∠DCA,∵AD∥BC∴∠BCA=∠DAC,在△ABC和△CDA中∴△ABC≌△CDA(ASA)(2)∵BF=CE,∴BF+EF=CE+EF.∴BE=CF.在△ABE和△DCF中∴△ABE≌△DCF(SSS).∴∠B=∠C,在△ABF和△DCE中∴△ABF≌△DCE(SAS)∴AF=DE.11.证明:(1)∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°,在△ABF和△ADH中,,∴△ABF≌△ADH(SAS),∴AF=AH;(2)将△ADH绕点A顺时针旋转90°到△ABM的位置,如图所示,则AM=AH,∠DAH=∠BAM,∵∠FAH=45°,∠DAB=90°,∴∠DAH+∠BAF=45°,∴∠BAM+∠BAF=45°,即∠FAM=45°,∴∠FAM=∠FAH,在△FAM和△FAH中,,∴△FAM≌△FAH(SAS),∴MF=HF,∵MF=BF+BM=BF+DH,∴△FCH的周长为:CF+CH+FH=CF+CH+BF+DH=BC+CD=2a,即△FCH的周长为2a.12.(1)证明:∵BD⊥DE于点D,CE⊥DE于点E,∴△ABD和△CAE均为直角三角形.在Rt△ABD和Rt△CAE中,,∴Rt△ABD≌Rt△CAE(HL),∴∠ABD=∠CAE.又∵∠ABD+∠BAD=90°,∴∠CAE+∠BAD=90°,∴∠BAC=180°﹣(∠CAE+∠BAD)=90°,∴AB⊥AC.(2)解:AB⊥AC,理由如下:同(1)可证出:Rt△ABD≌Rt△CAE(HL),∴∠ABD=∠CAE.又∵∠ABD+∠BAD=90°,∴∠BAC=∠CAE+∠BAD=90°,∴AB⊥AC.13.解:(1)∵BC是△ABD的角平分线,∴∠CBD=∠CBA,∵BC=DC,∴∠CBD=∠D=50°,∴∠CBD=∠CBA,在△CDE和△CBA中,,∴△CDE≌△CBA,∴DE=AB;(2)由(1)知,∠CBD=∠D=50°,∴∠BCD=80°,∴∠ACB=100°由(1)知,△CDE≌△CBA,∴∠DCE=∠BCA,∴∠BCD=∠ACE=80°,∴∠BCE=∠ACB﹣∠ACE=20°.14.(1)解:∵点M是AB中点,∴AM=BM,∵∠1=∠2,∴∠AMD=∠BMC,在△AMD和△BMC中,,∴△AMD≌△MBC(ASA);(2)△AMC≌△BMD,△ABC≌△BAD,△ACN≌△BDN.理由:∵△AMD≌△MBC,∴AD=BC,∵∠3=∠4,AB=BA,∴△BAD≌△ABC(SAS),∴AC=BD,∠BDN=∠ACN,∵∠ANC=∠BND,∴△ANC≌△BND(AAS),∵AC=BD,∠CAM=∠DBM,AM=BM,∴△AMC≌△BMD(SAS).15.(1)证明:∵BD⊥AB,EC⊥CA,∴∠DBA=∠ECA=90°,在△DBA和△ECA中,,∴△DBA≌△ECA(ASA),∴AD=AE,∵AB=AC,∴∠ABC=∠ACB=30°,∴∠FAC=∠ABC+∠ACB=60°,∵AF=FE,∠ACE=90°,∴CF=AF=EF,∴△AFC是等边三角形,∴AF=AC=FC=AB=EF,∴BF=AE,∴BF=AE,∴AD=BF.(2)∵AF=FE,∠ECA=90°,∴CF=AF=EF,∵AB=AC,∴∠ABC=∠ACB=30°,∴∠FAC=∠ABC+∠ACB=60°,∴△CAF是等边三角形,∴AC=CF,∴与CF相等的线段有AB,AC,AF,EF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步练习:三角形全等
学好数学的秘密
1、学完多思考
2、多做练习题
3、善于总结规律
学好数学的秘密
1、学完多思考
要想学好数学一定要多思考。

主要是指养成思考的习惯,学会思考的方法。

独立思考是学习数学必须具备的能力。

同学们在学习时,要边听课边想,边看书边想,边做题边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。

2、多做练习题
要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。

只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。

3、善于总结规律
我们会发现在日常的数学学习中,很多同学是不是同一种类型的题目总是反复错,经常错?这种问题的出现,就是学生缺乏总结规律的习惯,一种类型的题目反复错,经常错,说明你还没有掌握做这种题目的规律,你不仅要做错题笔记,而且还需要将你错的这种类型的题目都拿出来总结归纳,要善于总结规律,将同种类型的题目多比对,多总结,总结出一种属于自己的解题思路和方法,然后再遇到这类问题时利用总结的规律和方法去解决。

(60分)
一、选择题(每题5分,共20分)
1.[2015·宜昌]如图22-1,在方格纸中,以AB为一边作△ABP,使之与△ABC 全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有(C) A.1个B.2个C.3个D.4个
【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点
C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个.
图22-1 图22-2
2.如图22-2,下列条件中,不能证明△ABD≌△ACD的是(D) A.BD=DC,AB=AC
B.∠ADB=∠ADC,BD=CD
C.∠B=∠C,∠BAD=∠CAD
D.∠B=∠C,BD=DC
【解析】当BD=DC,AB=AC时,因为AD=AD,由SSS可得△ABD≌△ACD,故A正确;当∠ADB=∠ADC,BD=CD时,因为AD=AD,由SAS可得△ABD≌△ACD,故B正确;当∠B=∠C,∠BAD=∠CAD时,因为AD=AD,由AAS可得△ABD≌△ACD,故C正确;D不能判定△ABD≌△ACD,因为不能利用SSA判定两三角形全等.
3.[2015·湖州]如图22-3,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于(C) A.10 B.7
C.5 D.4
图22-3
【解析】作EF⊥BC于F,
∵BE平分∠ABC,ED⊥AB,EF⊥BC,
∴EF=DE=2,
∴S
△BCE

1
2BC·EF=
1
2×5×2=5.
4.[2015·宁波]如图22-4,▱ABCD中,E,F是对角线BD上的两点,如果添加
一个条件,使△ABE≌△CDF,则添加的条件不能为(C) A.BE=DF B.BF=DE
C.AE=CF D.∠1=∠2
第3题答图
图22-4
【解析】A.当BE=DF,△ABE≌△CDF(SAS),故此选项可添加;
B.当BF=ED,可得BE=DF,△ABE≌△CDF(SAS),故此选项可添加;
C.当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;
D.当∠1=∠2,△ABE≌△CDF(ASA),故此选项可添加.
二、填空题(每题5分,共20分)
5.[2014·长沙]如图22-5,点B,E,C,F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=__6__.
图22-5 图22-6 6.[2015·江西]如图22-6,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA =OB,则图中有__3__对全等三角形.
【解析】∵OP平分∠MON,∴∠1=∠2,
由OA=OB,∠1=∠2,OP=OP,可证得△AOP≌△BOP(SAS),
∴AP=BP,
又∵OP平分∠MON,PE⊥OM于E,PF⊥ON于F,
∴PE=PF,∴△PEA≌△PFB(HL),
又∵PE=PF,OP=OP,∴△POE≌△POF(HL),
∴图中共有3对全等三角形.
7.[2015·娄底]如图22-7,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是__∠ABD=∠CBD或AD=CD__(只需写一个,不添加辅助线).
【解析】由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个边了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.
图22-7
8.[2015·黔东南]如图22-8,在四边形ABCD中,AB∥CD,连结BD.请添加一个适当的条件__AB=CD__,使△ABD≌△CDB.(只需写一个)
图22-8
【解析】∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,
∴当添加AB=CD时,可根据“SAS”判定△ABD≌△CDB.
三、解答题(共20分)
9.(10分)[2015·福州]如图22-9,∠1=∠2,∠3=∠4,求证:
AC=AD.
证明:∵∠3=∠4,
∴∠ABC=∠ABD.
在△ABC和△ABD中,


⎧∠1=∠2,
AB=AB,
∠ABC=∠ABD,
∴△ABC≌△ABD(ASA)
∴AC=AD.
10.(10分)[2015·武汉]如图22-10,点B,C,E,
F在同一直线上,BC=EF,AC⊥BC于点C,
DF⊥EF于点F,AC=DF.求证:
图22-9
(1)△ABC ≌△DEF ; (2)AB ∥DE .
证明:(1)∵AC ⊥BC 于点C ,DF
⊥EF 于点F , ∴∠ACB =∠DFE =90°, 在△ABC 和△DEF 中,
⎩⎨⎧BC =EF ,
∠ACB =∠DFE ,AC =DF ,
∴△ABC ≌△DEF (SAS ); (2)∵△ABC ≌△DEF , ∴∠B =∠DEF , ∴AB ∥DE .
(24分)
11.(12分)[2014·杭州]如图22-11,在△ABC 中,AB =AC ,点E ,F 分别在AB ,AC 上,AE =AF ,BF 与CE 相交于点P ,求证:PB =PC ,并请直接写出图中其他相等的线段.
图22-11
证明:∵AB =AC , ∴∠ABC =∠ACB , 在△ABF 与△ACE 中,
⎩⎨⎧AB =AC ,
∠CAE =∠BAF ,AE =AF ,
∴△ABF ≌△ACE (SAS ), ∴∠ABF =∠ACE ,
∴∠ABC -∠ABF =∠ACB -∠ACE , ∴∠FBC =∠ECB , ∴PB =PC .
相等的线段还有:PE =PF ,BE =CF ,EC =FB ,AE =AF . 12.(12分)[2015·温州]如图22-12,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D .
(1)求证:AB =CD ;
(2)若AB =CF ,∠B =30°,求∠D 的度数. 解:(1)证明:∵AB ∥CD , ∴∠B =∠C ,
在△ABE 和△DCF 中,
⎩⎨⎧∠A =∠D ,∠C =∠B ,AE =DF ,
∴△ABE ≌△DCF (AAS ), ∴AB =CD ;
(2)∵△ABE ≌△DCF , ∴AB =CD ,BE =CF , ∵AB =CF ,∠B =30°, ∴CD =CF , ∠C =∠B =30°, ∴△CDF 是等腰三角形, ∴∠D =1
2
×(180°-30°)=75°.
(16分)
13.(16分)[2015·株洲]如图22-13,在Rt △ABC 中,∠C =90°,BD 是△ABC 的一条角平分线.点O ,E ,F
分别在BD ,BC ,AC 上,且四边形OECF 是正方形. (1)求证:点O 在∠BAC 的平分线上;
图22-12
(2)若AC =5,BC =12,求OE 的长.
图22-13
解:(1)证明:过点O 作OM ⊥AB 于点M , ∵BD 是∠ABC 的平分线, ∴OE =OM ,
∵四边形OECF 是正方形, ∴OE =OF , ∴OF =OM ,
∵OM ⊥AB ,OF ⊥AD , ∴AO 是∠BAC 的角平分线, 即点O 在∠BAC 的平分线上;
(2)∵在Rt △ABC 中,AC =5,BC =12, ∴AB =AC 2+BC 2=52+122=13, 设CE =CF =x ,BE =BM =y ,AM =AF =z ,
∴⎩⎨⎧x +y =12,y +z =13,x +z =5, 解得⎩⎨⎧x =2,y =10,z =3,
∴OE =CE =CF =2.
第13题答图。

相关文档
最新文档