赏析幂函数的图象特征及应用

合集下载

专题幂函数以及函数的应用(解析版)

专题幂函数以及函数的应用(解析版)

专题10 幂函数以及函数的应用【考点预测】 考点一、幂函数概念形如y x α=的函数,叫做幂函数,其中α为常数. 考点诠释:幂函数必须是形如y x α=的函数,幂函数底数为单一的自变量x ,系数为1,指数为常数.例如:4223,1,(2)y x y x y x ==+=-等都不是幂函数.考点二、幂函数的图象及性质 1.作出下列函数的图象:(1)y x =;(2)12y x =;(3)2y x =;(4)1y x -=;(5)3y x =.考点诠释:幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质: (1)所有的幂函数在(0,)+∞都有定义,并且图象都过点()1,1;(2)0α>时,幂函数的图象通过原点,并且在区间[0,)+∞上是增函数.特别地,当1α>时,幂函数的图象下凸;当01α<<时,幂函数的图象上凸;(3)0α<时,幂函数的图象在区间(0,)+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴.2.作幂函数图象的步骤如下: (1)先作出第一象限内的图象;(2)若幂函数的定义域为(0,)+∞或[0,)+∞,作图已完成; 若在(0)-∞,或0]-∞(,上也有意义,则应先判断函数的奇偶性 如果为偶函数,则根据y 轴对称作出第二象限的图象; 如果为奇函数,则根据原点对称作出第三象限的图象.3.幂函数解析式的确定(1)借助幂函数的定义,设幂函数或确定函数中相应量的值. (2)结合幂函数的性质,分析幂函数中指数的特征.(3)如函数()a f x k x =⋅是幂函数,求()f x 的表达式,就应由定义知必有1k =,即()a f x x =. 4.幂函数值大小的比较(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小. (3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小. 考点三、解决实际应用问题的步骤: 第一步:阅读理解,认真审题读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息.第二步:引进数学符号,建立数学模型设自变量为x ,函数为y ,并用x 表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果. 第四步:再转译为具体问题作出解答.【典型例题】例1.(2022·全国·高一单元测试)已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围. 【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.例2.(2022·全国·高一单元测试)已知幂函数2()(33)a f x a a x =-+为偶函数, (1)求函数()f x 的解析式;(2)若函数()()()213g x f x m x =+--在[]1,3-上的最大值为2,求实数m 的值.【解析】(1)因为2()(33)af x a a x =-+为幂函数,所以2331a a -+=,解得2a =或1a = 因为()f x 为偶函数,所以2a =,故()f x 的解析式2()f x x =;(2)由(1)知()()2213g x x m x =+--,对称轴为122mx -=,开口向上,当1212m-≤即12m ≥-时,()()max 3362g x g m ==+=,即16m =-; 当1212m ->即12m <-时,()()max 1122g x g m =-=--=,即32m =-; 综上所述:16m =-或32m =-.例3.(2022·全国·高一课时练习)吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式; (2)当产量为多少万盒时,该企业在生产中所获利润最大?【解析】(1)当产量小于或等于50万盒时,20020018010020300y x x x =---=-, 当产量大于50万盒时,222002006035001403700y x x x x x =----=-+-, 故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时,2050300700y ≤⨯-=; 当50x >时,21403700y x x =-+-, 当140702x ==时,21403700y x x =-+-取到最大值,为1200.因为7001200<,所以当产量为70万盒时,该企业所获利润最大.例4.(2022·全国·高一课时练习)如图,某日的钱塘江观测信息如下:2017年⨯月⨯日,天气:阴;能见度:1.8千米;11:40时,甲地“交叉潮”形成,潮水匀速奔向乙地;12:10时,潮头到达乙地,形成“一线潮”,开始均匀加速,继续向西;12:35时,潮头到达丙地,遇到堤坝阻挡后回头,形成“回头潮”.按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离x (千米)与时间t (分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点(0,12)A ,点B 坐标为(,0)m ,曲线BC 可用二次函数:21(125s t bt c b =++,c 是常数)刻画. (1)求m 值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度02(30)125v v t =+-,0v 是加速前的速度) 【解析】(1)11:40到12:10的时间是30分钟,则(30,0)B ,即30m =, 潮头从甲地到乙地的速度120.430=(千米/分钟). (2)因潮头的速度为0.4千米/分钟,则到11:59时,潮头已前进190.47.6⨯=(千米), 此时潮头离乙地127.6 4.4-=(千米),设小红出发x 分钟与潮头相遇, 于是得0.40.48 4.4x x +=,解得5x =, 所以小红5分钟后与潮头相遇.(3)把(30,0),(55,15)C 代入21125s t bt c =++,得221303001251555515125b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩,解得225b =-,245c =-, 因此21224125255s t t =--,又00.4v =,则22(30)1255v t =-+, 当潮头的速度达到单车最高速度0.48千米/分,即0.48v =时,22(30)0.481255t -+=,解得35t =,则当35t =时,21224111252555s t t =--=, 即从35t =分钟(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以0.48千米/分的速度匀速追赶潮头,设小红离乙地的距离为1s ,则1s 与时间t 的函数关系式为10.48(35)s t h t =+≥, 当35t =时,1115s s ==,解得:735h =-,因此有11273255s t =-,最后潮头与小红相距1.8千米,即1 1.8s s -=时,有212241273 1.8125255255t t t ---+=, 解得150t =,220t =(舍去),于是有50t =,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时0.48560.4⨯=(分钟), 因此共需要时间为6503026+-=(分钟),所以小红与潮头相遇到潮头离她1.8千米外共需26分钟.例5.(2022·全国·高一课时练习)已知幂函数()()2253mf x m m x =-+的定义域为全体实数R.(1)求()f x 的解析式;(2)若()31f x x k >+-在[]1,1-上恒成立,求实数k 的取值范围.【解析】(1)∵()f x 是幂函数,∴22531m m -+=,∴12m =或2.当12m =时,()12f x x =,此时不满足()f x 的定义域为全体实数R , ∴m =2,∴()2f x x =.(2)()31f x x k >+-即2310x x k -+->,要使此不等式在[]1,1-上恒成立,令()231g x x x k =-+-,只需使函数()231g x x x k =-+-在[]1,1-上的最小值大于0.∵()231g x x x k =-+-图象的对称轴为32x =,故()g x 在[]1,1-上单调递减, ∴()()min 11g x g k ==--, 由10k -->,得1k <-, ∴实数k 的取值范围是(,1)-∞-.【过关测试】 一、单选题1.(2022·全国·高一单元测试)若函数()f x x α=的图象经过点19,3⎛⎫ ⎪⎝⎭,则19f ⎛⎫= ⎪⎝⎭( )A .13B .3C .9D .8【答案】B【解析】由题意知()193f =,所以193α=,即2133α-=, 所以12α=-,所以()12f x x -=,所以1211399f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.故选:B2.(2022·全国·高一课时练习)已知432a =,254b =,1325c =,236d =,则( ) A .b a d c <<< B .b c a d <<< C .c d b a <<< D .b a c d <<<【答案】D 【解析】由题得4133216a ==,2155416b ==,1325c =,2133636d ==,因为函数13y x =在R 上单调递增,所以a c d <<.又因为指数函数16x y =在R 上单调递增,所以b a <.故选:D .3.(2022·全国·高一课时练习)已知幂函数()a f x x 的图象过点(9,3),则函数1()()1f x y f x -=+在区间[1,9]上的值域为( ) A .[-1,0] B .1[,0]2-C .[0,2]D .3[,1]2-【答案】B【解析】解法一:因为幂函数()a f x x 的图象过点()9,3 ,所以93=a ,可得12a =,所以()f x x =1()12(1)1()1111f x x x y f x x x x ---+===++++.因为19x ≤≤,所以214x ≤≤,故11,021y x ⎡⎤=∈-⎢⎥+⎣⎦.因此,函数1()()1f x y f x -=+在区间[1,9]上的值域为1,02⎡⎤-⎢⎥⎣⎦.故选:B .解法二:因为幂函数()a f x x 的图象过点(9,3),所以93a =,可得12a =, 所以()f x x =[1,9]x ∈,所以()[1,3]f x ∈.因为y =1()()1f x f x -+,所以1()1y f x y -=+,所以1131y y -≤≤+,解得102y -≤≤,即函数1()()1f x y f x -=+在区间[1,9]上的值域为1,02⎡⎤-⎢⎥⎣⎦.故选:B .4.(2022·全国·高一课时练习)如图所示是函数mn y x =(*N m n ∈、且互质)的图象,则( )A .m n 、是奇数且1mn< B .m 是偶数,n 是奇数,且1m n> C .m 是偶数,n 是奇数,且1m n< D .m n 、是偶数,且1m n> 【答案】C【解析】函数n m nm y x x =y 轴对称,故n 为奇数,m 为偶数, 在第一象限内,函数是凸函数,故1mn<, 故选:C.5.(2022·全国·高一期中)幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =( ) A .27 B .9C .19D .127【答案】A【解析】由题意,令251m m +-=,即260m m +-=,解得2m =或3m =-, 当2m =时,可得函数3()f x x =,此时函数()f x 在(0,)+∞上单调递增,符合题意; 当3m =-时,可得2()f x x -=,此时函数()f x 在(0,)+∞上单调递减,不符合题意, 即幂函数3()f x x =,则(3)27f =. 故选:A.6.(2022·全国·高一课时练习)向高为H 的水瓶内注水,一直到注满为止,如果注水量V 与水深h 的函数图象如图所示,那么水瓶的形状大致是( )A .B .C .D .【答案】B【解析】当容器是圆柱时,容积V =πr 2h ,r 不变,V 是h 的正比例函数,其图象是过原点的直线,∴选项D 不满足条件;由函数图象可以看出,随着高度h 的增加V 也增加,但随h 变大,每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓,∴容器平行于底面的截面半径由下到上逐渐变小, ∴A 、C 不满足条件,而B 满足条件. 故选:B .7.(2022·全国·高一单元测试)某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位60030x x ⎛⎫+- ⎪⎝⎭元(试剂的总产量为x 单位,50200x ≤≤),则要使生产每单位试剂的成本最低,试剂总产量应为( )A .60单位B .70单位C .80单位D .90单位【答案】D【解析】设每生产单位试剂的成本为y ,因为试剂总产量为x 单位,则由题意可知,原料总费用为50x 元, 职工的工资总额为750020x +元,后续保养总费用为60030x x x ⎛⎫+- ⎪⎝⎭元, 则250750020306008100810040240220x x x x y x x x x x+++-+==++≥⋅=, 当且仅当8100x x=,即90x =时取等号, 满足50200x ≤≤,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位. 故选:D .8.(2022·全国·高一课时练习)给出幂函数:①()f x x =;②2()f x x =;③()3f x x =;④()f x x ()1f x x =.其中满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭的函数的个数是( ) A .1B .2C .3D .4【答案】A【解析】由题,满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭表示函数图象在第一象限上凸,结合幂函数的图象特征可知只有④满足.故选:A 二、多选题9.(2022·全国·高一课时练习)幂函数()()22657mf x m m x--=+在()0,∞+上是增函数,则以下说法正确的是( ) A .3m =B .函数()f x 在(),0∞-上单调递增C .函数()f x 是偶函数D .函数()f x 的图象关于原点对称 【答案】ABD【解析】因为幂函数()()22657m f x m m x--=+在()0,∞+上是增函数,所以2257160m m m ⎧-+=⎨->⎩,解得3m =,所以()3f x x =,所以()()()33f x x x f x -=-=-=-,故()3f x x =为奇函数,函数图象关于原点对称,所以()f x 在(),0∞-上单调递增; 故选:ABD10.(2022·全国·高一课时练习)几名大学生创业时经过调研选择了一种技术产品,生产此产品获得的月利润()p x (单位:万元)与每月投入的研发经费x (单位:万元)有关.已知每月投入的研发经费不高于16万元,且21()6205p x x x =-+-,利润率()p x y x =.现在已投入研发经费9万元,则下列判断正确的是( ) A .此时获得最大利润率B .再投入6万元研发经费才能获得最大利润C .再投入1万元研发经费可获得最大利润率D .再投入1万元研发经费才能获得最大利润 【答案】BC【解析】当16x ≤时,2211()620(15)2555p x x x x =-+-=--+,故当15x =时,获得最大利润,为()1525p =,故B 正确,D 错误;()12012012066262555p x y x x x x x x x ⎛⎫==-+-=-++≤-⋅= ⎪⎝⎭, 当且仅当1205x x=,即10x =时取等号,此时研发利润率取得最大值2,故C 正确,A 错误.故选:BC.11.(2022·全国·高一课时练习)(多选)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用y 1(千元)、乙厂的总费用y 2(千元)与印制证书数量x (千个)的函数关系图分别如图中甲、乙所示,则( )A .甲厂的制版费为1千元,印刷费平均每个为0.5元B .甲厂的总费用y 1与证书数量x 之间的函数关系式为10.51y x =+C .当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元D .当印制证书数量超过2千个时,乙厂的总费用y 2与证书数量x 之间的函数关系式为21542y x =+ 【答案】ABCD【解析】由题图知甲厂制版费为1千元,印刷费平均每个为0.5元,故A 正确; 设甲厂的费用1y 与证书数量x 满足的函数关系式为y kx b =+,代入点(0,1),(6,4),可得164b k b =⎧⎨+=⎩,解得0.5,1k b ==,所以甲厂的费用1y 与证书数量x 满足的函数关系式为10.51y x =+,故B 正确; 当印制证书数量不超过2千个时,乙厂的印刷费平均每个为32 1.5÷=元,故C 正确; 设当2x >时,设2y 与x 之间的函数关系式为y mx n =+代入点(2,3),(6,4),可得2364m n m n +=⎧⎨+=⎩,解得15,42k b ==,所以当2x >时,2y 与x 之间的函数关系式为21542y x =+,故D 正确.故选:ABCD.12.(2022·全国·高一课时练习)若函数()f x 在定义域内的某区间M 是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”,则下列说法正确的是( ) A .若()2f x x =,则不存在区间M 使()f x 为“弱增函数” B .若()1f x x x=+,则存在区间M 使()f x 为“弱增函数”C .若()3f x x x =+,则()f x 为R 上的“弱增函数”D .若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则4a =【答案】ABD【解析】对于A :()2f x x =在[)0,∞+上为增函数,()==f x y x x在定义域内的任何区间上都是增函数,故不存在区间M 使()2f x x =为“弱增函数”,A 正确;对于B :由对勾函数的性质可知:()1f x x x=+在[)1,+∞上为增函数,()21f x y x x-==+,由幂函数的性质可知,()21f x y x x-==+在[)1,+∞上为减函数,故存在区间[)1,M =+∞使()1f x x x =+为“弱增函数”,B 正确;对于C :()3f x x x =+为奇函数,且0x ≥时,()3f x x x =+为增函数,由奇函数的对称性可知()3f x x x=+为R 上的增函数,()21f x y x x==+为偶函数,其在0x ≥时为增函数,在0x <时为减函数,故()3f x x x=+不是R 上的“弱增函数”,C 错误;对于D :若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则()()24f x x a x a =+-+在(]0,2上为增函数,所以402a --≤,解得4a ≤,又()()4f x ay x a x x==+-+在(]0,2上为减函数,由对勾函数的单调性可知,2a ≥,则4a ≥,综上4a =.故D 正确. 故选:ABD . 三、填空题13.(2022·全国·高一单元测试)已知1114,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,若函数()af x x =在()0,+∞上单调递减,且为偶函数,则=a ______. 【答案】4-【解析】由题知:0a <, 所以a 的值可能为4-,1-,12-.当4a =-时,()()1440f x x x x -==≠为偶函数,符合题意.当1a =-时,()()110-==≠f x x x x为奇函数,不符合题意. 当12a =-时,()12f x x x-==,定义域为()0,+∞,则()f x 为非奇非偶函数,不符合题意.综上,4a =-. 故答案为:4-14.(2022·全国·高一课时练习)已知幂函数()2232(1)m m f x m x -+=-在()0+∞,上单调递增,则()f x 的解析式是_____.【答案】()2f x x =【解析】()f x 是幂函数,211m ∴-=,解得2m =或0m =,若2m =,则()0f x x =,在()0+∞,上不单调递减,不满足条件; 若0m =,则()2f x x =,在()0+∞,上单调递增,满足条件; 即()2f x x =. 故答案为:()2f x x =15.(2022·全国·高一课时练习)现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取4粒红豆,乙每次取2粒白豆,同时进行,当红豆取完时,白豆还剩10粒;第二轮,甲每次取1粒红豆,乙每次取2粒白豆,同时进行,当白豆取完时,红豆还剩()*1620,n n n ∈<<N 粒.则红豆和白豆共有________粒. 【答案】58【解析】设红豆有x 粒,白豆有y 粒, 由第一轮结果可知:1042x y -=,整理可得:220x y =-; 由第二轮结果可知:2yx n =-,整理可得:22y x n =-; 当17n =时,由220234x y y x =-⎧⎨=-⎩得:883743x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当18n =时,由220236x y y x =-⎧⎨=-⎩得:923763x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当19n =时,由220238x y y x =-⎧⎨=-⎩得:3226x y =⎧⎨=⎩,322658x y ∴+=+=,即红豆和白豆共有58粒. 故答案为:58.16.(2022·全国·高一期中)已知幂函数()223()p p f x x p N --*=∈ 的图像关于y 轴对称,且在()0+∞,上是减函数,实数a 满足()()233133pp a a -<+,则a 的取值范围是_____.【答案】14a <<【解析】幂函数()()223*p p f x xp N --=∈在()0+∞,上是减函数, 2230p p ∴--<,解得13p -<<,*p N ∈,1p ∴=或2.当1p =时,()4f x x -=为偶函数满足条件,当2p =时,()3f x x -=为奇函数不满足条件,则不等式等价为233(1)(33)ppa a -<+,即()11233(1)33a a -<+,()13f x x =在R 上为增函数, 2133a a ∴-<+,解得:14a <<.故答案为:14a <<. 四、解答题17.(2022·全国·高一课时练习)比较下列各组数的大小: (1)()32--,()32.5--; (2)788--,7819⎛⎫- ⎪⎝⎭; (3)3412⎛⎫ ⎪⎝⎭,3415⎛⎫ ⎪⎝⎭,1412⎛⎫ ⎪⎝⎭.【解析】(1)因为幂函数3y x -=在(),0∞-上单调递减,且2 2.5->-,所以()()332 2.5---<-. (2)因为幂函数78y x =在[)0,∞+上为增函数,且7788188-⎛⎫-=- ⎪⎝⎭,1189>,所以77881189⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以77881189⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,所以7788189-⎛⎫-<- ⎪⎝⎭.(3)41341128⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,3144115125⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,11112582<<,因为幂函数14y x =在()0,∞+上单调递增,所以331444111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.18.(2022·全国·高一单元测试)已知函数()f x x =()2g x x =-.(1)求方程()()f x g x =的解集;(2)定义:{},max ,,a a b a b b a b ≥⎧=⎨<⎩.已知定义在[)0,∞+上的函数{}()max (),()h x f x g x =,求函数()h x 的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数()h x 的简图,并根据图象写出函数()h x 的单调区间和最小值. 【解析】(12x x =-,得2540x x -+=且0x ≥,解得11x =,24x =;所以方程()()f x g x =的解集为{1,4}(2)由已知得()2,01,2,14222,4x x x x x h x x x x x x x x -≤<⎧⎧-⎪⎪==≤≤⎨⎨-<-⎪⎪⎩->⎩. (3)函数()h x 的图象如图实线所示:函数()h x 的单调递减区间是[]0,1,单调递增区间是()1,+∞,其最小值为1.19.(2022·天津市第九十五中学益中学校高一期末)已知幂函数()a g x x =的图像经过点(22,,函数2(4)()1g x af x x ⋅+=+为奇函数.(1)求幂函数()y g x =的解析式及实数a 的值;(2)判断函数f (x )在区间(-1,1)上的单调性,并用的数单调性定义证明【解析】(1)由条件可知22a=12a =,即()12g x x x ==,()42g =,因为()221x a f x x +=+是奇函数,所以()00f a ==,即()221xf x x =+,满足()()f x f x -=-是奇函数,所以2a =成立; (2)由(1)可知()221xf x x =+, 在区间()1,1-上任意取值12,x x ,且12x x <, ()()()()()()211212122222121221221111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以210x x ->,1210x x -<,()()2212110x x ++>所以()()120f x f x -<, 即()()12f x f x <,所以函数在区间()1,1-上单调递增.20.(2022·全国·高一课时练习)几名大学毕业生合作开设3D 打印店,生产并销售某种3D 产品.已知该店每月生产的产品当月都能销售完,每件产品的生产成本为34元,该店的月总成本由两部分组成:第一部分是月销售产品的生产成本,第二部分是其他固定支出20000元.假设该产品的月销售量t (件)与销售价格x (元/件)(*x ∈N )之间满足如下关系:①当3460x ≤≤时,()()2510050t x a x =-++;②当6076x ≤≤时,()1007600t x x =-+.记该店月利润为M (元),月利润=月销售总额-月总成本.(1)求M 关于销售价格x 的函数关系式;(2)求该打印店的最大月利润及此时产品的销售价格.【解析】(1)当60x =时,()260510050100607600a -++=-⨯+,解得2a =.∴()()()()()2**220100003420000,3460,,10076003420000,6076,x x x x x N M x x x x x N ⎧--+--≤≤∈⎪=⎨-+--≤≤∈⎪⎩即()32*2*24810680360000,3460,,10011000278400,6076,x x x x x N M x x x x x N ⎧-++-≤≤∈=⎨-+-≤≤∈⎩(2)当3460x ≤≤,x ∈R 时,设()3224810680360000g x x x x =-++-,则()()26161780g x x x '=---.令()0g x '=,解得182461x =-,()28246150,51x =+, 当3450x ≤≤时,()0g x '>,()g x 单调递增; 当5160x ≤≤时,()0g x '<,()g x 单调递减.∵*x ∈N ,()5044000M =,()5144226M =,()M x 的最大值为44226.当6076x ≤≤时,()()21001102784M x x x =-+-单调递减,故此时()M x 的最大值为()6021600M =.综上所述,当51x =时,()M x 有最大值44226.∴该打印店的最大月利润为44226元,此时产品的销售价格为51元/件. 21.(2022·全国·高一课时练习)已知幂函数2()(33)a f x a a x =-+为偶函数, (1)求函数()f x 的解析式;(2)若函数()()()213g x f x m x =+--在[]1,3-上的最大值为1,求实数m 的值. 【解析】(1)因为()f x 为幂函数所以233112a a a a -+===,得或 因为()f x 为偶函数所以2a = 故()f x 的解析式2()f x x =.(2)由(1)知()()2213g x x m x =+--,当1212m-≤即12m ≥-时,()()max 3361g x g m ==+=,即13m =- 当1212m ->即12m <-时,()()max 1121g x g m =-=--=即1m =- 综上所述:13m =-或1m =-22.(2022·全国·高一课时练习)已知幂函数()()()22tf x t t x t R -=+∈,且()f x 在区间()0,∞+上单调递减.(1)求()f x 的解析式及定义域; (2)设函数()()()221g x f x f x =-⎡⎤⎣⎦⎡⎤⎣⎦,求证:()g x 在()0,∞+上单调递减.【解析】(1)因为幂函数()()()22t f x t t x t R -=+∈,()f x 在区间()0,+∞上单调递减,所以221+=t t ,解得1t =-或12t =, 所以()12f x x -=,定义域为()0,+∞.(2)由(1)知函数()()()()2222110--=-=-≠⎡⎤⎣⎦⎡⎤⎣⎦g x f x x x x f x ,设120x x >>,则()()()222222211212212222121211------=--+=-+x x g x g x x x x x x x x x因为120x x >>,所以2212x x >,222221210,0-<>x x x x ,所以()()120g x g x -<,即()()12g x g x <, 所以()g x 在()0,+∞上单调递减.。

高中数学常见幂函数、二次函数、三次函数的图象及其性质

高中数学常见幂函数、二次函数、三次函数的图象及其性质
(2)当 时, 在 上单调递增,所以函数 的最大值为 ,最小值为 ;
(3)当 时, 在 上单调递减,在 上单调递增,所以函数 的最大值为 或 ,最小值为 .
(1)当 时, 在 上单调递增,所以函数 的最大值为 ,最小值为 ;
(2)当 时, 在 上单调递减,所以函数 的最大值为 ,最小值为 ;
(3)当 时, 在 上单调递增,在 上单调递减,所以函数 的最大值为 ,最小值为 或 .
单调增区间为: 和 ;
单调减区间为:
在R上单调递增
单调增区间为:
单调减区间为: 和
在R上单调递减
三次函数的图象和性质
定 义
我们把形如 的函数,称为三次函数.
导 数
判别式
我们把 叫做三次函数的导函数 的判别式.
极值点
当 时,导函数 有两个零点,原函数 有两个极值点,不妨记为 、 ,且 .
拐 点
令三次函数 的二阶导数 ,即 ,解得 ,我们把点 叫做三次函数的拐点.
图 象
定义域
R
值 域
R
对称中心
单调性
高中常见幂函数的图象和性质
定义
形如 的函数(其中 是常数, 是自变量)称为二次函数.
常见的五种幂函数图象
性质
(1)当幂指数 为奇数时,幂函数为奇函数;当幂指数 为偶数时,幂函数为偶函数.
(2)当 时,幂函数的图象都过 、 点,且在 上单调递增;
(3)当 时,幂函数的图象都过 点,不过 点,且在 上单调递减;
(4)在直线 的右侧,幂指数 越大,图象越高.
幂函数
定义域
单调增区间
单调减区间





二次函数的图象和性质

2.3 幂函数图像与性质

2.3 幂函数图像与性质
y 0.2x
(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
幂函数的图象及性质
对于幂函数,我们只讨论 =1,2,3,1 , 2
-1时的情形。
五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
2、在第一象限内, k >0,在
4
6 k <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、k为奇数时,幂函数为奇函数,
k为偶数时,幂函数为偶函数.
-3
-4
4、幂函数图像不过第四象限。
例3
若m
4
1 2
23 4
3 4… 27 64 …
3 2…
1
y=x 2
x
函数 y x3 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
1
函数 y x 2 的图像
定义域:[0,)
值 域:[0,)
奇偶性:非奇非偶函数
单调性:在[0,)上是增函数
4
3
2
1
(1,1)
-6

2、定义域与k的值有关系.
例1、下列函数中,哪几个函
数是幂函数? 答案:(1)(4)
(1)y = 1
x2
(3)y=2x
(2)y=2x2
(4)y=
1 x
(5) y=x2 +2

幂函数的图象及性质

幂函数的图象及性质

幂函数一、定义幂函数的概念:一般地,函数叫做幂函数,其中是自变量,注意:幂函数的解析式是幂的形式,幂的底数是自变量,指数是常数。

二、研究一类函数的一般路径注意:我们先从实际案例中,写出一系列函数的解析式,从中找到某一类函数的概念,再通过函数的解析式,求出函数的定义域,接着画出函数的图像,可以使用描点法画图,同时利用函数的性质来简化画图的过程,最后利用函数的解析式和图像,来研究函数的值域、单调性、奇偶性和其他性质。

三、六个幂函数的图像及性质1、六个幂函数2、幂函数的图像-2-10123-21123定义域:R 值域:R单调性:在R 上单调递增,增函数奇偶性:奇函数严禁复制-2-1012341149定义域:R 值域:单调性:在上单调递减,减函数,在上单调递增,增函数奇偶性:偶函数-2-10123-8-11827定义域:R 值域:R单调性:在R 上单调递增,增函数奇偶性:奇函数严禁复制124 012定义域:值域:单调性:在上单调递增,增函数奇偶性:非奇非偶函数严禁复制-2122定义域:值域:单调性:在上单调递减,减函数奇偶性:奇函数-2124定义域:值域:单调性:在上单调递减严禁复制奇偶性:偶函数从以上函数分析中,我们得到了6个幂函数的图像总结:6个幂函数具有的共同性质和不同性质1、函数的图像都经过。

2、函数在区间上单调递增,是增函数。

函数和严禁复制在区间上单调递减,是减函数。

在区间上单调递增,是增函数。

和在是单调递减,是减函数。

3、函数、和是奇函数,函数和是偶函数,函数是非奇非偶函数。

4、函数的图像经过原点,函数和的图像不经过原点。

5、已知幂函数,当时,函数在区间上单调递增,当时,函数在区间上单调递减。

四、题型1、幂函数的概念例题1已知幂函数f(x)过点,则f(9)的值为()(解析)设幂函数,因为过点,所以,解得a=,所以f(9)=。

例题2已知函数f(x)=为幂函数,则f()+f()=()(解析)因为函数f(x)=为幂函数,所以m-1=1,解得m=2,所以f(x)=,又因为函数f(x)为奇函数,有f()+f()=0。

3幂函数图象及其性质

3幂函数图象及其性质

幂函数的图像与性质一: 核心梳理、茅塞顿开1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a nn =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)mnaa m n N n *=>∈>、且;②正数的负分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质①a r a s =a r+s (a>0,r 、s ∈Q);②(a r )s =a rs (a>0,r 、s ∈Q); ③(ab)r =a r b s (a>0,b>0,r ∈Q);.n 为奇数 n 为偶数例2 (1)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;(2)化简:5332332323323134)2(248aa a a ab aaab b ba a ⋅⋅⨯-÷++--变式:(2007执信A )化简下列各式(其中各字母均为正数):(1);)(65312121132b a ba b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a(3)100.256371.5()86-⨯-+(三)幂函数 1、幂函数的定义形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。

例题、(1). 下列函数中不是幂函数的是( )A.y = B .3y x = C .2y x = D .1y x -=答案:C例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x :(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数;简解:(1)2m =或1m =-(2)1m =-(3)45m =-(4)25m =-(5)1m =- 变式训练:已知函数()()2223m m f x m m x--=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲线。

幂函数y = xn 的图象和性质

幂函数y = xn 的图象和性质
| |
(-2)-
,1.5- 3
2
|
|
1. 比较大小 0.5-1.3 , 2-0.3
分析:∵
0.5-1.3 > 1 又∵ 2-0.3 < 1 ∴ 0.5-1.3 > 2-0.3
2.
3. 右图是函数
f ( x) x
n 2 2 n3
(n Z )
y
的示意图,试求 n 的值。
解:∵ 函数图象不过原点 ∴ n2 - 2n+3 < 0 ∴ -1< n < 3 ∵ n∈Z ∴ n = 0,1,2 当 n = 0, 2 时 ,n2 - 2n+3 = -3 ;即 f(x) = x –3
例:比较两个值的大小 2 2 3 ① ( 2.2) , ( 1.8 ) 3
解:∵ 2.2 > 1.8
2 3 ∴ ( 2.2) <( 1.8 )2 3 |
y=
x-
2 3
|
|
|
|
② 0.7-1.2 , 0.8-1.2 解: ∵ 0.7 < 0.8 ∴ 0.7-1.2 > 0.8-1.2
y = x –1.2
1.8 幂函数
1. 幂)、(1,1)点; (2) . 在第一象限内,函数值随 x 的增大而增大;
(3) . 在第一象限内, 随 n (n>0)的增大,图象上方越 来越靠近 y 轴。
问题:判断下列两个值的大小: (-0.5) , 1.2 分析: ∵ (-0.5) = (0.5) ∵ 0.5
③ (-0.7)-1.2 , 0.8-1.2 解: ∵ (-0.7) –1.2 = 0.7 -1.2 又∵ 0.7-1.2 > 0.8-1.2 ∴ (-0.7)-1.2 > 0.8-1.2

幂函数图像及其性质

幂函数图像及其性质

幂函数图像及其性质幂函数是一种常见的数学函数形式,它的数学表达式为f(x)=ax^b,其中a和b是实数,且a不等于零。

幂函数的图像展示了函数的特性和行为,这对我们进一步了解和应用幂函数有着重要意义。

一、幂函数的图像及其特征通过观察幂函数的图像,我们可以得到以下几个基本特征:1. 幂函数的图像总是通过点(0,0)。

当x等于零时,幂函数的结果总是零。

2. 当b为正数时,幂函数的图像从左上方向右下方斜率逐渐减小,渐近于x轴。

这是因为幂函数中的x不断增大时,幂函数的值以一个较小的速度增加。

3. 当b为负数时,幂函数的图像从右上方斜率逐渐减小,渐近于x 轴。

这是因为幂函数中的x不断减小时,幂函数的值以一个较小的速度增加。

4. 当b为偶数时,幂函数的图像在第一象限和第三象限均为正,且有一个最小值点或者最大值点。

这是由于幂函数的平方等于0或者正数。

5. 当b为奇数时,幂函数的图像在第一象限和第三象限均为正,且没有最小值点或者最大值点。

这是由于幂函数的绝对值在整个定义域内都为正。

二、幂函数图像的变化规律1. 当a大于0时,幂函数的图像在整个定义域内为正。

随着b的增大,幂函数的图像变得平缓,斜率逐渐减小;随着b的减小,幂函数的图像变得陡峭,斜率逐渐增大。

2. 当a小于0时,幂函数的图像在整个定义域内交替在x轴上方和下方。

随着b的增大或减小,幂函数的图像也会随之变化。

3. 当a等于1时,幂函数的图像变成了恒等函数的图像y=x。

即幂函数退化为y=x的特例。

三、幂函数的性质1. 定义域和值域:幂函数的定义域是实数集R,值域取决于a和b 的取值范围。

2. 奇偶性:当b为偶数时,幂函数是偶函数,关于y轴对称;当b 为奇数时,幂函数是奇函数,关于原点对称。

3. 单调性:当b大于0时,幂函数在整个定义域内是单调递增的;当b小于0时,幂函数在整个定义域内是单调递减的。

4. 渐近线和交叉点:当b大于0时,幂函数的图像会渐近于x轴;当b小于0时,幂函数的图像会与x轴交叉于一个点,并渐近于x 轴。

幂函数图象及其性质

幂函数图象及其性质

1.7
,∴ 1 1.52
1
1.7 2
( 2 ) ∵ y x3 在 R 上 是 增 函 数 , 1.2 1.25 , ∴
(1.2)3 (1.25)3
( 3 ) ∵ y x1 在 (0,) 上 是 减 函 数 , 5.25 5.26 , ∴
Where there is a will,there is a way.
幂函数 y=xα 有下列性质:(1)单调性:当 α
>0 时,函数在(0,+∞)上单调递增;当 α<0
时,函数在(0,+∞)上单调递减.(2)奇偶性:幂
函数中既有奇函数,又有偶函数,也有非奇非偶
函数,可以用函数奇偶性的定义进行判断.

3.已知幂函数
y
( xm2 2m3
mZ
)的图象与
x
轴、
y 轴都无交点,且关于原点对称,求 m 的值.
B.y x3
C.y 2x
D.y x1
答案:C
例 2.已知函数 f x m2 m 1 x5m3 ,当 m 为何值时, f x: (1)是幂函数;(2)是幂函数,且是 0, 上的 增函数;(3)是正比例函数;(4)是反比例函数;
(5)是二次函数;
简解:(1)m 2 或 m 1(2)m 1(3)m 4(4)m 2
幂函数图象及其性质
幂函数图象及其性质
幂函数的图像与性质
1、幂函数的定义 形如 y=xα(a∈R)的函数称为幂函数,其中 x
是自变量,α为常数
注:幂函数与指数函数有本质区别在于自变量的
位置不同,幂函数的自变量在底数位置,而指数
函数的自变量在指数位置。
例题、(1). 下列函数中不是幂函数的是( )
A.y x

幂函数的性质及其应用课件

幂函数的性质及其应用课件
幂函数性质
当自变量$x$的取值范围为全体实 数时,幂函数的值域为 $(0,+\infty)$。
幂函数的奇偶性
奇偶性定义
如果一个函数满足$f(-x)=f(x)$,那 么这个函数就是偶函数;如果满足 $f(-x)=-f(x)$,那么这个函数就是奇 函数。
幂函数的奇偶性
当$n$为偶数时,幂函数$y = x^{n}$ 是偶函数;当$n$为奇数时,幂函数 $y = x^{n}$是奇函数。
幂函数的应用场景
幂函数在金融领域的应用
1 2
投资组合优化
幂函数可以用于建立投资组合模型,根据不同资 产的价格波动和相关性进行优化,以实现风险分 散和资产增值。
资本资产定价模型(CAPM)
幂函数可以用于CAPM中的回报率预测,根据风 险和资产的相关性来计算期望回报率。
3
期权定价模型
幂函数可以用于期权定价模型的构建,通过考虑 标的资产价格、行权价、剩余期限等因素来估算 期权的合理价格。
通过一个实际案例,介绍了幂函数在解决实际问题中的应用。
详细描述
首先介绍了幂函数的定义和性质,然后通过一个具体的例子,展示了如何利用幂函数解决实际问题。这个例子涉 及到物理学中的力学和工程学中的材料科学,通过幂函数来描述和预测材料的强度和重量之间的关系。
利用幂函数解决实际问题二例
总结词
通过另一个实际案例,介绍了幂函数在 解决实际问题中的应用。
数据压缩
在数据压缩领域,幂函数 被用于构建压缩算法,以 实现数据的紧凑表示和存 储。
加密算法
幂函数也被广泛应用于加 密算法中,如RSA公钥密 码体系,以提供安全的数 据传输和保护。
图像处理
在图像处理中,幂函数可 以用于实现图像的缩放、 旋转和扭曲等变换。

幂函数的图像与性质

幂函数的图像与性质

幂函数的图像与性质幂函数是一类常见的数学函数,它的表达形式为y = x^n,其中x是自变量,n是常数指数。

在本文中,我们将探讨幂函数的图像以及它的一些基本性质。

一、幂函数图像的特点幂函数的图像是由指数n的不同取值而呈现出多种形态。

下面我们将分别讨论指数为正偶数、正奇数、负偶数和负奇数时的情况。

1. 指数为正偶数时(n > 0且n为偶数)当指数为正偶数时,幂函数的图像呈现出关于y轴对称的特点。

以y = x^2为例,当x取正负值时,y值都为正,且当x取0时,y值为0。

图像在原点处有一个最小值点,随着x的逐渐增大或减小,y也逐渐增大,但增长速度逐渐减慢。

2. 指数为正奇数时(n > 0且n为奇数)当指数为正奇数时,幂函数的图像呈现出关于原点对称的特点。

以y = x^3为例,当x取正值时,y值为正;当x取负值时,y值为负。

图像在原点处有一个零点,当x逐渐增大或减小时,y也随之增大或减小,但增长速度较快。

3. 指数为负偶数时(n < 0且n为偶数)当指数为负偶数时,幂函数的图像呈现出关于x轴对称的特点。

以y = x^-2为例,当x取正值时,y值小于1;当x取0时,y值无定义;当x取负值时,y值同样小于1。

图像在x轴上有一个渐近线y=0,当x逐渐增大或减小时,y的绝对值逐渐减小。

4. 指数为负奇数时(n < 0且n为奇数)当指数为负奇数时,幂函数的图像呈现出关于原点对称的特点。

以y = x^-3为例,当x取正值时,y值大于1;当x取负值时,y值小于-1。

图像在原点处有一个零点,当x逐渐增大或减小时,y的绝对值逐渐增大。

二、幂函数的基本性质除了图像的特点,幂函数还有一些其他的基本性质。

下面我们将介绍其中的两个重要性质。

1. 幂函数的增减性根据幂函数的指数正负,我们可以判断幂函数的增减性。

当指数为正时,幂函数是递增函数,随着自变量的增大,函数值也随之增大;当指数为负时,幂函数是递减函数,随着自变量的增大,函数值却减小。

幂函数的图像与性质

幂函数的图像与性质
范围是 .
x 1, x 1, 解析: x 1 ,有 解得 x<1, e 2 x 1 1n2,
x 1 x 1, 或 1 有 解得 1≤x≤8, x8 3 x 2
综上所述, {x|x≤8}.
这节课你有什么收获?
总结 (1)幂函数的定义; (2) 幂函数的图像与性质;
(慢增) (快增)
提高训练
练习 如图所示,曲线是幂函数 y = xa 在第一象限内
的图象,已知 a分别取
1 四个值,则相 1,1, , 2 2
C4 C2 C3 C1 应图象依次为:________
1
范例讲解 考点三:幂函数的单调性 例1. 利用单调性判断下列各值的大小。 (1)5.20.8 与 5.30.8 (2)0.20.3 与 0.30.3
y=x0
6
-1
-2
-3
-4
幂函数在第一象限的图像
幂函数图象在第一象限的分布情况:
1
1
=1
0 1
0
1
在直线x=1的右侧,从下往上, 幂指数增大
0< <1
图 像 特 点
第一象限
>1
y y
<0
y
1 o 1 x
1 o
1
1
x
o
1
x
性 质
都经过定点(1,1) 在[0,+∞)为 在[0,+∞)为 在(0,+∞)为 单调增函数. 单调增函数. 单调减函数.
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)

幂函数的图像及应用

幂函数的图像及应用

幂函数的图像及应用幂函数是数学中一个重要的函数类型,形式为f(x) = ax^b,其中a和b是实数,且a不等于零。

幂函数的图像具有特殊的形状,并且在实际生活中有着广泛的应用。

首先,我们来探讨幂函数的图像。

当b为正数时,幂函数的图像呈现出指数增长的趋势。

具体来说,当b>1时,函数值随着x的增加而迅速上升;当0<b<1时,函数值随着x的增加而逐渐上升,但增长速度逐渐减缓。

当b为负数时,幂函数的图像呈现出指数衰减的趋势。

具体来说,当b<0时,函数值随着x的增加而迅速下降;当-1<b<0时,函数值随着x的增加而逐渐下降,但下降速度逐渐减缓。

当b为零时,幂函数变为f(x) = a,即常数函数。

幂函数的图像还具有以下特点:1. 幂函数在原点(0,0)经过,也就是f(0) = 0。

2. 当b为正数时,幂函数的图像在第一象限递增;当b为负数时,幂函数的图像在第一象限递减。

3. 幂函数的图像随着a的正负而发生上下翻转,具体翻转方式与b的奇偶性有关。

接下来,我们来讨论幂函数的应用。

幂函数在现实生活中有广泛的应用,以下列举几个例子:1. 经济学中的产出函数:幂函数被广泛用于描述经济学中的产出函数。

例如,当产出与投入的关系为y = ax^b时,b表示生产要素的比例弹性,a表示单位投入所能得到的产出水平。

幂函数能够很好地描述生产要素与产出的关系,并且能够预测不同投入水平下的产出水平。

2. 物理学中的衰减现象:幂函数被用于描述物理学中的衰减现象,如放射性物质的衰减、电容器的放电等。

通过幂函数,我们可以计算出随着时间的推移,物质或能量的衰减速率。

3. 生物学中的物种分布:在生物学中,幂函数常被用于描述物种分布的现象。

例如,物种的密度与环境因素之间的关系可以用幂函数来表示。

通过幂函数,我们可以了解不同环境因素对物种分布的影响程度。

4. 人口增长模型:幂函数也常用于描述人口增长模型。

人口的增长速度可以用幂函数来表示,从而预测未来的人口规模和趋势。

幂函数图像及性质总结

幂函数图像及性质总结

幂函数图像及性质总结幂函数是一种常见的函数类型,其图像及性质对于数学学习具有重要意义。

首先,我们来看一下幂函数的一般形式,y = x^n,其中n为常数,x为自变量,y为因变量。

接下来,我们将从图像、定义域、值域、增减性、奇偶性等方面对幂函数的性质进行总结。

首先,我们来看一下幂函数的图像特点。

当n为正偶数时,幂函数的图像呈现出开口向上的U形,且经过原点;当n为正奇数时,幂函数的图像同样经过原点,但在第一象限和第三象限分别呈现出斜直线的趋势;当n为负数时,幂函数的图像则呈现出开口向下的倒U形。

这些图像特点直观地展现了幂函数的形态。

其次,我们来看一下幂函数的定义域和值域。

对于幂函数y = x^n,其定义域为全体实数集R,而值域则取决于n的奇偶性和正负性。

当n为正偶数时,值域为全体非负实数集[0,+∞);当n为正奇数时,值域为全体实数集R;当n为负数时,值域为全体正实数集(0,+∞)。

通过对定义域和值域的分析,我们可以更好地理解幂函数的取值范围。

接下来,我们来探讨幂函数的增减性和奇偶性。

对于幂函数y = x^n,当n为正偶数时,函数在整个定义域上为增函数;当n为正奇数时,函数在负实数轴上为减函数,在正实数轴上为增函数;当n为负数时,函数在整个定义域上为减函数。

而对于奇偶性,当n为偶数时,函数为偶函数;当n为奇数时,函数为奇函数。

这些性质的分析有助于我们更深入地理解幂函数的特点。

总的来说,幂函数的图像及性质总结如上所述。

通过对幂函数的图像、定义域、值域、增减性、奇偶性等方面的总结,我们对幂函数有了更清晰的认识。

希望本文所述内容能够帮助读者更好地理解幂函数的特点和性质。

幂函数的图像和性质

幂函数的图像和性质

-3 -3
-1 0 -1 0
1 1
2 2
… …
yx …
yx …
2
9
4
-8 \
1
0
1
1 1 1
4
8
9
27


y x3 … -27
-1 0 \ 0
yx
1 2…
\
2
3 …
y x … -1/3 -1/2 -1 \
1
1/2 1/3 …
4
3
2
1
(1,1)
2 4 6
-6
-4
-2
-1
(-1,-1)
-2
-3
-4
x -3 -2 -1 0 1 2 3 y=x2 9 4 1 0 1 4 9
4
3
y=x
2
1
(1,1)
2 4 6
-6
-4
-2
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
(2,4) y=x
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
(2,4) y=x2 y=x
-3
y
3
(
2
1 4
,2) ( 1 2 ,1.4) (1,1) (2,0.7) (3,0.6) (4,0.5)
1
-4
-2
o
-1
2
4
x
-2
-3
y
3
(
2
1 4

(学习指导) 简单幂函数的图象和性质Word版含解析

(学习指导) 简单幂函数的图象和性质Word版含解析

4.2 简单幂函数的图象和性质学 习 目 标核 心 素 养 1.了解幂函数的概念.(重点)2.掌握y =x ,y =x 2,y =x 3,y =1x ,y =x 12的图象与性质.(重点)3.掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数有关问题.(重点、难点)1.借助幂函数的图象的学习,培养直观想象素养. 2.通过幂函数的性质的学习,培养逻辑推理素养.形如y =x α(α为常数)的函数,即底数是自变量、指数是常数的函数称为幂函数. 思考:y =1()x ≠0是幂函数吗?提示:是.因为它可写成y =x 0()x ≠0的形式. 2.幂函数的图象如图在同一坐标系内作出函数(1)y =x ;(2)y =x 12;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象.3.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸;(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.1.已知幂函数f ()x =kx α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α等于( )A .12B .1C .32 D .2 C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数y =x 13的图象是( )A B C DB[当0<x<1时,x13>x;当x>1时,x13<x,故选B.]3.已知幂函数f(x)=(t3-t+1)x12(1-4t-t2)(t∈Z)是偶函数,且在(0,+∞)上是增加的,则函数的解析式为________.f(x)=x2[∵f(x)是幂函数,∴t3-t+1=1,解得t=-1或t=0或t=1.当t=0时,f(x)=x12是非奇非偶函数,不满足题意;当t=1时,f(x)=x-2是偶函数,但在(0,+∞)上是减少的,不满足题意;当t=-1时,f(x)=x2,满足题意.综上所述,实数t的值为-1,所求解析式为f(x)=x2.]4.已知函数f(x)=(2m-3)x m+1是幂函数.(1)求m的值;(2)判断f(x)的奇偶性.[解](1)因为f(x)是幂函数,所以2m-3=1,即m=2.(2)由(1)得f(x)=x3,其定义域为R,且f(-x)=(-x)3=-x3=-f(x),故f(x)是奇函数.幂函数的概念【例1】在函数y=x,y=1x2,y=2x2,y=x2+x,y=1中,幂函数的个数为()A.1B.2C.3D.4[思路点拨]从幂的系数、底数和指数三方面考察是否满足幂函数的定义.B [因为y =x =x 12,y =1x 2=x -2,所以是幂函数;y =2x 2由于出现系数2,因此不是幂函数; y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1), 所以常函数y =1不是幂函数.]函数解析式中只有满足幂的系数为1,底数为自变量x ,指数为常量这三个条件,才是幂函数.如:y =3x 2,y =(2x )3都不是幂函数.[跟进训练]1.已知y =(m 2+2m -2)x m 2-2+2n -3是幂函数,求m ,n 的值.[解] 由题意得⎩⎪⎨⎪⎧m 2+2m -2=1,2n -3=0,解得⎩⎨⎧m =-3或1,n =32,所以m =-3或1,n =32. 幂函数的图象及应用【例2】 若点(2,2)在幂函数f ()x 的图象上,点⎝ ⎛⎭⎪⎫2,14在幂函数g ()x 的图象上,问当x 为何值时,(1)f ()x >g ()x ;(2)f ()x =g ()x ;(3)f ()x <g ()x .[解] 设f ()x =x α,则2=()2α,解得α=2,则f ()x =x 2. 同理可求得g ()x =x -2.在同一坐标系内作出函数f ()x =x 2和g ()x =x -2的图象(如图所示),观察图象可得:(1)当x >1或x <-1时,f ()x >g ()x ; (2)当x =1或x =-1时,f ()x =g ()x ;(3)当-1<x <1且x ≠0时,f ()x <g ()x .随着α的变化,其图象也随着变化,讨论其图象的特点时,可分0<α<1,α>1和α<0三种情况讨论.[跟进训练]2.当0<x <1时,函数f ()x =x 1.1,g ()x =x 0.9,h ()x =x -2的大小关系是________________.h ()x >g ()x >f ()x [如图所示为函数f ()x ,g ()x ,h ()x 在(0,1)上的图象,由此可知,h ()x >g ()x >f ()x .]幂函数性质的应用 角度一 比较幂的大小【例3】 比较下列各组数中两个数的大小: (1)⎝ ⎛⎭⎪⎫250.3与⎝ ⎛⎭⎪⎫130.3;(2)⎝ ⎛⎭⎪⎫-23-1与⎝ ⎛⎭⎪⎫-35-1 [解](1)∵0.3>0, ∴y =x0.3在(0,+∞)上为增函数.又25>13,∴⎝ ⎛⎭⎪⎫250.3>⎝ ⎛⎭⎪⎫130.3. (2)∵-1<0,∴y =x -1在(-∞,0)上是减函数,又-23<-35, ∴⎝ ⎛⎭⎪⎫-23-1>⎝ ⎛⎭⎪⎫-35-1. 此类题在构建函数模型时要注意幂函数的特点:指数不变.比较大小的问题主要是利用函数的单调性,特别是要善于应用“搭桥”法进行分组,常数0和1是常用的中间量.[跟进训练]3.比较下列各数的大小: (1)(-23)23和(-π6)23; (2)4.125,3.8-23和()-1.935.[解](1)函数y =x 23在(-∞,0)上为减函数,又-23<-π6,∴⎝ ⎛⎭⎪⎫-2323>⎝ ⎛⎭⎪⎫-π623. (2)4.125>125=1;0<3.8-23<1-23=1;()-1.935<0, ∴()-1.935<3.8-23<4.125.角度二 由幂函数的大小求字母的取值范围 【例4】 已知幂函数f ()x =xm 2-2m -3(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足()a +1-m3<()3-2a -m3的a 的取值范围.[思路点拨] 由幂函数的性质可得到幂指数m 2-2m -3<0,再结合m 是整数,及幂函数是偶函数可得m 的值.[解]∵函数在(0,+∞)上递减,∴m 2-2m -3<0,解得-1<m <3. ∵m ∈N *,∴m =1,2.又函数的图象关于y 轴对称, ∴m 2-2m -3是偶数,又22-2×2-3=-3为奇数,12-2×1-3=-4为偶数, ∴m =1. ∴()a +1-13<()3-2a -13,即f (x )=x -13在(-∞,0)上是减函数,在(0,+∞)上是减函数,且当x <0时,f (x )<0,当x >0时,f (x )>0,∴0>a +1>3-2a 或a +1>3-2a >0或a +1<0<3-2a ,解得a <-1或23<a <32.故a的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a <-1或23<a <32.幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性等性质,也可由这些性质去限制α的取值.[跟进训练]4.已知幂函数f (x )=x1m 2+m(m ∈N +).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数还经过(2,2),试确定m 的值,并求满足f ()2-a >f ()a -1的实数a 的取值范围.[解](1)∵m ∈N +,∴m 2+m =m (m +1)为偶数. 令m 2+m =2k ,k ∈N +,则f (x )=2k x ,∴定义域为[0,+∞),在[0,+∞)上f ()x 为增函数. (2)∵ 2 = 212=21m 2+m,∴m 2+m =2,解得m =1或m =-2(舍去),∴f (x )=x 12,由(1)知f ()x 在定义域[0,+∞)上为增函数, ∴f ()2-a >f ()a -1等价于2-a >a -1≥0, 解得1≤a <32.故a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.1.幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是不是幂函数的依据和标准.2.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)α>0时,图象过(0,0),(1,1)在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.3.在具体应用时,不一定是y =x α,α=-1,12,1,2,3这五个已研究熟的幂函数,这时可根据需要构造幂函数,并针对性地研究某一方面的性质.1.思考辨析(正确的画“√”,错误的画“×”) (1)y =-1x 是幂函数.( ) (2)当x ∈(0,1)时,x 2>x 3.( ) (3)y =x 32与y =x 64定义域相同.( )(4)若y =x α在(0,+∞)上为增函数,则α>0.( ) [答案](1)×(2)√(3)×(4)√2.如图中曲线是幂函数y =x n 在第一象限的图象.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为( )A .-2,-12,12,2 B .2,12,-12,-2 C .-12,-2,2,12 D .2,12,-2,-12B [由幂函数的性质,知选B.]3.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.(0,1)[作出函数图象如图所示,则当0<k <1时,关于x 的方程f (x )=k 有两个不同的实根.]4.比较下列各组数的大小 (1)2-13,⎝ ⎛⎭⎪⎫1313;(2)0.20.5,0.40.3[解](1)由于幂函数y =x -13在()0,+∞上是减函数,所以2-13>3-13,又3-13=⎝ ⎛⎭⎪⎫13-13,所以2-13>⎝ ⎛⎭⎪⎫1313.0,+∞上是减函数,所以0.20.5<0.20.3 (2)由于指数函数y=0.2x在()由于幂函数y=x0.3在()0,+∞上是增函数,所以0.20.3<0.40.3,所以0.20.5<0.40.3.。

3.4幂函数的图像及其性质

3.4幂函数的图像及其性质

授课主题:幂函数教学目标1.通过具体实例了解幂函数的图象和性质.2.类比研究指数函数、对数函数的过程与方法,研究幂函数的图象和性质.3.体会幂函数图象的变化规律及蕴含其中的对称性,并能进行简单的应用.教学内容1.幂函数的定义:一般地,形如()Ry xαα=∈的函数称为幂函数,其中α是常数.2.幂函数的图象:函数y x=2y x=3y x=12y x=1y x-=的图象-1-111y=xy=x3y=x2y=xy=1xyxOy x=2y x=3y x=12y x=1y x-=定义域R R R[0,)+∞(0)(0)-∞+∞,,值域R[0,)+∞R[0,)+∞(0)(0)-∞+∞,,奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性单调递增在(0]-∞,上减在[0)+∞,上增单调递增单调递增在(0)-∞,和(0)+∞,上单调递减公共点(11),(11),(11),(11),(11),图象所在象限一、三一、二一、三一一、三3.幂函数的性质:(1)所有的幂函数在(0)+∞,都有定义,并且图象都通过点(11),; (2)0a >时,幂函数的图象通过原点,并且在[0)+∞,上是增函数; (3)0a <时,①幂函数在(0,)+∞上是减函数;②在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近.(4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. (6)任何幂函数的图象与坐标轴至多只有一个交点; (7)幂函数nm y x =奇偶性①当n 为偶数时,nm y x =为偶函数;②当n 为奇数,m 为奇数时,nm y x =为奇函数; ③当n 为奇数,m 为偶数时,n m y x =为非奇非偶函数.特别地,幂函数n y x =(Z n ∈),当n 为偶数时,n y x =为偶函数;当n 为奇数时,n y x =为奇函数.题型一 幂函数概念的理解应用例1 函数223()(1)mm f x m m x +-=--是幂函数,且当()0,x ∈+∞时,()f x 是增函数,求()f x 的解析式.点评:幂函数y =x α(α∈R)其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对例1来说,还要根据单调性验根,以免增根.巩 固 函数221()(2)mm f x m m x +-=+是幂函数且是奇函数,则实数m 的值是___________.答案:-1题型二 利用幂函数的性质比较大小例2 比较下列各组中两个数的大小:点评:比较两个幂的大小的关键是搞清楚底数与指数是否相同,若底数相同,利用指数函数的性质比较大小;若指数相同,利用幂函数的性质比较大小;若底数指数均不同,考虑利用中间值来比较大小.巩固比较下列各组数的大小:题型三求幂函数的解析式例3巩固幂函数f(x)的图象过点(4,2),则f(9)=________.答案:3A组2.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f(y)”的是() A.幂函数B.对数函数C.指数函数D.二次函数解析:本题考查幂的运算性质f(x)f(y)=a x a y=a x+y=f(x+y).答案:C3.函数f(x)=(m2-3m+3)x m+2是幂函数且函数f(x)为偶函数,求m的值.解析:∵f(x)=(m2-3m+3)x m+2是幂函数,∴m2-3m+3=1,即m2-3m+2=0,∴m=1或m=2.当m=1,f(x)=x3为奇函数,不符合题意;当m=2时,f(x)=x4为偶函数,符合题意,∴m=2.B组1.下列所给出的函数中,属于幂函数的是()A.y=-x3B.y=x-3C.y=2x3D.y=x3-1答案:B答案:B 3.函数y =x-2在区间⎣⎡⎦⎤12,2上的最大值是( )A.14 B .-14 C .4 D .-4答案:①< ②< ③> ④<答案:AC 组1.给出两个结论:(1)当α=0时,幂函数y =x α的图象是一条直线;(2)幂函数y =x α的图象都经过(0,0)和(1,1)点,则正确的判断是( )A .(1)对(2)错B .(1)错(2)对C .(1)(2)都错D .(1)(2)都对 答案:C2.上图所示的曲线是幂函数y =x α在第一象限内的图象,已知α分别取-1,1,12,2四个值,则相应图象依次为:______.答案:C 4,C 2,C 3,C 1 3.设f (x )=(a -3)x (a+1)(a -2),当a 为何值时,(1)f (x )为常数函数? (2)f (x )为幂函数?(3)f (x )为正比例函数? 答案:1.下列函数中,其定义域和值域不同的函数是( )A .y =x 13 B .y =x -12 C .y =x 53D .y =x 23解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同.2.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:选B.当x =2时,22>212>2-12>2-2, 即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2. 3.以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错 解析:选C.∵y =x 0,可知x ≠0, ∴y =x 0的图象是直线y =1挖去(0,1)点. 4.函数f (x )=(1-x )0+(1-x )12的定义域为________.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1.答案:(-∞,1)5.已知幂函数f (x )的图象经过点(2,22),则f (4)的值为( ) A .16 B.116 C.12D .2解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12. 6.下列幂函数中,定义域为{x |x >0}的是( )A .y =x 23 B .y =x 32 C .y =x -13D .y =x -34解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x ,x ≠0;D.y =x -34=14x3,x >0.7.已知幂函数的图象y =xm 2-2m -3(m ∈Z ,x ≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m ≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B. 8.下列结论中,正确的是( )①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③D .①④解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确. 9.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( )A .1个B .2个C .3个D .4个解析:选B.y =x 2与y =x 0是幂函数.10.幂函数f (x )=x α满足x >1时f (x )>1,则α满足条件( )A .α>1B .0<α<1C .α>0D .α>0且α≠1解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1. 11.幂函数f (x )的图象过点(3,3),则f (x )的解析式是________.解析:设f (x )=x α,则有3α=3=312⇒α=12.答案:f (x )=x 1212.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________.解析:结合幂函数的图象性质可知p <1. 答案:p <113.如图所示的函数F (x )的图象,由指数函数f (x )=a x 与幂函数g (x )=x α“拼接”而成,则a a 、a α、αa 、αα按由小到大的顺序排列为________.解析:依题意得⎩⎨⎧ a 14=1214α=12⇒⎩⎨⎧a =116,α=12.所以a a=(116)116=[(12)4]116,a α=(116)12=[(12)32]116,αa =(12)116,αα=(12)12=[(12)8]116,由幂函数单调递增知a α<αα<a a <αa . 答案:a α<αα<a a <αa11 14.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,试确定m 的值.解:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.15.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?解:(1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2.16.已知幂函数y =x m 2-2m -3(m ∈Z )的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.解:由已知,得m 2-2m -3≤0,∴-1≤m ≤3.又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意.∴m =±1或m =3.当m =-1或m =3时,有y =x 0,其图象如图(1).当m =1时,y =x -4,其图象如图(2).。

知识讲解_幂函数及图象变换_基础

知识讲解_幂函数及图象变换_基础

幂函数及图象变换【学习目标】1.通过实例,了解幂函数的概念;结合幂函数的图象,了解它们的变化情况. 2.掌握幂函数的图象和性质,并能熟练运用图象和性质去解题。

3.掌握初等函数图象变换的常用方法. 【要点梳理】要点一、幂函数概念形如()y x R αα=∈的函数,叫做幂函数,其中α为常数. 要点诠释:幂函数必须是形如()y x R αα=∈的函数,幂函数底数为单一的自变量x ,系数为1,指数为常数.例如:()2423,1,2y x y x y x ==+=-等都不是幂函数.要点二、幂函数的图象及性质 1.作出下列函数的图象:(1)x y =;(2)21x y =;(3)2x y =;(4)1-=x y ;(5)3x y =.要点诠释:幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质: (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.2.作幂函数图象的步骤如下: (1)先作出第一象限内的图象;(2)若幂函数的定义域为(0,+∞)或[0,+∞),作图已完成; 若在(-∞,0)或(-∞,0]上也有意义,则应先判断函数的奇偶性 如果为偶函数,则根据y 轴对称作出第二象限的图象; 如果为奇函数,则根据原点对称作出第三象限的图象. 3.幂函数解析式的确定(1)借助幂函数的定义,设幂函数或确定函数中相应量的值. (2)结合幂函数的性质,分析幂函数中指数的特征.(3)如函数()a f x k x =⋅是幂函数,求()f x 的表达式,就应由定义知必有1k =,即()af x x =.4.幂函数值大小的比较(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小. (3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小. 要点三、初等函数图象变换基本初等函数包含以下九种函数:正比例函数、反比例函数、一次函数、二次函数、幂函数、指数函数、对数函数.(三角函数、反三角函数待讲)由基本初等函数经过四则运算以及简单复合所得的函数叫初等函数. 如:2()f x x =的图象变换,22(1),1,y x y x =+=+222,||y x y x == (1)平移变换y =f (x )→y =f (x +a ) 图象左(0a >)、右(0a <)平移 y =f (x )→y =f (x )+b 图象上(b 0>)、下(b 0<)平移(2)对称变换y =f (x ) →y =f (-x ), 图象关于y 轴对称 y =f (x ) →y =-f (x ) , 图象关于x 轴对称 y =f (x ) →y =-f (-x ) 图象关于原点对称y =f (x )→1()y f x -= 图象关于直线y =x 对称(3)翻折变换:y =f (x ) →y =f (|x |),把y 轴右边的图象保留,然后将y 轴左边部分 关于y 轴对称.(注意:它是一个偶函数)y =f (x ) →y =|f (x )| 把x 轴上方的图象保留,x 轴下方的图象 关于x 轴对称 要点诠释:(1)函数图象是由基本初等函数的图象经过以上变换变化而来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、幂函数图像的分布规律
幂函数图像的分布规律可用“一全有、二一偶、三一奇、四全无”来说明。

1.“一全有”:指所有幂函数的图像在第一象限都出现,
分布情况如图1所示,其特点如下:①抓住三条特征
线:直线x=1,y=x ,y=1把幂函数的图像分为三个区
域,这三个区域对应着幂函数y=x α在α<0,0<α<1,
α>1时的图像;②第一象限内幂函数y=x α图像的区
域分布情况为:在直线x=1的右边,α越大,图像越高,越趋向于直线x=1;在直线x=1的右边,α越小,其图像越低,越趋向于x 轴。

2.“二一偶”:指当幂函数为偶函数时,其图像关于y 轴对称,即幂函数的图像出现在第一、第二象限。

3.“三一奇”:指当幂函数为奇函数时,其图像关于原点对称,即幂函数的图像出现在第一、第三象限。

4.“四必无”:指由定义,知幂函数的图像不可能出现在第四象限。

二、幂函数图像的应用
1.识别图像
例1.图2中 的曲线是幂函数y=x α在第一象限的图像,已知α取±2,±12四个值,则其相应于曲线C 1,C 2,C 3,C 4的α依次为( )
A.-2,-12,12,2
B.2,12,-12,-2
C.- 12,-2,2,12
D.2,12,-2,-12
解:根据幂函数的图像特点,立即可以断定相应于曲线C 1,C 2,C 3,C 4的α值排序是由大到小,故选B 。

2.用于判断方程的个数
例2.方程x 2=2x 的根的个数为( )
A.1
B.2
C.3
D.
解:令f(x)=x2,g(x)=2x,在同一坐标平面内作出这两个函数的图象,如图三所示,由图可知,交点有三个,所以方程x2=2x的根的个数为3,故选C。

相关文档
最新文档