高中数学抛物线经典性质的总结
高中抛物线知识点总结
高中抛物线知识点总结抛物线是高中数学中的一个重要概念,它有着广泛的应用和深厚的理论基础。
在高中数学中,我们学习了抛物线的方程、性质、图像以及与二次函数、解析几何等知识的关联。
本文将对高中抛物线的相关知识进行总结和梳理,以帮助我们更好地理解和应用这一概念。
一、抛物线的定义和基本性质抛物线是指平面上到定点距离与到定直线距离相等的动点所形成的轨迹。
其方程通常表示为y=ax^2+bx+c,其中a、b、c为常数,a≠0。
抛物线具有以下基本性质:1. 它的对称轴是与x轴垂直的直线,过顶点。
2. 它的顶点是抛物线的最低点或最高点。
3. 它开口的方向取决于a的值,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
4. 它的图像关于对称轴对称。
二、抛物线的图像与方程通过对抛物线的方程进行分析,我们可以得到一些关于抛物线图像的信息。
1. 抛物线的顶点坐标可以通过求解方程y=ax^2+bx+c的极值点(即导数为0的点)得到。
顶点的横坐标为x=-b/(2a),纵坐标为y=f(x)。
2. 当a>0时,抛物线的图像开口向上,极值点是最低点;当a<0时,抛物线的图像开口向下,极值点是最高点。
3. 当抛物线的方程为y=ax^2+bx+c时,通过对y的值进行分析我们可以得到抛物线的开口大小和位置信息。
三、抛物线与二次函数的关系抛物线是二次函数的特殊图像,二次函数的一般形式为y=ax^2+bx+c。
通过对比抛物线与二次函数的方程,我们可以得到它们之间的关系。
1. 抛物线与二次函数的图像形状相同,二次函数可以表示抛物线的图像;2. 二次函数告诉我们抛物线的方程形式,可以通过方程的系数判断抛物线打开的方向和大小,掌握二次函数的性质有助于理解和研究抛物线。
四、抛物线与解析几何的关系抛物线在解析几何中有重要的应用和意义,特别是在平面直角坐标系中。
抛物线的方程可以表示平面上的曲线,通过解析几何的相关知识我们可以分析抛物线的性质和特点。
(完整版)抛物线常用性质总结
结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112=AF BF p+。
结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =。
则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN切。
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。
由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。
抛物线经典性质总结30条
抛物线经典性质总结30条1.已知抛物线y=2px(p>0),AB是抛物线的焦点弦,点C 是AB的中点。
AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M,准线交x轴于点K。
证明:CC’是梯形AA’BB’的中位线,即|AB|=2|CC’|。
2.证明:|BF|=x^2/(2p)。
3.证明:CC’=AB=(AA’+BB’)/2.4.证明:以AB为直径的圆与准线L相切。
5.证明:∠A’FB’=90°。
6.证明:AA’FK,∴∠A’FK=∠FA’A;|AF|=|AA’|,∴∠AA’F=∠AFA’;同理可证∠B’FK=∠XXX,得证。
7.证明:C’F= A’B’=C’A’=C’B’。
8.证明:AC’平分∠A’AF,BC’平分∠B’BF,A’F平分∠AFK,B’F平分∠XXX。
9.证明:C’F垂直AB,即C’F⋅AB=0.10.证明:AF=(y+y1)/2p(1-cosα),BF=(y2-y)/(2p(1+cosα))。
11.证明:AF/BF=p/(1-cosα)。
12.证明:点A处的切线为y=y1+p(x+x1)。
1.证明y = 2px的两种方法:方法一:代入y = kx^2求解k,得到k = 2p,证毕。
方法二:对y = 2px两边求导得到2yy' = 2p,解出y' = p/x,证毕。
2.证明切线AC'和BC'交于焦点F:易证点A处的切线为y = px + py1,点B处的切线为y = px + py2,解得两切线的交点为C'(-p(y1-y2)。
(y1+y2)/2),证毕。
3.对于抛物线y^2 = 2px,过准线上任一点P(-2p。
t)作切线,证明过两切点Q1、Q2的弦必过焦点,且PQ1⊥PQ2:设切点为Q(x。
y),则有y' = p/x,代入y^2 = 2px得到x = y^2/(2p),进而得到Q1、Q2的坐标。
高二抛物线的知识点总结
高二抛物线的知识点总结在数学的学习中,抛物线是一个非常重要的曲线,尤其在高中的数学中,抛物线的知识点更是需要深入了解。
本文将从抛物线的定义及性质、方程、基本公式、应用等方面对高二抛物线的知识点进行总结和讲解。
希望读者在阅读过后可以掌握抛物线的基本概念、重要性质和应用。
一、抛物线的定义及性质抛物线是指平面内一点到定点的距离等于该点到直线的距离的曲线。
这个定点称为焦点,直线称为准线。
我们可以通过焦点和准线的位置关系来确定抛物线的形状。
若焦点在准线上方,则抛物线开口向上,反之则开口向下。
以下是抛物线的几个重要性质:1. 抛物线的对称轴:抛物线对称于它的对称轴。
对称轴是与准线垂直且通过焦点的直线。
2. 抛物线的最高点(最低点):抛物线的最高点(最低点)称为顶点,是对称轴上的一个点。
3. 抛物线的直线渐近线:当x趋向正无穷或负无穷时,抛物线逐渐趋近于准线,于是准线成为抛物线的直线渐近线。
二、抛物线的方程抛物线的一般式方程为y=ax²+bx+c,其中a≠0。
a的正负值决定了抛物线的开口方向,a>0表示开口向上,a<0表示开口向下。
而b和c则分别决定了抛物线在x轴和y轴上的截距。
另一种表示抛物线的方程形式是定点法。
设抛物线的焦点为F(x0,y0),准线方程为y=k,则抛物线的方程为(y-y0)²=4a(x-x0),其中a=1/4k。
三、抛物线的基本公式除了方程外,高二学生还需要掌握抛物线的基本公式:1. 抛物线的顶点坐标:抛物线的顶点(h,k)的坐标可以通过公式h=-b/2a和k=c-b²/4a来得到。
2. 抛物线的焦距:a和焦点的距离称为焦距,f=1/4a。
3. 抛物线上点的坐标:抛物线上的任意一点(x,y)的坐标可以通过公式y=a(x-h)²+k来得到。
四、抛物线的应用抛物线广泛应用于物理学和工程学,尤其在抛体运动、光学、电磁学等领域中。
1. 抛体运动:当物体从一定高度以上沿着一个倾斜的平面或发射器以某一速度发射时,物体的运动轨迹是一个抛物线。
抛物线知识点总结_高三数学知识点总结
抛物线知识点总结_高三数学知识点总结一、抛物线的定义和特点1. 定义:抛物线是平面内一点到定点和定直线的距离相等的轨迹。
也可以用二次方程的形式表示:y = ax^2 + bx + c。
2. 特点:抛物线是对称的,有一个对称轴。
抛物线开口的方向由二次项的系数决定,若a > 0,则开口向上;若a < 0,则开口向下。
二、抛物线的标准方程和一般方程1. 标准方程:抛物线的标准方程为 y = ax^2 + bx + c,其中 a、b、c 是常数,a ≠ 0。
三、抛物线的顶点坐标和对称轴2. 对称轴:抛物线的对称轴是与x轴平行的直线,其方程为 x = -b/2a。
四、抛物线的焦点和直线的焦准方程1. 焦点:抛物线的焦点坐标为 (h, k + 1/4a),其中a ≠ 0。
若抛物线开口向上,则焦点在顶点上方;若抛物线开口向下,则焦点在顶点下方。
五、抛物线的判别式和性质1. 判别式:抛物线的判别式Δ = b^2 - 4ac,若Δ > 0,则抛物线与x轴有两个交点;若Δ = 0,则抛物线与x轴有一个交点;若Δ < 0,则抛物线与x轴没有交点。
2. 性质:抛物线是平面内一点到定点和定直线的距离相等的轨迹,其焦点到顶点的距离等于焦点到对称轴的距离。
六、抛物线的应用1. 物理学:抛物线运动是一种常见的物理现象,如抛体运动、自由落体运动等。
2. 工程学:抛物线在建筑、工程设计中有广泛的应用,如拱形结构、抛物面反射器等。
3. 数学建模:抛物线可以用于数学建模,分析实际问题与数学模型之间的关系。
以上就是我对抛物线知识点的总结,希望对你有所帮助。
抛物线性质和知识点总结
抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
高三抛物线知识点归纳总结
高三抛物线知识点归纳总结抛物线是数学中的一种曲线,它在高三数学课程中占据着重要的地位。
掌握抛物线的相关知识,对于高三学生来说至关重要。
本文将对高三抛物线的知识点进行归纳总结,以帮助学生更好地理解和应用这一概念。
一、抛物线的基本定义和性质抛物线是一条平面曲线,其定义为到一个定点距离与到一条直线距离相等的点的轨迹。
抛物线具有以下基本性质:1. 对称性:抛物线关于其对称轴对称。
2. 定点和定线:抛物线上的每个点到焦点的距离与到直线(准线)的距离相等。
3. 焦距和准线:焦距是定点到准线的距离,准线是焦点垂直平分切线的直线。
4. 弧长和面积:抛物线的弧长和面积计算可以通过积分得到。
二、抛物线的标准方程和一般方程抛物线的标准方程是 y = ax^2 + bx + c,其中 a、b、c 是常数,a ≠ 0。
通过标准方程我们可以了解抛物线的开口方向、顶点坐标以及对称轴的方程。
一般方程是经过对标准方程的平移、旋转、伸缩等变换得到的,形式为 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0。
通过一般方程可以确定抛物线的具体形状和位置。
三、抛物线的性质和应用1. 高考重点:掌握抛物线的性质对于应对高考数学考试非常重要。
在高考中,抛物线相关的题目通常包括求焦点、顶点、对称轴、切线等问题,也可能涉及到与其他图形的求交点等问题。
2. 物理应用:抛物线在物理学中有广泛的应用,描述了自由落体、抛体运动等过程。
理解抛物线的性质和应用可以帮助我们更好地理解和解决与自由落体和抛体运动相关的物理问题。
3. 工程应用:抛物线的形状具有美学上的优点,因此在建筑和设计中经常被应用。
例如,拱桥的形状和抛物线非常相似,这是因为抛物线形状具有均匀分散应力的特点,是一种力学上最优的形状。
四、抛物线的图像绘制和计算1. 使用计算机软件绘制抛物线的图像可以辅助我们更好地理解抛物线的形式和变化规律。
常用软件如Geogebra、MATLAB等都可以绘制抛物线的图像。
抛物线经典性质总结30条
抛物线性质30条已知抛物线22(0)y px p =>,AB 是抛物线的焦点弦,点C 是AB 的中点. AA’垂直准线于A ’, BB ’垂直准线于B ’, CC’垂直准线于C ’,CC ’交抛物线于点M ,准线交x 轴于点K. 求证:1.12||,||,22p pAF x BF x =+=+ 2.11()22CC AB AA BB '''==+;3.以AB 为直径的圆与准线L 相切;证明:CC’是梯形AA’BB’的中位线,||||||||||2||2AB AF BF AA BB CC r '''=+=+==4.90AC B '∠=;(由1可证)5.90A FB ''∠=;,,||||,,1,2AA FK A FK FA A AF AA AA F AFA A FK AFK '''∴∠=∠'''=∴∠=∠'∴∠=∠证明:同理:1,2B FK BFK '∠=∠得证. 6.1C F A B 2'''=.证明:由90A FB ''∠=得证.7.AC '垂直平分A F ';BC '垂直平分B F ';证明:由1C F A B 2'''=可知,1||||||,2C F A B C A '''''==||||,.AF AA '=∴又得证 同理可证另一个.8.AC '平分A AF '∠,BC '平分B BF '∠,A’F 平分AFK ∠,B ’F 平分BFK ∠. 证明:由AC '垂直平分A F '可证. 9.C F 'AB ⊥;证明:122121(,)(,)2y y C F AB p x x y y +'⋅=-⋅--22222212211221()02222y y y y y y p x x --=-+=-+=10.1cos P AF α=-;1cos PBF α=+;证明:作AH 垂直x 轴于点H ,则||||||||||cos ,||1cos pAF AA KF FH p AF AF αα'==+=+∴=-.同理可证另一个. 11.112AF BF P+=; 证明:由1cos P AF α=-;1cos PBF α=+;得证.12. 点A 处的切线为11()y y p x x =+;证明:(方法一)设点A 处切线方程为11()y y k x x -=-,与22y px =联立,得21122()0,ky py p y kx -+-= 由2110220,x k y k p ∆=⇒-+=解这个关于k 的一元二次方程(它的差别式也恰为0)得:111,2y pk x y ==得证. 证法二:(求导)22y px =两边对x 求导得1122,,|,x x p p yy p y y y y ='''==∴=得证. 13.AC’是切线,切点为A ;B C’是切线,切点为B ;证明:易求得点A 处的切线为11()y y p x x =+,点B 处的切线为22()y y p x x =+,解得两切线的交点为12(,)22y y p C +'-,得证. 14. 过抛物线准线上任一点P 作抛物线的切线,则过两切点Q 1、Q 2的弦必过焦点;并且12.PQ PQ ⊥证明:设点(,)()2pP t t R -∈为准线上任一点,过点P 作抛物线的切线,切点为2(,)2y Q y p , 22y px =两边对x 求导得22222,,,20,22PQ p p y tyy p y K y ty p y y y pp -''==∴==∴--=+ 显然22440,t p ∆=+>切点有两个,设为2221211221212(,),(,),2,,22y y Q y Q y y y t y y p p p+==-则 1212122222221212222222FQ FQ y y py py k k y y y p y p pp p p ∴-=-=----- 1222121211221222220,py py p py y y y y y y y y y =-=-=++++ 所以Q 1Q 2过焦点. 22222222121212121212122(,)(,)()2222444y y y y y y p p p PQ PQ y t y t y y t y y t p p p+⋅=+-⋅+-=+++-++ 22222222222121212()2420,242424y y y y y y p p p t p t t t ++-+=-+-=-+-=-+-=12.PQ PQ ∴⊥15.A 、O 、B '三点共线;B 、O 、A '三点共线; 证明:A 、O 、B '三点共线2211212112.222OA OB y p pk k x y y y y y y p p '⇐=⇐=-⇐=-⇐=-同理可证:B 、O 、A '三点共线.16.122y y p ⋅=-;1224p x x ⋅=证明:设AB 的方程为()2py k x =-,与22y px =联立,得2220,ky py kp --= 212122,,p y y y y p k∴+==- 224212122.2244y y p p x x p p p ∴=⋅== 17.1222sin pAB x x p α=++=证明:1212,2p pAB AFFB x x x x p =+=+++=++||2AB ===222.sin pα==得证.18.22sin AOB p S α∆=;证明:122AOB OFA OFB p S S S ∆∆∆=+=⋅=22sin p α===. 19.322AOB S p AB ∆⎛⎫= ⎪⎝⎭(定值);证明:由22sin pAB α=、22sin AOB p S α∆=得证. 20.22sin ABC p S α'∆= 证明:11||||222ABC S AB PF '∆=⋅=⋅ 22221(1)sin p p k α==+=21.2AB p ≥; 证明:由22sin pAB α=得证. 22.122AB pk y y =+; 证明:由点差法得证.23.121222tan P P y y x x α==--; 证明:作AA 2垂直x 轴于点A 2,在2AA F ∆中,2121tan ,2AA y FA p x α==-同理可证另一个.24.2A B 4AF BF ''=⋅;证明:2212124||4()()22p p A B AF BF y y x x ''=⋅⇔-=++ 2222121212121212242224y y y y x x px px p y y x x p ⇔+-=+++⇔-=+,由122y y p ⋅=-,1224p x x ⋅=得证.25. 设CC ’交抛物线于点M ,则点M 是CC ’的中点;证明:12121212(,),(,),CC ,22224x x y y y yx x p p C C ++++-''-∴中点横坐标为 把122y y y +=代入22y px =,得2221212121222222,2,.444y y y y px px p x x ppx px x +++-+-=∴==所以点M 的横坐标为12.4x x px +-=点M 是CC ’的中点.当弦AB 不过焦点时,设AB 交x 轴于点(,0)(0)D m m >,设分别以A 、B 为切点的切线相交于点P ,求证:26.点P 在直线x m =-上证明:设:,AB x ty m =+与22y px =联立,得21212220,2,2y pty pm y y pt y y pm --=∴+==-,又由221112121222:()(),,222:()PA y y p x x y y y yy y y y PB y y p x x =+⎧+-=-∴=⎨=+⎩,相减得 代入11()y y p x x =+得,22112112,2,,22y y y y px y y px x m +=+∴=∴=-得证.27. 设PC 交抛物线于点M ,则点M 是PC 的中点;证明:121212122(,),(,),,2224x x y y y y x x mC P m PC ++++--∴中点横坐标为 把122y y y +=代入22y px =,得221212121212222422,2,2,.444y y y y px px pm x x mpx y y pm px x +++-+-==-∴==所以点M 的横坐标为122.4x x mx +-=点M 是PC 的中点.28.设点A 、B 在准线上的射影分别是A 1,B 1,则PA 垂直平分A 1F , PB 垂直平分B 1F ,从而PA 平分1A AF ∠,PB 平分1B BF ∠ 证明:1111110()1,,()22PA A F y y p p k k PA A F y p p y p-⋅=⋅=⋅-=-∴⊥-- 又1||||AF AA =,所以PA 垂直平分A 1F. 同理可证另一个. 证法二:1112221112,,0,22AF AP AA y py pk k k y y y p p p ====-- 111tan tan 11AP AA AF APAF AP AP AA k k k k FAP PAA k k k k --∴∠-∠=-+⋅+⋅ 12222231111111222221111111122111202()022()101py p p p py y p y y p y y py p p p p ppy p y y y y p y p p y y p y y y p -----+=-=-=-=-=-+++⋅+⋅- 11tan tan ,.FAP PAA FAP PAA ∴∠=∠∴∠=∠ 同理可证另一个29.PFA PFB ∠=∠证明:11111,,,PAA PAF PFA PA A PFB PB B PA A PB B ∆≅∆⇒∠=∠∠=∠∴∠=∠同理:只需证 易证:111111||||||,,PA PF PB PA B PB A ==∴∠=∠11,PA A PB B ∴∠=∠30.2||||||FA FB PF ⋅=证明:22222212121212122||||()()(),2224444y y y y p p p p p AF BF x x x x x x p+⋅=++=+++=++ 1212(,),22y y y y P p +22222222121212122||,222444y y y y y y y y p p PF p p ++⎛⎫⎛⎫∴=-+=++ ⎪ ⎪⎝⎭⎝⎭得证.例1:(2007江苏高考第19题)如图,过C (0,c )(c>0)作直线与抛物线y=x 2相交于A 、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P 、Q 。
高中抛物线知识点总结
高中抛物线知识点总结平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线。
下面是关于高中抛物线知识点总结的内容,欢迎阅读!高中数学抛物线知识点总结(一)抛物线方程1 设,抛物线的标准方程、类型及其几何性质:.②则焦点半径;则焦点半径为.③通径为2p,这是过焦点的所有弦中最短的.④(或)的参数方程为(或)(为参数).高中数学抛物线知识点总结(二)抛物线的性质(见下表):抛物线的焦点弦的性质:关于抛物线的几个重要结论:(1)弦长公式同椭圆.(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>0)的斜率为k的'切线方程是y=kx+(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是(5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F,又若切线PA⊥PB,则AB必过抛物线焦点F.利用抛物线的几何性质解题的方法:根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.抛物线中定点问题的解决方法:在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。
利用焦点弦求值:利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。
抛物线性质总结一
抛物线性质总结(一)一、抛物线定义:平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。
其中定点叫抛物线的焦点,定直线叫抛物线的准线。
首先,建立坐标系,过定点FI做垂直于准线的直线,以此为X轴,以定点与准线的之间线段的中垂线为y轴,设点P (x,y) ,Fl(p∕2,0),准线方程x=p∕2 根据定义,J(xg)2 + y2 = x + E(x-^)2 + y2=(x+∣)22-px + y = pxy2 = 2px (p > 0)这就是焦点在X轴,开口向右的抛物线的标准式,其它类型的同理二、抛物线性质:1、过定点C (2小0)的直线与抛物线交于A 、B 两点,则OALoB 证明: 设抛物线方程为y? = 2px,点A 坐标为(x∣ ,y∣ ),点B 坐标为(X2,y2) 因点A 、B 都在抛物线上,因此Yi 2 = 2px∣ y 22 = 2P x 2 同时,直线AB 又过定点C(2p,0) 因此,% —0 = y2 ~°V 2 y 2以∙⅛f∙⅛ = 2p(yf) ¾z ^(y 2-yι) = 2p(y 1-y 2) 2pYiY 2 =-4P 2于是 (yιy 2)2=i6p 4即 (2px 1 2px 2)=16p 44p 2x 1x 2 = 16p 4x 1x 2 = 4p 2≠M X 1X 2 + y 1y 2=4p 2 + ( - 4p 2>=0又OA ∙ OB=X 1X 2 + y l y 2因止匕OA ∙ OB=O即 OA ± OB证毕X 1 — 2p X 2 — 2p -2py 1 =y 2x 1 -2py 2 -y 2χι =2p(y∣ -y 2)Yi x y∣χ的圆与准线相切。
证明:设抛物线方程为V=2px,点A 坐标为(x ∣,y)点B 坐标为(Xι,yJ 因点A 、B 都在抛物线上 因此,y l 1 2=2px 1, y 22=2px 2设以线段AB 为直径的圆的圆心为C (x 3,y 3)π,l X 1 + X, V 1 + V,则X,~^∙,y 3 =力力 2 2因此,圆心到准线的距离为d = χ3 +片=产同时,以线段AB 为直径的圆的半径为r= '”一,2' +(x∣ — J),,即应互KΞ迂ΞΞ瓦i^2px 1 -2y 1y 2 +2px 2 +x 12 -2x 1x 2 +x 2:=y2×1-yy 2y ∣χ2-yιχ1 =^(y1-y 2)y ⅜^y ⅛ = 2cyι^y ^¾^-(y 2-y 1)=⅞(yι-y 2) 2p 2Yiy 2=-P 2于是,χ∕2=*⅛=邑代入r 的表达式,得^2px 1+2p j +2px 2+x 12-∙^- + J2px,+p 2 +2px 2 + x l 2+^- + X 22 r =-2 _ √(x 1 +X 2+p)2 Γ T2r=x I +x 1+p =d 2因此,准线与圆相切 证毕2因线段AB 过抛物线的焦点吗,。
抛物线其性质知识点大全
抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.开口方向 右左上下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p (,0)2p -(0,)2p(0,)2p -准 线方 程 2p x =-2p x =2p y =-2p y =范 围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对 称轴 X 轴X 轴Y 轴Y 轴顶 点坐 标 (0,0)离心率 1e =通 径 2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦长AB 的补充11(,)A x y22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,22sin p AB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
抛物线常用性质总结
抛物线常用性质总结抛物线是二次方程的图像,其常见形式为y = ax^2 + bx + c,其中a,b,c是实数常数且a不等于零。
抛物线有许多重要的性质和特点,以下是一些常用的总结和解释。
1. 对称性:抛物线具有轴对称性。
如果抛物线的方程是y = ax^2 + bx + c,轴对称线的方程将是x = -b/2a。
这意味着抛物线关于垂直于x 轴、通过x = -b/2a的直线对称。
2.最高点或最低点:如果a大于零,则抛物线开口向上,且没有最大值。
如果a小于零,则抛物线开口向下,且没有最小值。
抛物线的顶点或底点即为其最高或最低点。
3. 判别式:抛物线的判别式可以帮助我们确定它的性质。
判别式D = b^2 - 4ac表示了二次方程的解的性质。
如果D大于零,则抛物线与x 轴有两个交点,说明它有两个实根。
如果D等于零,则抛物线与x轴有一个交点,说明它有一个实根。
如果D小于零,则抛物线与x轴没有交点,说明它没有实根。
4.对于抛物线的每一个点(x,y),其关于轴对称线的对称点为(2p-x,y),其中p为抛物线上任意一点的横坐标。
这一性质可以用来确定抛物线上其他点的坐标。
5.零点:抛物线与x轴的交点称为零点或根。
零点可以通过解二次方程来求得。
如果判别式D大于零,那么二次方程有两个不同的实根;如果判别式D等于零,那么二次方程有一个实根;如果判别式D小于零,那么二次方程没有实根。
6.方向:抛物线的方向由二次项的系数a决定。
如果a大于零,抛物线开口向上;如果a小于零,抛物线开口向下。
7.垂直于x轴的焦点与准线:焦点与准线是抛物线的另外两个重要点。
焦点的坐标为(p,q+1/4a),其中p=-b/2a为抛物线的对称轴上任意一点的横坐标,q=c-b^2/4a为抛物线的对称轴上任意一点的纵坐标。
准线的方程为y=c-1/4a。
8.对称性性质的应用:由于抛物线的对称性,我们可以通过求解对称点的坐标来简化计算。
例如,如果我们已经求得抛物线上一个点(x,y)的坐标,那么我们也可以直接求解它关于对称轴的对称点(2p-x,y)。
抛物线的基本性质
抛物线的基本性质抛物线的概念抛物线是一种二次函数,具有单曲线的形状,它是由焦点到直线的距离相等所形成的曲线。
1.对称性。
抛物线的形状具有二次函数的对称性:它与y轴的对称轴称为抛物线的对称轴,对称轴的方程为x=-p,其中p为抛物线的焦距(focus)。
2.极值。
抛物线的平移和缩放只会影响它的大小,而不会改变它的形状,因此它没有最大值和最小值。
但如果我们要探讨抛物线的局部极值,我们需要把抛物线垂直于x轴的高度视为y值,因为它是抛物线的函数式3.判定方程。
我们可以使用方程y=ax^2+bx+c判定一个二次函数是否为抛物线:a>0,则函数是向上的抛物线a=0,则函数是一条水平直线4.交点。
如果两个抛物线相交,它们在交点上的切线相互垂直。
5.求导。
抛物线的导数是二次函数的一阶导数。
要求抛物线的导数,我们只需要将y=ax^2+bx+c带入虚拟的求导公式即可,就像求其他的导数一样6.焦距和焦点。
焦距是定点和抛物线直线之间的距离。
焦点是定点在抛物线上的投影点,它也是抛物线的对称点7.开口方向。
抛物线可以有向上和向下的方向。
当a为正数时,抛物线是向上的,当a为负数时,抛物线是向下的。
这个方向取决于二次函数的条件限制。
8.极坐标方程。
抛物线的极坐标方程是r=2a/(1+cosθ),其中a是焦距。
极角是一个内部角度,以X轴为起点,并按顺时针方向旋转9.完备方程。
抛物线的完备方程是y=(x-h)^2+k,它是标准方程2ー(x-h)=4a(y-k)的特殊形式。
它们都携带了抛物线的相关信息。
10.光学性质。
抛物线是光的不少经典聚光器的基础,包括新视野太空探测器的天线、著名望远镜哈勃、汽车的头灯等等。
结论抛物线是一种具有很多独特性质的曲线,它的对称性、极值、焦距、光学性质等方面都是其研究的重要方向之一。
无论是物理学、数学、工程学等领域,抛物线都有广泛应用,它的性质和特色使它成为我们理解和解决很多问题的重要工具。
高一抛物线知识点总结
高一抛物线知识点总结高一数学学科中,抛物线是一个重要的知识点。
它在生活和科学中有着广泛的应用,掌握它的相关知识将对学生未来的学习产生积极的影响。
本文将从抛物线的定义、性质、方程、焦点等方面进行总结。
一、抛物线的定义抛物线是平面上一点P到一条定直线(称为准线)L的距离等于其与准线上一点F的距离的平方。
在平面直角坐标系中,它可以通过平面直角坐标系中的坐标点(x, y)的方程y=ax²+bx+c来表示。
其中,a为抛物线开口朝上或朝下的特征因数,b为抛物线的抬高或压低程度,c为抛物线与y轴交点的纵坐标。
二、抛物线的性质1. 关于对称轴的对称性:抛物线是关于其对称轴线的对称图形。
对称轴与抛物线的方程有关,可根据方程的形式得出抛物线的对称轴。
2. 零点和二次函数:抛物线的零点是函数y=ax²+bx+c的根。
用一元二次方程求根的方法可以求解抛物线的零点。
3. 分类和特殊情况:抛物线可以分为开口向上和开口向下两种情况。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
同时,当抛物线与x轴相交时,y=0,可解得x的两个值,从而计算抛物线与x轴的交点。
4. 极值点和拐点:对于开口向上的抛物线,其顶点是一个极小值点;对于开口向下的抛物线,其顶点是一个极大值点。
拐点则是坐标轴以外的抛物线上一个点,其切线方向突然变化。
三、抛物线的方程抛物线的方程有一般式和标准式两种形式。
一般式方程是y=ax²+bx+c,其中a、b、c是常数。
标准式方程则是y=a(x-h)²+k,其中(h, k)是抛物线顶点的坐标。
四、抛物线的焦点焦点是抛物线的一个重要概念,使用焦点可以帮助我们确定抛物线的形状。
焦点到抛物线的定义:平面上任意一点P到焦点F的距离与到准线L的距离之比等于常数e(0<e<1)。
在抛物线上每一点P都有这样的性质。
焦点与a的大小有关,即e=1/4a。
通过以上的总结,我们可以看到抛物线不仅仅是数学中的一个概念和形状,还有着丰富的数学性质和应用价值。
高二数学抛物线的几何性质
五、抛物线开口方向的判断
y 2 px
2 2
X + ,x轴正半轴,向右 X - ,x轴负半轴,向左 y + ,y轴正半轴,向上 y - ,y轴负半轴,向下
y 2 px x 2 py
2 2
x 2 py
六、抛物线开口大小 y y2=2px
l
A
o
· F
B
过焦点且垂直于对称轴的直线 x 被抛物线截得的线段AB叫做抛 物线的通径, 长为2p
2
抛物线相交于 A, B两点,求线段 AB的长。
y
由已知得抛物线的焦点 为F (1,0), 所以直线AB的方程为y x 1
A’
A O F B
x
代入方程y 4x, 得( x 1) 4x,
2 2
化简得x 6 x 1 0.
2
x1 x2 6 AB x1 x2 2 8
抛物线的简单几何性质
一、抛物线的范围: y2=2px
Y
•X 0
X
•y取全体实数
二、抛物线的对称性
Y
y2=2px
关于X轴对称 没有对称中心
X
三、抛物线的顶点
Y
y2=2px
X
定义 :抛物线 与对称轴的交点, 叫做抛物线的顶 点 只有一个顶点
四、抛物线的离心率
Y
y2=2px
X
所有的抛物 线的离心率 都是 1
课堂小结
(1)抛物线的简单几何性质
(2)抛物线与椭圆、双曲线几何性质的不同点 (3)应用性质求标准方程的方法和步骤
小 结 :
1、抛物线的定义,标准方程类型与图象的对应 关系以及判断方法 2、抛物线的定义、标准方程和它 的焦点、准线、方程
数学知识点:抛物线的性质(顶点、范围、对称性、离心率)知识点总结
数学知识点:抛物线的性质(顶点、范围、对称性、离心率)知识点总结高考数学知识点:抛物线的性质(顶点、范围、对称性、离心率)抛物线的焦点弦的性质:关于抛物线的几个重要结论:(1)弦长公式同椭圆.(2)对于抛物线y2=2p_(p>0),我们有P(_0,y0)在抛物线内部P(_0,y0)在抛物线外部(3)抛物线y2=2p_上的点P(_1,y1)的切线方程是抛物线y2=2p_(p>,高二;0)的斜率为k的切线方程是y=k_+(4)抛物线y2=2p_外一点P(_0,y0)的切点弦方程是(5)过抛物线y2=2p_上两点的两条切线交于点M(_0,y0),则(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.利用抛物线的几何性质解题的方法:根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.抛物线中定点问题的解决方法:在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。
利用焦点弦求值:利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。
抛物线中的几何证明方法:利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。
抛物线的性质归纳及证明
抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-=+=p p x AF ;②焦半径αcos 12||2+=+=pp x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α2sin 2p ;特别地,当x 1=x 2(α=90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =αsin 22p .证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |=| RF |1-cos θ=p1-cos θ同理,| BF |=| RF |1+cos θ=p1+cos θ∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1|+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2=p 22sin θ.2.求证:①2124p x x =;②212y y p =-;③ 1| AF |+1| BF |=2p .当AB ⊥x 轴时,有 AF BF p ==,成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.(122111212111111222x x p p pp AF BF AA BB x x x x +++=+=+=+++()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++. 3.求证:=∠=∠'''FB A B AC Rt ∠.先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=| BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p2,y 1),由此得M (-p 2,y 1+y 22). ∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p 24-(y 1-y 2)24=p 24+p 2(y 212p +y 222p )+p 24-y 21+y 22-2y 1y 24=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠.【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4∴∠2+∠3=12×180︒=90︒∴∠AMB =Rt ∠. 接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α, 同理,设∠BFC =∠BCF =∠CFR =β, 而∠AFD +∠DFR +∠BFC +∠CFR =180︒ ∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒ 【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)由前知k AM =py 1,k CF =-y 2+p 2+p 2=-y 2p =p y 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90︒.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90︒ ∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒ ∴∠DFR +∠RFC =90︒ ∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=py 1(x -y 212p)图6与抛物线方程y 2=2px 联立消去x 得 y -y 1=p y 1(y 22p -y 212p ),整理得y 2-2y 1y +y 21=0可见△=(2y 1)2-4y 21=0,故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)'x=(2px )'x , 得2y ·y 'x=2p ,y 'x =py,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=y 'x | y =y 1=p y 1. 又k AM =py 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C ’A 、C ’B 分别是∠A ’AB 和∠B ’BA 的平分线. 【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA . 【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-p 2,y 1+y 22)图9∵tan α=k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p=2py 1+y 2. tan β=k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=py 1. ∴tan 2β=2tan β1-tan 2β=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan α ∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC ’、A ’F 、y 轴三线共点,BC ’、B ’F 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=py 1(x -y 212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.图107. A 、O 、B ’三点共线,B 、O 、A ’三点共线. 【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2 =-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2py 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴| RO ' || AD |=| CO ' || CA |=| BF || AB |,| O 'F || AF |=| CB || AB |, 又| AD |=| AF |,| BC |=| BF |,∴| RO ' || AF |=| O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,| O 'F || CB |=| AF || AB |,∴| O 'F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=11| AF |+1| BF |=p2【见⑵证】 ∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线. 【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),∵-p 2·y 1-x 1 y 2=-p 2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p =0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:图118. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n ;【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos θ=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 .则E 的坐标为( p2+x 1 2,y 12),则点E 到y 轴的距离为d = p2+x 1 2=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p2,y 1),M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22),设MN 的中点为Q ',则Q ' ( -p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 228p =⎝⎛⎭⎫y 1+y 222 2p∴点Q ' 在抛物线y 2=2px 上,即Q 是MN 的中点.图16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线焦点弦长AB12()x x p ++12()x x p -++12()y y p ++12()y y p -++焦点弦AB 的几条性质11(,)A x y 22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,则22sin p AB α=若AB 的倾斜角为α,则22cos pAB α= 2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 切线 方程00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+1. 直线与抛物线的位置关系 直线,抛物线,,消y 得:(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。
(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4)2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线,)0( p① 联立方程法:ox ()22,B x y Fy ()11,A x y⎩⎨⎧=+=pxy bkx y 22⇒0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ∆,以及2121,x x x x +,还可进一步求出bx x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++=在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长2122122124)(11x x x x k x x k AB -++=-+=ak ∆+=21 或 2122122124)(1111y y y y k y y k AB -++=-+=ak ∆+=21 b. 中点),(00y x M , 2210x x x +=, 2210y y y += ② 点差法:设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得1212px y = 2222px y =将两式相减,可得)(2))((212121x x p y y y y -=+-2121212y y px x y y +=--a. 在涉及斜率问题时,212y y pk AB +=b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M ,021*******y py p y y p x x y y ==+=--, 即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有px p x p x x k AB 0021222==+=(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)一、抛物线的定义及其应用例1、设P 是抛物线y 2=4x 上的一个动点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.例2、(2011·山东高考)设M (x 0,y 0)为抛物线C :x 2=8y 上一 点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)二、抛物线的标准方程和几何性质例3、抛物线y 2=2px (p >0)的焦点为F ,准线为l ,经过F 的直线与抛物线交于A 、B 两点,交准线于C 点,点A 在x 轴上方,AK ⊥l ,垂足为K ,若|BC |=2|BF |,且|AF |=4,则△AKF 的面积是 ( ) A .4 B .3 3 C .4 3D .8例4、过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A 、B ,交其准线l于点C ,若|BC |=2|BF |,且|AF |=3则此抛物线的方程为 ( ) A .y 2=32x B .y 2=9x C .y 2=92x D .y 2=3x三、抛物线的综合问题例5、(2011·江西高考)已知过抛物线y2=2px(p>0)的焦点,斜率为22的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若OC=OA+λOB,求λ的值.例6、(2011·湖南高考)(13分)已知平面内一动点P到点F(1,0)的距离与点P 到y轴的距离的差等于1.(1)求动点P的轨迹C的方程;(2)过点F作两条斜率存在且互相垂直的直线l 1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求AD·EB的最小值例7、已知点M(1,y)在抛物线C:y2=2px(p>0)上,M点到抛物线C的焦点F的距离为2,直线l:y=-12x+b与抛物线C交于A,B两点.(1)求抛物线C的方程;(2)若以AB为直径的圆与x轴相切,求该圆的方程.练习题1.已知抛物线x2=ay的焦点恰好为双曲线y2-x2=2的上焦点,则a等于( )A.1 B.4 C.8 D.162.抛物线y=-4x2上的一点M到焦点的距离为1,则点M的纵坐标是 ( )A.-1716B.-1516C.716D.15163.(2011·辽宁高考)已知F是拋物线y2=x的焦点,A,B是该拋物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为 ( )A.34B.1 C.54D.744.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A.相离B.相交 C.相切D.不确定5.(2012·宜宾检测)已知F为抛物线y2=8x的焦点,过F且斜率为1的直线交抛物线于A、B两点,则||FA|-|FB||的值等于( ) A.4 2 B.8 C.8 2 D.166.在y=2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点P的坐标是 ( ) A.(-2,1) B.(1,2) C.(2,1) D.(-1,2) 7.(2011·陕西高考)设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是 ( )A.y2=-8x B.y2=8x C.y2=-4x D.y2=4x 8.(2012·永州模拟)以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为________.9.已知抛物线的顶点在原点,对称轴为y轴,抛物线上一点Q(-3,m)到焦点的距离是5,则抛物线的方程为________.10.已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么|FA| +|FB| =________.11.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2, y2)两点,若x1+x2=6,那么 |AB|等于________12.根据下列条件求抛物线的标准方程:(1)抛物线的焦点是双曲线 16x2-9y2=144的左顶点;(2)过点P(2,-4).13.已知点A(-1,0),B(1,-1),抛物线C:y2=4x,O为坐标原点,过点A 的动直线l交抛物线C于M,P两点,直线MB交抛物线C于另一点Q.若向量OM与OP的夹角为π4,求△POM的面积.参考答案:一、抛物线的定义及其应用例1、(1)如图,易知抛物线的焦点为F (1,0),准线是x =-1.由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离. 于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连结AF 交曲线于P 点,则所求的最小值为|AF |,即为 5.(2)如图,自点B 作BQ 垂直准线于Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4.即|PB |+|PF |的最小值为4.例2、解析:圆心到抛物线准线的距离为p ,即p =4,根据已 知只要|FM |>4即可.根据抛物线定|FM |=y 0+2由y 0+2>4,解得y 0>2,故y 0的取值范围是(2,+∞).二、抛物线的标准方程和几何性质例3、设点A (x 1,y 1),其中y 1>0.由点B 作抛物线的准线的垂线,垂足为B 1.则有 |BF |=|BB 1|;又|CB |=2|FB |,因此有|CB |=2|BB 1|,cos ∠CBB 1=|BB 1||BC |=12,∠CBB 1=π3.即直线AB 与x 轴的夹角为π3.又|AF |=|AK |=x 1+p2=4,因此y 1=4sin π3=23,因此△AKF 的面积等于12|AK |·y 1=12×4×23=4 3.例4.分别过点A 、B 作AA 1、BB 1垂直于l ,且垂足分别为A 1、B 1,由已知条件|BC |=2|BF |得|BC |=2|BB 1|,∴∠BCB 1=30°,又|AA 1|=|AF |=3,∴|AC |=2|AA 1|=6,∴|CF |=|AC |-|AF |=6-3=3,∴F 为线段AC 的中点.故点F 到准线的距离为p =12|AA 1|=32,故抛物线的方程为y 2=3x .三、抛物线的综合问题例5、(1)直线AB 的方程是y =22(x -p2),与y 2=2px 联立,从而有4x 2-5px+p 2=0,所以:x 1+x 2=5p4,由抛物线定义得:|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42);设 OC =(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22). 又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1). 即(2λ-1)2=4λ+1.解得λ=0,或λ=2. 例6、 (1)设动点P 的坐标为(x ,y ),由题意有x -12+y 2-|x |=1.化简得y 2=2x +2|x |. 当x ≥0时,y 2=4x ;当x <0时,y =0.所以,动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0(x <0). (2)由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎨⎧y =k x -1y 2=4x,得k 2x 2-(2k 2+4)x +k 2=0. (7分)设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=2+4k2,x 1x 2=1. (8分)因为l 1⊥l 2,所以l 2的斜率为-1k. 设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1. =(x 1+1)(x 2+1)+(x 3+1)·(x 4+1)= x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1 (11分) =1+(2+4k2)+1+1+(2+4k 2)+1=8+4(k 2+1k2)≥8+4×2k 2·1k2=16.当且仅当k 2=1k2,即k =±1时, AD ·EB 取最小值16.例7 、(1)抛物线y 2=2px (p >0)的准线为x =-p2,由抛物线定义和已知条件可知|MF |=1-(-p 2)=1+p2=2,解得p =2, 故所求抛物线C 的方程为y 2=4x .(2)联立⎩⎨⎧y =-12x +b ,y 2=4x消去x 并化简整理得y 2+8y -8b =0.依题意应有Δ=64+32b >0,解得b >-2.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-8,y 1y 2=-8b ,设圆心Q (x 0,y 0),则应用x 0=x 1+x 22,y 0=y 1+y 22=-4.因为以AB 为直径的圆与x 轴相切,所以圆的半径为r =|y 0|=4. 又|AB |=x 1-x 22+y 1-y 22=1+4y 1-y 22=5[y 1+y 22-4y 1y 2]=564+32b所以|AB |=2r =564+32b=8,解得b =-85.所以x 1+x 2=2b -2y 1+2b -2y 2=4b +16=485, 则圆心Q 的坐标为(245,-4).故所求圆的方程为(x -245)2+(y +4)2=16. 练习题:1.C .解析:根据抛物线方程可得其焦点坐标为(0,a4),双曲线的上焦点为(0,2),依题意则有a4=2解得a =8.2.B .解析:抛物线方程可化为x 2=-y 4,其准线方程为y =116.设M (x 0,y 0),则由抛物线的定义,可知116-y 0=1⇒y 0=-1516. 3.C .解析:根据拋物线定义与梯形中位线定理,得线段AB 中点到y 轴的距离为:12(|AF |+|BF |)-14=32-14=54.4.C .解析:设抛物线焦点弦为AB ,中点为M ,准线l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |=半径,故相切.5.C .解析:依题意F (2,0),所以直线方程为y =x -2由⎩⎨⎧y =x -2,y 2=8x,消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则||FA |-|FB ||=|(x 1+2)-(x 2+2)|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=144-16=8 2.6.B .解析:如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义知,|PF |=|PN |,∴|AP |+|PF |=|AP |+|PN |≥|AN 1|,当且仅当A 、P 、N 三点共线时取等号.∴P 点的横坐标与A 点的横坐标相同即为1,则可排除A 、C 、D.答案:B7.B .解析:由准线方程x =-2,可知抛物线为焦点在x 轴正 ,半轴上的标准方程,同时得p =4,所以标准方程为 y 2=2px =8x8.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8. 所以,圆的方程为x 2+(y -4)2=64.9.解析:设抛物线方程为x 2=ay (a ≠0),则准线为y =-a 4.∵Q (-3,m )在抛物线上,∴9=am .而点Q 到焦点的距离等于点Q 到准线的距离,∴|m -(-a 4)|=5.将m =9a 代入,得|9a +a 4|=5,解得,a =±2,或a =±18,∴所求抛物线的方程为x 2=±2y ,或x 2=±18y .10.解析:由⎩⎨⎧ y 2=4x 2x +y -4=0,消去y ,得x 2-5x +4=0(*),方程(*)的两根为A 、B 两点的横坐标,故x 1+x 2=5,因为抛物线y 2=4x 的焦点为F (1,0),所以| FA | +| FB | =(x 1+1)+(x 2+1)=711.解析:因线段AB 过焦点F ,则|AB |=|AF |+|BF |.又由抛物线的定义知|AF |=x 1+1,|BF |=x 2+1,故|AB |=x 1+x 2+2=8.12.解析:双曲线方程化为x 29-y 216=1,左顶点为(-3,0),由题意设抛物线方程为 y 2=-2px (p >0),则-p 2=-3,∴p =6,∴抛物线方程为y 2=-12x . (2)由于P (2,-4)在第四象限且抛物线对称轴为坐标轴,可设抛物线方程为y 2=mx 或x 2=ny ,代入P 点坐标求得m =8,n =-1,∴所求抛物线方程为y 2=8x 或x 2=-y .13.解:设点M (y 214,y 1),P (y 224,y 2),∵P ,M ,A 三点共线,∴k AM =k PM ,即y 1y 214+1=y 1-y 2y 214-y 224,即y 1y 21+4=1y 1+y 2,∴y 1y 2=4. ∴ OM · OP =y 214·y 224+y 1y 2=5.∵向量 OM 与 OP 的夹角为π4, ∴| OM |·|OP |·cos π4=5.∴S △POM =12| OM | ·| OP | ·sin π4=52.。