高中数学椭圆标准方程及其性质知识点大全
椭圆高中知识点总结
![椭圆高中知识点总结](https://img.taocdn.com/s3/m/e20e3c0c2a160b4e767f5acfa1c7aa00b52a9dc2.png)
椭圆是高中数学中的一个重要内容,涉及许多知识点。
以下是椭圆高中知识点的总结:1. 椭圆的定义:如果一个平面内到两个定点$F_{1},F_{2}$的距离之和等于常数(大于$|F_{1}F_{2}|$),则这个平面内的图形叫做椭圆。
这两个定点叫做椭圆的焦点,焦点到椭圆中心的距离叫做焦距。
2. 椭圆的方程:标准方程为$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$(其中$a > b > 0$)。
这个方程表示一个椭圆,其中$a$是椭圆的长半轴长度,$b$是短半轴长度。
3. 椭圆的性质:* 范围:椭圆在x轴上的范围是$-a \leqslant x \leqslant a$,在y轴上的范围是$-b \leqslant y \leqslant b$。
* 离心率:椭圆的离心率定义为$\frac{c}{a}$,其中$c$是焦点到中心的距离。
离心率可以用来描述椭圆的形状,离心率越接近1,椭圆越扁平;离心率越接近0,椭圆越圆。
* 焦点:椭圆有两个焦点,分别位于$F_{1}(-c,0)$和$F_{2}(c,0)$。
4. 椭圆的参数方程:椭圆的参数方程表示法通常使用$\cos$和$\sin$函数,具体形式为$\left\{ \begin{matrix} x = a\cos\theta \\ y = b\sin\theta\end{matrix} \right.$。
5. 椭圆的截线:如果一条直线与椭圆相交于两点A和B,则线段AB的长度等于椭圆上的点到焦点距离之差的绝对值的和。
6. 椭圆的焦点三角形:以两个焦点为端点的线段所构成的三角形称为焦点三角形。
当椭圆的长轴垂直于x轴时,焦点三角形为等腰直角三角形。
7. 椭圆的对称性:椭圆既是关于x轴对称的图形,也是关于y轴对称的图形,同时也可以使用参数方程来表示其对称性。
8. 椭圆的极坐标方程:极坐标系下,椭圆的方程为$\frac{\rho^{2}\cos^{2}\theta}{a^{2}} +\frac{\rho^{2}\sin^{2}\theta}{b^{2}} = 1$。
高三椭圆知识点总结
![高三椭圆知识点总结](https://img.taocdn.com/s3/m/7f05ebf4970590c69ec3d5bbfd0a79563c1ed420.png)
高三椭圆知识点总结椭圆是解析几何中的一个重要概念,它在高中数学中占据着重要的地位。
椭圆的相关知识点涉及到椭圆的定义、性质、方程、焦点、离心率等内容。
下面我们将对高三椭圆知识点进行总结,希望能够帮助同学们更好地理解和掌握这一部分内容。
1. 椭圆的定义。
椭圆是平面上到两个定点F1和F2的距离之和等于常数2a(a>0)的动点P的轨迹。
这两个定点称为椭圆的焦点,常数2a称为椭圆的长轴长度。
2. 椭圆的性质。
(1)椭圆的离心率e的性质,0<e<1。
(2)椭圆的离心率e与长轴、短轴的关系,e^2=1-b^2/a^2。
(3)椭圆的离心率e与焦点之间的距离的关系,PF1+PF2=2a=2a(1-e^2)。
3. 椭圆的方程。
椭圆的标准方程为,x^2/a^2+y^2/b^2=1。
其中,a和b分别为椭圆的长轴和短轴长度。
4. 椭圆的焦点。
椭圆的焦点到椭圆中心的距离为c,满足c^2=a^2-b^2。
5. 椭圆的参数方程。
椭圆的参数方程为:x=acosθ。
y=bsinθ。
其中,θ为参数,a和b分别为椭圆的长轴和短轴长度。
6. 椭圆的性质。
(1)椭圆的对称轴,椭圆有两条对称轴,分别为x轴和y轴。
(2)椭圆的准线,椭圆的长轴上任意一点到两个焦点的距离之和为常数2a,这个常数称为椭圆的准线。
7. 椭圆的切线方程。
椭圆上一点P(x0,y0)处的切线方程为:xx0/a^2+yy0/b^2=1。
通过以上知识点的总结,我们对高三椭圆的相关内容有了更深入的了解。
希望同学们能够通过不断地练习和思考,掌握椭圆的相关知识,提升数学水平。
高中数学椭圆知识点公式大全
![高中数学椭圆知识点公式大全](https://img.taocdn.com/s3/m/9af6a40e2a160b4e767f5acfa1c7aa00b52a9dbd.png)
高中数学椭圆知识点公式大全椭圆是一种重要的数学曲线,几何上可以看作是平面内与两个定点F1、F2和总距离为2a的动点P的轨迹,数学上可以通过方程来描述。
椭圆的性质和公式涉及到椭圆的焦点、顶点、长轴、短轴、离心率等概念,下面将详细介绍高中数学椭圆的知识点公式。
一、椭圆的定义与性质1.定义:椭圆是平面上与两个定点F1、F2的距离之和等于定值2a的点的轨迹。
2.基本性质:a.焦半径定理:过椭圆上任意一点P引两条直线分别与两焦点相交于A和B,则AP+BP=2a。
b.反奇异性:椭圆上任意一条直线与两个焦点的连线的夹角等于该直线到两个离心点的距离之差的绝对值。
c.双曲率定理:椭圆上任意一点的曲率半径之和等于椭圆的长轴和短轴的和。
d.弦长定理:椭圆上任意两点P、Q的弦长PQ满足PQ^2=PF1^2+PF2^2+2a^2二、椭圆的方程1.标准方程:椭圆的标准方程有两种形式:a.第一种形式:(x^2/a^2)+(y^2/b^2)=1,其中a为长轴的一半,b 为短轴的一半。
b.第二种形式:(x^2/b^2)+(y^2/a^2)=1,其中a为长轴的一半,b 为短轴的一半。
2.直角坐标系下其他形式方程:a.椭圆的顶点在原点的方程:x^2/a^2+y^2/b^2=1b.椭圆的中心在原点的方程:(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h,k)为中心坐标。
c.椭圆的顶点在y轴上的方程:(x-h)^2/a^2+y^2/b^2=1d.椭圆的顶点在x轴上的方程:x^2/a^2+(y-k)^2/b^2=13. 极坐标系下的方程:r = (a * b) / sqrt(b^2 cos^2 θ + a^2 sin^2 θ),其中(a, b)为半轴。
三、椭圆的重要参数1.焦距:引如椭圆的两个焦点之间的距离,记为2c。
2.离心率:e=c/a,表示焦点与顶点之间的距离与长轴的比值。
3.焦点坐标:F1(-c,0),F2(c,0)。
高二椭圆知识点总结
![高二椭圆知识点总结](https://img.taocdn.com/s3/m/bdfff3fb68dc5022aaea998fcc22bcd126ff4201.png)
高二椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
具体来说,设两点为F₁和F₂,距离之和为常数2a,那么椭圆E的定义:E = {P∈R² | |PF₁| + |PF₂| = 2a}其中,P为椭圆上的点,F₁和F₂为两个固定点,a为椭圆的半长轴。
1.2 椭圆的几何性质椭圆有如下几何性质:(1)椭圆的离心率:椭圆的形状由离心率e来表征。
(2)椭圆的焦点:椭圆的两个焦点分别为F₁和F₂。
(3)椭圆的半长轴和半短轴:半长轴为椭圆的长轴的一半,半短轴为椭圆的短轴的一半。
1.3 椭圆和圆的关系可以看到,当两个焦点重合时,椭圆变成了圆。
这也说明圆是椭圆的一种特殊情况,也就是说圆是椭圆的特例。
二、椭圆的方程和性质2.1 椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a为椭圆的半长轴,b为椭圆的半短轴。
2.2 椭圆的参数方程椭圆的参数方程为:x = a*cosθy = b*sinθ其中,θ为参数,a和b分别为椭圆的半长轴和半短轴。
2.3 椭圆的性质椭圆有许多重要的性质,如焦点、离心率、长轴、短轴等。
椭圆的性质对于解析几何的学习非常重要。
在实际应用中,我们可以利用这些性质进行问题的求解和分析。
2.4 椭圆的参数方程与标准方程的转化椭圆的参数方程与标准方程可以相互转化,通过参数方程与三角函数之间的关系,我们可以得到椭圆的标准方程。
三、椭圆的相关计算3.1 椭圆的面积椭圆的面积可以通过参数方程和积分来计算,最终可以得到椭圆的面积公式为:S = πab其中,a和b为椭圆的半长轴和半短轴。
3.2 椭圆的周长椭圆的周长也可以通过参数方程和积分来计算,最终可以得到椭圆的周长公式为:L = 4aE(e)其中,a为椭圆的半长轴,E(e)为椭圆的第二类椭圆积分,e为椭圆的离心率。
3.3 椭圆方程的化简对于一些复杂的椭圆方程,我们可以通过一些方法对椭圆方程进行化简,使得问题的求解变得更加简单。
椭圆知识点笔记
![椭圆知识点笔记](https://img.taocdn.com/s3/m/d37bf9b30875f46527d3240c844769eae109a31f.png)
椭圆知识点笔记一、椭圆的定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
用集合语言表示为:$P =\{ M ||MF_1| +|MF_2| = 2a,2a >|F_1F_2| \}$,其中$|F_1F_2| = 2c$。
当$2a = 2c$时,动点的轨迹是线段$F_1F_2$;当$2a < 2c$时,动点无轨迹。
二、椭圆的标准方程1、焦点在$x$轴上的椭圆标准方程:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$表示椭圆的长半轴长,$b$表示椭圆的短半轴长,$c$满足$c^2 = a^2 b^2$,焦点坐标为$F_1(c, 0)$,$F_2(c, 0)$。
2、焦点在$y$轴上的椭圆标准方程:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$),焦点坐标为$F_1(0, c)$,$F_2(0, c)$。
三、椭圆的几何性质1、范围对于焦点在$x$轴上的椭圆$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$,有$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$,有$b \leq x \leq b$,$a \leq y \leq a$。
2、对称性椭圆关于$x$轴、$y$轴和原点对称。
3、顶点焦点在$x$轴上的椭圆,顶点坐标为$A_1(a, 0)$,$A_2(a, 0)$,$B_1(0, b)$,$B_2(0, b)$;焦点在$y$轴上的椭圆,顶点坐标为$A_1(0, a)$,$A_2(0, a)$,$B_1(b, 0)$,$B_2(b, 0)$。
高中数学椭圆知识点总结
![高中数学椭圆知识点总结](https://img.taocdn.com/s3/m/a96c1bbd9f3143323968011ca300a6c30c22f139.png)
高中数学椭圆知识点总结1. 椭圆的定义和性质椭圆是平面上一组点,在与两点(称为焦点)到所有点的距离之和等于给定常数(称为椭圆的焦距和)的前提下,轨迹所组成的图形。
椭圆有以下性质:•椭圆的焦点距离之和等于椭圆的长轴长度;•椭圆的焦点在椭圆的长轴上;•椭圆的离心率介于0和1之间。
2. 椭圆的标准方程椭圆的标准方程表示为:(x - h)2/a2 + (y - k)2/b2 = 1其中,(h, k)是椭圆的中心点坐标,a和b分别称为椭圆的半长轴和半短轴长度。
3. 椭圆的基本方程椭圆的基本方程表示为:x2/a2 + y2/b2 = 1这是一个以原点为中心的椭圆,半长轴长度为a,半短轴长度为b。
4. 椭圆的焦距和椭圆的焦距和表示为:c = √(a^2 - b^2)焦距和是指椭圆的焦点到椭圆中心的距离。
5. 椭圆的离心率椭圆的离心率表示为:e = c/a离心率是一个介于0和1之间的数,表示椭圆离开其最远点距离中心的程度。
6. 椭圆方程的标准化通过平移和旋转坐标轴,可以将任意的椭圆方程化为标准方程。
具体步骤如下:1.将椭圆的中心平移到原点,得到平移后的椭圆方程;2.将椭圆的长轴与x轴平行,得到旋转后的椭圆方程;3.对旋转后的椭圆方程进行标准化,得到标准方程。
7. 椭圆的焦点和准线椭圆的焦点位于椭圆的长轴上,离心率越大,焦点离开椭圆中心越远。
椭圆的准线是通过焦点并垂直于长轴的直线。
焦点和准线可以帮助我们更好地理解椭圆的形状。
8. 椭圆的图形特征椭圆的图形特征有以下几个方面:•如果a > b,则椭圆的长轴在x轴上;•如果a < b,则椭圆的长轴在y轴上;•如果a = b,则椭圆为圆形。
9. 椭圆的方程转化椭圆的方程可以通过一些运算进行转化。
一些常见的转化方式包括:•将椭圆的方程转化为标准方程;•将椭圆的方程进行配方,得到完全平方的形式。
10. 椭圆的应用椭圆在许多领域中有着广泛的应用,例如:•行星轨道的描述;•天文学中的天体运动;•电子学中的无线通信;•工程学中的抛物面镜等。
高中数学椭圆的基本知识
![高中数学椭圆的基本知识](https://img.taocdn.com/s3/m/5da106554693daef5ef73db7.png)
椭圆的基本知识一、基本知识点知识点一:椭圆的定义:椭圆三定义,简称和比积 1、定义1:(和)到两定点的距离之和为定值的点的轨迹叫做椭圆。
这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距,定值为________。
2、定义2:(比)到定点和定直线的距离之比是定值的点的轨迹叫做椭圆。
定点为焦点,定直线为准线,定值为______。
3、定义3:(积)到两定点连线的斜率之积为定值的点的轨迹是椭圆。
两定点是长轴端点,定值为)01(12<<m e m --=。
知识点二:椭圆的标准方程1、当焦点在x 轴上时,椭圆的标准方程为_______________,其中222b ac -=。
2、当焦点在y 轴上时,椭圆的标准方程为_______________,其中222b ac -=。
知识点三:椭圆的参数方程)0(12222>>b a by a x =+的参数方程为________________。
知识点四:椭圆的一些重要性质(1)对称性:椭圆的标准方程是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心就是椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足b y a x ≤≤,。
(3)顶点:①椭圆的对称轴与椭圆的交点为椭圆的顶点;②椭圆)0(12222>>b a by a x =+与坐标轴的四个顶点分别为___________________________。
③椭圆的长轴和短轴。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。
②因为0>>c a ,所以e 的取值范围是10<<e 。
(5)焦半径:椭圆上任一点),(00y x P 到焦点的连线段叫做焦半径。
对于焦点在x 轴上的椭圆,左焦半径01ex a r +=,右焦半径02ex a r -=。
椭圆知识点总结
![椭圆知识点总结](https://img.taocdn.com/s3/m/c763881df11dc281e53a580216fc700aba685257.png)
椭圆知识点总结一、椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别代表椭圆长轴和短轴的一半。
椭圆的焦点到中心的距离是c,满足c^2 = a^2 - b^2。
二、椭圆的性质1. 椭圆对称性:椭圆关于x轴和y轴对称。
2. 焦点性质:椭圆上任意一点到两个焦点的距离之和等于常数2a。
3. 长短轴性质:椭圆的长轴和短轴互相垂直,长轴的长度是2a,短轴的长度是2b。
4. 离心率:椭圆的离心率e定义为c/a,表示椭圆拉伸的程度,离心率介于0到1之间。
5. 参数方程:椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。
6. 弦长:椭圆上任意一点到两个焦点的距离之和等于常数2a,因此椭圆上任意一条弦的长度小于或等于2a。
7. 焦准线性质:椭圆上任意一点到两个准线的距离之差等于常数2a。
三、椭圆与圆的关系1. 圆是椭圆的特殊情况:当椭圆的长轴和短轴相等时,椭圆就变成了圆。
2. 椭圆的离心率介于0到1之间,当离心率等于0时,椭圆就是一个圆。
因此,椭圆和圆可以看作是同一种几何图形的不同特例。
四、椭圆的应用1. 天体运动:椭圆轨道是描述天体运动的重要数学工具,如行星绕太阳运动、卫星绕地球运动等。
2. 光学:椭圆镜片和椭圆抛物面反射器是光学领域常用的元件,用于聚焦和成像。
3. 工程设计:椭圆的性质在设计椭圆形建筑、椭圆形机械零件、椭圆形轨迹等方面有重要应用。
4. 地理测量:椭圆在地图投影和地理测量中有广泛应用,如椭球面测量、椭圆地图投影等。
五、椭圆的求解1. 椭圆的参数方程可以通过消除参数t来得到椭圆的标准方程。
2. 根据椭圆的焦点性质和准线性质,可以求解椭圆的焦点和准线方程。
3. 椭圆的面积可以通过积分求解,面积公式为S = πab。
4. 椭圆的周长可以通过椭圆的参数方程求解,周长公式为L = 4aE(e),其中E(e)为椭圆的第二类完全椭圆积分。
六、椭圆的变换1. 平移变换:椭圆的平移变换可以用矩阵形式表示,通过平移变换可以将椭圆移动到任意位置。
高中椭圆的知识点总结
![高中椭圆的知识点总结](https://img.taocdn.com/s3/m/22c4abc8760bf78a6529647d27284b73f3423645.png)
高中椭圆的知识点总结椭圆是数学中的一个重要概念,具有很多应用。
在高中数学中,椭圆也是一个必修的内容,考试中经常会涉及到相关的知识点。
在本文中,我们将对高中椭圆的知识点进行总结和归纳。
一、椭圆的定义椭圆是平面上到两个定点F1和F2距离之和等于定长2a的点P的轨迹。
这两个定点F1和F2被称作椭圆的焦点,定长2a被称为椭圆的长轴,长轴的中点O被称为椭圆的中心,距离中心最远的两点A和B被称为椭圆的顶点,椭圆的离心率为e=(F1F2)/2a。
二、椭圆的方程椭圆的标准方程为 (x^2/a^2)+(y^2/b^2)=1, 其中a>b>0,a为长轴长度,b为短轴长度。
当椭圆的中心不在坐标原点时,可通过平移变换将其移到原点,然后再求解方程。
三、椭圆的性质1. 椭圆的中心位于坐标原点或者与坐标轴的交点上。
2. 椭圆的长轴是平行于x或y轴的直线,短轴是垂直于长轴的直线。
3. 椭圆的离心率e=(F1F2)/2a, e<1。
4. 椭圆的焦点与顶点之间的距离F1A、F2B互相相等,且等于椭圆的长轴长度2a。
5. 椭圆上任意一点到两焦点的距离之和等于定长2a。
6. 椭圆的面积为πab。
7. 椭圆的周长无法用初等函数表示,通常用级数来表示。
四、椭圆的几何意义椭圆的几何意义可以简单地用两条绳子相互交错吊起一个重物来表现。
在两条绳子构成的平面上,可以画出一个椭圆形的轨迹,此时重物到两条绳子的距离之和为定值2a,而椭圆的顶点即为两条绳子的交点。
五、椭圆的应用椭圆具有很多应用,在物理、工程、天文学、生物学等领域中经常会涉及到。
1. 通讯卫星轨道:通讯卫星通常被放置在椭圆轨道上,使得其在地球上的可见度更广,信号传输距离更长。
2. 医学图像:医学图像中的组织轮廓通常是椭圆形的,因此椭圆形适用于医学图像处理。
3. 自动打标机:自动打标机通常采用椭圆形的摆线轮廓来控制字母和数字的运动轨迹。
4. 椭圆滤波器:椭圆滤波器是一种常用的数字信号处理技术,用于高通、低通、带通、带阻等滤波。
高中数学---椭圆知识点小结
![高中数学---椭圆知识点小结](https://img.taocdn.com/s3/m/6e3af70cbb4cf7ec4afed0d7.png)
高中数学---椭圆知识点小结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN椭圆知识点1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作ac a c e ==22。
高中椭圆知识点总结大全
![高中椭圆知识点总结大全](https://img.taocdn.com/s3/m/5e08950ea9956bec0975f46527d3240c8547a16f.png)
高中椭圆知识点总结大全一、椭圆的定义椭圆可以通过一个固定点F(称为焦点)和一个固定线段2a(称为长轴)来定义:对于平面上的任意一点P到F的距离加上到线段上两个端点的距离之和恒为常数2a。
即对于平面上任意一点P(x, y),有PF1 + PF2 = 2a,其中PF1和PF2分别是点P到焦点F1和F2的距离。
椭圆的数学定义为:椭圆是平面上到两个给定点F1和F2的距离之和为定值2a的所有点P(x, y)的集合。
2a称为椭圆的主轴长。
椭圆的中点O为原点,主轴与x轴平行。
a称为半长轴,b称为半短轴。
椭圆的方程通常表示为(x^2)/a^2 + (y^2)/b^2 = 1,当a=b时,椭圆的长轴和短轴相等,称为圆。
二、椭圆的参数方程椭圆还可以通过参数方程来描述。
椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数,a和b分别为半长轴和半短轴。
参数方程可以将椭圆的轨迹表示为一个参数的函数,很方便进行曲线的分析和运算。
三、椭圆的焦点与离心率椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。
椭圆的离心率e定义为焦距2c与长轴2a的比值,即e = c/a。
e的取值范围为0<e<1,当e=0时,椭圆为圆,当e逐渐增大时,椭圆的形状变得更加扁平。
四、椭圆的方程与性质1. 椭圆的标准方程椭圆的标准方程为(x^2)/a^2 + (y^2)/b^2 = 1,其中a和b分别为半长轴和半短轴的长度。
一般来说,可以通过椭圆的焦点和长短轴长短求出标准方程。
2. 椭圆的性质(1)椭圆的对称轴:椭圆相对于x轴、y轴或坐标原点都是对称的。
(2)椭圆的离心率:椭圆的形状特征由离心率e决定,e越接近于0,椭圆的形状越接近于圆。
(3)椭圆的焦点与直径:椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。
它的两个焦点连成的直线叫作椭圆的长轴,而过椭圆中点与垂直于长轴的直线的交点叫作椭圆的短轴。
长轴的长度等于2a,短轴的长度等于2b。
高中数学椭圆知识点总结及公式大全
![高中数学椭圆知识点总结及公式大全](https://img.taocdn.com/s3/m/f74261ebb1717fd5360cba1aa8114431b80d8e56.png)
高中数学椭圆知识点总结及公式大全椭圆是几何学中的重要概念,它的知识点包括定义、标准方程、性质等。
以下是椭圆知识点总结及公式大全:一、椭圆的基本概念1. 椭圆的概念:平面内与两个定点F1、F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点之间的距离叫做椭圆的焦距。
2. 椭圆的标准方程:焦点在x轴上时,标准方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (其中 $a > b > 0$ )焦点在y轴上时,标准方程为:$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$ (其中 $a > b > 0$ )二、椭圆的性质1. 范围:椭圆上的任意一点P,它到椭圆两个焦点的距离之和为定值,等于椭圆的长轴的长度。
2. 对称性:椭圆是关于其长轴和短轴对称的。
3. 顶点:椭圆与长轴和短轴的交点称为顶点。
长轴的顶点是$(-a,0),(a,0)$,短轴的顶点是$(0,-b),(0,b)$。
4. 焦点:椭圆的两个焦点位于长轴上,焦距为$2c$,其中$c^2 = a^2 - b^2$。
5. 离心率:椭圆的离心率定义为$e = \frac{c}{a}$,离心率是描述椭圆扁平程度的一个重要指标。
三、椭圆的参数方程椭圆的参数方程可以用角度θ表示,其中x=a×cosθ,y=b×sinθ。
参数方程可以帮助我们更方便地表达椭圆的轨迹。
以上就是关于高中数学中椭圆的全部知识点总结和相关公式,供你参考,建议咨询数学老师或者查看高中数学教辅以获取更准确全面的信息。
椭圆标准方程及其性质知识点大全
![椭圆标准方程及其性质知识点大全](https://img.taocdn.com/s3/m/dba9764dbcd126fff7050b90.png)
【专题七】椭圆标准方程及其性质知识点大全(一)椭圆的定义及椭圆的标准方程:●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121F F PF PF <+,则动点P 的轨迹无图形(二)椭圆的简单几何性:●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2离心率①(01)c e e a =<< ,②21()b e a=-③222b a c -=(离心率越大,椭圆越扁)【说明】:1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中a 最大且a 2=b 2+c 2.2. 方程22Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A≠B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)焦点三角形的面积公式:122tan2PF F S b θ∆=如图:●椭圆标准方程为:12222=+by a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan2PF F S b θ∆=。
高中数学椭圆知识点小结
![高中数学椭圆知识点小结](https://img.taocdn.com/s3/m/370ed0d90029bd64793e2c52.png)
高二数学椭圆知识点1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。
②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。
高中数学椭圆及其标准方程知识点
![高中数学椭圆及其标准方程知识点](https://img.taocdn.com/s3/m/99f363afad51f01dc381f109.png)
椭圆知识点知识要点小结: 知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
高中数学选修2-1-椭圆的方程及其性质
![高中数学选修2-1-椭圆的方程及其性质](https://img.taocdn.com/s3/m/cabc1c7a590216fc700abb68a98271fe910eaf2f.png)
椭圆的方程及其性质知识集结知识元椭圆的定义知识讲解1.椭圆的定义【知识点的认识】1.椭圆的第一定义平面内与两个定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆,其中,这两个定点F1、F2叫做椭圆的焦点,两焦点之间的距离|F1F2|叫做焦距.2.椭圆的第二定义平面内到一个定点的距离和到一条定直线的距离之比是常数e=(0<e<1,其中a是半长轴,c是半焦距)的点的轨迹叫做椭圆,定点是椭圆的焦点,定直线叫椭圆的准线,常数e 叫椭圆的离心率.3.注意要点椭圆第一定义中,椭圆动点P满足{P||PF1|+|PF2|=2a}.(1)当2a>|F1F2|时,动点P的轨迹是椭圆;(2)当2a=|F1F2|时,动点P的轨迹是线段F1F2;(3)当2a<|F1F2|时,动点P没有运动轨迹.【命题方向】利用定义判断动点运动轨迹,需注意椭圆定义中的限制条件:只有当平面内动点P与两个定点F1、F2的距离的和2a>|F1F2|时,其轨迹才为椭圆.1.根据定义判断动点轨迹例:如图,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆分析:根据CD是线段MF的垂直平分线.可推断出|MP|=|PF|,进而可知|PF|+|PO|=|PM|+|PO|=|MO|结果为定值,进而根据椭圆的定义推断出点P的轨迹.解答:由题意知,CD是线段MF的垂直平分线.∴|MP|=|PF|,∴|PF|+|PO|=|PM|+|PO|=|MO|(定值),又显然|MO|>|FO|,∴根据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.故选A点评:本题主要考查了椭圆的定义的应用.考查了学生对椭圆基础知识的理解和应用.2.与定义有关的计算例:已知椭圆上的一点P到左焦点的距离为,则点P到右准线的距离为()A.2B.2C.5D.3分析:先由椭圆的第一定义求出点P到右焦点的距离,再用第二定义求出点P到右准线的距离d.解答:由椭圆的第一定义得点P到右焦点的距离等于4﹣=,离心率e=,再由椭圆的第二定义得=e=,∴点P到右准线的距离d=5,故选C.点评:本题考查椭圆的第一定义和第二定义,以及椭圆的简单性质.例题精讲椭圆的定义例1.'点M(x,y)与定点F(4,0)的距离和它到直线l:x=的距离的比是常数,求M的轨迹.'例2.'已知P为⊙B:(x+2)2+y2=36上一动点,点A(2,0),线段AP垂直平分线交直线BP于点Q,求点Q的轨迹方程.'例3.'已知△ABC 的周长等于18,B 、C 两点坐标分别为(0,4),(0,-4),求A 点的轨迹方程.'椭圆的标准方程知识讲解1.椭圆的标准方程【知识点的认识】椭圆标准方程的两种形式:(1)(a >b >0),焦点在x 轴上,焦点坐标为F (±c ,0),焦距|F 1F 2|=2c ;(2)(a >b >0),焦点在y 轴上,焦点坐标为F (0,±c ),焦距|F 1F 2|=2c .两种形式相同点:形状、大小相同;都有a >b >0;a 2=b 2+c 2两种形式不同点:位置不同;焦点坐标不同.标准方程(a >b >0)中心在原点,焦点在x 轴上(a >b >0)中心在原点,焦点在y 轴上图形顶点A(a ,0),A ′(﹣a ,0)B (0,b ),B ′(0,﹣b )A (b ,0),A ′(﹣b ,0)B (0,a ),B ′(0,﹣a )对称轴x 轴、y 轴,长轴长2a ,短轴长2b焦点在长轴长上x 轴、y 轴,长轴长2a ,短轴长2b焦点在长轴长上焦点F 1(﹣c ,0),F 2(c ,0)F 1(0,﹣c ),F 2(0,c )焦距|F 1F 2|=2c (c >0)c 2=a 2﹣b 2|F 1F 2|=2c (c >0)c 2=a 2﹣b 2离心率e =(0<e <1)e =(0<e <1)准线x =±y =±例题精讲椭圆的标准方程例1.'已知椭圆的焦点在x 轴上,长轴长为12,离心率为,求椭圆的标准方程.'例2.'写出适合下列条件的曲线方程:(1)求椭圆的标准方程.(2)已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0),双曲线上一点P 到F 1,F 2距离差的绝对值等于6,求双曲线的标准方程.'例3.'若椭圆ax2+by2=1与直线x+y=1交于A、B两点,M为AB的中点,直线OM(O为原点)的斜率为,且OA⊥OB,求椭圆的方程.'椭圆的性质知识讲解1.椭圆的性质【知识点的认识】1.椭圆的范围2.椭圆的对称性3.椭圆的顶点顶点:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标(如上图):A1(﹣a,0),A2(a,0),B1(0,﹣b),B2(0,b)其中,线段A1A2,B1B2分别为椭圆的长轴和短轴,它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长.4.椭圆的离心率①离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率,用e表示,即:e=,且0<e<1.②离心率的意义:刻画椭圆的扁平程度,如下面两个椭圆的扁平程度不一样:e越大越接近1,椭圆越扁平,相反,e越小越接近0,椭圆越圆.当且仅当a=b时,c=0,椭圆变为圆,方程为x2+y2=a2.5.椭圆中的关系:a2=b2+c2.例题精讲椭圆的性质例1.'求满足下列条件的椭圆或双曲线的标准方程:(1)椭圆的焦点在y轴上,焦距为4,且经过点A(3,2);(2)双曲线的焦点在x轴上,右焦点为F,过F作重直于x轴的直线交双曲线于A,B两点,且|AB|=3,离心率为.'例2.'已知中心在原点的椭圆C的两个焦点和椭圆C1:4x2+9y2=36的两个焦点是一个正方形的四个顶点,且椭圆C过点A(2,-3).(1)求椭圆C的方程;(2)若PQ是椭圆C的弦,O是坐标原点,OP⊥OQ,已知直线OP的斜率为,求点Q的坐标.'例3.'如图,椭圆E:+=1(a>b>0)经过点A(0,1),且离心率为.(1)求椭圆E的方程;(2)若M点为右准线上一点,B为左顶点,连接BM交椭圆于N,求的取值范围;(3)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A)证明:直线AP与AQ的斜率之和为定值.'当堂练习解答题练习1.'已知椭圆的中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与直线AB相交于点D,与椭圆相交于E,F两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若,求k的值;(Ⅲ)求四边形AEBF面积的最大值.'练习2.'椭圆C:=1(a>b>0)的左焦点为F1(-1,0),点P(1,)在椭圆上.(1)求椭圆C的方程;(2)直线l:y=kx+m与椭圆C交于A,B两点,椭圆C上另一点M满足△ABM的重心为坐标原点O,求△ABM的面积.'练习3.'已知P是右焦点为F的椭圆Γ:上一动点,若|PF|的最小值为1,椭圆的离心率为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)当PF⊥x轴且点P在x轴上方时,设直线l与椭圆Γ交于不同的两点M,N,若PF平分∠MPN,则直线l的斜率是否为定值?若是,求出这个定值;若不是,说明理由.'练习4.'己知椭圆的一个顶点坐标为(2,0),离心率为,直线y=x+m 交椭圆于不同的两点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)设点C(1,1),当△ABC的面积为1时,求实数m的值.'练习5.'已知椭圆Γ:,B1,B2分别是椭圆短轴的上下两个端点,F1是椭圆的左焦点,P是椭圆上异于点B1,B2的点,若△B1F1B2的边长为4的等边三角形.(1)写出椭圆的标准方程;(2)当直线PB1的一个方向向量是(1,1)时,求以PB1为直径的圆的标准方程;(3)设点R满足:RB1⊥PB1,RB2⊥PB2,求证:△PB1B2与△RB1B2的面积之比为定值.'练习6.'已知曲线Γ:=1的左、右顶点分别为A,B,设P是曲线Γ上的任意一点.(1)当P异于A,B时,记直线PA,PB的斜率分别为k1,k2,求证:k1∙k2是定值;(2)设点C满足=λ(λ>0),且|PC|的最大值为7,求λ的值.'练习7.'已知椭圆C:的左、右焦点分别是E、F,离心率,过点F的直线交椭圆C于A、B两点,△ABE的周长为16.(1)求椭圆C的方程;(2)已知O为原点,圆D:(x-3)2+y2=r2(r>0)与椭圆C交于M、N两点,点P为椭圆C 上一动点,若直线PM、PN与x轴分别交于G、H两点,求证:|OG|∙|OH|为定值.'练习8.'已知椭圆E:=1(a>b>0)的离心率为,且过点A(2,0).(1)求椭圆E的标准方程;(2)问:是否存在过点M(0,2)的直线l,使以直线l被椭圆E所截得的弦CD为直径的圆过点N(-1,0),若存在,求出直线l的方程;若不存在,请说明理由.'练习9.'已知椭圆C:=1(a>b>0)的短轴长为2,离心率为,直线l:y=k(x-1)与椭圆C交于不同的两点M,N,A为椭圆C的左顶点.(1)求椭圆C的标准方程;(2)当△AMN的面积为时,求1的方程.'练习10.'求与双曲线-=1有相同的焦点,且过点M(2,1)的椭圆的方程.'练习11.'求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.'练习12.'已知椭圆的中心在原点,它在x轴上的一个焦点与短轴两端点连线互相垂直,且此焦点和x轴上的较近端点的距离为4(-1),求椭圆方程.'。
椭圆标准方程知识点总结
![椭圆标准方程知识点总结](https://img.taocdn.com/s3/m/b486060b68eae009581b6bd97f1922791688be86.png)
椭圆标准方程知识点总结一、椭圆的定义椭圆可以通过几种不同的方式进行定义。
在数学上,椭圆通常被定义为平面上到两个固定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个固定点被称为焦点,而常数2a则被称为椭圆的主轴长度。
另一种定义椭圆的方法是:椭圆是一个闭曲线,其在每个点处的切线的斜率之和等于零。
这意味着椭圆的切线对称性是椭圆的一个特征。
在笛卡尔坐标系中,椭圆的标准方程通常被表示为:x^2/a^2 + y^2/b^2 = 1其中a和b分别代表椭圆的主轴长度和副轴长度。
当a=b时,椭圆变为一个圆。
二、椭圆标准方程的性质1. 中心点:标准椭圆的中心点位于原点(0,0)。
2. 主轴和副轴:椭圆的主轴是x轴和y轴上的两个直线段,而副轴则是通过中心点的垂直于主轴的直线段。
3. 焦点和离心率:椭圆的焦点是与椭圆的轴上的两个点,它们与椭圆的性质有着密切的联系。
椭圆的离心率e定义为焦点到中心点的距离与椭圆的主轴长度之比。
4. 对称性:椭圆具有对称性,通过它的中心点可以看到一些明显的对称性质。
5. 极坐标方程:椭圆的极坐标方程为r=a(1-e^2)/(1+e*cosθ),其中r是极径,θ是极角,e是离心率。
三、椭圆的参数方程除了笛卡尔坐标系下的标准方程外,椭圆还可以通过参数方程来表示。
椭圆的参数方程为:x = a*cos(t)y = b*sin(t)其中t为参数,a和b分别为椭圆的半长轴和短半轴。
通过参数方程,我们可以更直观地理解椭圆的形状和性质。
这种表示方法对于椭圆的运动学和动力学问题有着重要的意义。
四、椭圆的性质和相关定理1. 椭圆的面积:椭圆的面积可以通过积分的方法进行计算,或者利用椭圆的参数方程来求解。
2. 椭圆的周长:椭圆的周长也可以通过积分的方法进行计算,或者利用椭圆的参数方程来求解。
3. 椭圆的焦点性质:椭圆的焦点是进行椭圆弧长和椭圆面积计算时重要的参考点。
4. 椭圆的直径定理:椭圆的长轴和短轴的长度之和等于两个焦点之间的距离。
椭圆知识点梳理总结高中
![椭圆知识点梳理总结高中](https://img.taocdn.com/s3/m/9d9ff48a6037ee06eff9aef8941ea76e58fa4a8d.png)
椭圆知识点梳理总结高中椭圆是一个非常重要的数学概念,它在几何学、物理学、工程学等领域中都有广泛的应用。
椭圆的性质和应用涉及到许多重要的知识点,掌握这些知识点对于提高数学水平和解决实际问题都是非常有益的。
本文将对椭圆的基本概念、性质和应用进行梳理总结,希望能够帮助读者更好地理解和运用椭圆的知识。
一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和为常数2a的点P的轨迹。
称为椭圆,其中a是椭圆的半长轴的长度。
1.2 椭圆的几何特征椭圆的轨迹是一个闭合的曲线,且是对称的。
它的长轴与短轴之间的长度差异是2a,短轴的长度是2b。
1.3 椭圆的标准方程椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标。
1.4 椭圆的离心率椭圆的离心率e定义为e=c/a,其中c是椭圆的焦点距离,a是椭圆的半长轴长度。
1.5 椭圆的参数方程椭圆的参数方程是x=h+a*cosθ,y=k+b*sinθ,其中θ是参数,范围在[0,2π]。
二、椭圆的性质2.1 椭圆的焦点性质椭圆的焦点是F1和F2,椭圆上的任意一点到两个焦点的距离之和是常数2a。
2.2 椭圆的顶点性质椭圆的长轴与短轴的两个端点分别是椭圆的顶点,它们与中心的连线都垂直于长轴。
2.3 椭圆的对称性椭圆关于长轴和短轴都是对称的,具有轴对称和中心对称性质。
2.4 椭圆的直径性质椭圆上的任意一条直径都经过椭圆的中心,并且以中心为对称轴。
2.5 椭圆的焦点方程椭圆的焦点方程是x²/a²+ y²/b²= 1,它表示椭圆上的点到两个焦点的距离之和是常数2a。
三、椭圆的参数方程3.1 参数方程的概念参数方程是用参数表示函数的自变量和因变量的一种方法,它将一个平面曲线的横纵坐标都表示成参数的函数。
3.2 椭圆的参数方程椭圆的参数方程是x=h+a*cosθ,y=k+b*sinθ,其中θ是参数,范围在[0,2π]。
高中数学椭圆总结(全)
![高中数学椭圆总结(全)](https://img.taocdn.com/s3/m/a35d003cd0d233d4b04e697b.png)
椭圆一.知识清单 1.椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。
②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。
(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。
其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。
其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:= 对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。
高中椭圆的知识点总结
![高中椭圆的知识点总结](https://img.taocdn.com/s3/m/2157a26842323968011ca300a6c30c225901f0ab.png)
高中椭圆的知识点总结椭圆是高中数学中一个重要的曲线图形,在解析几何中占据着重要的地位。
下面我们来对高中椭圆的知识点进行一个全面的总结。
一、椭圆的定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
用数学表达式表示为:$|PF_1| +|PF_2| = 2a$($2a >|F_1F_2| = 2c$)其中,$P$为椭圆上的动点,$a$为椭圆的长半轴长,$c$为椭圆的半焦距。
二、椭圆的标准方程1、焦点在$x$轴上的椭圆标准方程:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$)其中,$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$。
2、焦点在$y$轴上的椭圆标准方程:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)在标准方程中,要注意$a$、$b$、$c$之间的关系:$c^2 = a^2 b^2$。
三、椭圆的性质1、范围对于焦点在$x$轴上的椭圆:$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆:$b \leq x \leq b$,$a \leq y \leq a$。
2、对称性椭圆关于$x$轴、$y$轴和原点对称。
3、顶点焦点在$x$轴上的椭圆的顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆的顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。
4、离心率椭圆的离心率$e =\frac{c}{a}$($0 < e < 1$),它反映了椭圆的扁平程度。
$e$越接近于$0$,椭圆越接近于圆;$e$越接近于$1$,椭圆越扁。
5、准线方程焦点在$x$轴上的椭圆的准线方程为$x =\pm \frac{a^2}{c}$;焦点在$y$轴上的椭圆的准线方程为$y =\pm \frac{a^2}{c}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【专题七】椭圆标准方程及其性质知识点大全
(一)椭圆的定义及椭圆的标准方程:
●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数
)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦
点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121
F F PF PF <+,则动点P 的轨迹无图形
(二)椭圆的简单几何性:
●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。
标准方程
122
22=+b y a x )0(>>b a 12
2
22=+b x a y )0(>>b a 图形
性质
焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F
焦距 c F F 221= c F F 221= 范围
a x ≤,
b y ≤
b x ≤,a y ≤
对称性 关于x 轴、y 轴和原点对称
顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±
轴长
长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2
离心率
①(01)c e e a =
<< ,②21()b e a
=-③2
22b a c -=
(离心率越大,椭圆越扁)
1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中
a 最大且a 2=
b 2+
c 2.
2. 方程22
Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A
≠B 。
A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。
(三)焦点三角形的面积公式:122tan
2
PF F S b θ
∆=如图:
●椭圆标准方程为:122
22=+b
y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点,
12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan
2
PF F S b θ
∆=。
(四)通径 :如图:通径长 2
2b MN a
=
●椭圆标准方程:122
22=+b
y a x )0(>>b a ,
(五)点与椭圆的位置关系:
(1)点00(,)P x y 在椭圆外⇔22
00
221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;
(3)点00(,)P x y 在椭圆内⇔2200
221x y a b
+<
(六)直线与椭圆的位置关系:
●设直线l 的方程为:Ax+By+C=0,椭圆122
22=+b
y a x (a ﹥b ﹥0),联立组成方程
组,消去y(或x)利用判别式△的符号来确定:
(1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切;
M N
F x
y
(3)相离:0∆<⇔直线与椭圆相离; (七)弦长公式:
●若直线AB:y kx b =+与椭圆标准方程:122
22=+b y a x )0(>>b a 相交于两点
11(,)A x y 、22(,)B x y ,
把AB 所在直线方程y=kx+b ,代入椭圆方程122
22=+b
y a x 整理得:Ax 2+Bx+C=0。
●弦长公式: ① 212212
212
4)(11x x x x k
x x k AB -++=-+=a
k ∆
+=2
1(含x 的方程)
②212
2122124)(1111y y y y k y y k AB -++=-+=
=(含y 的方程)
(八)圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。
()()()()()()()
()()22
2222
22
12
1222
1122221200012
01122121212122
2
2
122
12
1 1 0
,,1(0)2
212AB x y a b
x y a b y y x x x y A x y B x y a b a b
x x x AB x y AB y y y x x x x y y y y a b x x b a
y y +=+=+
=--+=>>+⎧=⎪⎪⎨
+⎪=⎪⎩⎧⎪⎪⎨⎪⎪⎩+-+-+=-+设是椭圆上不重合的两点,
则,两式相减得所以,直线的斜率k ,M ,是线段的中点坐标,()AB 1式可以解决与椭圆弦的斜率及中点有关的问题,此法称为点差法(设而不求)
① 椭圆标准方程:122
22=+b y a x )0(>>b a ,以00(,)M x y 为中点的弦所在直线的斜率
2
2OM b k k a
=-;
② 椭圆标准方程: 122
22=+b
x a y )0(>>b a ,以00(,)M x y 为中点的弦所在直线的斜率
22OM
a k k b
=-
③斜率为k 的弦的中点轨迹方程:设弦PQ 的端点为P(x 1,y 1),Q(x 2,y 2),中点为M (x 0,
y 0),把P ,Q 的坐标代入椭圆方程后作差相减用中点公式和斜率公式可得022
=+b ky
a x (椭
圆内不含端点的线段)。
【考点指要】
在历年的高考数学试题中,有关圆锥曲线的试题所占的比重约占试卷的15%左右,且题型,数量,难度保持相对稳定:选择题和填空题共2道题,解答题1道,选择题和填空题主要考查圆锥曲线的标准方程,几何性质等;解答题往往是以椭圆,双曲线或抛物线为载体的有一定难度的综合题,问题涉及函数,方程,不等式,三角函数,平面向量等诸多方面的知识,并蕴含着数学结合,等价转化,分类讨论等数学思想方法,对考生的数学学科能力及思维能力的考查要求较高。
主要考查:圆锥曲线的概念和性质;直线与圆锥曲线的位置关系;求曲线的方程;与圆锥曲线有关的定值问题,最值问题,对称问题,范围问题等。
曲线的应用问题,探索问题以及圆锥曲线与其它数学内容的交汇问题也将是高考命题的热点。