2020-2021上海兰生复旦初二数学上期末模拟试卷带答案

合集下载

沪科版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪科版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪科版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)一、单选题1.如图,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线交BC 于D ,交AB 于E ,DB=12cm ,则AC=( )A .4cmB .5mC .6cmD .7cm2.如图,点,A B 在数轴上分别表示数23,1a -+,则一次函数(1)2y a x a =-+-的图像一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 3.下列关于变量x ,y 的关系,其中y 不是x 的函数的是( )A .B .C .D .4.如图,已知AD 为△ABC 的高,AD =BC ,以AB 为底边作等腰Rt △ABE ,EF ∥AD ,交AC 于F ,连ED ,EC ,有以下结论:①△ADE ≌△BCE ;②CE ⊥AB ;③BD =2EF ;④S △BDE =S △ACE ,其中正确的是( )A .①②③B .②④C .①③D .①③④ 5.已知点P (x ,y )在第二象限|x+1|=2,|y ﹣2|=3,则点P 的坐标为( ) A .(﹣3,5)B .(1,﹣1)C .(﹣3,﹣1)D .(1,5)6.下列命题中:正确的说法有①两个全等三角形合在一起是一个轴对称图形;②成轴对称的两个图形一定全等;③直线l 经过线段AB 的中点,则l 是线段AB 的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.A .1个B .2个C .3个D .4个7.若直线y kx b =+不经过第一象限,则( )A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <≤ 8.如图,已知∠AOB =∠BOC =∠COD ,下列结论中错误的是( )A .OB 、OC 分别平分AOC ∠、BOD ∠B .AOD AOB AOC ∠=∠+∠C .12BOC AOD AOB ∠=∠-∠ D .()12COD AOD BOC ∠=∠-∠ 9.如图,∠1=∠2,∠DAB =∠BCD .给出下列结论:①AB ∥DC ;②AD ∥BC ;③∠B =∠D ;④∠D =2∠DAB .其中,正确的结论有( )A .1个B .2个C .3个D .4个10.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( )A .5B .4C .8D .611.下列语句:①全等三角形的周长相等;②面积相等的三角形是全等三角形;③成轴对称的两个图形全等;④角是轴对称图形,角平分线是角的对称轴.其中正确的有( )A .1个B .2个C .3个D .4个12.将点向右平移3个单位长度得到点,则点所在的象限是( ) A .第四象限B .第三象限C .第二象限D .第一象限二、填空题13.如图,已知一次函数y x a =+过点()2,4P ,且与一次函数4y ax =-的图象交于点Q ,则不等式4x a ax +<-的解集是_________.14.如图,点E ,C 在线段BF 上,//AB DE ,BE CF =.若要使ABC ∆≌DEF ∆,可以添加的条件是:__________.15.△ABC 中,∠A=40o ,∠B=60o ,则与∠C 相邻外角的度数是______.16.如图,△ABC 中,∠B =40°,∠C =30°,点D 为边BC 上一点,将△ADC 沿直线AD 折叠后,点C 落到点E 处,若DE ∥AB ,则∠ADC 的度数为______.17.如图,∠BAE =∠AEB ,∠CAD =∠ADC ,∠DAE =25°,则∠BAC =________.18.在△ABC 中,∠B=90°,点D 在BC 的延长线上AC=DC, ∠D=15°AB=18cm,则CD 的长为____cm19.如图,在Rt △ABC 中,∠C=90°,BD 是△ABC 的角平分线,过点D 作DE ⊥AB,垂足为E,则 BE=BC (____)20.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.三、解答题21.如图:△ABD 和△ACE 都是Rt △,其中∠ABD=∠ACE=90°,C 在AB 上,连接DE ,M 是DE 中点,求证:MC=MB .22.如图,在△ABC 中,AB =AC ,点D ,E ,F 分别在边BC ,AC ,AB 上,且BD =CE ,DC =BF ,连结DE ,EF ,DF ,∠1=60°(1)求证:△BDF ≌△CED .(2)判断△ABC 的形状,并说明理由.23.如图,在ABC ∆中,,120,AB AC A AB =∠=的垂直平分线MN 分别交,BC AB 于点,M N .求证:2CM AM =.24.如图,在等边△ABC 中,D 是AB 上一点,E 是BC 延长线上一点,AD=CE ,DE 交AC 于点F .(1)求证:DF=EF ;(2)过点D 作DH ⊥AC 于点H ,求HF AC.25.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?26.已知y 与2x -成正比例,且当3x =时,4y =,则当5x =时,求y 的值. 27.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费.(1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出).(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元?(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?28.已知正比例函数的图象过点(1,﹣2).(1)求此正比例函数的解析式;(2)若一次函数图象是由(1)中的正比例函数的图象平移得到的,且经过点(1,2),求此一次函数的解析式.29.如图,90C D ∠=∠=︒,AD BC =.判断ABE ∆的形状,并证明你的结论.30.如图,点分别在等边的边上,与交于点,,,,,求的长度.参考答案1.C【解析】解:连接AD .∵AB 的垂直平分线交BC 于D ,交AB 于E ,DB =12cm ,∴AD =BD =12cm ,∠B =∠BAD =15°;又∵在△ABC 中,∠C =90°,∠B =15°,∴∠DAC =60°,∴∠ADC =30°,∴AC =12AD =6cm .故选C .点睛:本题考查了线段垂直平分线的性质(线段的垂直平分线上的点到线段的两个端点的距离相等).解答本题的关键是线段垂直平分线的性质求得AD =BD =12cm ,及∠ADC =30°. 2.A【分析】根据数轴得出0<﹣2a +3<1,求出1<a <1.5,进而可判断1﹣a 和a ﹣2的正负性,从而得到答案.【详解】解:根据数轴可知:0<﹣2a +3<1,解得:1<a <1.5,∴1﹣a <0,a ﹣2<0,∴一次函数(1)2y a x a =-+-的图像经过第二、三、四象限,不可能经过第一限. 故选:A .【点睛】本题考查了利用数轴比较大小和一元一次不等式的解法以及一次函数图象与系数的关系.熟练掌握不等式的解法及一次函数的图象性质是解决本题的关键.3.B【解析】【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A、C、D当x取值时,y有唯一的值对应,故选B.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.D【解析】【分析】①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.【详解】如图延长CE交AD于K,交AB于H.设AD交BE于O.∵∠ODB=∠OEA,∠AOE=∠DOB,∴∠OAE=∠OBD,∵AE=BE,AD=BC,∴△ADE≌△BCE,故①正确,∴∠AED=∠BEC,DE=EC,∴∠AEB=∠DEC=90°,∴∠ECD=∠ABE=45°,∵∠AHC=∠ABC+∠HCB=90°+∠EBC>90°,∴EC不垂直AB,故②错误,∵∠AEB=∠HED,∴∠AEK=∠BED,∵AE=BE,∠KAE=∠EBD,∴△KAE≌△DBE,∴BD=AK,∵△DCK是等腰直角三角形,DE平分∠CDK,∴EC=EK,∵EF∥AK,∴AF=FC,∴AK=2EF,∴BD=2EF,故③正确,∵EK=EC,∴S△AKE=S△AEC,∵△KAE≅△DBE,∴S△KAE=S△BDE,∴S△BDE=S△AEC,故④正确.故选D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.5.A【分析】根据第二象限的点横坐标是负数,纵坐标是正数判断出x、y的正负情况,然后去掉绝对值号求出x、y的值,从而得解【详解】∵点P(x,y)在第二象限,∴x<0,y>0,由|x+1|=2得,x+1=2或x+1=-2,解得x=1(舍去)或x=-3,由|y-2|=3得,y-2=3或y-2=-3,解得y=5或y=-1(舍去),所以,点P的坐标为(-3,5).故选:A.【点睛】本题考查了点的坐标,要注意根据第二象限内点的特点对x、y的值进行取舍.6.B【解析】【分析】根据题轴对称的性质,对题中条件进行一一分析,排除错误答案.【详解】①两个全等三角形合在一起不一定是一个轴对称图形,错误;②成轴对称的两个图形一定全等,正确;③直线l经过线段AB的中点且垂直线段,则l是线段AB的垂直平分线,错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选B.【点睛】本题考查了轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.7.D【分析】由题意,结合一次函数图象特点,直线必过第二、三、四象限或经过原点和第二、四象限,由此讨论求解即可.【详解】=+不经过第一象限知,可分三种情况:解:由直线y kx b当直线经过第二、三、四象限时,∵直线必过第二、四象限,∴k<0,∵直线还经过第三象限,即直线与y轴的交点在y轴的负半轴,∴b<0;当直线经过原点和第二、四象限时,k<0,b=0,综上,k<0,b≤0,故选:D.【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数的图象在直角坐标系中的位置与系数k、b的关系是解答的关键.8.C【解析】【分析】根据角平分线的定义和角的和差逐一进行判断即可.【详解】A、∵∠AOB=∠BOC=∠COD,∴OB、OC分别平分∠AOC、∠BOD,故正确;B、∵∠AOB=∠BOC=∠COD,∴∠AOC=∠BOD,∵∠AOD=∠AOB+∠BOD,∴∠AOD=∠AOB+∠AOC,故正确;C、∵∠BOC═∠AOC-∠AOB,∵∠AOB=∠BOC=∠COD,∴∠AOC=23∠AOD,∴∠BOC=23∠AOD-∠AOB,故错误;D、∵∠AOB=∠COD,∴∠COD=∠AOD-∠BOC-∠AOB,∴2∠COD=∠AOD-∠BOC,∴∠COD=12(∠AOD-∠BOC),故正确,故选C.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义和角的和差是解题的关键.9.C【分析】由已知条件根据内错角相等两直线平行即可得到AD ∥BC ,DC ∥AB ,再根据ASA 证明△DAC ≌△BCA ,即可得到∠B =∠D 并判断∠D 与2∠DAB 的关系.【详解】解:∵∠1=∠2,∠DAB =∠BCD ,∴AD ∥BC ,∠DAB ﹣∠1=∠DCB ﹣∠2,∴∠BAC =∠DCA ,∴DC ∥AB ,在△DAC 和△BCA 中12AC AC DCA BAC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DAC ≌△BCA ,∴∠D =∠B ,根据已知不能推出∠D =2∠DAB ,即①②③正确,④错误.故选:C .【点睛】此题考查平行线的判定定理,全等三角形的判定及性质,熟记定理并运用解题是关键. 10.D【解析】A.5,∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例;故A 错误;B.4,∵4是4的倍数,∴不能作为假命题的反例;故B 错误;C.8,∵8是4的倍数,∴不能作为假命题的反例;故C 错误;D.6,∵6是偶数,不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是6,故选D .11.B【解析】①∵全等三角形的所有对应边都相等,∴ 全等三角形的周长相等,故①正确;②∵全等三角形的面积相等,但面积相等的三角形不一定全等,如:面积为6的等边三角形和面积为6的直角三角形就不全等,∴②错误;③按照轴对称的定义:“如果两个图形沿某一直线对折后,这两个图形能够完全重合,我们就说这两个图形关于这条直线成轴对称”可知成轴对称的两个图形一定全等,故③正确; ④∵角是轴对称图形,但其对称轴是角平分线所在的直线,而不是角平分线本身, ∴④错误;综上所述,①、③正确,故选B.点睛:本题的前三个语句都比较容易判断,而第四个语句的判断必须要清楚一点“对称轴是直线,不是线段,也不是射线”,否则很容易误判第四个语句为正确.12.B【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得B 点坐标,进而可得所在象限.【详解】解:点A (-5,-2)向右平移3个单位长度得到点B (-5+3,-2),即(-2,-2),在第三象限,故选:B .【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.13.6x >【分析】先将P(2,4)代入y=x+a 求a ,再将a 的值代入不等式,求解即可.【详解】解:∵一次函数y x a =+过点()2,4P ,∴4=2+a,∴a=2将a=2代入不等式得:x+2<2x-4解得:x>6故答案为:x>6【点睛】本题考查的是一次函数的性质和求不等式的解,熟练掌握性质是解题的关键.14.AB=DE或∠A=∠D或∠ACB=∠F.【分析】首先根据平行线的性质可得∠B=∠DEF,再根据等式的性质可得BC=EF,要判定△ABC≌△DEF,需要添加的条件是相等的角的另一边或者一对角相等.【详解】∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BE+EC=CF+EC,即BC=EF.①若添加AB=DE.在△ABC和△DEF中,∵AB DEB DEFCB EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS);②若添加∠A=∠D.在△ABC和△DEF中,∵∠B=∠DEF,∠A=∠D,BC=EF,∴△ABC≌△DEF(AAS);③若添加∠ACB=∠F.在△ABC和△DEF中,∵∠B=∠DEF,BC=EF,∠ACB=∠F,∴△ABC≌△DEF(ASA).故答案为:AB=DE或∠A=∠D或∠ACB=∠F.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.15.100°【解析】【分析】先根据三角形的内角和求出∠C的度数,即可求出与∠C相邻外角的度数【详解】∠C=180°-∠A-∠B=80°,∴∠C相邻外角的度数为180°-80°=100°.【点睛】此题主要考查邻补角的求解,解题的关键是熟知三角形的内角和为180°.16.110°【解析】【分析】根据三角形的内角和得到∠BAC=110°,由折叠的性质得到∠E=∠C=30°,∠EAD=∠CAD,根据平行线的性质得到∠BAE=∠E=30°,根据三角形的内角和即可得到结论.【详解】∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°−∠CAD−∠C=110°,故答案为:110°.【点睛】本题考查了三角形的内角和,折叠的性质,平行线的性质,熟练掌握折叠的性质是解题的关键.17.50°【分析】利用角的和与差以及三角形的外角性质,列得方程组,即可求得∠BAC的度数.【详解】设∠BAC=α,如图:∵∠BAE=∠AEB,∠DAE=25°,∴α+∠1=∠AEB,∠AEB=∠DAE+∠D=25︒+∠D,∴α+∠1=25︒+∠D①,∵∠CAD=∠ADC,∴∠1+25︒=∠D②,①-②得:α=50︒,故答案为:50︒.【点睛】本题考查了三角形的外角性质以及角的和与差,解题的关键是灵活运用所学知识解决问题.18.36【分析】根据直角三角形的性质、三角形内角与外角的关系.根据知识点作出解答.【详解】在△ACD中∵AC=DC,∠D=15°∴∠D=∠DAC=15°∠ACB是△ACD的外角∴∠ACB=∠D+∠DAC=15°+15°=30°在Rt△ABC中∵∠ACB=30°∴AC=2AB=2×18=36即CD=36cm.∴CD的长为36cm.故答案是:36cm.【点睛】考查的是直角三角形的性质、三角形内角与外角的关系,解题关键是把直角三角形的性质和三角形内角与外角的关系结合来进行分析、解答.19.对【分析】根据已知条件得到CD=DE,∠A+∠ABC=∠A+∠ADE=90°,根据全等三角形的性质即可得到结论.【详解】∵∠C=90°,DE⊥AB,BD是△ABC的角平分线,∴CD=DE,∠A+∠ABC=∠A+∠ADE=90°,∴∠ADE=∠ABC,在Rt△CDB与Rt△EDB中,BD BD DE CD=⎧⎨=⎩,∴Rt△CDB≌Rt△EDB,∴BE=BC,故答案为:√.【点睛】此题考查全等三角形的判定与性质,角平分线的性质,解题关键在于掌握判定定理. 20.3【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】()3,2P-到y轴的距离是横坐标的绝对值,即33-=.故答案为:3.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.21.证明见解析【解析】试题分析:延长CM、DB交于G,先证△ECM≌△DMG,得CM=MG,于是在Rt△CBG 中,BM=12CG=CM.试题解析:延长CM、DB交于G,∵△ABD和△ACE都是Rt△,∴CE∥BD,即CE∥DG,∴∠CEM=∠GDM,∠MCE=∠MGD又∵M是DE中点,即DM=EM,∴△ECM≌△DMG,∴CM=MG,∵G在DB的延长线上,∴△CBG是Rt△CBG,∴在Rt△CBG中,BM=12CG=CM.22.(1)见解析;(2)△ABC是等边三角形,理由见解析【分析】(1)用SAS定理证明三角形全等;(2)由△BDF≌△CED得到∠BFD=∠CDE,然后利用三角形外角的性质求得∠B=∠1=60°,从而判定△ABC的形状.【详解】解:(1)证明:∵AB=AC,∴∠B=∠C,在△BDF和△CED中BD CEB CBF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CED(SAS);(2)△ABC是等边三角形,理由如下:由(1)得:△BDF ≌△CED ,∴∠BFD =∠CDE ,∵∠CDF =∠B +∠BFD =∠1+∠CDE ,∴∠B =∠1=60°,∵AB =AC ,∴△ABC 是等边三角形;【点睛】本题考查全等三角形的判定和性质,等边三角形的判定,掌握判定定理正确推理论证是本题的解题关键.23.见解析.【分析】根据垂直平分线的性质及含30°的直角三角形的性质即可求解.【详解】∵MN 垂直平行AB ,∴BM AM =,则B MAB ∠=∠.∵120BAC ∠=︒,AB AC =,∴30C B ∠=∠=︒,∴30MAB ∠=︒,∴1203090MAC ∠=︒-︒=︒.在Rt MAC ∆中,∵30C ∠=︒,∴2CM MA =,【点睛】此题主要考查含30°的直角三角形的性质,解题的关键是熟知含30°的直角三角形的性质定理.24.(1)证明见解析;(2)HF 1AC 2=. 【分析】(1)过点D 作DG ∥BC 交AC 于点G ,根据全等三角形的判定和性质解答即可; (2)根据等边三角形的性质和全等三角形的性质解答即可.【详解】证明:(1)过点D作DG∥BC交AC于点G,∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠A=60°,∴∠A=∠ADG=∠AGD=60°,∴△ADG是等边三角形,∴DG=AD,∵AD=CE,∴DG=CE,在△DFG与△EFC中DFG EFCFDG EDG CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DFG≌△EFC(AAS),∴DF=EF;(2)∵△ADG是等边三角形,AD=DG DH⊥AC,∴AH=HG=12AG,又∵△DFG≌△EFC,∴GF=FC=12GC∴HF=HG+GF=12AG+12GC=12AC,∴HF1AC2=【点睛】此题考查全等三角形的判定和性质.等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题.25.(1)1小时;(2)返回速度快,70千米/时.【解析】【分析】(1)根据函数图象通过是信息可知,4.5-3.5=1,由此得出货车在乙地卸货停留的时间;(2)比较货车往返所需的时间,即可得出货车往返速度的大小关系,根据路程除以时间即可求得速度.【详解】解:(1)∵4.5-3.5=1(小时),∴货车在乙地卸货停留了1小时.(2)∵7.5-4.5=3<3.5,∴货车返回速度快.∵210÷3=70(千米/时),∴返回速度是70千米/时.故答案为:(1)1小时;(2)返回速度快,70千米/时.【点睛】本题主要考查了函数图象,对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.解决问题的关键是从函数图象中获取关键的信息.26.12.【解析】【分析】利用正比例函数的定义,设y=k (x-2),然后把已知的一组对应值代入求出k 即可得到y 与x 的关系式;再将x=5代入已求解析式,从而可求出y 的值.【详解】设()2y k x =-,把3,4x y ==代入得()432=-k ,解得4k =,∴()42=-y x ,即48=-y x ,当5x =时,20812=-=y .【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.27.(1)400x-2000,350x ;(2)22000;21000;(3)选择方案一【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x (1000-550)-50x -2000=400x -2000;用方案二处理废渣时,每月利润为:x (1000-550)-100x =350x ;故答案为400x -2000,350x ;(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元; 用方案二处理废渣时,每月利润为:350×30=10500元; x =60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000; 用方案二处理废渣时,每月利润为:350×60=21000; (3)令400x -2000=350x ,解得x =40即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一. 28.(1) y =﹣2x ;(2) y =﹣2x+4.【解析】【分析】(1)根据题意设正比例函数解析式为y =ax (a ≠0),将(1,﹣2)代入计算求出a 即可.(2)根据题意设一次函数解析式为y =kx +b (k ≠0),列出一次函数的方程联解求出k 、b 即可.【详解】解:(1)设正比例函数解析式为y =ax (a ≠0),把(1,﹣2)代入得﹣2=a ,解得a =﹣2故所求解析式为y =﹣2x ;(2)设一次函数解析式为y =kx +b (k ≠0)依题意有22k k b =-⎧⎨+=⎩, 解得24k b =-⎧⎨=⎩, 故所求解析式为y =﹣2x +4.【点睛】本题主要考查的是正比例函数解析式以及一次函数解析式的求法,熟练掌握求解方法是本题的解题关键.29.ABE ∆是等腰三角形,详见解析【分析】欲证明ABE ∆是等腰三角形,只要证明Rt ADB Rt BCA(HL)∆≅∆即可;【详解】解:ABE ∆是等腰三角形,理由如下:90C D ∠=∠=︒,在Rt ADB ∆和Rt BCA ∆中,AD BC AB BA =⎧⎨=⎩, Rt ADB Rt BCA(HL)∴∆≅∆,BAE ABE ∴∠=∠,AE BE ∴=,ABE ∴∆是等腰三角形.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.30.4【解析】【分析】根据等边三角形的性质和已知条件,可以证出△BAD≌△ACE,进而得到BD=AE=10,求出BP的长为8,再证明△BPF是含有30°的直角三角形,利用30°角所对的直角边等于斜边的一半,进而求出答案.【详解】解:∵等边△ABC,∴AB=AC,∠C=∠BAD=∠ABC=60°,又∵∠ABD=∠CAE,∴△BAD≌△ACE∴BD=AE=10,∵PD=2,∴BP=10-2=8,∵∠BPF=∠ABP+∠BAP=∠CAE+∠BAP=∠SAC=60°,又∵BF⊥AE,∴∠PBF=90°-60°=30°,在Rt△BPF中,PF=BP=4,答:PF的长为4.【点睛】考查等边三角形的性质、全等三角形的判定和性质、直角三角形的性质等知识,在等边三角形中构造三角形全等是常见的题目.解题的关键是找出图形中角和边的关系,进而求出答案.。

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)一、单选题1.将一元二次方程3x 2+1=6x 化成一般形式后,一次项系数、常数项分别为( ) A .1,﹣6 B .﹣6,1 C .1,6 D .6,12.下列计算正确的是( )A .20210=B .422-=C .236⨯=D .2(2)2-=- 3.下列各式中与3是同类二次根式的是( )A .8B .12C .23D .244.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并廷长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线②∠ADC =60°③点D 在AB 的垂直平分线上④若AD =2dm ,则点D 到AB 的距离是1dm⑤S △DAC :S △DAB =1:2A .2B .3C .4D .55.如图,在Rt ABC 中,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 为垂足,连接CD ,若1BD =,则AD 的长是( )A .2B .22C .4D .36.下列计算正确的是( )7.下列二次根式中,与2a (a >0)属同类二次根式的是()A .22aB .4aC .38aD .24a 8.已知12x x 、是方程221x x =+的两个根,则1211+x x 的值为( ) A .12- B .2 C .12 D .-29.正比例函数图象y =(1-m )x 的图像经过第一,三象限,则m 的取值范围是( ) A .m =1 B .m >1 C .m <1 D .m ≥110.某批发市场对外批发某品脾的玩具,其价格与件数关系如图所示,请你根据图象,判断下列说法中错误的是( )A .当件数不超过30件时,每件价格为60元B .当件数在30到60之间时,每件价格随件数增加而减少C .当件数不少于60件时,每件价格都是45元D .当件数为50件时.每件价格为55元11.已知双曲线()0k y k x=>经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为()6,4,则AOC △的面积为( )A .3B .6C .9D .1212.等腰三角形的底和腰是方程x 2-6x +8=0的两个根,则这个三角形的周长是( ) A .8B .10C .8或10D .18二、填空题13.“两免一补”政策让某地区2011年投入经费2500万元,预计2013年投入3600万元.设这两年投入经费年平均增长百分率为x ,可列方程_____.14.计算:(- 2.5)2=______.15.若(m -2)22m x --mx +1=0是一元二次方程,则m 的值为______.16.已知x 1,x 2是方程x 2+2x ﹣7=0的两个根,则x 12+3x 1+x 2=_____.17.如图,△ABC 中,AB =AC ,AD⊥BC,若AB =5,BC =6,则△ABC 的面积为________.18.若关于x 的一元二次方程2(1)320k x x -+-=有两个不相等的实数根,则k 的取值范围是__________.19.用配方法解一元二次方程x 2-4x -5=0时,此方程可变形2)x m n +=(的形式为:___________.20.如图,BE 、CF 是△ABC 的角平分线,∠ABC=50°,∠ACB=70°,EB 、CF 相交于 D ,则∠CDE 的度数是______________21.在三角形ABC 中,15,20,25AC BC AB ===,点O 是三条角平分线的交点,则AOB ,BOC ,AOC 的面积比是___________22.如图在中,,,,是边上的两点,且满足,若,,,的长是__________.23.若方程2x 8x m 0--=有一个根为-1,则m=______________.三、解答题24.国庆节期间,某文具店平均每天可卖出300张贺卡,卖出1张贺卡的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100张贺卡.为了使每天获取的利润更多,该店决定把零售单价下降元.(1)零售单价下降元后,该店平均每天可卖出______张贺卡,每张贺卡的利润为____元;(用含的式子表示)(2)在不考虑其他因素的条件下,该店希望每天卖贺卡获得的利润是420元,并且能卖出更多的贺卡赢得市场,应定为多少?25.阅读理解在△ABC中,AB、BC、AC三边的长分别为2、2、2,求这个三角形的面积.解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=12×2×1=1.解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.方法迁移:请解答下面的问题:在△ABC中,AB、AC、BC三边的长分别为5、10、13,求这个三角形的面积.26.已知反比例函数y =4x(1)若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值;(2)如图,反比例函数y =4x(1≤x ≤4)的图象记为曲线C l ,将C l 向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.27.解方程:x (x ﹣3)=4.28.如图,在△ABC 中,∠B =30°,边AB 的垂直平分线分别交AB 和BC 于点D ,E ,且AE 平分∠BAC .(1)求∠C 的度数;(2)若CE =1,求AB 的长.29.(本题满分8分)如图,一次函数y ax b =+(0)a ≠图像与反比例函数k y x = (0)k ≠图像交于A 、B 两点,点A 的坐标为(4,3),点B 的坐标为(-2,m );(1)求一次函数与反比例函数的解析式;(2)求AOB 的面积;(3)点C 是x 轴上的一个动点,当AC+BC 最小时,求点C 的坐标.30.如图,正比例函数y=kx (x≥0)与反比例函数 m y x=(x >0)的图象交于点A (2,3)。

2020-2021上海市初二数学上期末模拟试题含答案

2020-2021上海市初二数学上期末模拟试题含答案

2020-2021上海市初二数学上期末模拟试题含答案一、选择题1.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)2.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-43.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 4.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或05.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形6.已知11m n-=1,则代数式222m mn n m mn n --+-的值为( ) A .3 B .1 C .﹣1 D .﹣37.等腰三角形一腰上的高与另一腰的夹角为60o ,则顶角的度数为( )A .30oB .30o 或150oC .60o 或150oD .60o 或120o8.若实数m 、n 满足 402n m -+-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .69.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 10.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .1111.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A .10B .6C .3D .212.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°二、填空题13.计算:24a 3b 2÷3ab =____.14.若分式221x x -+的值为零,则x 的值等于_____. 15.已知等腰三角形的两边长分别为4和6,则它的周长等于_______16.若a+b=5,ab=3,则a 2+b 2=_____.17.因式分解:328x x -=______.18.因式分解:3a 2﹣27b 2=_____.19.计算:(x -1)(x +3)=____.20.若分式的值为零,则x 的值为________.三、解答题21.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O . 求证:△AEC ≌△BED ;22.解分式方程2212323x x x +=-+. 23.先化简,再求值:21(1)11x x x -÷+-,其中 21x =+. 24.如图,在Rt V ABC 中,∠C =90º,BD 是Rt V ABC 的一条角一平分线,点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形,(1)求证:点O 在∠BAC 的平分线上;(2)若AC =5,BC =12,求OE 的长25.如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE 与DF 有什么关系?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】解:作B 点关于y 轴对称点B′点,连接AB′,交y 轴于点C′,此时△ABC 的周长最小,∵点A 、B 的坐标分别为(1,4)和(3,0),∴B′点坐标为:(-3,0),则OB′=3过点A 作AE 垂直x 轴,则AE=4,OE=1则B′E=4,即B′E=AE ,∴∠EB′A=∠B′AE ,∵C′O ∥AE ,∴∠B′C′O=∠B′AE ,∴∠B′C′O=∠EB′A∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC 的周长最小.故选D .2.D解析:D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2.当x =2时,m +4=2﹣2,m =﹣4,故选D .3.C解析:C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.【详解】根据题意可得,走高速所用时间150202.5x-小时,走国道所用时间150x小时即150150201.52.5x x--=故答案选择C.【点睛】本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.4.B解析:B【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.D解析:D【解析】【分析】【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.6.D解析:D【解析】【分析】由11m n-=1利用分式的加减运算法则得出m-n=-mn,代入原式=222m mn nm mn n--+-计算可得.【详解】∵11m n-=1,∴n mmn mn-=1,则n mmn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.7.B解析:B【解析】【分析】等腰三角形一腰上的高与另一腰的夹角为60o,则顶角的度数为【详解】解:如图1,∵∠ABD=60°,BD是高,∴∠A=90°-∠ABD=30°;如图2,∵∠ABD=60°,BD是高,∴∠BAD=90°-∠ABD=30°,∴∠BAC=180°-∠BAD=150°;∴顶角的度数为30°或150°.故选:B.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.8.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m 、n 的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m 、n 恰好是等腰△ABC 的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m 、n 的值是解题的关键.9.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF ≌△ADE ,即可判断①②;利用SSS 即可证明△BDE ≅△ADF ,故可判断③;利用等量代换证得BE CF AB +=,从而可以判断④.【详解】∵△ABC 为等腰直角三角形,且点在D 为BC 的中点,∴CD=AD=DB ,AD ⊥BC ,∠DCF =∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF +∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF n 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中,BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.10.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a 、b 、c 都是正方形,所以AC=CD ,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE ,在△ABC 和△CED 中,,∴△ACB ≌△CDE (AAS ),∴AB=CE ,BC=DE ;在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =1+9=10,∴b 的面积为10,故选C .考点:全等三角形的判定与性质;勾股定理;正方形的性质.11.C解析:C【解析】【分析】由等边三角形有三条对称轴可得答案.【详解】如图所示,n的最小值为3.故选C.【点睛】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.12.C解析:C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题13.8a2b【解析】【分析】根据单项式的除法法则计算把系数和同底数幂分别相除作为商的因式对于只在被除式里含有的字母则连同它的指数作为商的一个因式计算后选取答案【详解】24a3b2÷3ab=(24÷3)a解析:8a2b【解析】【分析】根据单项式的除法法则计算,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算后选取答案.【详解】24a3b2÷3ab,=(24÷3)a2b,=8a2b.故答案为8a2b.【点睛】本题考查的知识点是同底数幂的除法,解题的关键是熟练的掌握同底数幂的除法.14.2【解析】根据题意得:x﹣2=0解得:x=2此时2x+1=5符合题意故答案为2解析:2【解析】根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案为2.15.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14 解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.16.19【解析】试题分析:首先把等式a+b=5的等号两边分别平方即得a2+2ab+b 2=25然后根据题意即可得解解:∵a+b=5∴a2+2ab+b2=25∵ab=3∴a2+b2=19故答案为19考点:完解析:19【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a 2+b 2=19.故答案为19.考点:完全平方公式.17.【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可【详解】故答案为:【点睛】本题考查了因式分解熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键解析:()()222x x x +-【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可.【详解】()()()322824?222x x x x x x x -=-=+-.故答案为:()()222x x x +-.【点睛】本题考查了因式分解,熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键. 18.3(a+3b )(a ﹣3b )【解析】【分析】先提取公因式3然后再利用平方差公式进一步分解因式【详解】3a2-27b2=3(a2-9b2)=3(a+3b )(a-3b )【点睛】本题考查了提公因式法和公式法解析:3(a +3b )(a ﹣3b ).【解析】【分析】先提取公因式3,然后再利用平方差公式进一步分解因式.【详解】3a 2-27b 2,=3(a 2-9b 2),=3(a+3b )(a-3b ).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.x2+2x-3【解析】【分析】多项式与多项式相乘的法则:多项式与多项式相乘先用一个多项式的每一项乘另外一个多项式的每一项再把所得的积相加依此计算即可求解【详解】(x-1)(x+3)=x2+3x-x-解析:x 2+2x -3【解析】【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.【详解】(x-1)(x+3)=x 2+3x-x-3 =x 2+2x-3.故答案为x 2+2x-3.【点睛】本题考查了多项式乘多项式,运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.20.1【解析】试题分析:根据题意得|x|-1=0且x-1≠0解得x=-1考点:分式的值为零的条件解析:1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.三、解答题21.见解析【解析】【分析】根据全等三角形的判定即可判断△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△AEC ≌△BED (ASA ).22.x =7.5【解析】【分析】 先两边同乘(2x-3)(2x+3),得出整式方程,然后合并同类项,进行计算即可.【详解】解:方程两边同乘(2x ﹣3)(2x +3),得4x +6+4x 2﹣6x =4x 2﹣9,解得:x=7.5,经检验x=7.5是分式方程的解.【点睛】本题主要考察了解分式方程,解题的关键是正确去分母.23.原式【解析】分析:先把括号内通分和除法运算化为乘法运算,再约分得到原式=x-1,然后再把x的值代入x-1计算即可.详解:原式=21111x xx x +--⨯+=(1)(1)1x x xx x+-⨯+=x-1;当时,原式.点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.24.(1)证明见解析;(2)2.【解析】【分析】(1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”;(2)利用全等得到线段AM=BE,AM=AF,利用正方形OECF,得到四边都相等,从而利用OE与BE、AF及AB的关系求出OE的长【详解】解:(1)过点O作OM⊥AB于点M∵正方形OECF∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E∴OM=OE=OF∵OM⊥AB于M, OE⊥BC于E∴∠AMO=90°,∠AFO=90°∵OM OF AO AO=⎧⎨=⎩∴Rt△AMO≌Rt△AFO∴∠MA0=∠FAO∴点O在∠BAC的平分线上(2)∵Rt△ABC中,∠C=90°,AC=5,BC=12∴AB=13∴BE=BM,AM=AF又BE=BC-CE,AF=AC-CF,而CE=CF=OE∴BE=12-OE,AF=5-OE∴BM+AM=AB即BE+AF=1312-OE+5-OE=13解得OE=2【点睛】本题考查角平分线的判定,全等三角形的判定及性质,掌握HL定理的判定方法及全等三角形的性质是本题的解题关键.25.(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.考点:平行线的判定与性质.。

2020-2021上海民办兰生复旦中学八年级数学上期末模拟试题(含答案)

2020-2021上海民办兰生复旦中学八年级数学上期末模拟试题(含答案)

2020-2021上海民办兰生复旦中学八年级数学上期末模拟试题(含答案)一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .42.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅⎪+⎝⎭的值是()A .2-B .1-C .2D .33.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .14.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。

A .9B .7C .5D .35.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .66.若实数m 、n 满足 402n m -+-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( ) A .12B .10C .8或10D .67.下列计算中,结果正确的是( )A .236a a a ⋅=B .(2)(3)6a a a ⋅=C .236()a a =D .623a a a ÷=8.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC于点D,过点D作DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12∠ABC;③BC=BE;④AE=BE中,一定正确的是()A.①②③B.①②④C.①③④D.②③④9.如果2x+ax+1 是一个完全平方公式,那么a的值是()A.2 B.-2 C.±2 D.±110.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ11.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3 cm,则AB的长度是( )A.3cm B.6cm C.9cm D.12cm12.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°二、填空题13.如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB上一动点,则PC +PD 的最小值为_____.14.若一个多边形的内角和是900º,则这个多边形是 边形. 15.数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x>5),则x =________.16.分解因式:2x 2-8x+8=__________. 17.若a+b=5,ab=3,则a 2+b 2=_____. 18.分解因式:x 3y ﹣2x 2y+xy=______. 19.计算:()201820190.1258-⨯=________.20.已知16x x +=,则221x x+=______ 三、解答题21.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠B=40°,∠DAE=15°,求∠C 的度数.22.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等. (1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?23.先化简,再求值:222221422x x x x xx x x ⎛⎫-+-+÷ ⎪-+⎝⎭,且x 为满足22x -≤<的整数. 24.如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线.(1)∠1与∠2有什么关系,为什么? (2)BE 与DF 有什么关系?请说明理由.25.2020年2月22日深圳地铁10号线华南城站试运行,预计今年6月正式开通.在地铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元;已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】从一个多边形的一个顶点出发,能做(n-3)条对角线,把三角形分成(n-2)个三角形. 【详解】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条; 要使一个n 边形木架不变形,至少再钉上(n-3)根木条. 故选:C. 【点睛】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n-3.2.C解析:C 【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算.详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++,∵2220m m +-=,∴222m m ,+= ∴原式=2. 故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.3.C解析:C 【解析】 【分析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可. 【详解】如图,过点D 作DE AB ⊥于E ,AC 8=,1DC AD 3=,1CD 8213∴=⨯=+,C 90∠︒=,BD 平分ABC ∠, DE CD 2∴==,即点D 到AB 的距离为2, 故选C .【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.4.A解析:A 【解析】 【分析】根据题意画出图形,分别以OA 、OB 、AB 为边、根据直角三角形全等的判定定理作出符合条件的三角形即可. 【详解】如图:分别以OA、OB、AB为边作与Rt△ABO全等的三角形各有3个,则则所有符合条件的三角形个数为9,故选:A.【点睛】本题考查的知识点是直角三角形全等的判定和坐标与图形性质,解题关键是注意不要漏解. 5.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DF=DE=2,∴1•124242BCDS BC DF=⨯=⨯⨯=;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.6.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m 、n 的值是解题的关键.7.C解析:C 【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.8.A解析:A 【解析】 【分析】由作法可知BD 是∠ABC 的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL 可得Rt △BDC≌Rt △BDE,故BC=BE ,③正确, 【详解】解:由作法可知BD 是∠ABC 的角平分线,故②正确, ∵∠C=90°, ∴DC ⊥BC ,又DE ⊥AB ,BD 是∠ABC 的角平分线, ∴CD=ED ,故①正确, 在Rt △BCD 和 Rt △BED 中,DE DC BD BD=⎧⎨=⎩ , ∴△BCD≌△BED , ∴BC=BE ,故③正确. 故选:A. 【点睛】本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.9.C解析:C 【解析】 【分析】 【详解】解:根据完全平方公式可得:a=±2×1=±2. 考点:完全平方公式.10.D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.11.D解析:D【解析】【分析】先求出∠ACD=30°,然后根据30°所对的直角边等于斜边的一半解答.【详解】在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD+∠DCB=90°,∠B+∠DCB=90°,∴∠ACD=∠B=30°.∵AD=3cm.在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm,∴AB的长度是12cm.故选D.【点睛】本题主要考查直角三角形30°角所对的直角边等于斜边的一半的性质.12.C解析:C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC 【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.二、填空题13.12【解析】【分析】作C关于AB的对称点E连接ED易求∠ACE=60°则AC=AE且△ACE为等边三角形CP+PD=DP+PE为E与直线AC之间的连接线段其最小值为E到AC 的距离=AB=12所以最小解析:12【解析】【分析】作C关于AB的对称点E,连接ED,易求∠ACE=60°,则AC=AE,且△ACE为等边三角形,CP+PD=DP+PE为E与直线AC之间的连接线段,其最小值为E到AC的距离=AB=12,所以最小值为12.【详解】作C关于AB的对称点E,连接ED,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AE,∴△ACE为等边三角形,∴CP+PD=DP+PE为E与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=12,故答案为12【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.14.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】 【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可. 【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =. 故答案为7. 【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15.15【解析】∵x >5∴x 相当于已知调和数15代入得13-15=15-1x 解得x=15解析:15 【解析】∵x >5∴x 相当于已知调和数15,代入得,解得,x=15.16.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:2(x-2)2 【解析】 【分析】先运用提公因式法,再运用完全平方公式. 【详解】:2x 2-8x+8=()()2224422x x x -+=-.故答案为2(x-2)2. 【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.17.19【解析】试题分析:首先把等式a+b=5的等号两边分别平方即得a2+2ab+b 2=25然后根据题意即可得解解:∵a+b=5∴a2+2ab+b2=25∵ab=3∴a2+b2=19故答案为19考点:完解析:19 【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a 2+2ab+b 2=25,然后根据题意即可得解. 解:∵a+b=5, ∴a 2+2ab+b 2=25, ∵ab=3,∴a2+b2=19.故答案为19.考点:完全平方公式.18.xy(x﹣1)2【解析】【分析】原式提取公因式再利用完全平方公式分解即可【详解】解:原式=xy(x2-2x+1)=xy(x-1)2故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合解析:xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.8【解析】【分析】根据同底数幂的乘法底数不变指数相加可化成指数相同的幂的乘法根据积的乘方可得答案【详解】原式=(−0125)2018×820188=(−0125×8)20188=8故答案为:8【点睛解析:8【解析】【分析】根据同底数幂的乘法底数不变指数相加,可化成指数相同的幂的乘法,根据积的乘方,可得答案.【详解】原式= (−0.125)2018×82018⨯8= (−0.125×8)2018⨯8=8,故答案为:8.【点睛】本题考查的知识点是幂的乘方与积的乘方及同底数幂的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方及同底数幂的乘方.20.34【解析】∵∴=故答案为34解析:34【解析】∵16xx+=,∴221xx+=22126236234xx⎛⎫+-=-=-=⎪⎝⎭,故答案为34.三、解答题21.70°【解析】试题分析:由AD 是BC 边上的高可得出∠ADE =90°.在△ADE 中利用三角形内角和可求出∠AED 的度数,再利用三角形外角的性质即可求出∠BAE 的度数;根据角平分线的定义可得出∠BAC 的度数.在△ABC 中利用三角形内角和可求出∠C 的度数.试题解析:解:∵AD 是BC 边上的高,∴∠ADE =90°.∵∠ADE +∠AED +∠DAE =180°,∴∠AED =180°-∠ADE -∠DAE =180°-90°-15°=75°.∵∠B +∠BAE =∠AED ,∴∠BAE =∠AED -∠B =75°-40°=35°.∵AE 是∠BAC 平分线,∴∠BAC =2∠BAE =2×35°=70°.∵∠B +∠BAC +∠C =180°,∴∠C =180°-∠B -∠BAC =180°-40°-70°=70°.点睛:本题考查了三角形内角和定理以及三角形外角的性质,解题的关键是:在△ADE 中利用三角形内角和求出∠AED 的度数;利用角平分线的定义求出∠BAC 的度数. 22.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数, ∴y 的最大值为466∴至多还能购进466本科普书.23.232x -,52- 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【详解】 解:原式2(1)(2)(2)2(1)(2)x x x x x x x x ⎡⎤-+-=+÷⎢⎥-+⎣⎦122x x x x x--⎛⎫=+÷ ⎪⎝⎭ 232x x x -=⋅ 232x -=, 0x ≠且1x ≠,2x ≠-∴在22x -<范围内符合分式的整数有1x =-, 则原式23522--==-. 【点睛】 本题考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.24.(1)∠1+∠2=90°;理由见解析;(2)(2)BE ∥DF ;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC ,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE ,DF 分别是∠ABC ,∠ADC 的平分线,∴∠1=∠ABE ,∠2=∠ADF ,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE ∥DF ;在△FCD 中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC ,∴BE ∥DF .考点:平行线的判定与性质.25.(1)甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)应选甲工程队单独完成;理由见解析.【解析】【分析】(1)设甲工程队单独完成这项工程需要x 天,则乙工程队单独完成这项工程需要1.5x 天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【详解】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x 天,依题意,得:12121.5x x+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.【点睛】本题主要考查了分式方程的实际应用,解题的关键是合理设出未知数,找到等量关系,列出方程.。

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)一、单选题1.下列说法正确的有()①三角形的三边中线的交点到三角形三个顶点距离相等;②到角两边距离相等的点在这个角的角平分线上;③有两边对应相等的两个直角三角形一定全等;④x=0.5是不等式2x+1>0的一个解;⑤所有定理都有逆定理⑥平移和旋转都不改变图形的形状和大小A.2个B.3个C.4个D.5个2.下列函数中,对于任意实数,,当>时,满足<的是()A.y=-3x+2 B.y=2x+1 C.y=2x2+1 D.3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.△ABC的周长为19,△ACE的周长为13,则AB的长为()A.3 B.6 C.12 D.164.如图,在矩形MNPQ中,动点R从点N出发,沿着N-P-Q-M方向移动至M停止,设R移动路程为x,∆MNR面积为y,那么y与x的关系如图②,下列说法不正确的是()A.当x=2时,y=5 B.矩形MNPQ周长是18C.当x=6时,y=10 D.当y=8时,x=105.如图,AB为半圆的直径,点P为AB上一动点.动点P从点A 出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S 与时间t之间的函数图象大致为()6.若反比例函数()k y k 0x=<的图象经过点(2-,1y ),(1-,2y ),(2,3y ),则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .213y y y >>D .321y y y >> 7.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④ 8.直角三角形一条直角边长为8cm ,它所对的角为30°,则斜边上的高为( ) A .2cm B .4cm C .23cm D .43cm 9.在平面直角坐标系中,点A 的坐标为(﹣3,0),点B 的坐标为(0,4),以点A 为圆心,AB 的长为半径画弧交x 轴正半轴于点C ,则C 点坐标为( )A .(2,0)B .(3,0)C .(4,0)D .(5,0)10.如图,ABC 中,4AB =,7AC =,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线平行于BC ,交AB 、AC 于E 、F ,则AEF 的周长为( )A .9B .11C .15D .1811.下列计算正确的是( )A .77=42B .2=2C 325D 15÷5×315÷15 112.下列命题是假命题的是( )A .不在同一直线上的三点确定一个圆B .正六边形的内角和是720°C .矩形的对角线互相垂直且平分D .角平分线上的点到角两边的距离相等二、填空题13.已知一次函数y kx b =+的自变量x 满足13x -≤≤时,函数值y 满足71y -≤≤,则该一次函数解析式为_____________________.14.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角度平分线;③做一条线段的垂直平分线;④过直线外一点作已知直线的垂线.则对应选项中做法错误的是_____.15.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE//BC ,分别交AB,AC 于点D,E,若AB=4,AC=3,则△ADE 的周长是_______________。

2020-2021上海复旦实验中学八年级数学上期末试题(含答案)

2020-2021上海复旦实验中学八年级数学上期末试题(含答案)

2020-2021上海复旦实验中学八年级数学上期末试题(含答案)一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣12.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.1515112x x-=+B.1515112x x-=+C.1515112x x-=-D.1515112x x-=-3.如图所示,小兰用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点DE为圆心,大于DE的一半长为半径作弧两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K使K和B在AC的两侧;所以BH就是所求作的高.其中顺序正确的作图步骤是()A.①②③④B.④③①②C.②④③①D.④③②①4.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是()A.B. C.D.5.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.66.如图,已知△ABC中,∠A=75°,则∠BDE+∠DEC =()A .335°B .135°C .255°D .150°7.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4 C .m ≤4且m ≠3 D .m >5且m ≠6 8.如图,ABC ∆是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为( )A .50°B .55°C .60°D .65° 9.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是 A .5B .-5C .3D .-3 10.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°11.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度12.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( ) A .3 B .4 C .6 D .12二、填空题13.已知2m =a ,32n =b ,则23m +10n =________.14.已知:如图△ABC 中,∠B =50°,∠C =90°,在射线BA 上找一点D ,使△ACD 为等腰三角形,则∠ACD 的度数为_____.15.若实数,满足,则______.16.分式293x x --当x __________时,分式的值为零.17.已知9y2+my+1是完全平方式,则常数m的值是_______.18.一个正多边形的内角和为540︒,则这个正多边形的每个外角的度数为______.19.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.20.分解因式2m2﹣32=_____.三、解答题21.先化简,再求值:2321222x xxx x-+⎛⎫+-÷⎪++⎝⎭,其中2x=.22.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.23.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.24.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?25.(1)计算:2(m+1)2﹣(2m+1)(2m﹣1);(2)先化简,再求值.[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=12.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【详解】2.B解析:B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.3.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH ⊥AC 即可.【详解】用尺规作图作△ABC 边AC 上的高BH ,做法如下:④取一点K 使K 和B 在AC 的两侧;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;①分别以点D 、E 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;故选B .【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.4.C解析:C【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.A解析:A【解析】解:∵AB∥CD,BC∥AD,∴∠ABD=∠CDB,∠ADB=∠CBD.在△ABD和△CDB中,∵,∴△ABD≌△CDB(ASA),∴AD=BC,AB=CD.在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS),∴AE=CF.∵BE=DF,∴BE+EF=DF+EF,∴BF=DE.在△ADE和△CBF中,∵,∴△ADE≌△CBF(SSS),即3对全等三角形.故选A.6.C解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.7.A解析:A【解析】【详解】方程两边同时乘以x-1得,1-m-(x-1)+2=0,解得x=4-m.∵x为正数,∴4-m >0,解得m <4.∵x ≠1,∴4-m ≠1,即m ≠3.∴m 的取值范围是m <4且m ≠3.故选A .8.A解析:A【解析】【分析】利用等边三角形三边相等,结合已知BC=BD ,易证ABD n 、CBD n 都是等腰三角形,利用等边对等角及三角形内角和定理即可求得BCD ∠的度数.【详解】Q ABC n 是等边三角形,BC AC AB ∴==,又Q BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒00000018018020206080CBD BAD BDA ABC∴∠=-∠-∠-∠=---=,BC BD =,11(180)(18080)5022BCE CBD ∠=⨯︒-∠=⨯︒-︒=︒, 故选:A .【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 9.A解析:A【解析】把x=3代入原分式方程得,210332a --=-,解得,a=5,经检验a=5适合原方程. 故选A. 10.C解析:C【解析】【分析】根据等边对等角可得∠B =∠ACB =50°,再根据三角形内角和计算出∠A 的度数,然后根据三角形内角与外角的关系可得∠BPC >∠A , 再因为∠B =50°,所以∠BPC <180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.11.C解析:C【解析】【分析】看是否符合所学的全等的公理或定理即可.【详解】A、符合全等三角形的判定SAS,能作出唯一三角形;B、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA判定全等,因而所作三角形是唯一的;C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.12.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B .【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.二、填空题13.a3b2【解析】试题解析:∵32n=b∴25n=b∴23m+10n =(2m)3×(25n)2=a3b2故答案为a3b2解析:a 3b 2【解析】试题解析:∵32n =b ,∴25n =b∴23m +10n =(2m )3×(25n )2= a 3b 2故答案为a 3b 214.70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时②当CD′=AD ′时③当AC =AD″时分别根据等腰三角形的性质和三角形内角和定理求解即可【详解】解:∵∠B =50°∠C =90°∴∠B解析:70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时,②当CD′=AD′时,③当AC =AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B =50°,∠C =90°,∴∠BAC =90°-50°=40°,如图,有三种情况:①当AC =AD 时,∠ACD =()1180402??=70°; ②当CD′=AD′时,∠ACD′=∠BAC =40°; ③当AC =AD″时,∠ACD″=12∠BAC =20°, 故答案为:70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:,∴∴;故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.16.=-3【解析】【分析】根据分子为0分母不为0时分式的值为0来解答【详解】根据题意得:且x-30解得:x=-3故答案为:=-3【点睛】本题考查的是分式值为0的条件易错点是只考虑了分子为0而没有考虑同时解析:= -3【解析】【分析】根据分子为0,分母不为0时分式的值为0来解答.【详解】根据题意得:290x-=且x-3 0解得:x= -3故答案为:= -3.【点睛】本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.17.±6【解析】【分析】利用完全平方公式的结构特征确定出m的值即可【详解】∵9y2+my+1是完全平方式∴m=±2×3=±6故答案为:±6【点睛】此题考查完全平方式熟练掌握完全平方公式是解本题的关键解析:±6【解析】【分析】利用完全平方公式的结构特征确定出m的值即可.【详解】∵9y2+my+1是完全平方式,∴m=±2×3=±6,故答案为:±6.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.18.72°【解析】设此多边形为n边形根据题意得:180(n﹣2)=540解得:n=5∴这个正多边形的每一个外角等于:360°÷5=72°故答案为:72°【点睛】本题考查了多边形的内角和与外角和的知识掌握解析:72°【解析】设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:360°÷5 =72°,故答案为:72°.【点睛】本题考查了多边形的内角和与外角和的知识,掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°是解题的关键.19.2【解析】【分析】本题应先假定选择哪块再对应三角形全等判定的条件进行验证【详解】解:134块玻璃不同时具备包括一完整边在内的三个证明全等的要素所以不能带它们去只有第2块有完整的两角及夹边符合ASA满解析:2【解析】【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点睛】本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.20.2(m+4)(m﹣4)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(m2﹣16)=2(m+4)(m﹣4)故答案为2(m+4)(m﹣4)【点睛】本题考查了提公因式法与公式法的综合解析:2(m+4)(m﹣4)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(m2﹣16)=2(m+4)(m﹣4),故答案为2(m+4)(m﹣4).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.11xx+-,3.【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式=2234(1)222x xx x x⎛⎫--+÷⎪+++⎝⎭=221(1)22x xx x--÷++=2(1)(1)22(1)x x xx x+-+⋅+-=11xx+-,∵|x|=2时,∴x=±2,由分式有意义的条件可知:x=2,∴原式=3.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=700x,B型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:700x=500x-20,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.考点:分式方程的应用.23.-11x+,-14.【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x xxx x x+-+-=1﹣21xx++=121x xx+--+=-11x+,当x=3时,原式=﹣131+=-14.24.赚了520元【解析】【分析】(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.【详解】(1)设第一次购书的单价为x元,根据题意得:1200x+10=1500(120)0x+,解得:x=5,经检验,x=5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以两次共赚钱480+40=520(元),答:该老板两次售书总体上是赚钱了,共赚了520元.【点睛】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.25.(1)﹣2m2+4m+3;(2)﹣x+y,52.【解析】【分析】(1)直接利用乘法公式化简进而合并同类项即可;(2)直接利用多项式的乘法运算进而结合整式的混合运算法则计算得出答案.【详解】(1)原式=2(m2+2m+1)﹣(4m2﹣1)=2m2+4m+2﹣4m2+1=﹣2m2+4m+3;(2)原式=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=12时,原式=2+12=52.【点睛】此题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键.。

2020-2021上海民办兰生复旦中学八年级数学上期中模拟试题(含答案)精选全文完整版

2020-2021上海民办兰生复旦中学八年级数学上期中模拟试题(含答案)精选全文完整版

可编辑修改精选全文完整版2020-2021上海民办兰生复旦中学八年级数学上期中模拟试题(含答案)一、选择题1.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若∠A=60°,∠ACE=24°,则∠ABE 的度数为( )A .24°B .30°C .32°D .48°2.如图,在Rt △ABC 中,∠ACB=90º,∠A=60º,CD 是斜边AB 上的高,若AD=3cm ,则斜边AB 的长为( )A .3cmB .6cmC .9cmD .12cm 3.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点4.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。

他做对的个数是( ) A .1 B .2C .3D .4 5.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -6.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60°B.55°C.50°D.45°7.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.118.下列图形中,周长不是32 m的图形是( )A.B.C.D.9.下列说法中正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.三角形的外角大于任何一个内角10.如图所示,在平行四边形ABCD中,分别以AB、AD为边作等边△ABE和等边△ADF,分别连接CE,CF和EF,则下列结论,一定成立的个数是()①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④CE∥DFA.1B.2C.3D.411.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=0 12.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.15.如图,把一根直尺与一块三角尺如图放置,若∠1=55°,则∠2的度数为________.16.已知x 2+mx-6=(x-3)(x+n),则m n =______.17.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.18.若关于x 的方程x 1m x 5102x -=--无解,则m= . 19.化简的结果是_______.20.因式分解:x 2y ﹣y 3=_____.三、解答题21.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.22.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个等腰三角形的底边长和腰长.23.解方程:⑴2323x x =-+ ⑵ 31244x x x -+=-- 24.如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD=BC ,∠DAB=∠CBA ,求证:AC=BD .25.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据BC 的垂直平分线交BD 于点E 证明△BFE ≌△CFE (SAS ),根据全等三角形的性质和角平分线的性质得到ABE EBF ECF ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如图:∵BC 的垂直平分线交BD 于点E ,∴BF=CF,∠BFE=∠CFE=90°,在△BFE 和△CFE 中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩∴△BFE ≌△CFE (SAS ),∴EBF ECF ∠=∠(全等三角形对应角相等),又∵BD 平分∠ABC ,∴ABE EBF ECF ∠=∠=∠,又∵180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), ∴180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, ∴196323ABE ∠=⨯︒=︒, 故选C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,证明ABE EBF ECF ∠=∠=∠是解题的关键.2.D解析:D【解析】【分析】先求出∠ACD=∠B=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再求出AB 即可.【详解】解:∵在Rt △ABC 中,∠ACB=90º,∠A=60º,∴∠B=180°-60°-90°=30°(三角形内角和定理),∴AC=12AB (直角三角形30°所对的直角边等于斜边的一半), 又∵CD 是斜边AB 上的高,∴∠ADC=90º,∴∠ACD=180°-60°-90°=30°(三角形内角和定理),∴AD=12AC (直角三角形30°所对的直角边等于斜边的一半), ∴AC=6, 又∴AC=12AB , ∴12AB =.故选D .【点睛】 本题考查了三角形内角和定理和有30°角的直角三角形的性质,掌握直角三角形30°角所对的直角边等于斜边的一半是解题的关键.3.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩,∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.4.A解析:A【解析】分析:根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.详解:①-22=-4,故本小题错误;②a 3+a 3=2a 3,故本小题错误;③4m -4=44m ,故本小题错误; ④(xy 2)3=x 3y 6,故本小题正确;综上所述,做对的个数是1.故选A .点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的性质,是基础题,熟记各性质是解题的关键.5.B解析:B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ; 如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式. 6.C解析:C【解析】【分析】连接OB ,OC ,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO 垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.7.C解析:C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,观察只有C选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键. 8.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.9.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A ;根据三角形的内角和定理判断B ;根据三角形的高的定义及性质判断C ;根据三角形外角的性质判断D .【详解】A 、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B 、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C 、直角三角形有三条高,故本选项错误;D 、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B .【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.10.C解析:C【解析】【分析】利用“边角边”证明△CDF 和△EBC 全等,判定①正确;同理求出△CDF 和△EAF 全等,根据全等三角形对应边相等可得CE CF EF ==,判定△ECF 是等边三角形,判定②正确;利用“8字型”判定③正确;若CE DF ,则C 、F 、A 三点共线,故④错误;即可得出答案.【详解】在ABCD 中,ADC ABC ∠∠=,AD BC =,CD AB =,∵ABE ADF 、都是等边三角形,∴AD DF =,AB EB =,60DFAADF ABE ∠∠∠︒===, ∴DF BC =,=CD BE ,∴60CDF ADC ∠∠︒=﹣,60EBC ABC ∠∠︒=﹣,∴CDF EBC ∠∠=,在CDF 和EBC 中,DF BC CDF EBC CD EB =⎧⎪∠=∠⎨⎪=⎩,∴CDF EBC SAS ≌(),故①正确; 在ABCD 中,设AE 交CD 于O ,AE 交DF 于K ,如图:∵AB CD ∥,∴60DOA OAB ∠∠︒==,∴DOA DFO ∠∠=,∵OKD AKF ∠∠=,∴ODF OAF ∠∠=,故③正确;在CDF 和EAF △中,CD EA CDF EAF DF AF =⎧⎪∠=∠⎨⎪=⎩,∴CDF EAF SAS ≌(), ∴EF CF =,∵CDF EBC ≌△△,∴CE CF =,∴EC CF EF ==,∴ECF △是等边三角形,故②正确;则60CFE ∠︒=,若CE DF 时,则60DFE CEF ∠∠︒==,∵60DFA CFE ∠︒∠==,∴180CFE DFE DFA ∠+∠+∠︒=,则C 、F 、A 三点共线已知中没有给出C 、F 、A 三点共线,故④错误; 综上所述,正确的结论有①②③.故选:C .【点睛】本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合适的判定三角形全等的方法证明.11.C解析:C【解析】【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.12.D解析:D【解析】【分析】根据轴对称的性质即可解答.【详解】∵△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任意一点,∴△A A 1P 是等腰三角形,MN 垂直平分AA 1、CC 1,△ABC 与△A 1B 1C 1面积相等, ∴选项A 、B 、C 选项正确;∵直线AB ,A 1B 1关于直线MN 对称,因此交点一定在MN 上.∴选项D 错误.故选D .【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵a b 满足|a ﹣7|+(b ﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案.【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC=A 1C 1,∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM=5,∴CC 1长为5.故答案为5.考点:等边三角形的判定与性质.15.145°【解析】【分析】根据直角三角形两锐角互余求出∠3再根据邻补角定义求出∠4然后根据两直线平行同位角相等解答即可【详解】∵∠1=55°∴∠3=90°-∠1=90°-55°=35°∴∠4=180°解析:145°.【解析】【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【详解】∵∠1=55°,∴∠3=90°-∠1=90°-55°=35°,∴∠4=180°-35°=145°,∵直尺的两边互相平行,∴∠2=∠4=145°.故答案为145.16.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m与n的值即可得出mn的值【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m n的值.【详解】∵x2+mx-6=(x-3)(x+n)=x2+nx-3x-3n=x2+(n-3)x-3n,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n=1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.17.k<6且k≠3【解析】分析:根据解分式方程的步骤可得分式方程的解根据分式方程的解是正数可得不等式解不等式可得答案并注意分母不分零详解:方程两边都乘以(x-3)得x=2(x-3)+k解得x=6-k≠3解析:k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得 x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键. 18.﹣8【解析】【分析】试题分析:∵关于x 的方程无解∴x=5将分式方程去分母得:将x=5代入得:m=﹣8【详解】请在此输入详解!解析:﹣8【解析】【分析】试题分析:∵关于x 的方程x 1m x 5102x -=--无解,∴x=5 将分式方程x 1m x 5102x-=--去分母得:()2x 1m -=-, 将x=5代入得:m=﹣8【详解】请在此输入详解!19.2x-3【解析】【分析】先通分把异分母分式化为同分母分式然后再相加减【详解】12x2-9+2x+3=12x+3x-3+2x-3x+3x-3=12+2(x-3)x+3x-3=2x+3x+3x-3=2x 解析:【解析】【分析】先通分,把异分母分式化为同分母分式,然后再相加减.【详解】+====, 故答案为:. 【点睛】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.20.y(x +y)(x -y)【解析】【分析】(1)原式提取y 再利用平方差公式分解即可【详解】原式=y (x2-y2)=y (x+y )(x-y )故答案为y (x+y )(x-y )【点睛】此题考查了提公因式法与公式法解析:y(x +y)(x -y)【解析】【分析】(1)原式提取y ,再利用平方差公式分解即可.【详解】原式=y (x 2-y 2)=y (x+y )(x-y ),故答案为y (x+y )(x-y ).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.()4,x +【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+--{2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.22.底边长为4cm ,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC 的腰长为xcm ,则AD =DC =12xcm ,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线.设△ABC 的腰长为xcm ,则AD =DC =12xcm. 分下面两种情况解:①AB +AD =x +12x =9, ∴x =6. ∵三角形的周长为9+15=24(cm), ∴三边长分别为6cm ,6cm ,12cm. 6+6=12, 不符合三角形的三边关系,舍去; ②AB +AD =x +12x =15, ∴x =10. ∵三角形的周长为24cm , ∴三边长分别为10cm ,10cm ,4cm ,符合三边关系.综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.23.(1)x=12;(2)无解.【解析】【分析】根据解分式方程的步骤解方程即可.【详解】解:⑴ 2323x x =-+去分母得,()()2332x x +=-解得:x=12经检验x=12是原方程的解∴ 原方程的解是x=12⑵31244x x x -+=-- 解得:x=4 经检验x=4是原方程的增根∴ 原方程无解.【点睛】考查解分式方程,一般步骤是去分母,去括号,移项,合并同类项,把系数化为1,注意检验.24.见解析.【解析】【分析】要证明AC=BD ,只需要证明△ADB ≌△BAC 即可.【详解】在△ADB 和△BCA 中,AD=BC ,∠DAB=∠CBA ,AB=BA∴△ADB ≌△BAC (SAS )∴AC=BD .【点睛】全等三角形的判定与性质.25.A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.【解析】【分析】工作效率:设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋;工作量:A 型机器人搬运700袋大米,B 型机器人搬运500袋大米;工作时间就可以表示为:A 型机器人所用时间=700x ,B 型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋, 依题意得:700x =500x-20, 解这个方程得:x=70 经检验x=70是方程的解,所以x ﹣20=50.答:A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.考点:分式方程的应用.。

上海复旦初级中学八年级上册期末数学模拟试卷及答案

上海复旦初级中学八年级上册期末数学模拟试卷及答案

上海复旦初级中学八年级上册期末数学模拟试卷及答案一、选择题1.若解关于x 的方程1222x m x x -=+--时产生增根,那么m 的值为( ) A .1 B .2 C .0 D .-12.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-3.如图,已知AB =AC ,AD ⊥BC ,AE =AF ,图中共有( )对全等三角形.A .5B .6C .7D .84.我国古代许多关于数学的发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律,例如,第四行的四个数1,3,3,1恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数,请你猜想5()a b +的展开式中含32a b 项的系数是( )A .10B .12C .9D .85.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30°6.若322x y +=+,322x y -=-,则22x y -的值为( )A .42B .1C .6D .322- 7.某种病菌的直径为0.00000471cm ,把数据0.00000471用科学记数法表示为( ) A .147.110-⨯B .54.7110-⨯C .74.7110-⨯D .64.7110-⨯ 8.有下列长度的三条线段,能组成三角形的是( ) A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 9.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有( ).A .7条B .8条C .9条D .10条 10.下列各多项式相乘:①(-2ab+5x )(5x+2ab);②(ax -y)(-ax-y);③(-ab-c)(ab-c);④(m+n)(-m-n).其中可以用平方差公式的有 ( )A .4个B .3个C .2个D .1个二、填空题11.如图,在△ABC 中,DE 是AB 的垂直平分线,且分别交AB 、AC 于点D 和E ,∠A =50°,∠C =60°,则∠EBC 等于_____度.12.如图,AB CD ,一副三角尺按如图所示放置,∠AEG =20度,则 HFD ∠为 ______________度.13.如图,在等边ABC 中,D 、E 分别是AB 、AC 上的点,将ADE 沿直线DE 折叠后,点A 落在点A '处,ABC 的边长为4cm ,则图中阴影部分的周长为_____cm .14.若关于x 的分式方程3111m x x+=--无解,则m 的值是__________. 15.如图,∠AOB =30°,点P 是它内部一点,OP =2,如果点Q 、点R 分别是OA 、OB 上的两个动点,那么PQ +QR +RP 的最小值是__________.16.若103a =,102b =,则210a b -=______.17.如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB =6,AC =3,则BE =_______.18.从A 沿北偏东60︒的方向行驶到B ,再从B 沿南偏西20︒方向行驶到C ,则ABC ∠=______.19.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____.20.计算33x x ⨯=____________.三、解答题21.如图,在ABC 中,110ABC ∠=,40A ∠=.(1)作ABC 的角平分线BE (点E 在AC 上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求BEC ∠的度数.22.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______________;(请选择正确的一个)A 、2222()a ab b a b -+=-,B 、22()()a b a b a b -=+-,C 、2()a ab a a b +=+.(2)应用你从(1)选出的等式,完成下列各题:①已知22412x y -=,24x y +=,求2x y -的值. ②计算:2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 23.设2244322M x xy y x y =-+-+,则M 的最小值为______.24.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,∠ACD=∠B .(1)求证:BC=DE(2)若∠A=40°,求∠BCD 的度数.25.已知:如图,AD 垂直平分BC ,D 为垂足,DM ⊥AB ,DN ⊥AC ,M 、N 分别为垂足.求证:DM=DN .26.(1)解方程组:202321x y x y -=⎧⎨+=⎩. (2)解不等式组:202(21)15x x x -<⎧⎨-≤+⎩. (3)分解因式:3x x -.(4)分解因式:221x x -++.27.如图,已知ABC ∠、ACB ∠的平分线相交于点O ,EF 过点O 且//EF BC .(1)若50ABC ∠=︒,60ACB ∠=︒,求BOC ∠的度数;(2)若130BOC ∠=︒,1:23:2∠∠=,求ABC ∠、ACB ∠的度数.28.(1)如图,ABC 中,点D 、E 在边BC 上,AD 平分BAC ∠,AE BC ⊥,35B ∠=︒,65C =︒∠,求DAE ∠的度数;(2)如图,若把(1)中的条件“AE BC ⊥”变成“F 为DA 延长线上一点,FE BC ⊥”,其它条件不变,求DFE ∠的度数;(3)若把(1)中的条件“AE BC ⊥”变成“F 为AD 延长线上一点,FE BC ⊥”,其它条件不变,请画出相应的图形,并求出DFE ∠的度数;(4)结合上述三个问题的解决过程,你能得到什么结论?29.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.30.已知,//AB CD ,点M 在AB 上,点N 在CD 上.(1)如图1中,BME E END ∠∠∠、、的数量关系为:________;(不需要证明) 如图2中,BMF F FND ∠∠∠、、的数量关系为:__________;(不需要证明)(2)如图3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=︒,求FME ∠的度数;(3)如图4中,60BME ∠=︒,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】关于x 的方程1222x m x x -=+--有增根,那么最简公分母为0,所以增根是x=2,把增根x=2代入化为整式方程的方程即可求出未知字母的值.【详解】将原方程两边都乘(x-2)得: 12(2)x m x -=+-,整理得30x m -+=,∵方程有增根,∴最简公分母为0,即增根是x=2;把x=2代入整式方程,得m=1.故答案为:A.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:根据最简公分母确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.2.A解析:A【解析】【分析】根据图形中的字母,可以表示出“L ”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L ”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L ”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.3.C解析:C【解析】【分析】本题主要考查两个三角形全等的条件:两边夹一角(SAS),两角夹一边(ASA),两角对一边(AAS),三条边(SSS),HL.【详解】7对.理由:根据全等三角形判定可知:△ABE≌△ACF;△ABD≌△ACD;△ABO≌△ACO;△AEO≌△AFO ;△COE≌△BOF;△DCO≌△DBO;△BCE≌△CBF.故选C.【点睛】本题考查全等三角形的判定,学生们熟练掌握判定的方法即可.4.A解析:A【解析】【分析】根据“杨辉三角”的构造法则即可得.【详解】由“杨辉三角”的构造法则得:5()a b +的展开式的系数依次为1,5,10,10,5,1, 因为系数是按a 的次数由大到小的顺序排列,所以含32a b 项的系数是第3个,即为10,故选:A .【点睛】本题考查了多项式乘法中的规律性问题,理解“杨辉三角”的构造法则是解题关键.5.A解析:A【解析】【分析】利用多边形内角和公式求得∠E 的度数,在等腰三角形AED 中可求得∠EAD 的度数,进而求得∠BAD 的度数,再利用正方形的内角得出∠BAG =90°,进而得出∠DAG 的度数.【详解】解:∵正五边形ABCDE 的内角和为(5﹣2)×180°=540°,∴∠E =∠BAE =15×540°=108°, 又∵EA =ED ,∴∠EAD =12×(180°﹣108°)=36°, ∴∠BAD =∠BAE ﹣∠EAD =72°,∵正方形GABF 的内角∠BAG =90°,∴∠DAG =90°﹣72°=18°,故选:A .【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.6.B解析:B【解析】【分析】利用平方差公式进行分解因式后计算即可得到答案.【详解】∵3x y +=+3x y -=-=,故选:B .【点睛】此题考查平方差公式分解因式,22()()a b a b a b -=+-,熟记公式并运用解题是关键.7.D解析:D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000471=6⨯,4.7110-故选:D.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.A解析:A【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A、2+3>4,能围成三角形;B、1+2<4,所以不能围成三角形;C、1+2=3,不能围成三角形;D、2+3<6,所以不能围成三角形;故选:A.【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.C解析:C【解析】【分析】根据邻补角的定义可求出每个外角的度数,根据多边形外角和定理即可得出多边形的边数,根据多边形从一个顶点出发的对角线共有n-3条,即可求得对角线的条数.【详解】∵此多边形的每一个内角都等于150°,∴此多边形的每一个外角都等于180°-150°=30°,∵多边形的外角和为360°,∴此多边形的边数为:360°÷30°=12,∴从一个顶点出发的对角线共有12-3=9条.故选C.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有n-3条.10.B解析:B【解析】【分析】【详解】解:①(-2ab+5x)(5x+2ab)= (5x -2ab)(5x+2ab),符合平方差公式,故①正确;②(ax-y)(-ax-y) =- (ax-y)( ax+y),符合平方差公式,故②正确;③(-ab-c)(ab-c)=- (a+-c)(ab-c) ,符合平方差公式,故③正确;④(m+n)(-m-n)=- (m+n)(m+n),不符合平方差公式,故④错误.正确的有①②③.故选B.二、填空题11.20【解析】【分析】根据三角形内角和定理求出∠ABC,根据线段垂直平分线的性质得到EA=EB,得到∠EBA=∠A=50°,结合图形计算,得到答案.【详解】解:∵A=50°,∠C=60°,解析:20【解析】【分析】根据三角形内角和定理求出∠ABC,根据线段垂直平分线的性质得到EA=EB,得到∠EBA=∠A=50°,结合图形计算,得到答案.【详解】解:∵A=50°,∠C=60°,∴∠ABC=180°-50°-60°=70°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=50°,∴∠EBC=∠ABC-∠EBA=70°-50°=20°,故答案为:20.【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.35【解析】分析:过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.详解:过点G作AB平行线交EF于P,由题意易知,AB∥GP解析:35【解析】分析:过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.详解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=35°.故答案为35°.点睛:本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.13.12【解析】【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC的周长.【详解】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′解析:12【解析】【分析】由题意得AE=A′E ,AD=A′D ,故阴影部分的周长可以转化为三角形ABC 的周长.【详解】解:将△ADE 沿直线DE 折叠,点A 落在点A′处,所以AD=A′D ,AE=A′E .则阴影部分图形的周长等于BC+BD+CE+A′D+A′E ,=BC+BD+CE+AD+AE ,=BC+AB+AC ,=12cm .故答案为:12.【点睛】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.14.3【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母,得,∴,∵关于的分式方程无解,∴最简公分母,∴当时解析:3【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】 解:3111m x x+=-- 去分母,得31m x -=-,∴2x m =-,∵关于x 的分式方程无解,∴最简公分母10x -=,∴当1x =时,得3m =,即m 的值为3.【点睛】此题考查了分式方程的解,解题的关键是弄清分式方程无解的条件.15.2【解析】【分析】先作点P 关于OA,OB 的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB 的交点即为Q,R,△PQR 周长的最小值=P′P″,由轴对称的性质,可解析:2【解析】【分析】先作点P 关于OA,OB 的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P ″分别与OA,OB 的交点即为Q,R,△PQR 周长的最小值=P′P″,由轴对称的性质,可证∠POA=∠P′OA ,∠POB =∠P″OB ,OP ′=OP ″=OP=2, ∠P′OP″=2∠AOB=2×30°=60°,继而可得△OP′P″是等边三角形,即PP ′=OP′=2.【详解】作点P 关于OA,OB 的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P ″分别与OA,OB 的交点即为Q,R,△PQR 周长的最小值=P′P″,由轴对称的性质,∠POA=∠P′OA ,∠POB =∠P″OB ,OP ′=OP ″=OP=2,所以,∠P′OP″=2∠AOB=2×30°=60°,所以,△OP′P″是等边三角形,所以,PP ′=OP′=2.故答案为:2.【点睛】本题主要考查轴对称和等边三角形的判定,解决本题的关键是要熟练掌握轴对称性质和等边三角形的判定.16.【解析】【分析】根据同底数幂的除法和幂的乘方得出,代入求出即可.【详解】∵10a=3,10b=2,∴=102a ÷10 b==32÷2=.故答案为.【点睛】本题考查同底数幂 解析:92【解析】【分析】根据同底数幂的除法和幂的乘方得出()21010ab ÷,代入求出即可. 【详解】∵10a =3,10b =2,∴210a b -=102a ÷10 b=()21010a b ÷ =32÷2 =92. 故答案为92. 【点睛】 本题考查同底数幂的除法和幂的乘方的应用,关键是得出关于10a 和10b 的式子,用了整体代入思想.17.【解析】【分析】连接CD 、BD ,由∠BAC 的平分线与BC 的垂直平分线相较于点D ,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,从而得到AF=AE 解析:32【解析】【分析】连接CD 、BD ,由∠BAC 的平分线与BC 的垂直平分线相较于点D ,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,从而得到AF=AE ,可证的Rt △CDF ≌Rt △BDE ,则可得BE=CF ,即可得到结果.【详解】解:如图所示,连接CD 、BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中CD BD DF DE =⎧⎨=⎩∴Rt △CDF ≌Rt △BDE∴BE=CF ,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,∵AB=6,AC=3,∴BE=32. 故答案为:32【点睛】本题主要考查的是线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,掌握以上知识点是解题的关键.18.40【解析】【分析】根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.【详解】如图,A 沿北偏东60°的方向行驶到B ,则∠BAC=90°-解析:40【解析】【分析】根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.如图,A沿北偏东60°的方向行驶到B,则∠BAC=90°-60°=30°,B沿南偏西20°的方向行驶到C,则∠BCO=90°-20°=70°,又∵∠ABC=∠BCO-∠BAC,∴∠ABC=70°-30°=40°.故答案为40°【点睛】解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.19.32°【解析】【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.【详解】∵∠A=∠B+∠C,∠A+∠B+∠C=180°解析:32°【解析】【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.【详解】∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A的度数是解题的关键.20.【解析】根据单项式乘以单项式的运算法则进行计算即可得到答案.【详解】解:,故答案为:.【点睛】本题考查了单项式乘以单项式,熟练掌握运算法则是解答此题的关键. 解析:43x【解析】【分析】根据单项式乘以单项式的运算法则进行计算即可得到答案.【详解】解:33x x ⨯=43x ,故答案为:43x .【点睛】本题考查了单项式乘以单项式,熟练掌握运算法则是解答此题的关键.三、解答题21.(1)见解析;(2)95°【解析】【分析】(1)依据角平分线的作法,即可得到△ABC 的角平分线BE ;(2)依据三角形内角和定理,即可得到∠AEB 的度数,再根据邻补角的定义,即可得到∠BEC 的度数.【详解】(1)如图(满足“三弧一线”可得)线段BE 即为所求(2)由(1)得,BE 平分ABC ∠∵110ABC ∠=︒ ∴1552ABE ABC ∠=∠=︒∴180554085AEB ∠=︒-︒-︒=︒∵180AEB BEC ∠+∠=︒∴1808595BEC ∠=︒-︒=︒【点睛】本题主要考查了三角形内角和定理以及基本作图,解决问题的关键是掌握角平分线的作法.22.(1)B ;(2)①3;②51100【解析】【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【详解】(1)根据图形得:22()()a b a b a b -=+-,上述操作能验证的等式是B ,故答案为:B ;(2)①∵224(2)(2)12x y x y x y -=+-=, 24x y +=,∴23x y -=; ②2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111223⎛⎫⎛⎫⎛⎫=-+- ⎪⎪⎪⎝⎭⎝⎭⎝⎭1111111111349495050⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1324354850495122334449495050=⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯ 515120=⨯ 51100=. 【点睛】本题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.23.38- 【解析】【分析】把M 化成完全平方的形式,再示出其最小值即可.【详解】2244322M x xy y x y =-+-+22112224x y y y ⎛⎫=--++- ⎪⎝⎭ 22111132224488x y y ⎛⎫⎛⎫=--++--≥- ⎪ ⎪⎝⎭⎝⎭ 当且仅当14y =-,316x =表达式取得最小值. 故答案为:38-. 【点睛】考查了完全平方公式,解题关键是把整式化成完全平方的形式.24.(1)证明见解析;(2)140°;【解析】【分析】(1)根据平行线的性质可得∠ACB=∠DEC ,∠ACD=∠D ,再由∠ACD=∠B 可得∠D=∠B ,然后可利用AAS 证明△ABC ≌△CDE ,进而得到CB=DE ;(2)根据全等三角形的性质可得∠A=∠DCE=40°,然后根据邻补角的性质进行计算即可.【详解】(1)∵AC ∥DE ,∴∠ACB=∠DEC ,∠ACD=∠D ,∵∠ACD=∠B .∴∠D=∠B , 在△ABC 和△DEC 中,===ACB E B D AC CE ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABC ≌△CDE (AAS ),∴BC=DE ;(2)∵△ABC ≌△CDE ,∴∠A=∠DCE=40°∴∠BCD=180°–40°=140°.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.25.见解析.【解析】【分析】根据垂直平分线的性质得到AC=AB ,再利用等腰三角形的性质得到AD 是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD 垂直平分BC ,∴AC=AB ,即ABC 是等腰三角形,∴AD 平分∠BAC ,∵DM ⊥AB ,DN ⊥AC ,∴DM=DN .【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定定理是解题的关键.26.(1)63x y =⎧⎨=⎩;(2)32x -≤<;(3)()()11x x x +-;(4)()21x - 【解析】【分析】(1)加减消元法解方程组;(2)先分别解不等式,再找解集的公共部分;(3)先提公因式,再用平方差公式;(4)应用完全平方公式.【详解】(1)解:202321x y x y -=⎧⎨+=⎩①②, ②-①×2,得:721y =,解得:3y =,把3y =代入①得:6x =,∴原方程组的解为:63x y =⎧⎨=⎩; (2)解:202(21)15x x x -<⎧⎨-≤+⎩①②, 由①得:2x <,由②得:4-215x x ≤+,解得:3x ≥-,∴原不等式组的解为:32x -≤<;(3)原式=()()()211-1x x x x x -=+; (4)原式=221x x -++=()21x -.【点睛】本题考查二元一次方程组的解法,一元一次不等式组的解法,因式分解的方法,熟练掌握基础知识是关键.27.(1)∠BOC =125°;(2)∠ABC=60°,∠ACB=40°.【解析】【分析】(1)由角平分线的性质可求出∠OBC 、∠OCB 的度数,再根据三角形内角和即可得出答案;(2)由邻补角的定义可求出∠1+∠2=50°,再根据1:23:2∠∠=即可分别求出∠1和∠2的度数,最后根据两直线平行内错角相等及角平分线的性质即可得出答案.【详解】解:(1)因为∠ABC 和∠ACB 的平分线BO 与CO 相交于点O ,所以∠EBO =∠OBC 12ABC =∠,∠FCO =∠OCB 12ACB =∠ 又∠ABC =50°,∠ACB =60°,所以∠OBC =25°,∠OCB =30°所以∠BOC =180°-∠OBC -∠OCB =125°(2)因为∠BOC=130°,所以∠1+∠2=50°因为∠1: ∠2=3:2所以3150305∠=⨯︒=︒,2250205∠=⨯︒=︒ 因为 EF ∥BC所以∠OBC =∠1=30°,∠OCB =∠2=20°因为∠ABC 和∠ACB 的平分线BO 与CO 相交于点O ,所以∠ABC=60°,∠ACB=40°.【点睛】本题考查了角平分线的性质、平行线的性质、三角形内角和性质,熟练掌握性质定理是解题的关键.28.(1)15DAE ∠=︒;(2)15DFE ∠=︒(3)15DFE ∠=︒;(4)见解析【解析】【分析】(1)关键角平分线的性质和三角形内角和的性质求角度;(2)作AH BC ⊥于H ,由(1)的结论和平行的性质得到DFE DAH ∠=∠; (3)作AH BC ⊥于H ,由(1)的结论和平行的性质得到DFE DAH ∠=∠.【详解】解:(1)180180356580BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 平分BAC ∠,∴40BAD BAC ∠=∠=︒,∵AE BC ⊥,∴90AEB =︒∠, ∴9055BAE B ∠=︒-∠=︒,∴554015DAE BAE BAD ∠=∠∠=︒-︒=︒-;(2)作AH BC ⊥于H ,如图,有(1)得15DAH ∠=︒,∵FE BC ⊥.∴//AH EF ,∴15DFE DAH ∠=∠=︒;(3)作AH BC ⊥于H ,如图,有(1)得15DAH ∠=︒,∵FE BC ⊥,∴//AH EF ,∴15DFE DAH ∠=∠=︒;(4)结合上述三个问题的解决过程,得到BAC ∠的角平分线与角平分线上的点作BC 的垂线的夹角中的锐角为15°.【点睛】本题考查角平分线的性质、三角形内角和、平行线的性质,解题的关键是能够举一反三,通过第一小问的结论能够想到构造辅助线来解决后面的问题.29.(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】【分析】(1)①利用三角形的内角和定理求出∠BAC ,再利用角平分线定义求∠BAE .②先求出∠BAD ,就可知道∠DAE 的度数.(2)用∠B ,∠C 表示∠DAE ,即可求岀∠DAE 的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE 平分∠BAC ,∴∠BAE=40°;②∵AD ⊥BC ,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE 为角平分线,∴∠BAE=12(180°-∠B-∠C ), ∵∠BAD=90°-∠B , ∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C )-(90°-∠B )=12(∠B-∠C ), 又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键.30.(1)BME MEN END ∠=∠-∠,BMF MFN FND ∠=∠+∠;(2)120°;(3)没发生变化,30°【解析】【分析】(1)过E 作//EH AB ,易得////EH AB CD ,根据平行线的性质可求解;过F 作//FH AB ,易得////FH AB CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2()180BME END BMF FND ∠+∠+∠-∠=︒,可求解60BMF ∠=︒,进而可求解;(3)根据培训心得性质及角平分线的定义可推知12FEQ BME ∠=∠,进而可求解. 【详解】解:(1)过E 作//EH AB ,如图1,BM E M EH ∴∠=∠,//AB CD ,//HE CD ∴,END HEN ∴∠=∠,MEN MEH HEN BME END ∴∠=∠+∠=∠+∠,即BME MEN END ∠=∠-∠.如图2,过F 作//FH AB ,BMF MFK ∴∠=∠,//AB CD ,//FH CD ∴,FND KFN ∴∠=∠,MFN MFK KFN BMF FND ∴∠=∠-∠=∠-∠,即:BMF MFN FND ∠=∠+∠.故答案为BME MEN END ∠=∠-∠;BMF MFN FND ∠=∠+∠.(2)由(1)得BME MEN END ∠=∠-∠;BMF MFN FND ∠=∠+∠. NE 平分FND ∠,MB 平分FME ∠,FM E BM E BM F ∴∠=∠+∠,FND FNE END ∠=∠+∠,2180MEN MFN ∠+∠=︒,2()180BME END BMF FND ∴∠+∠+∠-∠=︒,22180BME END BMF FND ∴∠+∠+∠-∠=︒,即2180BMF FND BMF FND ∠+∠+∠-∠=︒,解得60BMF ∠=︒,2120FME BMF ∴∠=∠=︒;(3)FEQ ∠的大小没发生变化,30FEQ ∠=︒.由(1)知:MEN BME END ∠=∠+∠, EF 平分MEN ∠,NP 平分END ∠,11()22FEN MEN BME END ∴∠=∠=∠+∠,12ENP END ∠=∠, //EQ NP ,NEQ ENP ∴∠=∠,111()222FEQ FEN NEQ BME END END BME ∴∠=∠-∠=∠+∠-∠=∠, 60BME ∠=︒,160302FEQ ∴∠=⨯︒=︒. 【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.。

上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案

上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案

上海民办兰生复旦中学八年级上册压轴题数学模拟试卷含详细答案一、压轴题1.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l 2与l 3的位置关系是 ;(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N :∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.2.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.3.在△ABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .①当α=70°时,∠BDC 度数= 度(直接写出结果);②∠BDC 的度数为 (用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 角平分线交于点F ,求∠BFC 的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的角平分线与∠GCB 的角平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).4.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.5.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.6.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF7.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.①请直接写出∠AEB的度数为_____;②试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E 在同-直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数线段CM、AE、BE之间的数量关系,并说明理由.8.已知ABC ,P 是平面内任意一点(A 、B 、C 、P 中任意三点都不在同一直线上).连接 PB 、PC ,设∠PBA =s°,∠PCA =t°,∠BPC =x°,∠BAC =y°.(1)如图,当点 P 在ABC 内时,①若 y =70,s =10,t =20,则 x = ;②探究 s 、t 、x 、y 之间的数量关系,并证明你得到的结论.(2)当点 P 在ABC 外时,直接写出 s 、t 、x 、y 之间所有可能的数量关系,并画出相应的图形.9.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.10.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加.12.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 为ABC ∆内一点,且BD AD =.(1)求证:CD AB ⊥;(2)若15CAD ∠=︒,E 为AD 延长线上的一点,且CE CA =.①求BDC ∠的度数.②若点M 在DE 上,且DC DM =,请判断ME 、BD 的数量关系,并说明理由. ③若点N 为直线AE 上一点,且CEN ∆为等腰∆,直接写出CNE ∠的度数.13.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.14.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,试确定线段AE 与DB 的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E 为AB 的中点时,如图(2),确定线段AE 与DB 的大小关系,请你写出结论:AE _____DB (填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE 与DB 的大小关系是:AE _____DB (填“>”,“<”或“=”).理由如下:如图(3),过点E 作EF ∥BC ,交AC 于点F .(请你将剩余的解答过程完成) (3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若△ABC 的边长为1,2AE =,求CD 的长(请你画出图形,并直接写出结果).15.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。

2020-2021上海民办兰生复旦中学八年级数学上期末模拟试题(含答案)

2020-2021上海民办兰生复旦中学八年级数学上期末模拟试题(含答案)

2020-2021上海民办兰生复旦中学八年级数学上期末模拟试题 (含答案)一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上(P (不与点 A B 、O 重合)为一个顶点的直角三角形与Rt ABO 全等,且这个P 为顶点的直角三角形 Rt ABO 有一条公共边,则所有符合的三角形个数为点F,且BC=4 , DE=2 ,贝U ABCD 的面积是(7.下列计算中,结果正确的是(N 分别以点M 、N 为圆心,以大于-MN 的长度为半径画弧两弧相交于点 P 过点P 作线段2)根木条.B. 2C. 3D. 42m那么代数式4m 42——的值是 n nm 2A. B.C.D. 3ABC 中,C 90AC 8, DC1 A D 3BD 平分 ABC ,则点D4.在平面直角坐标系内,点 O 为坐标原点,C. A( 4,0)D. 1B (0,3),若在该坐标平面内有以点A. 9B. 7C. 55.如图,在Z^ABC 中,CD 平分/ ACB 交AB 于点D, DED. AC 于点 3E, DF BC 于△ABC 的周长是A. 12B. ()B . 10 C. 8 D.0,且 m 、 n 恰好是等腰 C. 8 或 10△ABC 的两条边的边长,则D. 6 236A. a a aB. (2a) (3a) 6a2 \36C. (a ) aD. a 68.如图,在"BC 中,/ C=90,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、2. 如果m 2 如图,在3.A. 4B .A. 46.若实数m 、n 满足mBD,交AC于点D,过点D作DE LAB于点E,则下列结论①③BC=BE ;④AE=BE中,f 正确的是()AA 之产一<A.①②③B.①②④C.①③④9.如果x2+ax+1是一个完全平方公式,那么a的值是()A. 2B. - 2C. ±210.尺规作图要求:I、过直线外一点作这条直线的垂线;CD=ED ;②/ ABD= — / ABC ;D.②③④D. ±1n、作线段的垂直平分线;出、过直线上一点作这条直线的垂线;W、如图是按上述要求排乱顺序的尺规作图:① ®则正确的配对是()A.①-W ,②-n ,③-I ,④-出C.①-n,②-W,③-出,④-I11.如图,在Rt^ABC中,/ACB= 90° , /则AB的长度是()八A. 3cmB. 6cm12.如图,在BBC中,以点B为圆心,以作角的平分线.③ ④B.①-W,②-出,③-n ,④-ID.①-W,②-I,③-n,④-出B= 30° , CD是斜边AB上的高,AD= 3 cm ,C. 9cmD. 12cmBA长为半径画弧交边BC于点D,连接AD.若/B=40°, ZC=36°,贝U/DAC 的度数是( ZkA. 70°B, 44° C. 34 )°D, 24°AB=12, D是斜边AC的中点,P是AB上一动点,则PC+PD的最小值为14.若一个多边形的内角和是9000,则这个多边形是一边形._£ ± ± ±15.数学家们在研究15, 12, 10这三个数的倒数时发现:1Z—15 = 1。

2020-2021上海复旦大学第二附属中学八年级数学上期末一模试卷(及答案)

2020-2021上海复旦大学第二附属中学八年级数学上期末一模试卷(及答案)

2020-2021上海复旦大学第二附属中学八年级数学上期末一模试卷(及答案)一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .42.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A .8个B .7个C .6个D .5个3.在平面直角坐标系中,点A 坐标为(2,2),点P 在x 轴上运动,当以点A ,P 、O 为顶点的三角形为等腰三角形时,点P 的个数为( )A .2个B .3个C .4个D .5个 4.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于E ,DE 平分∠ADB,则∠B=( )A .40°B .30°C .25°D .22.5〫5.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .66.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按图中所标注的数据,计算图中实线所围成的面积S 是( )A .50B .62C .65D .68 7.如图,ABC ∆是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为( )A .50°B .55°C .60°D .65°8.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 29.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ10.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠ABC =∠DCBB .∠ABD =∠DCAC .AC =DBD .AB =DC11.到三角形各顶点的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点12.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20°B.40°C.50°D.70°二、填空题13.计算:24a3b2÷3ab=____.14.已知2m=a,32n=b,则23m+10n=________.15.若2x+5y﹣3=0,则4x•32y的值为________.16.某市为治理污水,需要铺设一段全长为300 m的污水排放管道.铺设120 m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x管道,那么根据题意,可得方程.17.连接多边形的一个顶点与其它各顶点,可将多边形分成11个三角形,则这个多边形是______边形.18.若a m=5,a n=6,则a m+n=________.19.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_____.20.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.三、解答题21.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.22.先化简再求值:(a +2﹣52a -)•243a a --,其中a =12-. 23.“丰收1号”小麦的试验田是边长为a 米(a>1)的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(1a -)米的正方形,两块试验田里的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?24.如图,在直角坐标系中,A (-1,5),B (-3,0),C (-4,3).(1)在图中作出△ABC 关于y 轴对称的图形△A 1B 1C 1;(2)求△ABC 的面积.25.化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】从一个多边形的一个顶点出发,能做(n-3)条对角线,把三角形分成(n-2)个三角形.【详解】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n 边形木架不变形,至少再钉上(n-3)根木条.故选:C.【点睛】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n-3.2.A【解析】【分析】分AB为腰和为底两种情况考虑,画出图形,即可找出点C的个数.【详解】解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故选:A.【点睛】本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.3.C解析:C【解析】【分析】先分别以点O、点A为圆心画圆,圆与x轴的交点就是满足条件的点P,再作OA的垂直平分线,与x轴的交点也是满足条件的点P,由此即可求得答案.【详解】如图,当OA=OP时,可得P1、P2满足条件,当OA=AP时,可得P3满足条件,当AP=OP时,可得P4满足条件,故选C.本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键.4.B解析:B【解析】【分析】利用全等直角三角形的判定定理HL 证得Rt △ACD ≌Rt △AED ,则对应角∠ADC=∠ADE ;然后根据已知条件“DE 平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【详解】∵在△ABC 中,∠C=90°,AD 是角平分线,DE ⊥AB 于E ,∴CD=ED,在Rt △ACD 和Rt △AED 中,{AD AD CD ED== , ∴Rt △ACD ≌Rt △AED (HL ),∴∠ADC=∠ADE (全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE 平分∠ADB ,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B .【点睛】本题考查了角平分线的性质.角平分线的性质:角的平分线上的点到角的两边的距离相等.5.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE ;最后根据三角形的面积公式求解即可.【详解】:∵CD 平分∠ACB ,DE ⊥AC ,DF ⊥BC ,∴DF=DE=2, ∴1•124242BCD S BC DF =⨯=⨯⨯=; 故答案为:A .【点睛】 此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.解析:A【解析】【分析】由AE ⊥AB ,EF ⊥FH ,BG ⊥AG ,可以得到∠EAF=∠ABG ,而AE=AB ,∠EFA=∠AGB ,由此可以证明△EFA ≌△AGB ,所以AF=BG ,AG=EF ;同理证得△BGC ≌△CHD ,GC=DH ,CH=BG .故可求出FH 的长,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】∵如图,AE ⊥AB 且AE=AB,EF ⊥FH,BG ⊥FH ⇒∠EAB=∠EFA=∠BGA=90º,∠EAF+∠BAG=90º,∠ABG+∠BAG=90º⇒∠EAF=∠ABG ,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG ⇒△EFA ≌△AGB ,∴AF=BG ,AG=EF.同理证得△BGC ≌△CHD 得GC=DH ,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50. 故选A.【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA ≌△AGB 和△BGC ≌△CHD.7.A解析:A【解析】 【分析】利用等边三角形三边相等,结合已知BC=BD ,易证ABD 、CBD 都是等腰三角形,利用等边对等角及三角形内角和定理即可求得BCD ∠的度数.【详解】ABC 是等边三角形,BC AC AB ∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒ 00000018018020206080CBD BAD BDA ABC∴∠=-∠-∠-∠=---=,BC BD =,11(180)(18080)5022BCE CBD ∠=⨯︒-∠=⨯︒-︒=︒, 故选:A .【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.8.B解析:B【解析】图(4)中,∵S 正方形=a 2-2b (a-b )-b 2=a 2-2ab+b 2=(a-b )2,∴(a-b )2=a 2-2ab+b 2.故选B9.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.10.D解析:D【解析】【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD +∠DBC =∠ACD +∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .11.C解析:C【解析】【分析】根据三角形外心的作法,确定到三定点距离相等的点.【详解】解:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等. 故选:C .【点睛】本题考查了垂直平分线的性质和三角形外心的作法,关键是根据垂直平分线的性质解答.12.C解析:C【解析】【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质求出CE=AE ,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC 中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE 是边AC 的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选:C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.二、填空题13.8a2b【解析】【分析】根据单项式的除法法则计算把系数和同底数幂分别相除作为商的因式对于只在被除式里含有的字母则连同它的指数作为商的一个因式计算后选取答案【详解】24a3b2÷3ab=(24÷3)a解析:8a2b【解析】【分析】根据单项式的除法法则计算,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算后选取答案.【详解】24a3b2÷3ab,=(24÷3)a2b,=8a2b.故答案为8a2b.【点睛】本题考查的知识点是同底数幂的除法,解题的关键是熟练的掌握同底数幂的除法.14.a3b2【解析】试题解析:∵32n=b∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b2解析:a3b2【解析】试题解析:∵32n=b,∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b215.8【解析】∵2x+5y﹣3=0∴2x+5y=3∴4x•32y=(22)x·(25)y=22x·25y=22x+5y= 23=8故答案为:8【点睛】本题主要考查了幂的乘方的性质同底数幂的乘法转化为以2为解析:8【解析】∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=(22)x·(25)y=22x·25y=22x+5y=23=8,故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.16.【解析】因为原计划每天铺设xm管道所以后来的工作效率为(1+20)x根据题意得解析:() 12030012030120%120180 (30)1.2x xx x-+=++=或【解析】因为原计划每天铺设xm管道,所以后来的工作效率为(1+20%)x根据题意,得12030012030(120%)x x-+=+.17.【解析】【分析】一个n边形把一个顶点与其它各顶点连接起来形成的三角形个数为(n-2)据此可解【详解】解:∵一个n边形把一个顶点与其它各顶点连接起来可将多边形分成(n-2)个三角形∴n-2=11则n=解析:【解析】【分析】一个n边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为(n-2),据此可解.【详解】解:∵一个n边形,把一个顶点与其它各顶点连接起来,可将多边形分成(n-2)个三角形,∴n-2=11,则n=13.故答案是:13.【点睛】本题主要考查多边形的性质,一个n边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为(n-2).18.【解析】【分析】根据同底数幂乘法性质am·an=am+n即可解题【详解】解:am+n=am·an=5×6=30【点睛】本题考查了同底数幂乘法计算属于简单题熟悉法则是解题关键解析:【解析】【分析】根据同底数幂乘法性质a m·a n=a m+n,即可解题.【详解】解:a m+n= a m·a n=5×6=30.【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.19.130°或90°【解析】分析:根据题意可以求得∠B和∠C的度数然后根据分类讨论的数学思想即可求得∠ADC的度数详解:∵在△ABC中AB=AC∠BAC=100°∴∠B=∠C=40°∵点D在BC边上△A解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.3【解析】【分析】由于∠C=90°∠ABC=60°可以得到∠A=30°又由BD平分∠ABC可以推出∠CBD=∠ABD=∠A=30°BD=AD=6再由30°角所对的直角边等于斜边的一半即可求出结果【详解析:3【解析】【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再由30°角所对的直角边等于斜边的一半即可求出结果.【详解】∵∠C=90°,∠ABC=60°,∴∠A=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=12BD=6×12=3.故答案为3.【点睛】本题考查了直角三角形的性质、含30°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.三、解答题21.(1)可以形成的数字密码是:212814、211428;(2)m的值是56,n的值是17.【解析】【分析】(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),当x=27时可以得到其中一个密码为242834,得到方程解出p、q、r,然后回代入原多项式即可求得m、n【详解】(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴3517m nn-=⎧⎨-=-⎩得,5617mn=⎧⎨=⎩即m的值是56,n的值是17.【点睛】本题属于阅读理解题型,考查知识点以因式分解为主,本题第一问关键在于理解题目中给到的数字密码的运算规则,第二问的关键在于能够将原多项式设成(x+p)(x+q)(x+r),解出p、q、r22.﹣2a﹣6,-5【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,然后约分得到最简结果,再把a 的值代入计算即可.【详解】解:(a+2﹣52a-)•243aa--=(2)(2)52(2)×223-a a aa a a+--⎡⎤-⎢⎥--⎣⎦=(3)(3)2(2)×23-a a aa a+--⎡⎤⎢⎥-⎣⎦=﹣2a﹣6,当a =12-时,原式=﹣2a ﹣6=﹣5. 【点睛】 本题考查了分式的化简求值,熟练掌握分式的运算法则是解本题的关键.23.(1) “丰收2号”小麦的试验田小麦的单位面积产量高;(2)单位面积产量高是低的11a a +-倍. 【解析】【分析】 (1)先用a 表示出两块试验田的面积,比较出其大小,再根据其产量相同可知面积较小的单位面积产量高即可得出结论;(2)根据(1)中两块试验田的面积及其产量,求出其比值即可.【详解】(1)∵“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a−1)米的正方形, ∴“丰收1号”小麦的试验田的面积=a 2−1;“丰收2号”小麦的试验田的面积=(a−1)2,∵a 2−1−(a−1)2=a 2−1−a 2+2a−1=2(a−1),由题意可知,a >1,∴2(a−1)>0,即a 2−1>(a−1)2,∴“丰收2号”小麦的试验田小麦的单位面积产量高;(2)∵丰收1号”小麦的试验田的面积=a 2−1;“丰收2号”小麦的试验田的面积=(a−1)2,两块试验田的小麦都收获了500千克, ∴“丰收2号”小麦的试验田小麦的单位面积产量高,∴()()222500500500(1)(1)150011a a a a a +-÷=⋅---=11a a +-. 答:单位面积产量高是低的11a a +-倍. 【点睛】本题考查了分式的混合运算,把分式的分子分母正确分解因式是解题的关键.24.(1)图见解析;(2)112. 【解析】【分析】(1)利用关于y 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可; (2)用一个矩形的面积减去三个三角形的面积计算△ABC 的面积.【详解】:(1)如图,△A 1B 1C 1为所作;(2)△ABC 的面积11111353132522222=⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】 本题考查了作图-对称性变换,注意画轴对称图形找关键点的对称点然后顺次连接是解题的关键.25.13a -,1. 【解析】【分析】 原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值.【详解】 解:原式=a a+2a-2()()•a+2a a-3()+1a-2=1a-2a-3()()+1a-2=1+a-3a-2a-3()()=a-2a-2a-3()()=1a-3, ∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1.【点睛】此题考查了分式的化简求值,以及三角形三边关系,熟练掌握运算法则是解本题的关键.。

2020-2021上海南洋模范初级中学初二数学上期末模拟试题(含答案)

2020-2021上海南洋模范初级中学初二数学上期末模拟试题(含答案)

2020-2021上海南洋模范初级中学初二数学上期末模拟试题(含答案)一、选择题1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 2.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .43.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( )A .18018032x x -=+ B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=- 4.下列各因式分解的结果正确的是( ) A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-5.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .16.若2310a a -+=,则12a a +-的值为( ) A .51+ B .1 C .-1 D .-57.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 2 8.如果2x +ax+1 是一个完全平方公式,那么a 的值是()A .2B .-2C .±2D .±1 9.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A .10B .6C .3D .210.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1 11.下列计算正确的是( ) A .2a a a += B .33(2)6a a = C .22(1)1a a -=- D .32a a a ÷=12.到三角形各顶点的距离相等的点是三角形( ) A .三条角平分线的交点 B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点二、填空题13.计算:24a 3b 2÷3ab =____.14.如果24x kx ++是一个完全平方式,那么k 的值是__________.15.等边三角形有_____条对称轴.16.若分式221x x -+的值为零,则x 的值等于_____. 17.若分式21x x -+的值为0,则x=____. 18.因式分解:3x 3﹣12x=_____.19.如果代数式m 2+2m =1,那么22442m m m m m +++÷的值为_____. 20.因式分解34x x -= .三、解答题21.计算:22142a a a ---. 22.化简: (1)﹣12x 2y 3÷(﹣3xy 2)•(﹣13xy ); (2)(2x +y )(2x ﹣y )﹣(2x ﹣y )2. 23.已知3a b -=,求2(2)a a b b -+的值.24.如图,已知AB 比AC 长2cm ,BC 的垂直平分线交AB 于点D ,交BC 于点E ,△ACD 的周长是14cm ,求AB 和AC 的长.25.已知a=2014m +2012,b=2014m +2013,c=2014m +2014,求a 2+b 2+c 2-ab-bc-ca 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE是AOB∠的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE+=g g g,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.2.C解析:C【解析】【分析】从一个多边形的一个顶点出发,能做(n-3)条对角线,把三角形分成(n-2)个三角形.【详解】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n边形木架不变形,至少再钉上(n-3)根木条.故选:C.【点睛】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n-3.3.D解析:D【解析】【分析】先用x表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】解:设前去观看开幕式的同学共x人,根据题意,得:18018032x x-= -.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.4.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.5.C解析:C【解析】【分析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=Q ,1DC AD 3=, 1CD 8213∴=⨯=+, C 90∠︒=Q ,BD 平分ABC ∠,DE CD 2∴==,即点D 到AB 的距离为2,故选C .本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键. 6.B解析:B【解析】【分析】先将2310a a-+=变形为130aa-+=,即13aa+=,再代入求解即可.【详解】∵2310a a-+=,∴130aa-+=,即13aa+=,∴12321aa+-=-=.故选B.【点睛】本题考查分式的化简求值,解题的关键是将2310a a-+=变形为13 aa+=.7.B解析:B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B8.C解析:C【解析】【分析】【详解】解:根据完全平方公式可得:a=±2×1=±2.考点:完全平方公式.9.C解析:C【解析】【分析】由等边三角形有三条对称轴可得答案.【详解】如图所示,n的最小值为3.故选C.【点睛】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.B解析:B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.11.D解析:D【解析】【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【详解】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.12.C解析:C【解析】【分析】根据三角形外心的作法,确定到三定点距离相等的点.【详解】解:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等.故选:C.【点睛】本题考查了垂直平分线的性质和三角形外心的作法,关键是根据垂直平分线的性质解答.二、填空题13.8a2b 【解析】【分析】根据单项式的除法法则计算把系数和同底数幂分别相除作为商的因式对于只在被除式里含有的字母则连同它的指数作为商的一个因式计算后选取答案【详解】24a3b2÷3ab=(24÷3)a解析:8a 2b【解析】【分析】根据单项式的除法法则计算,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算后选取答案.【详解】24a 3b 2÷3ab ,=(24÷3)a 2b ,=8a 2b.故答案为8a 2b.【点睛】本题考查的知识点是同底数幂的除法,解题的关键是熟练的掌握同底数幂的除法. 14.±4【解析】【分析】这里首末两项是x 和2的平方那么中间项为加上或减去x 和2的乘积的2倍也就是kx 由此对应求得k 的数值即可【详解】∵是一个多项式的完全平方∴kx=±2×2⋅x ∴k=±4故答案为:±4【 解析:±4.【解析】【分析】这里首末两项是x 和2的平方,那么中间项为加上或减去x 和2的乘积的2倍也就是kx ,由此对应求得k 的数值即可.【详解】∵24x kx ++是一个多项式的完全平方,∴kx=±2×2⋅x , ∴k=±4. 故答案为:±4. 【点睛】此题考查完全平方式,解题关键在于掌握计算公式.15.3【解析】试题解析:等边三角形有3条对称轴考点:轴对称图形 解析:3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.16.2【解析】根据题意得:x﹣2=0解得:x=2此时2x+1=5符合题意故答案为2解析:2【解析】根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案为2.17.2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0易得x=2【详解】∵分式的值为0∴x−2=0且x≠0∴x=2故答案为2【点睛】本题考查了分式的值为零的条件解题的关键是熟练的掌握分式的值解析:2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0,易得x=2.【详解】∵分式21xx-+的值为0,∴x−2=0且x≠0,∴x=2.故答案为2.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件.18.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案为3x(x+ 2)(x﹣2)【点睛】本题考查解析:3x(x+2)(x﹣2)【解析】【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.19.1【解析】【分析】先化简再整体代入解答即可【详解】因为m2+2m=1所以的值为1故答案是:1【点睛】考查了代数式求值熟练掌握运算法则是解本题的关键解析:1【解析】【分析】先化简,再整体代入解答即可.【详解】224m 42+++÷m m m m 22(2)2m m m m +=⨯+ 22,m m =+因为m 2+2m =1, 所以224m 42+++÷m m m m的值为1, 故答案是:1【点睛】考查了代数式求值,熟练掌握运算法则是解本题的关键.20.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式若有公因式则把它提取出来之后再观察是否是完全平方公式或平方差公式若是就考虑用公式法继续分解因式因此先提取公因式后继续应用平方 解析:()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-. 三、解答题21.12a + 【解析】【分析】先寻找2个分式分母的最小公倍式(最小公倍是用因式分解的方法去寻找),将最小公倍式作为结果的分母;然后在进行减法计算最后进行化简【详解】解:原式=21(2)(2)2a a a a -+--= ()()22(2)(2)22a a a a a a +-+-+- = 2-(2)(2)(-2)a a a a ++ = -2(2)(-2)a a a + = 1+2a . 【点睛】本题是对分式计算的考察,正确化简是关键22.(1)﹣43x 2y 2;(2)4xy ﹣2y 2. 【解析】【分析】(1)原式利用单项式乘除单项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=4xy •(﹣13xy )=﹣43x 2y 2; (2)原式=4x 2﹣y 2﹣4x 2+4xy ﹣y 2=4xy ﹣2y 2.【点睛】考核知识点:整式乘法.熟记乘法公式是关键.23.【解析】【分析】将原式因式分解,然后代入求解即可.【详解】∵3a b -=,∴2(2)a a b b -+ 222a ab b =-+()2a b =-23==9.【点睛】本题考查了整式的化简求值,将原式进行适当的变形是解题的关键.24.AB=9cm ,AC=6cm .【解析】根据线段垂直平分线上的点到两端点的距离相等可得CD=BD ,然后求出△ACD 的周长=AB+AC,再解关于AC 、AB 的二元一次方程组即可.解:∵DE 垂直平分BC ,∴BD=DC,∵AB=AD+BD,∴AB=AD+DC.∵△ADC 的周长为15cm ,∴AD+DC+AC=15cm ,∴AB+AC=15cm .∵AB 比AC 长3cm ,∴AB -AC=3cm .∴AB=9cm ,AC=6cm .25.3【解析】【分析】由已知可得a-b=-1,b-c=-1,c-a=2,所求式子提取12,利用完全平方公式变形后,代入计算即可求出值.【详解】 解:∵a=2014m +2012,b=2014m +2013,c=2014m +2014, ∴a-b=-1,b-c=-1,c-a=2,∴a 2+b 2+c 2-ab-bc-ca =12(2a 2+2b 2+2c 2-2ab-2bc-2ca ) =12[(a-b )2+(b-c )2+(c-a )2] =12×(1+1+4) =3.【点睛】本题考查因式分解的应用.。

上海兰生复旦八年级上册期末数学模拟试卷含详细答案

上海兰生复旦八年级上册期末数学模拟试卷含详细答案

上海兰生复旦八年级上册期末数学模拟试卷含详细答案一、选择题1.下列各式从左到右的变形中,属于因式分解的是( )A .4a+4b+3=4(a+b )+3B .(a+b )(a ﹣b )=a 2﹣b 2C .10a 2b ﹣2ab =2ab (5a ﹣1)D .a 2+b 2=(a+b )2﹣2ab2.一块多边形木板截去一个三角形(截线不经过顶点),得到的新多边形内角和为2340︒,则原多边形的边数为( )A .13B .14C .15D .163.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在D′处,则重叠部分AFC 的面积是( )A .8B .10C .20D .32 4.下列变形是分解因式的是( ) A .22632x y xy xy = B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x --=+--5.钝角三角形三条高所在的直线交于( ) A .三角形内 B .三角形外C .三角形的边上D .不能确定 6.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30°7.已知关于x 的分式方程23(3)(6)36mx x x x x +=----无解,关于y 的不等式组21(42)44y y y m ≥⎧⎪⎨--⎪⎩<的整数解之和恰好为10,则符合条件的所有m 的和为( ) A .92 B .72 C .52 D .328.如图,点A,B,C 在一条直线上,△ABD,△BCE 均为等边三角形,连接AE 和CD,AE 分别交CD,BD 于点M,P ,CD 交BE 于点Q,连接PQ,BM,下面的结论:①△ABE ≌△DBC;②∠DMA=60°;③△BPQ 为等边三角形;④MB 平分∠AMC,其中结论正确的有( )A .1个B .2个C .3个D .4个9.在平面直角坐标系xOy 中,点A(0,a),B(b ,12-b),C(2a -3,0),0<a <b <12,若OB 平分∠AOC,且AB =BC ,则a +b 的值为( )A .9或12B .9或11C .10或11D .10或12 10.下列计算正确的是( )A .a 2+a 3=a 5B .a 6÷a 2=a 3C .(a 2)3=a 6D .2a×3a=6a 二、填空题11.AC 、BD 是四边形ABCD 的两条对角线,△ABD 是等边三角形,∠DCB =30°,设CD =a ,BC =b ,AC =4,则a +b 的最大值为_____.12.如图,AB CD ,一副三角尺按如图所示放置,∠AEG =20度,则 HFD ∠为 ______________度.13.如图,已知:AB ∥CD ,DB ⊥BC ,∠1=40°,求∠2的度数.完成下面的证明过程: 证明:∵AB ∥CD ( ),∴∠1=∠BCD =40°( ).∵BD ⊥BC ,∴∠CBD = .∵∠2+∠CBD+∠BCD = ( ),∴∠2= .14.若m+n=1,mn=-6,则22m n mn +代数式的值是____________________;15.若x+y =5,xy =6,则x 2+y 2+2007的值是_____.16.若103a =,102b =,则210a b -=______.17.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______. 18.如图,ABC ∠,ACB ∠的平分线相交于点F ,过点F 作//DE BC ,交AB 于D ,交AC 于E ,那么下列结论:①BDF ∆,CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长为+AB AC ;④BD CE =.其中正确的是________.19.如图,在△ABC 中,∠ABC =90°,AB =6,BC =4,P 是△ABC 的重心,连结BP ,CP ,则△BPC 的面积为_____.20.已知等腰三角形的两边长是5和12,则它的周长是______________;三、解答题21.如图,已知AOB ∠,点P 是OA 边上的一点.(1)在OA 的右侧作APC AOB ∠=∠(用尺规作图法,保留作图痕迹,不写作法); (2)在(1)的条件下,判断直线PC 与直线OB 的位置关系,并说明理由.22.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=. 其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.23.把下列各式分解因式:(1)226x y x -;(2)3222x x y xy -+;24.已知分式:222222()1211x x x x x x x x x +--÷--++,解答下列问题: (1)化简分式;(2)当x =3时,求分式的值;(3)原分式的值能等于-1吗?为什么?25.已知m =a 2b ,n =2a 2+3ab .(1)当a =﹣3,b =﹣2,分别求m ,n 的值.(2)若m =12,n =18,求123a b+的值. 26.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若148∠=︒,求2∠的度数;(2)求证://AB DE .27.如图,在△ABC 中,已知AB =AC ,∠BAC=90°,AH 是△ABC 的高,AH =4 cm ,BC =8 cm ,直线CM⊥BC,动点D 从点C 开始沿射线CB 方向以每秒3厘米的速度运动,动点E 也同时从点C 开始在直线CM 上以每秒1厘米的速度向远离C 点的方向运动,连接AD 、AE ,设运动时间为t (t >0)秒.(1)请直接写出CD 、CE 的长度(用含有t 的代数式表示):CD = cm ,CE = cm ;(2)当t 为多少时,△AB D 的面积为12 cm 2?(3)请利用备用图探究,当t 为多少时,△ABD≌△ACE?并简要说明理由.28.如图,AB=AD=BC=DC,∠C=∠D=∠ABE=∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,过点A作∠GAB=∠FAD,且点G在CB的延长线上.(1)△GAB与△FAD全等吗?为什么?(2)若DF=2,BE=3,求EF的长.⊥于D,BE平分∠ABC,且29.已知:如图,ABC中,∠ABC=45°,CD AB⊥于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点GBE AC(1)求证:BF=AC;(2)判断CE与BF的数量关系,并说明理由30.如图,在△ABC中,AD⊥BC,AE平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE的度数.②∠DAE的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE的度数吗?若能,请你写出求解过程;若不能,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【详解】解:A.4a+4b+3=4(a+b )+3,没把一个多项式转化成几个整式积的形式,故本选项不合题意;B .(a+b )(a ﹣b )=a 2﹣b 2,为乘法运算,故本选项不合题意;C.10a 2b ﹣2ab =2ab (5a ﹣1),属于因式分解,故本选项符合题意;D .a 2+b 2=(a+b )2﹣2ab ,没把一个多项式转化成几个整式积的形式,故本选项不合题意.故选:C .【点睛】本题考查因式分解的意义,解题关键是熟练掌握把多项式转化成几个整式积的形式.2.B解析:B【解析】【分析】首先求出内角和为2340°的多边形的边数,而根据题意可得原多边形比新多边形的边数少1,据此进一步求解即可.【详解】设内角和为2340°的多边形边数为x ,则:()18022340x -=,解得:15x =,则原多边形边数=15114-=,故选:B.【点睛】本题主要考查了多边形内角和公式的运用,熟练掌握相关公式是解题关键.3.B解析:B【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【详解】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选:B.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解题关键是熟练掌握图形折叠的性质.4.B解析:B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】C和D不是积的形式,应排除;A中,不是对多项式的变形,应排除.故选B.【点睛】考查了因式分解的定义,关键在于能否正确应用分解因式的定义来判断.5.B解析:B【解析】由图形可知:钝角三角形三条高所在的直线交于三角形外.【详解】解:如图可知:钝角△ABC三边的高交于三角形外部一点D,即钝角三角形三条高所在的直线交于三角形外,故选:B.【点睛】本题考查三角形的高线的交点问题,解答的关键是会画三角形的高线,并能根据三角形的形状得出三条高线所在的直线的交点与三角形的关系.6.A解析:A【解析】【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=15×540°=108°,又∵EA=ED,∴∠EAD=12×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠DAG=90°﹣72°=18°,故选:A.【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.7.C解析:C【解析】【分析】分别求解23(3)(6)36mx x x x x +=----,21(42)44y y y m ≥⎧⎪⎨--⎪⎩<,然后得到m 的值,然后进行求解即可.【详解】解:由23(3)(6)36mx x x x x +=----得:()()2633mx x x +-=-,即()13m x -=, 分式方程无解,∴当10m -=时,得1m =,当10m -≠时,得331m =-或361m =-,解得:32m =,2m =, 由()214244y y y m ≥⎧⎪⎨--⎪⎩<得:07+2y y m ≥⎧⎪⎨⎪⎩<,即702y m ≤+<, 不等式组的整数解之和恰好为10,得到整数解为0,1,2,3,4,∴74+52m ≤<,解得1322m ≤<, 则符合题意m 的值为1和32,之和为52; 故选C .【点睛】本题主要考查分式方程及一元一次不等式组,关键是根据分式无解的问题及含参数的一元一次不等式组的解法得到参数的解. 8.D解析:D【解析】试题分析:∵△ABD 、△BCE 为等边三角形,∴AB=DB ,∠ABD=∠CBE=60°,BE=BC ,∴∠ABE=∠DBC ,∠PBQ=60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE ≌△DBC ,∴∠BAE=∠BDC ,∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,∴②正确;在△ABP和△DBQ中,,∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形,∴③正确;∵∠DMA=60°,∴∠AMC=120°,∴∠AMC+∠PBQ=180°,∴P、B、Q、M四点共圆,∵BP=BQ,∴BP BQ,∴∠BMP=∠BMQ,即MB平分∠AMC;∴④正确;综上所述:正确的结论有4个;故选D.考点:等边三角形的性质与判定、全等三角形的判定与性质、四点共圆、圆周角定理.9.B解析:B【解析】【分析】由OB平分∠AOC可知,B点的横坐标和纵坐标数值相同,再根据AB=BC分情况讨论即可.【详解】∵OB平分∠AOC∴B点的横坐标和纵坐标数值相同即b=12-b解得,b=6因为AB=BC可分情况讨论,若OA=OC,如图所示则△OAB≌△OCBa=2a-3解得,a=3此时,0<a<b<12,故a+b=3+6=9②若OA>OC,如图所示过点B分别作x轴,y轴的垂线,垂足分别为点D,点E 因为B点的横纵坐标数值相同,所以BD=BE∵AB=BC,∴Rt△ADB≌Rt△CEB∴AD=CE∴a-6=6-(2a-3)解得,a=5此时,不满足OA>OC,故此种情况不存在③若OC>OA,如图所示,过点B分别作x轴,y轴的垂线,垂足分别为点D,点E 因为B点的横纵坐标数值相同,所以BD=BE∵AB=BC,∴Rt△ADB≌Rt△CEB∴AD=CE6-a=2a-3-6解得,a=5此时,0<a<b<12,故a+b=5+6=11综上,a+b=9或11【点睛】本题考查角平分线的性质和代数式的应用.10.C解析:C【解析】试题分析: A、a2与a3是相加,不是相乘,不能运用同底数幂的乘法计算,故本选项错误;B、根据同底数幂相除,底数不变,指数相减,可得a6÷a2=a4,故本选项错误;C、根据幂的乘方,底数不变,指数相乘,可得(a2)3=a6,故正确;D、单项式乘单项式:把系数和相同字母分别相乘,只在一个单项式里含有的字母,则连同它的指数,作为积的一个因式.因此可得2a×3a=6a2,故本选项错误.故选C.考点:同底数幂的除法;幂的乘方与积的乘方二、填空题11.【解析】【分析】如图,过点C作EC⊥DC于点C,使EC=BC,连接DE,BE,首先证明a2+b2=16,再证明a=b时,a+b的值最大即可.【详解】解:如图,过点C作EC⊥DC于点C,使E解析:42【解析】【分析】如图,过点C作EC⊥DC于点C,使EC=BC,连接DE,BE,首先证明a2+b2=16,再证明a =b时,a+b的值最大即可.【详解】解:如图,过点C作EC⊥DC于点C,使EC=BC,连接DE,BE,∵∠DCB =30°,∴∠3=60°,∵BC =EC ,∴△BCE 是等边三角形,∴BC =BE =EC ,∠2=60°,∴∠ABD +∠1=∠2+∠1,即∠DBE =∠ABC ,∵在△ABC 和△DBE 中,BD AB DBE ABC BE BC ⎧=⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DBE (SAS ),∴AC =ED ,在Rt △DCE 中,DC 2+CE 2=DE 2,∴DC 2+BC 2=AC 2,∴a 2+b 2=16,∵(a +b )2=a 2+b 2+2ab =16+2ab ,∵以a ,b ,4为边的三角形是直角三角形,a ,b 是直角边,∴S △=12ab , 易知当a =b 时,三角形的面积最大,此时a =b =22,ab =8,∴(a +b )2的最大值为32,∴a +b 的最大值为42.【点睛】本题主要考查了全等三角形的性质与判定,结合等边三角形的性质、勾股定理、旋转的性质计算是关键.12.35【解析】分析:过点G 作AB 平行线交EF 于P ,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.详解:过点G作AB平行线交EF于P,由题意易知,AB∥GP解析:35【解析】分析:过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.详解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=35°.故答案为35°.点睛:本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.13.已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数解析:已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数.【详解】∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.【点睛】本题考查了平行线的性质,垂线的定义,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.14.-6【解析】【分析】利用提公因式法因式分解,再把m+n=1,mn=-6代入计算即可.【详解】解:∵m+n=1,mn=-6,∴m2n+mn2=mn(m+n)=(-6)×1=-6.故答案为解析:-6【解析】【分析】利用提公因式法因式分解,再把m+n=1,mn=-6代入计算即可.【详解】解:∵m+n=1,mn=-6,∴m2n+mn2=mn(m+n)=(-6)×1=-6.故答案为:-6.【点睛】本题主要考查了因式分解的应用,熟练掌握提公因式法因式分解是解答本题的关键.15.2020【解析】【分析】利用完全平方公式得到x2+y2+2007=(x+y)2-2xy+2007,然后利用整体代入的方法计算.【详解】解:∵x+y=5,xy=6,∴x2+y2+2007=解析:2020【解析】【分析】利用完全平方公式得到x2+y2+2007=(x+y)2-2xy+2007,然后利用整体代入的方法计算.【详解】解:∵x+y=5,xy=6,∴x 2+y 2+2007=(x+y )2﹣2xy+2007=52﹣2×6+2007=2020.故答案为:2020.【点睛】本题考查完全平方公式,解题关键是记住完全平方公式((a ±b )2=a 2±2ab+b 2).16.【解析】【分析】根据同底数幂的除法和幂的乘方得出,代入求出即可.【详解】∵10a=3,10b=2,∴=102a ÷10 b==32÷2=.故答案为.【点睛】本题考查同底数幂 解析:92【解析】【分析】根据同底数幂的除法和幂的乘方得出()21010a b ÷,代入求出即可. 【详解】∵10a =3,10b =2,∴210a b -=102a ÷10 b=()21010a b ÷ =32÷2 =92. 故答案为92. 【点睛】 本题考查同底数幂的除法和幂的乘方的应用,关键是得出关于10a 和10b 的式子,用了整体代入思想.17.【解析】【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【详解】解:令,则,∴,∴,则.故答案为:【点睛】本题考查了同底数幂的乘法,利用错 解析:2019112-【解析】【分析】 根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键. 18.①②③【解析】【分析】①根据平分线的性质、平行线的性质以及等量代换可得∠DBF=∠DFB,即△BDF是等腰三角形,同理也是等腰三角形;②根据等腰三角形的性质可得:DF=BD,EF=EC,然后等解析:①②③【解析】【分析】①根据平分线的性质、平行线的性质以及等量代换可得∠DBF=∠DFB,即△BDF是等腰三∆也是等腰三角形;②根据等腰三角形的性质可得:DF=BD,EF=EC,然后等角形,同理CEF量代换即可判定;③根据等腰三角形的性质可得:DF=BD,EF=EC ,然后再判定即可;④无法判断.【详解】解:①∵BF是∠ABC的角平分线∴∠ABF=∠CBF又∵DE//BC∴∠CBF=∠DFB∴∠ABF=∠DFB∴DB=DF,即△BDF是等腰三角形,∆是等腰三角形,故①正确;同理可得CEF②∵△BDF是等腰三角形,∴DB=DF同理:EF=EC∴DE=DF+EF=BD+CE,故②正确;③∵DF=BD,EF=EC∆的周长为AD+DE+AE=AD+DF+AE+EF= AD+BD+AE+CE=AB+AC,故③正确;∴ADE④无法判断BD=CE,故④错误.故答案为①②③.【点睛】本题考查了等腰三角形的性质、角平分线的性质以及三角形内角和定理的应用,涉及面较广,因此灵活应用所学知识成为解答本题的关键.19.4【解析】【分析】△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,即可求解.【详解】解:△ABC的面积S=AB×BC==12,延长BP交AC于解析:4【解析】【分析】△ABC的面积S=12AB×BC=1642⨯⨯=12,延长BP交AC于点E,则E是AC的中点,且BP=23BE,即可求解.【详解】解:△ABC的面积S=12AB×BC=1642⨯⨯=12,延长BP交AC于点E,则E是AC的中点,且BP=23BE,(证明见备注)△BEC的面积=12S=6,BP=23 BE,则△BPC的面积=23△BEC的面积=4,故答案为:4.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=12CG 证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=12 AF,又∵AF=CF,∴HF=12 CF,∴HF:CF=12,∵EH∥BF,∴EG:CG=HF:CF=12,∴EG=12 CG.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.20.29【解析】【分析】没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当5为腰长时,∵5+5<12,故不能组成三角形,当12为腰长时,边解析:29【解析】【分析】没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当5为腰长时,∵5+5<12,故不能组成三角形,当12为腰长时,边长分别为:5,12,12,∵5+12>12,故能组成三角形,故周长为:5+12+12=29;故答案为:29.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,同时需要验证各种情况是否能构成三角形进行解答.三、解答题21.(1)见解析;(2)//PC OB,理由见解析【解析】【分析】(1)首先以相同的半径分别过O、P两点画弧EF、MN;然后以线段EF为半径,以M点为圆心画弧,与弧MN交于点N,最后根据不重合的两点确定一条直线的性质,过点P、N做射线PC ,∠APC 即为所要求作的角;(2)由(1)知所作的新角与∠AOB 大小相等,且为同位角,所以直线PC 与直线OB 的位置关系一定是平行.【详解】解:(1)如图,APC ∠就是所要求作的角(2)直线PC 与直线OB 的位置关系为://PC OB理由如下:由(1)作图可得:APC AOB ∠=∠,∴//PC OB .【点睛】本题主要考查了尺轨作图,具体为作一个角等于已知角,及用同位角相等判定两直线平行的知识.22.解:(1)①②④⑤;(2)18DAE ∠=︒【解析】【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线,∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24°∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.23.(1)2(3)x xy -;(2)2()x x y -【解析】【分析】(1)直接了利用提公因式法分解因式即可;(2)先提公因式,再利用完全平方公式进行分解因式即可.【详解】解:(1)226x y x -2(3)x xy =-;(2)3222x x y xy -+22(2)x x xy y =-+2()x x y =-;【点睛】本题考查了分解因式的方法,解题的关键是掌握提公因式法和公式法进行分解因式.24.(1)11x x +-;(2)当3x =时,分式的值为2;(3)原分式的值不能等于-1.理由见解析.【解析】【分析】(1)先做括号内的减法,注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式;(2)将x=3代入计算即可;(3)令111x x +=--,求解即可判断. 【详解】(1)222222()1211x x x x x x x x x +--÷--++ 22(1)(1)1()(1)(1)(1)x x x x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21()11x x x x x x+=-⋅--11x x x x+=⋅- 11x x +=-; (2)当3x =时,原式31231+==-; (2)如果111x x +=--, 那么()11x x +=--,解得0x =,又因为0x =时,原分式无意义.故原分式的值不能等于1-.【点睛】本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.25.(1)m 的值是﹣18,n 的值是36;(2)12 【解析】【分析】(1)直接将a 、b 值代入,利用有理数的混合运算法则即可求得m 、n 值;(2)先由m 、n 值得出12=a 2b ,18=2a 2+3ab ,进而变形用a 表示出3ab 、2a+3b ,再通分化简代数式,代入值即可求解.【详解】解:(1)∵m =a 2b ,n =2a 2+3ab ,a =﹣3,b =﹣2,∴m =(﹣3)2×(﹣2)=9×(﹣2)=﹣18,n =2×(﹣3)2+3×(﹣3)×(﹣2)=2×9+18=18+18=36,即m 的值是﹣18,n 的值是36;(2)∵m =12,n =18,m =a 2b ,n =2a 2+3ab ,∴12=a 2b ,18=2a 2+3ab , ∴36a =3ab ,18a =2a+3b , ∴123a b + =323b a ab+ =1836a a=12.【点睛】本题考查代数式的求值、有理数的混合运算、分式的化简求值,熟练掌握求代数式的值的方法,第(2)中能用a表示出3ab、2a+3b是解答的关键.26.(1)248∠=︒;(2)证明见解析;【解析】【分析】(1)先求六边形ABCDEF的每个内角的度数,再根据四边形的内角和是360°,求∠2的度数.(2)由(1)中∠ADC的度数,可得∠BAD=∠ADE,利用内错角相等,两直线平行,可证AB∥DE.【详解】(1)∵六边形ABCDEF的每个内角的度数是(6-2)×180°÷6=120°∴∠FAB=120°,∵∠1=48°∴∠FAD=∠FAB-∠1=120°-48°=72°,∴∠2=360°-120°-120°-72°=48°.(2)∵∠1=48°,∠2=48°,∴AB∥DE.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.注意平行于同一条直线的两直线平行.27.(1)3t,t;(2)t为23s或143s;(3)见解析.【解析】【分析】(1)根据路程=速度×时间,即可得出结果;(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值即可;(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.【详解】(1)根据题意得:CD=3tcm,CE=tcm;故答案为3t,t;(2)∵S△ABD12=BD•AH=12,AH=4,∴AH×BD=24,若D在B点右侧,则CD=BC﹣BD=2,t23 =;若D在B点左侧,则CD=BC+BD=14,t143 =;综上所述:当t为23s或143s时,△ABD的面积为12 cm2;(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动4秒时,△ABD≌△ACE.理由如下:①当E在射线CM 上时,D必在CB上,则需BD=CE.如图所示,∵CE=t,BD=8﹣3t∴t=8﹣3t,∴t=2,∵在△ABD和△ACE中,AB AC{B ACE45BD CE=∠=∠=︒=,∴△ABD≌△ACE(SAS).②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.如图,∵CE=t,BD=3t﹣8,∴t=3t﹣8,∴t=4,∵在△ABD和△ACE中,AB AC{ABD ACE135BD CE=∠=∠=︒=,∴△ABD≌△ACE(SAS).本题是三角形综合题目,考查了等腰直角三角形的性质、全等三角形的判定与性质及面积的计算;本题综合性强,有一定难度,熟练掌握等腰直角三角形的性质,注意分类讨论.28.(1)全等,理由详见解析;(2)5【解析】【分析】(1)由题意易得∠ABG =90°=∠D ,然后问题可求证;(2)由(1)及题意易得△GAE ≌△FAE ,GB =DF ,进而问题可求解.【详解】解:(1)全等.理由如下∵∠D =∠ABE =90°,∴∠ABG =90°=∠D ,在△ABG 和△ADF 中,GAB FAD AB AD ABG D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△GAB ≌△FAD (ASA );(2)∵∠BAD =90°,∠EAF =45°,∴∠DAF +∠BAE =45°,∵△GAB ≌△FAD ,∴∠GAB =∠FAD ,AG =AF ,∴∠GAB +∠BAE =45°,∴∠GAE =45°,∴∠GAE =∠EAF ,在△GAE 和△FAE 中,AG AF GAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴△GAE ≌△FAE (SAS )∴EF =GE∵△GAB ≌△FAD ,∴GB =DF ,∴EF =GE =GB +BE =FD +BE =2+3=5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.29.(1)证明见解析;(2)12CE BF =,理由见解析【分析】(1)由题意可以得到Rt⊿DFB≅Rt⊿DAC,从而得到BF=AC;(2)由题意可以得到Rt⊿BEA≅Rt⊿BEC,所以1122CE AE AC BF ===.【详解】证明:∵CD⊥AB,∠ABC=45°,∴BCD是等腰直角三角形,∠DBF=90°-∠BFD,∠A=90°-∠DCA,又BE AC⊥,∴∠EFC =90°-∠DCA,∴∠A=∠EFC∵∠BFD=∠EFC,∴∠A=∠DFB,∴在Rt⊿DFB和Rt⊿DAC中,∠BDF=∠CDA,∠A=∠DFB,BD=DC,∴Rt⊿DFB≅Rt⊿DAC,∴BF=AC;(2)12 CE BF=理由是:∵BE平分ABC,∴∠ABE=∠CBE,在Rt⊿BEA和Rt⊿BEC中,∠AEB=∠CEB,BE=BE,∠ABE=∠CBE,∴Rt⊿BEA≅Rt⊿BEC,∴12 CE AE AC ==由(1)得:12CE BF=.【点睛】本题考查三角形的综合问题,熟练掌握三角形全等的判定和性质是解题关键.30.(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】【分析】(1)①利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.②先求出∠BAD,就可知道∠DAE的度数.(2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE平分∠BAC,∴∠BAE=40°;②∵AD⊥BC,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE为角平分线,∴∠BAE=12(180°-∠B-∠C),∵∠BAD=90°-∠B,∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C)-(90°-∠B)=12(∠B-∠C),又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021上海兰生复旦初二数学上期末模拟试卷带答案一、选择题1.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A .①②③④B .④③①②C .②④③①D .④③②①2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣63.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( )A .18018032x x -=+ B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=- 4.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( ) A .6 B .11 C .12D .18 5.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 6.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形7.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( )A.27-B.27C.72-D.728.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ9.如图,在△ABC 中,AB=AC,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A.50°B.80°C.100°D.130°10.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( ) A.3B.4C.6D.1211.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20°B.40°C.50°D.70°12.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于12CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A .射线OE 是∠AOB 的平分线B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称D .O 、E 两点关于CD 所在直线对称二、填空题13.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 14.如图,直线a ∥b ,∠l =60°,∠2=40°,则∠3=______.15.如图,在△ABC 中,∠ACB=90°,CD 是高,∠A=30°,若AB=20,则BD 的长是 .16.若a+b=5,ab=3,则a 2+b 2=_____.17.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为 .18.若=2m x ,=3n x ,则2m n x +的值为_____.19.因式分解34x x -= .20.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.三、解答题21.为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.龙人文教用品商店欲购进A 、B 两种笔记本,用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同,每本B 种笔记本的进价比每本A 种笔记本的进价贵10元.(1)求A 、B 两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A 、B 两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A 种笔记本多少本?23.为迎接“均衡教育大检查”,县委县府对通往某偏远学校的一段全长为1200 米的道路进行了改造,铺设草油路面.铺设400 米后,为了尽快完成道路改造,后来每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米;(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增长了20%,完成整个工程后承包商共支付工人工资多少元?24.2020年2月22日深圳地铁10号线华南城站试运行,预计今年6月正式开通.在地铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元;已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.25.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH⊥AC即可.【详解】用尺规作图作△ABC边AC上的高BH,做法如下:④取一点K使K和B在AC的两侧;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;①分别以点D、E为圆心,大于DE的长为半径作弧两弧交于F;②作射线BF,交边AC于点H;故选B.【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.2.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.D解析:D【解析】【分析】先用x表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】解:设前去观看开幕式的同学共x人,根据题意,得:18018032x x-= -.故选:D.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.4.C解析:C【解析】试题分析:这个正多边形的边数:360°÷30°=12,故选C.考点:多边形内角与外角.5.C解析:C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.【详解】根据题意可得,走高速所用时间150202.5x-小时,走国道所用时间150x小时即150150201.52.5x x--=故答案选择C.【点睛】本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.6.D解析:D【解析】【分析】解:A 、正确,利用SAS 来判定全等;B 、正确,利用AAS 来判定全等;C 、正确,利用HL 来判定全等;D 、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应. 故选D .【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS 、SAS 、AAS 、HL 等.7.D解析:D【解析】【分析】先把分母因式分解,再约分得到原式=2x y x y +-,然后把x=3y 代入计算即可. 【详解】原式=()22x y x y +-•(x-y )=2x y x y+-, ∵x-3y=0,∴x=3y ,∴原式=63y y y y +-=72. 故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.8.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.解析:C【解析】【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.10.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.11.C解析:C【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选:C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.12.D解析:D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.二、填空题13.且【解析】【分析】直接解分式方程进而利用分式方程的解是正数得出的取值范围进而结合分式方程有意义的条件分析得出答案【详解】去分母得:解得:解得:当时不合题意故且故答案为:且【点睛】此题主要考查了分式方 解析:5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.14.80°【解析】【分析】根据平行线的性质求出∠4再根据三角形内角和定理计算即可【详解】∵a∥b∴∠4=∠l=60°∴∠3=180°-∠4-∠2=80°故答案为80°【点睛】本题考查了平行线的性质三角形解析:80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a ∥b ,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.15.5【解析】【分析】【详解】试题分析:根据同角的余角相等知∠BCD=∠A=30°所以分别在△ABC 和△BDC 中利用30°锐角所对的直角边等于斜边的一半即可求出BD解:∵在直角△ABC中∠ACB=90°解析:5【解析】【分析】【详解】试题分析:根据同角的余角相等知,∠BCD=∠A=30°,所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD.解:∵在直角△ABC中,∠ACB=90°,∠A=30°,且CD⊥AB∴∠BCD=∠A=30°,∵AB=20,∴BC=12AB=20×12=10,∴BD=12BC=10×12=5.故答案为5.考点:含30度角的直角三角形.16.19【解析】试题分析:首先把等式a+b=5的等号两边分别平方即得a2+2ab+b2=25然后根据题意即可得解解:∵a+b=5∴a2+2ab+b2=25∵ab=3∴a2+b2=19故答案为19考点:完解析:19【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=19.故答案为19.考点:完全平方公式.17.5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10﹣n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定解解析:5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣6,故答案为1.5×10﹣6.考点:科学记数法—表示较小的数.18.18【解析】【分析】先把xm+2n 变形为xm (xn )2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm (xn )2=2×32=2×9=18;故答案为18【点睛】解析:18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18; 故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.19.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式若有公因式则把它提取出来之后再观察是否是完全平方公式或平方差公式若是就考虑用公式法继续分解因式因此先提取公因式后继续应用平方 解析:()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-. 20.2【解析】【分析】本题应先假定选择哪块再对应三角形全等判定的条件进行验证【详解】解:134块玻璃不同时具备包括一完整边在内的三个证明全等的要素所以不能带它们去只有第2块有完整的两角及夹边符合ASA 满 解析:2【解析】【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的. 故答案为:2.本题考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .三、解答题21.原计划植树20天.【解析】【分析】设原计划每天种x 棵树,则实际每天种(1+20%)x 棵,根据题意可得等量关系:原计划完成任务的天数﹣实际完成任务的天数=3,列方程即可.【详解】解:设原计划每天种x 棵树,则实际每天种(1+20%)x 棵, 依题意得:4004000803(120%)x x+-=+ 解得x=200,经检验得出:x=200是原方程的解. 所以4000200=20. 答:原计划植树20天.【点睛】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.22.(1)A 、B 两种笔记本每本的进价分别为 20 元、30 元;(2)至少购进 A 种笔记本 35 本【解析】【分析】(1)设A 种笔记本每本的进价为x 元,则每本B 种笔记本的进价为(x +10)元,根据用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同即可列出方程,解方程即可求出结果;(2)设购进A 种笔记本a 本,根据购进的A 种笔记本的价钱+购进的B 种笔记本的价钱≤2650即可列出关于a 的不等式,解不等式即可求出结果.【详解】(1)解:设A 种笔记本每本的进价为x 元,根据题意,得:16024010x x =+,解得:=20x . 经检验:=20x 是原分式方程的解,+10=20+10=30x .答:A 、B 两种笔记本每本的进价分别为20 元、30元.(2)解:设购进A 种笔记本a 本,根据题意,得:()20+301002650a a -≤,解得:∴至少购进A 种笔记本35本.【点睛】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.23.(1)80;(2)21900.【解析】【分析】(1)设原计划每天铺设路面x 米,则提高工作效率后每天完成(1+25%)x 米,根据等量关系“利用原计划的速度铺设400 米所用的时间+提高工作效率后铺设剩余的道路所用的时间=13”,列出方程,解方程即可;(2)先求得利用原计划的速度铺设400 米所用的时间和提高工作效率后铺设剩余的道路所用的时间,根据题意再计算总工资即可.【详解】(1)设原计划每天铺设路面x 米,根据题意可得:()400120040013125%x x-+=+ 解得:80x =检验:80x =是原方程的解且符合题意,∴ 80x =答:原计划每天铺设路面80米.原来工作400÷80=5(天). (2)后来工作()()120040080120%8⎡⎤-÷⨯+=⎣⎦(天).共支付工人工资:1500×5+1500×(1+20%)×8=21900(元) 答:共支付工人工资21900元.【点睛】本题考查了分式方程的应用,根据题意正确找出等量关系,由等量关系列出方程是解决本题的关键.24.(1)甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)应选甲工程队单独完成;理由见解析.【解析】【分析】(1)设甲工程队单独完成这项工程需要x 天,则乙工程队单独完成这项工程需要1.5x 天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y 元,则乙工程队每天的费用是(y ﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y 的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【详解】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x 天,依题意,得:12121.5x x+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.【点睛】本题主要考查了分式方程的实际应用,解题的关键是合理设出未知数,找到等量关系,列出方程.25.A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=700x,B型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:700x=500x-20,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.考点:分式方程的应用.。

相关文档
最新文档