分析化学:第9章 沉淀平衡和沉淀滴定法
沉淀滴定法
第五节沉淀滴定法教学目的:1、掌握沉淀滴定法对反应的要求。
2、掌握银量法确定理论终点的方法原理。
3、明确分级沉淀及沉淀转化的概念。
4、理解测定氯化物的条件。
教学重点与难点:莫尔法(铬酸钾作指示剂)作为教学重点教学内容:一、方法简介沉淀滴定法(precipitationtitration):也称容量分析法(volumetricprecipitationmethod),以沉淀反应为基础的滴定分析方法。
用作沉淀滴定的沉淀反应必须满足以下条件:(1)反应速度快,生成沉淀的溶解度小;(2)反应按一定的化学式定量进行;(3)有准确确定理论终点的方法。
应用范围:含量在1%以上的卤素化合物和硫氰化物的测定。
解释:沉淀反应很多,但能用于沉淀滴定的沉淀反应并不多,因为很多沉淀的组成不恒定,或溶解度较大,或形成过饱和溶液,或达到平衡速度慢,或共沉淀现象严重等。
目前比较有实际意义的是生成微溶性银盐的沉淀反应。
Ag++Cl-=AgClJAg++SCN-二AgSCNJ以这类反应为基础的沉淀滴定法称为银量法。
主要测定Cl-、Br-、I-、Ag+及SCN-等。
如有一些沉淀HgS、PbSO4、BaSO4等也可用于沉淀滴定法,但重要性不及银量法。
二、银量法确定理论终点的方法{莫尔法佛尔哈德法法杨司法1、莫尔法什么是莫尔法?以铬酸钾作指示剂的银量法称为“莫尔法”。
以铬酸钾为指示剂,在中性或弱碱性介质中,用硝酸银标准溶液测定卤素化合物含量。
(1)指示剂作用原理:Ag++Cl-AgCl!白Ksp(Agci)=1.8X10-9Ag++GO42-—Ag2CrO4!橙色Ksp止工小=2X10-12因为AgCl和Ag2CrO4的溶度积不同,因而发生分级沉淀,当AgCl沉淀完全后,稍过量的AgNO3标准溶液与K2CrO4指示剂反应生成Ag2CrO4!砖红色(量少时为橙色)。
平衡时,[Ag+]・[C1-]=Ksp AgC i设溶液中[Cl-]=[CrO4]2-=0.1mol/LKsp AgCl1.8X10-10[Ag+]AgC i===1.8X10-9(mol/L)[Cl-]0.1Ksp(Ag2CrO4)2X10-12[Ag+j===必X10-6(mo l/L)[CrO42-]0.1由此可见:[Ag+][Cl-]首先大于Ksp A gCl,则AgCl开始沉淀。
沉淀平衡
沉淀平衡A09环工陈瑞摘要:物质在水中的溶解是一个复杂的过程。
一定温度下,把难溶强电解质放入水中,就会发生溶解和沉淀两个相反的过程。
当溶解的速度和沉淀的速度相等时,便达到了平衡状态。
溶解平衡通常用活度积或溶度积表示。
影响沉淀平衡的因素有,同离子效应,盐效应,酸效应,配位效应。
关键词:平衡活度积溶度积影响因素物质在水中的溶解作用是一个较复杂的物理—化学过程。
绝对不溶的物质是没有的。
通常把溶解度小于0.01g/100gH2O的物质叫做不溶物,严格来说,应该叫做难溶物或薇溶物。
上述界限也不是绝对的。
如PbCl(s),Ag Cl(s)等类物质,虽然溶解度很小,但溶解的部分是完全电离的,溶液中不存在未电离的分子,故也常称为难溶物电解质或简称其为难溶盐。
一定温度下,把难溶强电解质放入水中,就会发生溶解和沉淀两个相反的过程。
当溶解的速度和沉淀的速度相等时,便达到了平衡状态。
这时的溶液是饱和溶液。
此时溶液中的离子浓度(严格讲,应是活度)不再改变。
对任何沉淀—溶解达到平衡的系统可表示为Mm An=mM+n+nA-m,KΘSP={a(M+n)}m{a(A-m)}n,KΘSP称为活度积。
严格地说,难溶化合物在水中的溶解平衡MA(s)=M++A-,应以活度表示:a M++a A-= KΘSP (1),KΘSP称为难溶化合物的活度积。
它只是与温度有关的标准平衡常数,不受溶液中离子强度的影响。
根据活度的定义(为简便计写作以下形式):a+=γ+m+/mΘ,a-= γ-m-/mΘ带入活度积表达式(1)中,(m+/ mΘ)γ+(m-/mΘ)γ-= KΘSP(mΘ=1mol/kg)。
令(m+)(m-)=Ksp(2),Ksp称为溶度积,则上式成为Ksp = KΘSP(mΘmΘ/γ+γ-)(3),就是Ksp与KΘSP的关系,它们之间有差别。
由于在活度系数项中,活度系数γ与离子强度有关(即与溶液所有离子的浓度有关),所以Ksp不仅与温度有关,还与溶液中所有离子浓度有关。
(完整版)无机及分析化学第九章答案
第9章配位平衡与配位滴定法1.无水CrC13和氨作用能形成两种配合物A和B,组成分别为CrC13·6NH3和CrC13·5NH3。
加入AgNO3,A溶液中几乎全部的氯沉淀为AgC1,而B溶液中只有三分之二的氯沉淀出来。
加入NaOH并加热,两种溶液均无氨味。
试写出这两种配合物的化学式并命名。
解:A [Cr(NH3)6]Cl3三氯化六氨合铬(Ⅲ)B [Cr Cl (NH3)5]Cl2二氯化一氯·五氨合铬(Ⅲ)2.指出下列配合的的中心离子、配体、配位数、配离子电荷数和配合物名称。
K2[HgI4] [CrC12(H2O)4]C1 [Co(NH3)2(en)2](NO3)2Fe3[Fe(CN)6]2K[Co(NO2)4(NH3)2] Fe(CO)5解:3.试用价键理论说明下列配离子的类型、空间构型和磁性。
(1)[CoF6]3-和[Co(CN)6 ]3- (2)[Ni(NH3)4]2+和[Ni(CN)4]2-解:4.将0.10mol·L-1ZnC12溶液与1.0mol·L-1NH3溶液等体积混合,求此溶液中[Zn(NH3)4]2+和Zn2+的浓度。
解:Zn2++ 4NH3= [Zn(NH3)4]2+平衡浓度/mol·L -1 x 0.5-4×0.05+4x ≈0.3 0.05-x ≈0.0594342243109230050⨯=⋅==++..x .)NH (c )Zn (c ))NH (Zn (c K f θx =c(Zn 2+)=2.13×10-9mol·L -15.在100mL0.05mol·L -1[Ag(NH 3)2]+溶液中加入1mL 1mol·L -1NaC1溶液,溶液中NH 3的浓度至少需多大才能阻止AgC1沉淀生成?解: [Ag(NH 3)2]++Cl - = AgCl + 2NH 3 平衡浓度/mol·L -1 0.05 0.01 c(NH 3)107233210771101111-+-⨯⨯⨯===..K K ))NH (Ag (c )Cl (c )NH (c K sp f j 11073510107711011010050--⋅=⨯⨯⨯⨯=Lmol .....)NH (c6.计算AgC1在0.1mol·L -1氨水中的溶解度。
沉淀溶解平衡和沉淀滴定法—沉淀溶解平衡(基础化学课件)
沉淀溶解平衡
任何难溶电解质在水中会或多或少的溶解,绝对不溶的物质是不存 在的,但其溶解的部分是全部解离的。
在难溶电解质的饱和溶液中,未溶解的固体和溶解产生的离子之间 存在着沉淀溶解平衡。
在一定条件下,当溶解和 沉淀速率相等时,便建立了一 种动态的多相离子平衡,可表 示如下:
Ba2+(aq) + CO32-(aq)
Mg(OH)2(s)+ 2H+ = Mg2+ + 2H2O
K
[Mg2+ ] [H ]2
[Mg2+ ][OH ]2 [H ]2[OH ]2
K
sp
[Mg(OH)2
(
K
w
)2
]
5.61
1016
CaCO3(s) + 2H+ = H2CO3 + Ca2+
K
[Ca
2+ ][H2CO3 [H+ ]2
]
[NH
4
]2 [OH
]2
/
[NH3
]2
Ksp[Mg(OH)2 ]
[
K
b
(
NH
3
H
2O)]2
转化平衡常数K越大 , 难溶物越易溶解于酸。
例: 今有Mg(OH)2和Fe(OH)3沉淀各0.1mol,问需1L多大浓度铵盐
才能使之溶解? Ksp(Mg(OH)2)=1.810-11 Ksp(Fe(OH)3)=410-38
溶度积规则
对于沉淀-溶解平衡:
AmBn(s) == mAn+(aq)+nBm-(aq) 离子积:(任意状态,以方程式中化学计量数为指数
的离子相对浓度的乘积)
第9章 沉淀平衡和沉淀滴定法
K sp = S / c
2
θ
θ2
θ S = K sp ⋅ cθ
θ K sp = 4S 3 / cθ 3
3 4
θ 4 θ4 A3B型或AB3型 K sp = 27 S / c 型或AB
4 θ K sp θ S=4 ⋅c 27
θ K sp
Hale Waihona Puke S=3θ K sp
的大小与难溶电解质本性 温度有关 难溶电解质本性和 有关, ①溶度积(Kspθ)的大小与难溶电解质本性和温度有关, 溶度积( 与沉淀的量无关。离子浓度的改变可使平衡发生移动, 与沉淀的量无关。离子浓度的改变可使平衡发生移动, 但不能改变溶度积。 但不能改变溶度积。 反映了难溶电解质在水中的溶解度, 越大, ②Kspθ反映了难溶电解质在水中的溶解度,Kspθ越大, 溶解度就越大; 越小, 溶解度就越小。 溶解度就越大;Kspθ 越小, 溶解度就越小。Kspθ大小一 般可由实验方法测定,也可由热力学方法计算. 般可由实验方法测定,也可由热力学方法计算. 课本附录P 课本附录 537列出了常温下某些难溶电解质的溶度积 的实验数据K 的实验数据 spθ。
⋅ cθ
A mB n型
θ K sp = mm n n S m+n / (cθ ) m+n S = m+n
mm nn
⋅ cθ
例9-2 298K时, Kspθ(CuS)=6.3×10-36, Kspθ(Ag2S) 时 × 在纯水中溶解度. =6.3×10-50,求CuS和Ag2S在纯水中溶解度 × 求 和 在纯水中溶解度 × 解: s(CuS)= Kspθ = 6.3×10-36 =2.5×10-18mol·L-1 √ √ ×
无机与分析化学习题—沉淀溶解平衡和沉淀滴定法
无机与分析化学习题—沉淀溶解平衡和沉淀滴定法一、单项选择题在每小题的四个备选答案中选出一个正确答案,并将其字母标号填入括号内。
1.金属硫化物中,有的溶于HCl ,有的不溶于HCl 。
主要原因是它们的 ()A . 水 解 能 力 不同B . K 不 同C . 溶 解 速 率 不 同D . 酸 碱 性 不 同2.欲使Mg (OH)2 溶解,可加入 ()A . NH 4 Cl B . NaCl C . NH 3 ·H 2 O D . NaOH3.硫化铜不可以溶于HCl ,而硫化锌可以溶于HCl ,主要原因是它们的()A . 水解能力不同 B . K 不同C . 溶解速率不同D . 酸碱性不同4.已知K ( PbI 2 ) = 7.1 ⨯ 10-9,则其饱和溶液中c ( I - ) = ( )A . 8.4 ⨯ 10-5 mol ·L -1B . 1.2 ⨯ 10-3 mol ·L -1C . 2.4 ⨯ 10-3 mol ·L -1D . 1.9 ⨯ 10-3 mol ·L -15.已知K ( BaSO 4 ) = 1.1 ⨯ 10-10,K (AgCl ) = 1.8 ⨯ 10-10,等体积的0.002 mol ·L -1 Ag 2SO 4与2.0 ⨯ 10-5 mol ·L -1BaCl 2溶液混合,会出现 ( )A . 仅有BaSO 4沉淀B . 仅有AgCl 沉淀C . AgCl 与BaSO 4共沉淀D . 无沉淀6.设AgCl 在水中,在0.01mol·L -1 CaCl 2中, 在0.01mol·L -1 NaCl 中以及在0.05 mol·L -1 AgNO 3 中的溶解度分别是 S 0, S 1, S 2, S 3, 这些量之间的正确关系是 ( )A . S 0> S 1> S 2> S 3B . S 0> S 2> S 1> S 3C . S 0> S 1= S 2> S 3D . S 0> S 2> S 3> S 17.欲使Mn(OH)2 溶解,可加入 ( )A .(NH 4 )2SO 4B . NaOHC . NH 3 ·H 2 OD .NaCl8.难溶电解质CaCO 3在浓度为0.1 mol ⋅L -1的下列溶液中的溶解度比在纯水中的溶解度大的有( )A .Ca(NO 3)2B .HAcC . Na 2CO 3D . Ca(NO 3)29.难溶强电解质AB 2 在水中平衡时〔A 2+〕= x mol / L ,〔B -〕= y mol / L ,下列AB 2 的溶解度(mol / L )表达错误的是 ( )A . xB . 1/2yC . 2yD . (1/4 xy 2)1/310.为使锅垢中难溶于酸的CaSO 4转化为易溶于酸的CaCO 3,常用Na 2CO 3处理,反应式为 CaSO 4+ CO 32-CaCO 3+SO 42-,此反应的标准平衡常数为 ( )A . K (CaCO 3 ) / K (CaSO 4 )B . K (CaSO 4 ) / K (CaCO 3 )C . K (CaSO 4 )·K (CaCO 3 )D . [ K (CaSO 4 )·K (CaCO 3 ) ]1/211.将MnS 溶解在HAc - NaAc 缓冲溶液中,系统的pH 值( )A . 不变B .变小C .变大D . 无法预测12.在AgCl 饱和溶液中,加入少量的NaCl 固体,下列描述正确的是 ()A .AgCl 的溶解度不受影响 B .AgCl 的溶解度变小C.AgCl的K sp变小D.AgCl的K sp变大13.已知CaCO3的摩尔质量为100g·mol-1,若将50 mL 0.80 mol·L-1 Na2CO3和50 mL0.40 mol·L-1 CaCl2混合,所生成CaCO3沉淀的质量为()A.1.0 g B.4.0 g C.2.0 g D.8.0 g 14.已知K(BaSO4)=1.1⨯10-10,K(BaCO3 )=5.1⨯10-9,下列判断正确的是()A.因为K(BaSO4 ) <K(BaCO3 ) ,所以不能把BaSO4转化为BaCO3+ CO32-BaCO3 + SO42-的标准平衡常数很小,所以实际上B.因为BaSOBaSO4沉淀不能转化为BaCO3 沉淀C.改变CO32-浓度,能使溶解度较小的BaSO4沉淀转化为溶解度较大的BaCO3沉淀D.改变CO32-浓度,不能使溶解度较小的BaSO4沉淀转化为溶解度较大的BaCO3沉淀15.已知K(CaC2O4) = 4.0 ⨯ 10-9,若在c ( Ca2+ ) = 0.020 mol·L-1的溶液生成CaC2O4沉淀,溶液中的c ( C2O42- )最小应为()A.4.0 ⨯ 10-9B.2.0 ⨯ 10-7 mol·L-1C.2.0 ⨯10-9 mol·L-1D.8.0 ⨯10-11 mol·L-116.下列沉淀中,可溶于1 mol·L-1NH4Cl 溶液中的是( )A.Fe (OH)3 ( K= 4 ⨯ 10-36 )B.Mg (OH)2 ( K= 1.8 ⨯ 10-11 )C.Al (OH)3( K= 1.3 ⨯10-33)D.Cr(OH)3( K= 6.3 ⨯10-31)二、填空题1.在AgCl、CaCO3、Fe(OH)3等物质中,溶解度不随溶液pH值而变的是⎽⎽⎽⎽⎽⎽⎽⎽⎽,Mg(OH)2在稀盐酸溶液中溶解的离子方程式为⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽。
《分析化学》第九章沉淀滴定法ppt课件
3. 滴定时须剧烈摇动:防止沉淀吸附而导 致终点提前
AgC1吸附 C1-,溶液中的Cl—浓度降低, 终点提前而引入误差。(AgBr吸附Br—更 为严重)。
4.干扰例子,应预先分离
(1)与Ag+能生成沉淀的阴离子。
如PO43-、SO32-、S2-、CO32-、C2O42-等 (2)与CrO42-能生成沉淀的阳离子。
2. 佛尔哈德法:加入铁铵矾指示剂,用标
准NH4SCN溶液滴定。
二、返滴定法 是加入一定过量的沉淀剂标准 溶液于被测定物质的溶液中,再利用另外一种标 准溶液滴定剩余的沉淀剂标准溶液。
例如:测定C1-时,先将过量的AgNO3标准溶液, 加入到被测定的C1-溶液中、过量的Ag+再用KSCN标 准溶液返滴定。以铁铵矾作指示剂。在返滴定法 中采用两种标准溶液。
银量法主要用于化学工业和冶金工业如烧碱 厂、食盐水的测定。电解液中C1-的测定以及农业、 三废等方面氯离子的测定。
返滴定法测 Cl- 时注意: 在计量点时,易引起转化反应: AgCl+SCN—=AgSCN↓+Cl-
原因:AgSCN的溶解度(1.0×10-6mol/L) 小于AgCl的溶解度(1.3×10-5 mol/L)。
Ag+
三、
(
吸附指示剂法:利用沉淀对有机染料吸附而改变 颜色指示终点的方法
吸附指示剂:一种有色有机染料,被带电沉淀胶 粒吸附时因结构改变而导致颜色变化
二氯荧光黄pKa 4.0—选pH 4-10 b)防止沉淀凝聚
措施——加入糊精,保护胶体 c)卤化银胶体对指示剂的吸附能力 < 对被测离子的吸附能力( 反之终点提前 , 差别过大终点拖后)
吸附顺序:
I->SCN->Br ->曙红>CL->荧光黄 例: 测CL-→荧光黄 测Br-→曙红
无机及分析化学课件 第9章
9.5 有效数字及计算规则
在定量分析中,为了获得准确的分析结果,还
必须注意正确合理的记录和计算。因此需要了解 有效数字及其运算规则。 实验数据应包含两个内容:
1. 反映所测定的量是多少;
2. 反映数据的准确度。 9.5.1 有效数字及其位数 数据中能够正确反映一定量(物理量和化学 量)的数字叫有效数字。包括所有的确定数字 和最后一位不确定性的数字。
第9章 定量分析化学概论
9.1 分析化学的任务和作用 9.2 分析方法的分类 9.3 定量分析过程和分析结果的表示
9.4 定量分析误差
9.5 有效数字及计算规则 9.6 分析数据的统计处理
9.7 滴定分析法概述
9.2 分析方法的分类
根据分析任务、分析对象、测定原理、操作方
法和具体要求不同,分析方法的分类很多。 1. 按任务分类:定性分析、定量分析、结构分析 定性分析的任务:鉴定物质所含的组分 (元素、离子基团、化合物) 定量分析的任务:测定各组分的相对含量。 结构分析的任务:研究物质的分子结构或晶 体结构 化学的发展逐步由定性 定量。
= -0.0001/0.2176 ×1000‰ = -0.5‰
偏差( )是测定值( )与一组平行测定值的
平均值( )之间的差,是衡量精密度高低的尺度,
d
X
X
偏差小表示精密度高,偏差大表示精密度低。
d XX
某一试样平行测量n次,测定值为X1,X2,…,Xn, 则:
X1 X 2 X n X n
可见,0.0121的有效数字位数最少(三位)相 对误差最大,故应以此数为准,将其它各数修约 为三位(指的是三位有效数字),然后相乘得: 0.0121×25.6×1.06=0.328
沉淀滴定法氯化钠
沉淀滴定法氯化钠引言沉淀滴定法是一种常用的分析化学方法,用于测定溶液中特定物质的含量。
本文将重点介绍沉淀滴定法在氯化钠测定中的应用。
实验原理沉淀滴定法是通过将待测物与适当试剂反应生成可观察到的沉淀,并利用滴定法确定待测物的含量。
在氯化钠测定中,常用的试剂是银硝酸(AgNO3)溶液。
实验原理如下: 1. 氯化钠与银离子反应生成白色沉淀:NaCl + AgNO3 → AgCl↓ + NaNO3。
2. 利用标准铬酸钾溶液(K2CrO4)作为指示剂,当所有氯化钠被反应完后,多余的银离子与铬酸根离子反应生成红色络合物:Ag+ + CrO4^2- →AgCrO4↓。
3. 通过滴加银硝酸溶液至颜色由橙红转变为红褐色来判断反应终点。
实验步骤试样处理1.取一定量的待测溶液(含氯化钠)加入烧杯中。
2.加入适量盐酸(HCl)溶液,使溶液酸性增强。
3.加入过量的铬酸钾溶液,使氯化钠与铬酸根离子反应生成沉淀。
滴定过程1.取一定量的标准银硝酸溶液(AgNO3),用滴定管滴加至溶液中。
2.每滴加一滴后搅拌均匀,并观察颜色变化。
3.当颜色由橙红色转变为红褐色时,表示反应终点已达到。
计算结果1.记录滴定所需的标准银硝酸溶液体积(V)。
2.根据已知的银硝酸和氯化钠的反应方程式,计算出待测样品中氯化钠的含量。
实验注意事项1.实验操作时要戴上防护眼镜和实验手套,避免试剂溅到皮肤或眼睛。
2.滴定过程中需要搅拌均匀,以确保反应充分。
3.滴定管在滴加试剂时要垂直放置,避免液滴附着在管壁上。
4.实验前需要进行准确的容量测量和试剂配制,以确保结果的准确性。
实验结果与讨论通过沉淀滴定法测定氯化钠的含量,可以得到样品中氯化钠的浓度。
实验中,通过观察颜色变化来判断反应终点,并计算出滴定所需的标准银硝酸溶液体积。
根据已知的反应方程式和体积数据,可以计算出样品中氯化钠的含量。
实验结果可能会受到实验操作、试剂质量等因素的影响。
为了提高实验结果的准确性,可以进行多次重复实验,并取平均值作为最终结果。
B136-分析化学-第九、十章 沉淀滴定法和重量分析法答案 (2)
第九章沉淀滴定法一、莫尔(Mohr)法1. 莫尔法测定Cl-采用滴定剂及滴定方式是(B )(A)用Hg2+盐直接滴定(B)用AgNO3直接滴定(C) 用AgNO3沉淀后,返滴定(D)用Pb2+盐沉淀后,返滴定2. 下列试样中的氯在不另加试剂的情况下,可用莫尔法直接测定的是( D )(A) FeCl3(B) BaCl2(C) NaCl+Na2S (D) NaCl+Na2SO43. 用莫尔法测定Cl-的含量时,酸度过高,将使(Ag2CrO4不易形成,不能确定终点),碱性太强,将生成(生成褐色Ag2O,不能进行测定)。
4.关于以K2CrO4为指示剂的莫尔法,下列说法正确的是(C )(A)指示剂K2CrO4的量越少越好(B)滴定应在弱酸性介质中进行(C)本法可测定Cl—和Br—,但不能测定I—或SCN—(D)莫尔法的选择性较强二、佛尔哈德(Volhard)法5.(√)佛尔哈德法是以NH4SCN为标准滴定溶液,铁铵矾为指示剂,在稀硝酸溶液中进行滴定。
6. 佛尔哈德法测定Ag+时, 应在(酸性)(酸性,中性), 这是因为(若在中性介质中,则指示剂Fe3+水解生成Fe(OH)3,影响终点观察)。
7.(×)用佛尔哈德法测定Ag+,滴定时必须剧烈摇动。
用返滴定法测定Cl-时,也应该剧烈摇动。
8.以铁铵矾为指示剂,用返滴法以NH4CNS标准溶液滴定Cl-时,下列错误的是(D )(A)滴定前加入过量定量的AgNO3标准溶液(B)滴定前将AgCl沉淀滤去(C)滴定前加入硝基苯,并振摇(D)应在中性溶液中测定,以防Ag2O析出三、法扬司(Fajans)法9.( √ )在法扬司法中,为了使沉淀具有较强的吸附能力,通常加入适量的糊精或淀粉使沉淀处于胶体状态。
10. 卤化银对卤化物和各种吸附指示剂的吸附能力如下: 二甲基二碘荧光黄>Br ->曙红>Cl ->荧光黄。
如用法扬司法测定Br -时, 应选(曙红或荧光黄)指示剂;若测定Cl -,应选(荧光黄)指示剂。
沉淀滴定法的基本原理
滴定曲线 . 酸碱滴定 溶液滴定
滴定反应为 + = 质子条件为 []= +[] - () 用滴定常数==表达滴定反应的程度,为滴定过 程中盐酸浓度,为标准溶液加入到被滴定溶液后的瞬 时浓度,和随滴定反应进行不断变化,用滴定分数 α 衡量滴定反应进行程度,α=,将α和[]=[]代入()式, 得到强碱滴定强酸的滴定曲线方程 []+ (α-)[] - = ()
共存离子对测定的干扰
②溶液中的共存离子对测定的干扰较大。如果 溶液中有铵盐存在, 则要求溶液的酸度范围更窄( ~ ) 。这是因为当溶液的值较高时,可产生较多的 游离,生成 () 及 () 配合物,使和的溶解度增大,影 响滴定的准确度。
生成沉淀或配合物的阴离子
③凡能与 生成沉淀或配合物的阴离子都对测定有 干扰,如 、、、、、 等,其中 可在酸性溶液中加热除去; 可氧化为而不再干扰测定。凡能对 生成沉淀的阳离子也 对测定有干扰,如 、等。大量的 、、 等有色离子的存 在将对终点的观察有影响。、、、等高价金属离子在中 性或弱碱性溶液中易水解,也干扰测定,应予先分离。
化学反应计量点前
在达到化学反应计量点前,如果加入 标准溶液,是 过量的,未反应的 浓度为
将[]改写为负对数用表示,则 = []= (× ) = []可以采用氯化银溶度积计算 [] = ⁄ [] = ×۰ 此时等于。
化学计量点时
在化学计量点,和两种离子的浓度是相等的,采用溶 度积计算两者的浓度 = [] []= [] = × [] =[] = ו 此时和都为。
表
常用的吸咐指示剂
指 示 剂
二氯荧光黄
被测 离子
滴定剂
酸 度 ()
~(可在~应用)
荧光黄
曙 红 、、 溴甲酚绿 甲基紫 氨基苯磺酸 、混合液
分析化学:沉淀滴定法
溶液中[Cl-]取决于过量AgNO3的量, 过量Ag+由下式计算
AgNO3
VNaCl C AgNO3
VNaCl VAgNO3
5
Cl K
sp, AgCl
Ag
当滴入AgNO3溶液20.02ml时(此时相对误差为+0.1%),溶液中
Ag 5.00 10
mol / L
pCl= -lg[Cl-] = 1.00
6
(2).滴定开始至化学计量点前
溶液中[Cl-]决定于剩余NaCl浓度
NaCl
V V C Cl V V
AgNO3 NaCl
NaCl
AgNO3
加入AgNO3溶液18.00ml时,溶液中Cl-浓度为:
[Cl ] =
0.1000
×
2.00
pAg 4.30
8
pCl pK sp pAg 9.81 4.30 5.51
9
10
pKsp,AgI =16.08 pKsp,AgBr=12.03
pKsp,AgCl=9.74
11
总结(曲线)
(1):pX与pAg两条曲线以化学计量点对称。 这表示随着滴定的进行,溶液中Ag+浓度增加时,X- 以相同的比例减小;而化学计量点时,两种离子浓度相 等,即两条曲线在化学计量点相交。
2
例:
中华医学会调查资料显示,我国睡眠障碍患病 率达 42.7% ,约有 3 亿中年人患有睡眠障碍。异戊 巴比妥是一种巴比妥类药物,是常见的催眠镇静药, 有抑制中枢神经的作用。通常使用较小剂量时产生 镇静作用,较大剂量时产生催眠作用,大剂量时则 产生麻醉、抗惊厥作用,过量则会导致死亡。因此 对此药物的用量需严格控制,其制剂及原料药的含 量测定则需准确可靠。对于异戊巴比妥片的含量测 定,中国药典(2005版)规定使用银量法。
沉淀溶解平衡和沉淀滴定法
上一页 下一页
第二节 溶度积规则及其应用
所以Fe3+先生成沉淀。 ①当Fe3+沉淀完全时, 则有
得:pH=3. 20。 ②欲使Mg2+离子不生成Mg(OH)2沉淀,则:
上一页 下一页
第二节 溶度积规则及其应用
得:pH=3. 20。 答:只要将pH控制在3.20~9.62之间,就能使Fe3+沉淀完全,而 Mg2+沉淀还没有产生。
上一页 下一页
第二节 溶度积规则及其应用
这些离子均能与加入的同一种沉淀剂发生沉淀反应,并生成难溶电解 质。由于各种难溶电解质的溶度积不同,因此析出的先后次序也不同, 这种现象被称为分步沉淀。随着沉淀剂的加入,离子积首先达到溶度 积的难溶电解质将会先析出。
例如,在浓度均为0.010 mol/L的I-和C-溶液中,逐滴加入 AgNO3试剂,开始只生成黄色的AgI沉淀,加入到一定量的 AgNO3时,才出现白色的AgCI沉淀。在上述溶液中,开始生成A刃 和AgCI沉淀时,所需要的Ag+离子的浓度分别是:
(1)在0.10 L 0.020 mol/L BaClz中,加入0.10 L 0.020 mol/L Na2SO4;
(2)在0.10 L 0.020 mol/L BaCl2中,加入0.10 L 0.040 mol/L Na2SO4。
解:(1)由于两种离子的物质的量相等,因此混合后生成等物质的 量的BaSO4沉淀,且溶液中Ba2+浓度等于BaSO4处于沉淀一且溶 解平衡时的浓度:
(2)判断能否实现沉淀的转化。 在科学实验中,有时需要将一种沉淀转化为另一种沉淀,这种过 程叫沉淀的转化。沉淀的转化有许多实用的价值。例如,锅炉中的锅 垢CaSO4不溶于酸,常用Na2CO4处理,以使锅垢中的CaSO4转化 为疏松的可溶于酸的CaCO3沉淀,这样就可以把锅垢清除掉了。该 沉淀转化反应的平衡常数很大,反应能进行完全:
无机及分析化学第9章习题解答
⽆机及分析化学第9章习题解答第九章化学分析法习题解答习题9-11. 能⽤于滴定分析的化学反应必须具备哪些条件?解①反应要定量完成,没有副反应伴⽣。
②反应速率要快,或有简便的⽅法加速反应。
③有可靠、简便的⽅法指⽰滴定终点。
2. 基准物应具备哪些条件?基准物的称量范围如何估算?解基准物质必须具备以下条件:①试剂的纯度⾜够⾼,含量在99.9%以上,⼀般使⽤基准试剂或优级纯试剂。
②物质组成与化学式完全相符,若含有结晶⽔,其结晶⽔含量应与化学式相符。
③性质稳定,不易和空⽓中的O 2或CO 2等作⽤,不易发⽣风化和潮解。
④最好具有较⼤的相对分⼦量,可减⼩称量误差。
其称量范围是要计算使标准溶液消耗体积控制在20~30mL 之间所需基准物的质量。
3. 下列物质中那些可以⽤直接法配制标准溶液?那些只能⽤间接法配制?24422732232H SO , KOH, KMnO , K Cr O , KIO , Na S O 5H O ?4. 什么是滴定度?滴定度与物质的量浓度如何换算?解滴定度(T )指每毫升标准溶液所相当的待测物的质量,以符号T 待测物/滴定剂表⽰,单位为g ?mL 1-。
若a A~b B ,则两种浓度之间的换算关系为:3A/B B A 10a T c M b-=?。
5. 什么是“等物质的量的规则”,运⽤时基本单元如何选取?解当待测组分A 与滴定剂B 的基本单元选取适当时,两组分所相当的物质的量相等,此规则称为等物质的量的规则。
若a A~b B ,A 与B 之间等物质的量的关系为:11A B n()=n()b a。
其⼀般的选择原则如下:酸碱滴定中,基本单元的选取以⼀个质⼦转移为基准;配位滴定中,以与EDTA 等物质的量反应为基准;氧化还原滴定中,以⼀个电⼦的转移为基准。
6. 已知浓硝酸的相对密度为 1.42,含3HNO 约为70%,求其物质的量浓度。
如欲配制 1.0L 、130.25mol L HNO -?溶液,应取这种浓硝酸多少毫升?解 (1)31000 1.4270/100(HNO )1663.01c ??==(1mol L -?) (2)330.25 1.010(HNO )1616V ??==(mL) 7. 已知密度为1.051g mL -?的冰醋酸(含HAc99.6%),求其物质的量浓度。
沉淀滴定法的原理
沉淀滴定法的原理沉淀滴定法是一种常用的分析化学方法,它主要用于测定溶液中某种特定离子的含量。
这种方法通过加入沉淀剂,使目标离子与沉淀剂生成难溶的沉淀物,然后通过滴定的方式确定目标离子的含量。
下面我们来详细了解一下沉淀滴定法的原理。
首先,沉淀滴定法需要选择适当的沉淀剂。
沉淀剂通常是一种可以与目标离子反应生成难溶沉淀物的化合物,它必须具有良好的选择性和灵敏度。
选择适当的沉淀剂是沉淀滴定法成功的关键。
其次,沉淀滴定法的原理是利用沉淀剂与目标离子在溶液中发生沉淀反应。
当沉淀剂与目标离子混合后,会生成难溶的沉淀物,这种沉淀物的生成是可逆的反应。
沉淀滴定法利用这种反应的平衡特性,通过滴定确定目标离子的含量。
在进行沉淀滴定时,首先需要将待测溶液与适量的沉淀剂混合,使沉淀物充分生成。
然后,用滴定管滴加一定量的沉淀剂,使生成的沉淀物完全沉淀。
在滴加过程中,需要使用指示剂来指示沉淀反应的终点,以确定滴定的终点。
沉淀滴定法的原理是基于化学平衡反应的原理。
在沉淀滴定过程中,沉淀物的生成是一个动态平衡过程,通过滴定可以确定反应的终点,从而计算出目标离子的含量。
因此,沉淀滴定法是一种精确的分析方法,可以用于测定不同离子的含量,具有广泛的应用价值。
总之,沉淀滴定法是一种重要的分析化学方法,它的原理是利用沉淀剂与目标离子在溶液中发生沉淀反应,通过滴定确定目标离子的含量。
选择适当的沉淀剂和合理的滴定条件是沉淀滴定法成功的关键。
沉淀滴定法在化学分析中具有重要的应用价值,对于研究和工业生产都具有重要意义。
希望本文能够帮助大家更好地理解沉淀滴定法的原理和应用。
浅谈分析化学四大滴定法
四大滴定法的异同点
• 共同点 • 1、他们都是以消耗计算量的标准物质来测定被测 物质含量的。 • 2、随着滴定剂的加入,被滴定物质的浓度在计量 点附近会有突变(突跃),可以用这一突变,或 通过这一突变导致指示剂的变色来制定滴定终点。 • 3、滴定分析终点误差的定义都可以表示为 Et={【(cV)T-(cV)X】/(cV)X}*100%。 • 4、由于历史遗留问题四者使用的常数不同,若都 用滴定常数Kt,可使四种滴定数学处理趋于一致。
浅谈分析化学四大滴定法
浅谈分析化学四大滴定法
概述 酸碱滴定法 络合滴定法 氧化还原滴定法 沉淀滴定法 四大滴定法的异同点 四大滴定法的指示剂比较与总结
浅谈分析化学四大滴定法
• 概述: • 分析化学中的四大滴定即:氧化还原滴定,络合 滴定,酸碱滴定,沉淀滴定。 • 四大滴定的区分主要是跟据反应的类型,以及是 否便于测定。比如,氧化还原滴定主要用于氧化 还原反应,沉淀滴定主要用于反应中产生沉淀的 反应,酸碱滴定主要用于酸性物质与碱性物质的 反应或者广义上的路易士酸,而络合滴定则主要 用于络合反应的滴定。
酸碱滴定法
酸碱滴定法是以酸、碱之间质子传递反应为基础 的一种滴定分析法。可用于测定酸、碱和两性物 质。其基本反应为 H+ + OH- = H2O 也称中和法,是一种利用酸碱反应进行容量分 析的方法。用酸作滴定剂可以测定碱,用碱作滴 定剂可以测定酸,这是一种用途极为广泛的分析方 法。
酸碱滴定法的实际应用
氧化还原滴定法的实际应用
• 碘量法的基本反应是: • I2 + 2S2O32- = S4O62- + 2I• 该反应在中性或弱酸性中进行,pH过高,I2会发 生岐化反应: • 3I2 + 6OH- = IO3- + 5I- + 3H2O • 在强酸性溶液中,Na2S2O3会发生分解, I- 容易 被氧化。通常pH<9。
15页分析化学:沉淀滴定法分析技术铬酸钾指示剂法
沉淀。
滴定操作
02
将待测溶液加入到装有铬酸钾-硝酸银溶液的锥形瓶中,用氯化
钠标准溶液进行滴定。
终点判断
03
观察滴定过程中溶液颜色的变化,当溶液出现砖红色沉淀时,
即为滴定终点。
实验结果分析
数据记录
记录滴定过程中的体积变化数据,绘制滴定曲 线。
结果计算
根据记录的数据,计算待测溶液中氯离子的含 量。
结果误差分析
对实验结果进行误差分析,判断实验结果的准确性和可靠性。
05
铬酸钾指示剂法的应用实例
BIG DATA EMPOWERS TO CREATE A NEW
ERA
在工业生产中的应用
铬酸钾指示剂法在工业生产中广泛应用于测定氯离子、硫酸根离子等阴离子的含量。通过沉淀滴定法,可以快速、准确地测 定这些离子的浓度,从而控制生产过程中的原料配比和产品质量。
在污水处理过程中,铬酸钾指示剂法可以用来监测处理效果,通过测定处理后水体中阴离子的含量, 评估污水处理是否达到排放标准。
在食品检测中的应用
铬酸钾指示剂法在食品检测中常用于测定食 品中硫酸根离子、氯离子等阴离子的含量。 这些离子的含量对于食品的品质和安全性具 有重要意义,如硫酸根离子是某些食品添加 剂的主要成分。
03
铬酸钾指示剂法原理
BIG DATA EMPOWERS TO CREATE A NEW
ERA
铬酸钾指示剂法的基本原理
铬酸钾指示剂法是一种沉淀滴定法,利用沉淀反应来确定 溶液中的离子浓度。在滴定过程中,铬酸钾指示剂会与被 测离子发生反应,改变溶液的颜色,从而指示滴定终点。
铬酸钾指示剂法通常用于测定氯离子、溴离子、碘离子等 卤素离子的浓度。
ERA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2 沉淀-溶解平衡的移动
溶度积原理
AnBm(s) = nAm+(aq) + mBn-(aq) KSP =c(Am+)n ·c(Bn-)m Qc = c (Am+) n·c (Bn-) m
KSP 与Qi 的意义: KSP表示难溶电解质沉淀溶解平衡时饱和溶液中 离子浓度的乘积。在一定温度下KSP为一常数。 Qc则表示任何情况下离子浓度的乘积,其值不定。
解:等体积混合后,浓度为原来的一半。
c(Ag+)=2×10-3mol·L-1;c(CrO4 2-)=2×10-3 mol·dm-3
Qi=c2(Ag+)·c(CrO4 2 -) =(2×l0-3 )2×2×l0-3
=8×l0-9>KSP (CrO4-2) 所以有沉淀析出
9.2.1 沉淀的生成
A nBm (s)
-------表示物质的溶解能力,它会随其他离子存 在的情况不同而改变。
注意:溶解度不是物质本身的性质参数 。
溶解度用S (mol·dm-3)表示
难溶电解质溶解度的求法: 达到沉淀溶解平衡后,沉淀所溶解的量。
若溶解度用S (mol·dm-3)表示:
AnBm (s)
AnBm (aq)
S
nAm (aq) mB n (aq)
第9章 沉淀平衡和沉淀滴定法
9.1 溶度积和溶解度
9.1.1 溶度积常数
问题1: 将晶态BaSO4放入水中会发生什么变化?
硫酸钡晶体会发生溶解----表面Ba2+及SO42-受到 水分子的偶极子的作用离开晶体表面进入溶液。
问题2: 溶解会不会持续发生下去? 沉淀在溶液中会达到溶解平衡----溶解和沉淀速 率相等。
(2)难溶电解质要一步完全电离 。
溶解度的比较
对同类型的难溶电解质,可用溶度积Ksp的大小 来比较溶解度s的大小。但不同类型的难溶电解质则
不宜直接用溶度积Ksp的大小来比较溶解度s的大小。
如 CaCO3 AgCl
Ag2CrO4
Ksp 8.7×10-9 1.56×10-10 9×10-12
S 9.4×10-5 1.25×10-5 1.31×10-4
nAm+(aq) mBn(aq)
根据溶度积规则当 Qc >Ksp 时,则有沉淀生成。
(1) 加入沉淀剂: 如在AgNO3溶液中加入NaCl则生成AgCl沉淀。
例:向1.0 × 10-3 mol·dm-3的K2CrO4溶液中滴加 AgNO3溶液,求开始有Ag2CrO4沉淀生成时的[Ag+]? CrO42-沉淀完全时的 [Ag+]= ?
CrO42-沉淀完全时的浓度为1.0 ×10-5 moldm-3
[Ag ]
KΘ sp
[CrO 42 ]
2 10 12 1.010 5
4.510 4 mol dm3
(2) 控制溶液的酸度
思考: 什么样的物质可以通过控制酸度的办法生成沉淀
解:已知Mr(AgCl)=143.3 gmol-1 S 1.92 10 3 1.34 10 3 (mol dm3 ) 143 .3
AgCl(s)
Ag(aq) + Cl-1(aq)
平衡浓度/moldm-3 S
S
Ksp [Ag ][Cl1] S2 1.80108
例在25℃ 时,Ag2CrO4的溶解度是0.0217 g·dm-3, 试计算Ag2CrO4的KSP 。
解:
S(Ag2CrO4 )
m(Ag2CrO4 ) M (Ag2CrO4 )
0.0217g.L1 331.8g.mol1
6.54105 g dm-3
由 Ag2CrO4的溶解平衡
Ag2CrO4(s)=2Ag+ (aq) + CrO42-(aq)
平衡时浓度/ mol·dm-3
2S
S
可得
KSP=[Ag+]2 ·[CrO42-]=(2S)2 ·S=4S3 =4× (6.54× 10-5)3=1.12× 10-12
9.1.1 溶度积常数
BaSO4(s)
BaSO4(aq)
Ba2+(aq) + SO42-(aq)
溶解
BaSO4(s) 结晶 Ba2+(aq) + SO42-(aq)
解析:1. 溶解平衡是一种动态平衡,此时溶 解与结晶速率相等。 2.达到平衡状态,此时有 K (BaSO4 ) = [Ba2+][SO42-]
nS
mS
Ksp (nS)n (mS)m
不同类型难溶电解质溶解度的求法:
对AB型 S Ksp
对A
2
B或AB
型
2
Ksp
22 S3
S 3 Ksp 4
A3B或AB3则
S 4 Ksp 27
7
注意:溶解度与溶度积进行相互换算是有条件的。
(1)难溶电解质的离子在溶液中应不发生水解、 聚合、配位等反应。
平衡移动规律: Qc >Ksp 过饱和溶液,平衡向左移动,沉淀析出; Qc =Ksp 处于沉淀-溶解平衡状态,饱和溶液; Qc<Ksp 不饱和溶液平衡向右移动,无沉淀析 出;若原来有沉淀存在,则沉淀溶解。
例 将等体积的4×10-3 mol·dm-3的AgNO3和4×10-3 mol·dm-3 K2CrO4混合,问有无Ag2CrO4沉淀产生? 已 知KSP (Ag2CrO4)=1.12×10-12。
与其他平衡常数一样,Ksp 与温度和物质本性有关 而与离子浓度无关。
对于一般的难溶物溶度积的表达式为:
AmBn (s) mAn + (aq)+ nB m- (aq)
Ksp = ([Am+])m([Bn-])n
常见难溶电解质的Ksp在教材P537附录5中查询
9.1.2 溶度积与溶解度的关系
溶解度:在一定的温度下,该物质在100 g溶剂 里达到饱和状态时所溶解溶质的克数。
注:离子在溶液中的残留量不超过1.0×10-5 mol·dm-3 时,认为其沉淀完全。
解: Ag2CrO4
2Ag+ + CrO42-
K
=(
sp
[Ag+])2([CrO42-])
开始有Ag2CrO4沉淀生成时:
[Ag ]
K
Θ sp
[CrO 42 ]
2 10 12 1.0 10 3
4.510 5 mol dm3
溶解度与溶度积的联系与区别
➢ 与溶解度概念应用范围不同,Ksp只用来表示
难溶电解质的溶解度; ➢Ksp不受离子浓度的影响,而溶解度则不同。 ➢用Ksp比较难溶电解质的溶解性能只能在相同类 型化合物之间进行,溶解度则比较直观。
例:25oC,AgCl的溶解度为1.92×10-3 g·dm-3, 求同温度下AgCl的溶度积。