2009年吉林省长春市中考数学试卷与答案
2009年山西省中考数学试卷版含答案
2009年山西省初中毕业学业考试试卷数 学一、选择题(每小题2分,共20分)1.比较大小:2- 3-(填“>”、“=”或“<“). 2.山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为 .3.请你写出一个有一根为1的一元二次方程: .4= .5.如图所示,A 、B 、C 、D 是圆上的点,17040A ∠=∠=°,°,则C ∠= 度. 6.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.7.如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 .8.如图,ABCD Y的对角线AC 、BD 相交于点O ,点E 是CD 的中点,ABD △的周长为16cm ,则DOE △的周长是 cm .9.若反比例函数的表达式为3y x=,则当1x <-时,y 的取值范围是 .10.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .ABCD 1(第5题) A C D B E O (第8题)(1)(2)(3)…… ……二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分)11.下列计算正确的是( )A .623a a a ÷= B .()122--= C .()236326x x x -=-· D .()0π31-=12.反比例函数ky x=的图象经过点()23-,,那么k 的值是( )A .32-B .23- C .6- D .613.不等式组21318x x --⎧⎨->≥的解集在数轴上可表示为( )AB C D14.解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A .5B .6C .7D .816.如图,AB 是O ⊙的直径,AD 是O ⊙的切线,点C 在O ⊙上,BC OD ∥,23AB OD ==,,则BC 的长为( )A .23B .32C D主视图左视图 俯视图(第15题)AB CDO(第16题)mnnn(2)(1) (第17题)17.如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m n -C .2mD .2n18.如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2三、解答题(本题共76分)19.(每小题4分,共12分)(1)计算:()()()2312x x x +---(2)化简:222242x x x x +---(3)解方程:2230x x --=20.(本题6分)已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.(1)填空:图1中阴影部分的面积是 (结果保留π);(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).21.(本题8分)根据山西省统计信息网公布的数据,绘制了山西省2004~2008固定电话和移动电话年末用户条形统计图如下:ADBEC(第18题)(第20题 图1)(第20题 图2)万户(1)填空:2004~2008移动电话年末用户的极差是 万户,固定电话年末用户的中位数是 万户; (2)你还能从图中获取哪些信息?请写出两条. 22.(本题8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元. (1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(本题8分)有一水库大坝的横截面是梯形ABCD ,AD BC EF ∥,为水库的水面,点E 在DC 上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡AB 的长为12米,迎水坡上DE 的长为2米,135120BAD ADC ∠=∠=°,°,求水深.(精确到0.11.73==)24.(本题8分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y 甲(万元)与进货量x (吨)近似满足函数关系0.3y x =甲;乙种水果的销售利润y 乙(万元)与进货量x (吨)近似满足函数关系2y ax bx =+乙(其中0a a b ≠,,为常数),且进货量x 为1吨时,销售利润y 乙为1.4万元;进货量x 为2吨时,销售利润y 乙为2.6万元.(第23题)(1)求y 乙(万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?25.(本题12分)在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由;(3)在(2)的情况下,求ED 的长.26.(本题14分)如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.ADBECF1A1CADBECF1A1C(第25题 图1)(第25题 图2)2009年山西省初中毕业学业考试试卷数 学一、选择题(每小题2分,共20分)1.> 2.107.39310⨯ 3.答案不唯一,如21x = 4 5.306.210 7.(9,0) 8.8 9.30y -<< 10.32n +二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确三、解答题(本题共76分)19.(1)解:原式=()226932x x x x ++--+ ·························································· (2分) =226932x x x x ++-+- ····························································· (3分) =97x +. ·················································································· (4分)(2)解:原式=()()()22222x x x x x +-+-- ································································· (2分) =222x x x --- ············································································· (3分) =1. ··························································································· (4分)(3)解:移项,得223x x -=,配方,得()214x -=, ············································· (2分)∴12x -=±,∴1213x x =-=,. ···························································· (4分) (注:此题还可用公式法,分解因式法求解,请参照给分)20.解:(1)π2-; ··························································································· (2分)(2)答案不唯一,以下提供三种图案.(注:如果花边图案中四个图案均与基本图案相同,则本小题只给2分;未画满四个“田”字格的,每缺1个扣1分.)21.(1)935.7,859.0; ························································································ (4分)(2)解:①2004~2008移动电话年末用户逐年递增.②2008年末固定电话用户达803.0万户. ··············································· (8分) (注:答案不唯一,只要符合数据特征即可得分) 22.解:(1)10,50; ························································································· (2分) (2)解:解法一(树状图):·················································································································· (6分)从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)=82123=.······························································ (8分)解法二(列表法):··········································································································· (6分)(以下过程同“解法一”) ········································································· (8分)23.解:分别过A D 、作AM BC ⊥于M DG BC ⊥,于G .过E 作EH DG ⊥于H ,则四边形AMGD 为矩形.,135120AD BC BAD ADC ∠=∠=Q ∥°,°. 0 10 20 30 1020 30 10 2030 10 3040 0 10 30 20 2030 50 20 30 10 503040 第一次 第二次 和(第20题 图2) ···································(6分) (第23题)∴456030B DCG GDC ∠=∠=∠=°,°,°.在Rt ABM △中,sin 122AM ABB ==⨯=·∴DG = ······························································································ (3分)在Rt DHE △中,cos 22DH DEEDH =∠=⨯=· ······································ (6分)∴ 1.41 1.73HG DG DH =-=⨯-6≈6.7. ······································· (7分)答:水深约为6.7米. ···················································································· (8分)(其它解法可参照给分)24.解:(1)由题意,得: 1.442 2.6a b a b +=⎧⎨+=⎩,.解得0.11.5a b =-⎧⎨=⎩,.········································· (2分)∴20.1 1.5y x x =-+乙. ········································································· (3分)(2)()()20.3100.1 1.5W y y t t t =+=-+-+乙甲.∴20.1 1.23W t t =-++. ······································································· (5分) ()20.16 6.6W t =--+.∴6t =时,W 有最大值为6.6. ························· (7分)∴1064-=(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元. ········································································· (8分)25.解:(1)1EA FC =. ······················································································· (1分)证明:(证法一)AB BC A C =∴∠=∠Q ,.由旋转可知,111AB BC A C ABE C BF =∠=∠∠=∠,,,∴ABE C BF 1△≌△. ··················································· (3分)∴BE BF =,又1BA BC =Q ,∴1BA BE BC BF -=-.即1EA FC =. ······························ (4分)(证法二)AB BC A C =∴∠=∠Q ,.由旋转可知,11A C A B CB ∠=∠,=,而1EBC FBA ∠=∠,∴1A BF CBE △≌△. ··················································· (3分)A DBE C F1A1CG∴BE BF =,∴1BA BE BC BF -=-,即1EA FC =. ······························································· (4分)(2)四边形1BC DA 是菱形. ····································································· (5分)证明:111130A ABA AC AB ∠=∠=∴Q °,∥,同理AC BC 1∥.∴四边形1BC DA 是平行四边形. ················································· (7分)又1AB BC =Q ,∴四边形1BC DA 是菱形. ····································· (8分)(3)(解法一)过点E 作EG AB ⊥于点G ,则1AG BG ==.在Rt AEG △中,1cos cos30AG AE A ===°……(10分)由(2)知四边形1BC DA 是菱形,∴2AD AB ==,∴2ED AD AE =-= ················································ (12分)(解法二)12030ABC ABE ∠=∠=Q °,°,∴90EBC ∠=°.在Rt EBC △中,tan 2tan 30BE BC C ==⨯=·°112EA BA BE ∴=-= ·············································· (10分)11111AC AB A DE A A DE A ∴∠=∠∴∠=∠Q ∥,..∴12ED EA ==-······················································· (12分)(其它解法可参照给分)26.(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.········································································ (2分)由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ······························· (3分)∴111263622ABC C S AB y ==⨯⨯=△·.·················································· (4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. ·········································································· (5分)又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ·········································································· (6分)∴8448OE EF =-==,. ································································ (7分)(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC Q △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.·························································· (10分)(图3)(图1)(图2)。
吉林省长春市中考数学卷及答案版
2008年吉林省长春市初中学业水平测试数学试题一、选择题(每小题3分,共分39,每小题给出4个答案,其中只有一个正确,把所选答案的编号写在题目后面的括号内)1、如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是【 】A .内含B .相交C .相切D .外离 2、化简(-3)2的结果是【 】A.3B.-3C.±3 D .93、如果2是方程02=-c x 的一个根,那么c 的值是 【 】A .4B .-4C .2D .-24、下列成语所描述的事件是必然发生的是 【 】A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖5、如图,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为【 】 A 、10 B 、8 C 、6 D 、46、抛物线()223y x =++的顶点坐标是 【 】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 7、观察下列银行标志,从图案看是中心对称图形的有( )个A 、1个B 、2个C 、3个D 、4个 8、二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是【 】A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且9、某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是 【 】 A .150B .12C .120D . 2510、在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是【 】A .23B .1C .2D . 3211、如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则r 与R 之间的关系是【 】 A 、R =2r ; B 、3R r =; C 、R =3r ; D 、R =4r .12.已知反比例函数xk y =的图象如下右图所示,则二次函数222k x kx y +-=的图象大致为【 】13、如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F 点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是【 】94π-.984π-C .948πD .988π- 二、填空题(每小题3分,共15分,请把答案填在横线上) 14、点(4,-3)关于原点对称的点的坐标是 _____________15、⊙O 的半径为3cm ,点M 是⊙O 外一点,OM =4 cm ,则以M 为圆心且与⊙O 相切的圆的半径是 cm. 16、将抛物线2(0)y ax bx c a =++≠向下平移3个单位,再向左平移4个单位得到抛物线2245y x x =--+,则原抛物线的顶点坐标是 。
2009中考数学.pdf
①
(第 19 题图)
根据统计图中的信息,解答下列问题:
(1)求本次被调查的学生人数,并补全条形统计图; (2)若全校有 1 500 名学生,请你估计该校最喜欢篮球运动的学生人数; (3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建 议.
20.(本题满分 8 分) 小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋 楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下: 如示意图,小明边移动边观察,发现站到点 E 处时,可以使自己落在墙上的影 子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上 的影子高度 CD 1.2 m, CE 0.8 m, CA 30 m(点 A、E、C 在同一直线上).
0m 1
A.
2
1 m0 B. 2
C. m 0
m1 D. 2
7.若用半径为 9,圆心角为120°的扇形围成一个圆锥的侧面
120°
(接缝忽略不计),则这个圆锥的底面半径是( ). A.1.5 B.2 C.3 D.6
b2 a
a 8.化简
a
ab
的结果是(
).
(第 7 题图)
1
B
1
A. a b B. a b C. a b
C
D M
N
B
(第 16 题图)
三、解答题(共 9 小题,计 72 分) 17.(本题满分 5 分)
x 2 1 3
解方程: x 2
x2 4 .
18.(本题满分 6 分)
如图,在 ABCD 中,点 E 是 AD 的中点,连接 CE 并延长,交 BA 的延长线于
点 F.
求证: FA AB .
长春市名校调研中考数学二模试卷(1)含答案解析
吉林省长春市名校调研中考数学二模试卷一、选择题:每小题3分,共24分.1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.32.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.3.如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°4.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.165.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.56.不等式组的解在数轴上表示为()A.B.C.D.7.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°8.如图,抛物线y=x2﹣2x﹣3与x轴交于点A、D,与y轴交于点C,四边形ABCD是平行四边形,则点B的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣3)C.(﹣3,﹣4)D.(﹣4,﹣4)二、填空题:每小题3分,共18分.9.﹣5的相反数是.10.我市参加中考的考生人数约为43400人,将43400用科学记数法表示为.11.如图,在△ABC中,已知DE∥BC,,则△ADE与△ABC的面积比为.12.如图,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG,若S△ABC=6,则图中阴影部分面积是.13.如果将抛物线y=x2+2x﹣1沿y轴向上平移,使它经过点A(1,5),那么所得新抛物线的解析式是.14.如图,△ABC是等边三角形,AC=9,以点A为圆心,AB长为半径画,若∠1=∠2,则的长为(结果保留π).三、解答题:本大题共10小题,共78分.15.计算:.16.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?17.已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根,求k的取值范围.18.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.19.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.20.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E,且BE=6cm,求AB的长.21.如图是某种货车自动卸货时的示意图,AC是水平汽车底盘,OB是液压举升杠杆,货车卸货时车厢AB与底盘AC的夹角为30°,举升杠杆OB与底盘AC的夹角为75°,已知O 与A的距离为4米,试求货车卸货时举升杠杆OB的长(,精确到0.01米).22.感知:如图1,已知正方形ABCD,以AD、CD为一边向外作等边△ADE和等边△CDF,连接BE、EF、FB,易证△BEF是等边三角形(不用证明);探究:将感知条件中的正方形ABCD改为矩形ABCD,如图2,其他条件不变,那么△BEF 是等边三角形吗?说明理由;应用:将感知条件中的正方形ABCD改为▱ABCD,如图3,其他条件不变,则∠BEF=度.23.如图1,抛物线y1=﹣x2+a与x轴交于A、D两点,与y轴交于点B,点C(2,﹣3)在抛物线y2的图象上.(1)求抛物线y1的函数表达式及点B的坐标;(2)如图2,将抛物线y1沿x轴向右平移后得抛物线y2,且抛物线y2的图象过点C,抛物线y2与x轴交于F、G两点,顶点为E.①请直接写出抛物线y2的函数表达式及点E的坐标;②在A、B、C、D、E、F、G中,连接任意三点,能构成等腰直角三角形的共有个,分别是.24.如图,在菱形ABCD中,AB=6,∠ABC=60°,动点E、F同时从点B出发,其中点E 从点B向点A以每秒1个单位的速度运动,点F从点B出发沿B﹣C﹣A的路线向终点以每秒2个单位的速度运动,以EF为边向上(或向右)作等边三角形EFG.AH是△ABC中BC边上的高,两点运动时间为t秒,△EFG和△AHC有重合部分时,重合部分图形的周长为L.(1)用含t的代数式表示线段CF的长;(2)求点G落在AC上时t的值;(3)求L关于t的函数关系式.吉林省长春市名校调研中考数学二模试卷参考答案与试题解析一、选择题:每小题3分,共24分.1.在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.3【考点】实数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.3.如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°【考点】平行线的性质.【分析】先求出∠3的度数,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:∵∠1=50°,∴∠3=90°﹣50≤=40°,∵直线a∥直线b,∴∠2=∠3=40°,故选B.4.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16【考点】多边形内角与外角.【分析】由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.【解答】解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.5.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.5【考点】一元一次方程的解.【分析】根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.6.不等式组的解在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【解答】解:由不等式①,得3x>5﹣2,解得x>1,由不等式②,得﹣2x≥1﹣5,解得x≤2,∴数轴表示的正确方法为C.故选:C.7.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°【考点】圆周角定理;平行线的性质.【分析】连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.8.如图,抛物线y=x2﹣2x﹣3与x轴交于点A、D,与y轴交于点C,四边形ABCD是平行四边形,则点B的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣3)C.(﹣3,﹣4)D.(﹣4,﹣4)【考点】抛物线与x轴的交点;平行四边形的性质.【分析】首先利用抛物线与坐标轴的交点坐标求出A、D、C的坐标,再利用平行四边形的性质得出B点坐标.【解答】解:令y=0,可得x=3或x=﹣1,∴A点坐标为(﹣1,0);D点坐标为(3,0);令x=0,则y=﹣3,∴C点坐标为(0,﹣3),∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AD=BC=4,∴B点的坐标为(﹣4,﹣3),故选A.二、填空题:每小题3分,共18分.9.﹣5的相反数是5.【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故答案为:5.10.我市参加中考的考生人数约为43400人,将43400用科学记数法表示为 4.34×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5100000有7位,所以可以确定n=7﹣1=6.【解答】解:43400=4.34×104.故答案为4.34×104.11.如图,在△ABC中,已知DE∥BC,,则△ADE与△ABC的面积比为4:25.【考点】相似三角形的判定与性质.【分析】根据题意可得△ADE∽△ABC,然后根据面积比为相似比的平方求解.【解答】解:在△ABC中,∵DE∥BC,∴△ADE∽△ABC,∵,∴S△ADE:S△ABC=4:25.故答案为:4:25.12.如图,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG,若S△ABC=6,则图中阴影部分面积是2.【考点】三角形的面积.【分析】根据三角形的中线的性质进行解答即可.【解答】解:∵S△ABC=6,∴S△ABD=3,∵AG=2GD,∴S△ABG=2,故答案为:213.如果将抛物线y=x2+2x﹣1沿y轴向上平移,使它经过点A(1,5),那么所得新抛物线的解析式是y=x2+2x+2.【考点】二次函数图象与几何变换.【分析】先把解析式配成顶点式得到抛物线的顶点坐标为(﹣1,﹣2),再利用点平移的坐标规律,把点(﹣1,﹣2)向上平移m个单位所得对应点的坐标为(﹣1,﹣2+m),则根据顶点式写出平移的抛物线解析式为y=(x+1)2﹣2+m,然后把A点坐标代入求出m的值即可得到平移后得到的抛物线的解析式.【解答】解:因为y=y=x2+2x﹣1=(x+1)2﹣2,所以抛物线的顶点坐标为(﹣1,﹣2),点(﹣1,﹣2)向上平移m个单位所得对应点的坐标为(﹣1,﹣2+m),所以平移的抛物线解析式为y=(x+1)2﹣2+m,把A(1,5)代入得4﹣2+m=5,解得m=3,所以平移后的抛物线解析式为y=(x+1)2+1,即y=x2+2x+2.故答案为y=x2+2x+2.14.如图,△ABC是等边三角形,AC=9,以点A为圆心,AB长为半径画,若∠1=∠2,则的长为3π(结果保留π).【考点】弧长的计算.【分析】先由等边三角形的性质得出AB=AC=9,∠CAB=60°.再由∠1=∠2得到∠CAB=∠DAE=60°,然后根据弧长公式解答即可.【解答】解:∵△ABC是等边三角形,AC=9,∴AB=AC=9,∠CAB=60°.∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE=60°,∴弧DE的长为=3π,故答案为:3π.三、解答题:本大题共10小题,共78分.15.计算:.【考点】二次根式的混合运算.【分析】先进行乘法运算,然后把化简后合并即可.【解答】解:原式=2+2+5=4+5.16.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【考点】二元一次方程组的应用.【分析】设茶壶的单价为x元,茶杯的单价为y元,根据题意可得,1个茶壶和10个茶杯共花去220元,茶壶的单价比茶杯的单价的4倍还多10元,据此列方程组求解.【解答】解:设茶壶的单价为x元,茶杯的单价为y元,由题意得,,解得:.答:茶壶的单价为70元,茶杯的单价为15元.17.已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根,求k的取值范围.【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根,∴△=(﹣6)2﹣4(k+3)=24﹣4k>0,解得:k<6.18.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号数字之和是奇数的情况,再利用概率公式即可求得答案即可.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的乒乓球标号数字之和是奇数有4种情况,∴两次摸出的乒乓球标号数字之和是奇数概率=.19.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.【考点】等腰三角形的性质;三角形内角和定理.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.20.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E,且BE=6cm,求AB的长.【考点】切线的性质.【分析】连接OD,利用切线的性质解答即可.【解答】解:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴∠ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE=6(cm).21.如图是某种货车自动卸货时的示意图,AC是水平汽车底盘,OB是液压举升杠杆,货车卸货时车厢AB与底盘AC的夹角为30°,举升杠杆OB与底盘AC的夹角为75°,已知O 与A的距离为4米,试求货车卸货时举升杠杆OB的长(,精确到0.01米).【考点】解直角三角形的应用.【分析】过点O作OE⊥AB于E,先在Rt△AEO中求出EO,再在Rt△EBO中求出OB即可解决问题.【解答】解:过点O作OE⊥AB于E,∵∠BOC=75°,∠A=30°,∴∠ABO=45°,在Rt△AEO中,OE=OA=2,在Rt△BEO中,∠ABO=∠BOE,∴BE=EO,∴OB=OE,∴OB=2×≈2.83(米),答:货车卸货时举升杠杆OB的长约为2.83米.22.感知:如图1,已知正方形ABCD,以AD、CD为一边向外作等边△ADE和等边△CDF,连接BE、EF、FB,易证△BEF是等边三角形(不用证明);探究:将感知条件中的正方形ABCD改为矩形ABCD,如图2,其他条件不变,那么△BEF 是等边三角形吗?说明理由;应用:将感知条件中的正方形ABCD改为▱ABCD,如图3,其他条件不变,则∠BEF=60度.【考点】四边形综合题.【分析】感知:利用SAS即可证明两三角形的全等,再证明△ABE≌△DFE,可得△BEF 是等边三角形;探究:求出∠BAE,∠EDF,∠FCB的度数,继而证明△ABE≌△CFB≌△DFE,即可得出结论;应用:证明方法与探究完全相同,证出结论即可.【解答】解:感知:证明:∠BAE=90°+60°=150°,∠FCB=90°+60°=150°,在△ABE和△CFB中,,∴△ABE≌△CFB(SAS).∠FDE=360°﹣60°﹣60°﹣90°=150°,在△ABE和△DFE中,,∴△ABE≌△DFE(SAS),∴BE=FE,又∵△ABE≌△CFB,∴BE=FB=FE,∴△BFE是等边三角形;探究:△BEF是等边三角形,理由如下:∠BAE=90°+60°=150°,∠FCB=90°+60°=150°,∠FDE=360°﹣60°﹣60°﹣90°=150°,在△ABE和△CFB中,,∴△ABE≌△CFB(SAS),在△ABE和△DFE中,,∴△ABE≌△DFE(SAS),∴△ABE≌△CFB≌△DFE,∴BE=EF=FB,∴△BEF是等边三角形;应用:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠BAD=∠BCD,∵△ADE和△CDF是等边三角形,∴AE=AD=BC,AB=DC=CF,在△ABE与△FCB中,,∴△ABE≌△FCB,∴BE=BF,∵∠BAE=∠BAD+∠EAD=∠BAD+60°,∠EDF=360°﹣∠ADC﹣∠ADE﹣∠CDF=∠BAD+60°,∴∠EDF=∠BAE,在△ABE与△EDF中,,∴△ABE≌△EDF,∴BE=EF,∠AEB=∠DEF,∴∠BEF=60.故答案为:60°.23.如图1,抛物线y1=﹣x2+a与x轴交于A、D两点,与y轴交于点B,点C(2,﹣3)在抛物线y2的图象上.(1)求抛物线y1的函数表达式及点B的坐标;(2)如图2,将抛物线y1沿x轴向右平移后得抛物线y2,且抛物线y2的图象过点C,抛物线y2与x轴交于F、G两点,顶点为E.①请直接写出抛物线y2的函数表达式及点E的坐标;②在A、B、C、D、E、F、G中,连接任意三点,能构成等腰直角三角形的共有5个,分别是△ABD、△EFG、△ACE、△BCF、△DCG.【考点】二次函数综合题.【分析】(1)根据抛物线y1=﹣x2+a与x轴交于A、D两点,与y轴交于点B,点C(2,﹣3)在抛物线y1的图象上,可以求得抛物线y1的函数表达式及点B的坐标;(2)①根据抛物线y1沿x轴向右平移后得抛物线y2,且抛物线y2的图象过点C,顶点为E,可以得到抛物线y2的函数表达式及点E的坐标;②先求出点A、B、C、D、E、F、G各点的坐标,然后即可得到能够成等腰直角三角形的个数,通过计算可以说明哪几个三角形是等腰直角三角形.【解答】解:(1)把点C(2,﹣3)代入y1=﹣x2+a,得﹣3=﹣22+a,解得,a=1,即y1=﹣x2+1,当x=0时,y1=1,即点B的坐标为(0,1);(2)①抛物线y2的函数表达式为:,点E的坐标为(4,1);理由:设,∵点C(2,﹣3)在抛物线y2的图象上,∴﹣3=﹣(2+b)2+1,解得,b=﹣4,即,∴点E的坐标为(4,1);(3)当y1=0代入y1=﹣x2+1,得x=﹣1或x=1,将x=0代入y1=﹣x2+1,得y1=1,∴点D为(﹣1,0),点A为(1,0),点B为(0,1),将y2=0代入,得x=3或x=5,将x=4代入,得y2=1,∴点F(3,0),G为(5,0),E为(4,1),∴BD=,AB=,AD=2,∵,∴△ABD是等腰直角三角形;∴EF=,EG=,FG=2,,∵,∴△EFG是等腰直角三角形;∵A为(1,0),C为(2,﹣3),E为(4,1),∴AC=,AE=,CE=,∵,∴△ACE是等腰直角三角形;∵点B为(0,1),C为(2,﹣3),点F(3,0),∴BC=,BF=,CF=,∵,∴△BCF是等腰直角三角形;∵点D为(﹣1,0),C为(2,﹣3),G为(5,0),∴DC=,DG=,CG=,∵,∴△CDG是等腰直角三角形;故答案为:5,△ABD、△EFG、△BFC、△ACE、△CDG.24.如图,在菱形ABCD中,AB=6,∠ABC=60°,动点E、F同时从点B出发,其中点E 从点B向点A以每秒1个单位的速度运动,点F从点B出发沿B﹣C﹣A的路线向终点以每秒2个单位的速度运动,以EF为边向上(或向右)作等边三角形EFG.AH是△ABC中BC边上的高,两点运动时间为t秒,△EFG和△AHC有重合部分时,重合部分图形的周长为L.(1)用含t的代数式表示线段CF的长;(2)求点G落在AC上时t的值;(3)求L关于t的函数关系式.【考点】四边形综合题.【分析】(1)由菱形的性质得出BC=AB=6得出CF=BC﹣BF=6﹣2t即可;(2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GF=EF=BF•sin60°=t,证出∠GFC=90°,由三角函数求出CF==t,由BF+CF=BC得出方程,解方程即可;(3)分三种情况:①当<t≤2时,根据梯形的周长公式即可得出结果;②当2<t≤3时,由①的结果容易得出结论;③当3<t<6时,由①的结果容易得出结论.【解答】解:(1)根据题意得:BF=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CF=BC﹣BF=6﹣2t;故答案为:6﹣2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GFE=60°,GF=EF=BF•sin60°=t,∵EF⊥AB,∴∠BFE=90°﹣60°=30°,∴∠GFB=90°,∴∠GFC=90°,∴CF===t,∵BF+CF=BC,∴2t+t=6,解得:t=2;(3)当<t≤2时,如图2,L=2t+(2t﹣3)=﹣2,当2<t≤3时,如图3所示:L=t+(6﹣t)×+[6﹣(6﹣t)﹣2(6﹣2t)]+(6﹣2t)=+7﹣9,当3<t<6时,如图4,L=(6﹣t)+×(6﹣t)+(6﹣t)×=﹣+7+9.8月27日。
2009年长春市中考数学试题及答案-推荐下载
乙:函数的图象经过第三象限;
14.如图 10,在⊙O 中,已知∠ACB=∠CDB=60°,AC=3,则△ABC 的周长是
答案请填在上面答题表二内
.
A D
B
图 10
O
C
得分
18 16 14 12 10
8 6 4 2 0
15.小洪和小斌两人参加体育项目训练,近期的 5 次测试成绩如图 11 所示,根据分析,
图 图6
7 10.图 7 所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同
时落在偶数上的概率是
得分 阅卷人
题号
答案
5
A.
25
11
6
B.
25
4
5
1
10
C.
25
二、填空题(本题有 5 小题,每题 3 分,共 15 分.请 把答案填在答题表二内相应的题号下.)
12
答题表二
13
11.图 8 是 2004 年 6 月份的日历,如图中那样,用一个圈竖着圈住 3 个数.如果被圈
C.x≥-1 D.x>1
C.
C.众数
C.60°
D
E
A
x° y°
B
30 °
图5
图3
D.
D.加权平均数
D.100°
F
D
C
2x 90
x
2
y
15
9.图 6 是深圳市南山区地图的一角,用刻度尺、量角器测量可知,深圳大学( ) 大约在南山区政府(★)的什么方向上
A.南偏东 80° B.南偏东 10° C.北偏西 80° D.北偏西 10°
A.长方体 B. 圆锥体 C.立方体 D.圆柱体
长春市中考数学试卷及答案解析(word版)
·2018·吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣ B.C.﹣5 D.52.(3.00分)长春市奥林匹克公园即将于·2018·年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.(3.00分)下列立体图形中,主视图是圆的是()A. B.C.D.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B 在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:3.(填“>”、“=”或“<”)10.(3.00分)计算:a2•a3=.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m 是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.·2018·吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣ B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)长春市奥林匹克公园即将于·2018·年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)下列立体图形中,主视图是圆的是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B 在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.(3.00分)计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为2.(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEF D周长的最小值为20.【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为3.【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【解答】解:列表如下:由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON 为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.【点评】本题考查了切线的性质、圆周角定理、弧长公式等知识点能熟练地运用知识点进行推理和计算是解此题的关键.20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是1立方米,从打开输入口到关闭输出口共用的时间为11分钟.【分析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5分钟;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】本题为一次函数实际应用问题,考查了一次函数的图象性质以及在实际问题中比例系数k代表的意义.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为2.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9.【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,=CG×ME=×6×3=9,∴S四边形CEGM故答案为9.【点评】此题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,判断出CG=BE是解本题的关键.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A 出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=2,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×=t,∴CD=AC﹣AD=2﹣t(0<t<2);(2)在Rt△PDQ中,∵∠DPC=60°,∴∠PQD=30°=∠A,∴PA=PQ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD +DQ=AC ,∴2×t=2,∴t=1;(3)当0<t ≤1时,S=S △PDQ =DQ ×DP=×t ×t=t 2; 当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=2t ﹣2=2(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan ∠CQE=2(t ﹣1)×=2(t ﹣1),∴S=S △PDQ ﹣S △ECQ =×t ×t ﹣×2(t ﹣1)×2(t ﹣1)=﹣t 2+4t ﹣2,∴S=;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=PQ=AP=t ,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t ,∴AP +PF=2t +2t=2,∴t=;当PQ 的垂直平分线过AC 的中点M 时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m 是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.【分析】(1)求出点B坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE的长即可解决问题;(3)由G2与矩形ABCD恰好有两个公共点,推出抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可;【解答】解:(1)由题意E(0,1),A(﹣1,1),B(1,1)把B(1,1)代入y=﹣x2+mx+1中,得到1=﹣+m+1,∴m=.(2)∵抛物线G1的对称轴x=﹣=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,∴m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,m2+1)时,若m2+1=,解得m=1或﹣1(舍弃),若m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1)是最高点时,,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.【点评】本题考查二次函数综合题、矩形的性质、待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用数形结合的思想解决问题,属于中考压轴题.。
2010年吉林省长春市数学中考真题(word版含答案)
2010年长春市初中生学业考试数 学 试 题本试卷包括七道大题,共26小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.15的相反数为 (A )15. (B )15-. (C )5. (D )5-.2.下列几何体中,主视图为右图的是(A ) (B ) (C ) (D ) 3.不等式215x -≤的解集在数轴上表示为(A ) (B ) (C ) (D )4.今年6月11日,我省九个地区的最高气温与最低气温如图所示,则这九个地区该天最高气温....的众数为 (A )27℃. (B )29℃. (C )30℃. (D )31℃.5.端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师购买荷包x 个,五彩绳y 个,根据题意,下面列出的方程组正确的是 (A )203472x y x y +=⎧⎨+=⎩,. (B )204372x y x y +=⎧⎨+=⎩,.(C )724320x y x y +=⎧⎨+=⎩,. (D )723420x y x y +=⎧⎨+=⎩,.6.如图,ABC △中,90C ∠=°,40B ∠=°,AD 是角平分线,则ADC ∠的度数为(A )25° (B )50° (C )65° (D )70°(第4题)(第2题)7.如图,锐角ABC △的顶点A B C 、、均在O ⊙上,20OAC ∠=°,则B ∠的度数为(A )40°. (B )60°. (C )70°. (D )80°.8.如图,平面直角坐标中,OB 在x 轴上,90ABO ∠=°,点A 的坐标为(12),,将A O B △绕点A 逆时针旋转90°,点O 的对应C 恰好落在双曲线(0)ky x x=>上,则k 的值为 (A )2. (B )3. (C )4. (D )6.二、填空题(每小题3分,共18分) 9.因式分解:2a a -= .10小的正整数,这个正整数是 (写出一个即可).11.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a 元,则该班学生共捐款 元(用含有a 的代数式表示). 12.如图,双曲线111(0)k y k x=>与直线222(0)y k b k =+>的一个交点的横坐标为2.当3x =时,1y 2y (填“>”“<”或“=”).13.如图,P ⊙与x 轴切于点O ,点P 的坐标为(01),,点A 在P ⊙上,且在第一象限,120APO ∠=°.P ⊙沿x 轴正方向滚动,当点A 第一次落在x 轴上时,点A 的横坐标为(结果保留π).14.如图,抛物线2(0)y ax c a =+<交x 轴于点G F 、,交y 轴于点D ,在x 轴上方的抛物线上有两点B E 、,它们关于y 轴对称,点G B 、在y 轴左侧.BA OG ⊥于点A ,BC OD ⊥于点C ,四边形OABC 与四边形ODEF 的面积分别为6和10,则ABG △与BCD △的面积之和为 .三、解答题(每小题5分,共20分)15.先化简,再求值:2(1)21x x +-+,其中x =(第6题) (第7题) (第8题)(第12题) (第13题) (第14题)A16.一个不透明的口袋中装有红、黄、白小球各1个,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色后放回.再随机摸出一个小球.请你用画树形图(或列表)的方法.求两次摸出的小球颜色相同的概率.17.第16届亚运会将在中国广州举行.小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张.乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格.18.如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D E 、,量出半径5cm OC =,弦8cm DE =,求直尺的宽.四、解答题(每小题6分,共12分)19.(1)在图①中,以线段m 为一边画菱形,要求菱形的顶点均在格点上.(画一个即可)(3分)(2)在图②中,平移a b c 、、中的两条线段,使它们与线段n 构成以n 为一边的等腰直角三角形.(画一个即可)(3分)图① 图②20.如图,望远镜调节好后,摆放在水平地面上.观测者用望远镜观测物体时,眼睛(在A 点)到水平地面的距离91cm AD =,沿AB 方向观测物体的仰角33α=°,望远镜前端(B 点)与眼睛(A 点)之间的距离153cm AB =,求点B 到水平地面的距离BC 的长(精确到0.1cm ).【参考数据:sin 330.54=°,cos330.84=°,tan 330.65=°】五、解答题(每小题6分,共12分)21.如图,四边形ABCD 与四边形DEFG 都是矩形,顶点F 在BA 的延长线上,边DG 与AF 交于点H ,4AD =,5DH =,6EF =,求FG 的长.22.小明参加卖报纸的社会实践活动.他调查了一个报亭某天A 、B 、C 三种报纸的销售量,并把调查结果绘制成如下条形统计图.(1)求该天A 、C 报纸的销售量各占这三种报纸销售量之和的百分比.(2分) (2)请绘制该天A 、B 、C 三种报纸销售量的扇形统计图.(2分)(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份.(2分)六、解答题(每小题7分,共14分)23.如图,ABC △中,AB AC =,延长BC 至D ,使CD BC =.点E 在边AC 上,以CE CD 、为邻边作CDFE .过点C 作CG AB ∥交EF 于点G ,连接BG DE 、. (1)ACB ∠与GCD ∠有怎样的数量关系?请说明理由.(3分) (2)求证:BCG DCE △≌△.(4分)24.如图,梯形ABCD 中,AB DC ∥,904530ABC A AB ∠=∠==°,°,,BC x =,其中1530x <<.作D E A B ⊥于点E ,将AD E △沿直线DE 折叠,点A 落在F 处,DF 交BC 于点G .(1)用含有x 的代数式表示BF 的长.(2分)(2)设四边形DEBG 的面积为S ,求S 与x 的函数关系式.(3分) (3)当x 为何值时,S 有最大值,并求出这个最大值.(2分)【参考公式:二次函数2y ax bx c =++图象的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,】七、解答题(每小题10分,共20分)25.如图①,A 、B 、C 三个容积相同的容器之间有阀门连接.从某一时刻开始,打开A 容器阀门,以4升/分的速度向B 容器内注水5分钟,然后关闭,接着打开B 容器阀门,以10升/分的速度向C 容器内注水5分钟,然后关闭.设A 、B 、C 三个容器内的水量分别为A B C y y y 、、(单位:升),时间为t (单位:分).开始时,B 容器内有水50升.A C y y 、与t 的函数图象如图②所示.请在010t ≤≤的范围内解答下列问题:(1)求3t =时,B y 的值.(2分)(2)求B y 与t 的函数关系式,并在图②中画出其函数图象.(6分) (3)求A B C 234y y y =∶∶∶∶时t 的值.(2分)26.如图①,在平面直角坐标系中,等腰直角AOB △的斜边OB 在x 轴上,顶点A 的坐标为(33),,AD 为斜边上的高.抛物线22y ax x =+与直线12y x =交于点O C 、,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE y ∥轴.交射线OA 于点E .设点P 的横坐标为m ,以A B D E 、、、为顶点的四边形的面积为S . (1)求OA 所在直线的解析式.(1分) (2)求a 的值.(2分)(3)当3m ≠时,求S 与m 的函数关系式.(4分)(4)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中32RN =.直接写出矩形RQMN 与AOB △重叠部分为轴对称图形时m 的取值范围.(3分)图① 图②图① 图②2010年长春市初中毕业生学业考试数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.B2.C3.A4.D5.B6.C7.C8.B 二、填空题(每小题3分,共18分)9.()1a a - 10.1(答案不唯一) 11.32005a - 12.< 13.2π314. 4 三、解答题(每小题5分,共20分)15.解:原式=2221212x x x x ++-+=+ ···································································· (3分)当x ==224+=. ············································································· (5分) 16.解:或········································································································································· (3分)P ∴(两次摸出的小球颜色相同)=13. ········································································· (5分)17.解:设甲种门票的价格为x 元. 根据题意,得28030021.5x x-=. ······················································································ (3分) 解得40x =.经检验,40x =是原方程的解,且符合题意. 答:甲种门票的价格为40元. ························································································ (5分) 18.解:过点O 作OM DE ⊥于点M ,连接OD .12DM DE ∴=. 8DE =, 4DM ∴=. ··········································································· (3分) 在Rt ODM △中,5OD OC -=,3OM ∴=.∴直尺的宽度为3cm. ·························································· (5分) 四、解答题(每小题6分,共12分)19.解:(1)以下答案供参考:········································································································································· (3分)(2)以下答案供参考:········································································································································· (6分) 20.解:过点A 作AE BC ⊥于点E . 在Rt ABE △中,sin BEABα=. ····················································································· (2分)153AB =α=33︒,. sin 331530.5482.62BE AB ∴=︒=⨯=·. ··································································· (4分) BC BE EC BE AD ∴=+=+=82.62+91=173.62≈173.6(cm ).答:点B到水平地面的距离BC 的长约为173.6cm. ······················································ (6分)五、解答题(每小题6分,共12分)21.解:四边形ABCD 和四边形DEFG 为矩形, 9090DAF DAB G DG EF ∴∠=∠=︒∠=︒=,,. 65EF DH ==,.651GH DG DH EF DH ∴=-=-=-=. 在Rt ADH △中,4AD =,3AH ∴==.90G DAH FHG DHA ∠=∠=︒∠=∠,FGH DAH ∴△∽△. ··································································································· (4分) FG GH DA AH∴=. 14433GH DA FG AH ⨯∴===·. ······················································································· (6分)22.解:(1)46100%20%.4611569⨯=++ 69100%30%4611569⨯=++.∴该天A C 、报纸的销售量各占这三种报纸销售量之和的20%和30% ······················ (2分) (2)A B C 、、三种报纸销售量的扇形统计图如图所示:········································································································································· (4分) (3)10020%20⨯=(份), 10050%50⨯=(份), 10030%30⨯=(份).∴小明应购进A 种报纸20份,B 种报纸50份,C 种报纸30分.······························ (6分) 六、解答题(每小题7分,共14分) 23.(1)解:ACB GCD ∠=∠, 理由如下:.AB AC ABC ACB CG AB ABC GCD =∴∠=∠∴∠=∠,∥,..ACB GCD ∴∠=∠ ······································································································· (3分) (2)证明:四边形CDFE 是平行四边形,...EF CD ACB GEC EGC GCD ACB GCD GEC EGC EC GC ∴∴∠=∠∠=∠∠=∠∴∠=∠∴=∥.,,A B C 、、三种报纸售量的扇形统计图GCD ACB GCB ECD BC DC ∠=∠∴∠=∠=,.,.BCG DCE ∴△≌△ ····································································································· (7分) 24.解:(1)由题意,得30EF AE DE BC x AB =====,, 230BF x ∴=-. ············································································································ (2分) (2)4590F A CBF ABC ∠=∠=︒∠=∠=︒,, 45BGF F ∴∠=∠=︒. 230BG BF x ∴==-.221122DEF GBF S S S DE BF ∴=-=-△△=()221123022x x -- 23604502x x =-+-. ···································································································· (5分)(3)()2233604502015022S x x x =-+-=--+.301520302a =-<<<, ,∴当20x =时,S 有最大值,最大值为150. ······························································· (7分) 七、解答题(每小题10分,共20分)25.解:(1)当3t =时,504362B y =+⨯=. ····························································· (2分) (2)根据题意,当05t ≤≤时,504B y t =+.当510t <≤,()7010510120B y t t =--=-+.················································································· (6分) B y 与t 的函数图象如图②所示. ······················································································ (8分) (3)根据题意,设234A B C y x y x y x ===,,.234506070x x x ++=++.图②解得20x =.240360480A B C y x y x y x ∴======,,.由图象可知,当40A y =时,510t ≤≤,此时101201020B C y t y t =-+=+,.1012060t ∴-+=. 解得6t =.102080t +=. 解得6t =.∴当6t =时,234A B C y y y =∶∶∶∶ ·········································································· (10分) 26.解:(1)设直线OA 的解析式为y kx =.点A 的坐标为(3,3).33k ∴=. 解得1k =.∴直线OA 的解析式为y x =. ························································································ (1分) (2)当6x =时,116322y x ==⨯=. C ∴点的坐标为(6,3),抛物线过点C (6,3)33626a ∴=+⨯. 解得14a =-.················································································· (3分) (3)根据题意,()()3060D B ,,,.点P 的横坐标m ,PE y ∥轴交OA 于点E ,()E m m ∴,.当03m <<时,如图①,OAB OED S S =△△-S =1136339222m m ⨯⨯-⨯=-+. 当3m >时,如图②, 1163322OBC ODAS S m ==⨯⨯-⨯⨯△△-S 93.2m =- ······················································································································· (7分) (4)3m =94m =或34m <≤. ··································································· (10分) 提示:如图③,RQ RN =时,3m =图①图②如图④,AD 所在的直线为矩形RQMN 的对称轴时,94m =, 如图⑤,RQ 与AD 重合时,重叠部分为等腰直角三角形,3m =;如图⑥,当点R 落在AB 上时,4m =. 所以34m <≤.图③ 图④图⑤ 图⑥。
2009年中考数学试题参考答案
2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。
2009中考数学题及答案
2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。
2009年145套中考试卷精品分类36.其他
36.其他一.选择题1.(2009年内蒙古包头)已知下列命题: ①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个【答案】B【解析】本题考查命题的真假性,是易错题,本题要求的是原命题与逆例题的真假性,学生易出现只判断原命题的真假,也就是审题不认真。
①中0,0;a b >>则0a b +>显然原命题正确,但其逆命题不正确,如a=-1,b=2满足0a b +>,但不满足a>0,b>0.②中当1,1a b ==-满足条件a b ≠,但不满足22a b ≠,显然原命题不正确,③的原命题和逆命题是角平分线的性质和判定,④的原命题和逆命题是平行四边形的性质和判定。
所以符合条件的只有③和④,故选 B 。
2.(2009陕西省太原市)在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能...是下列数中的( )A .5B .4C .3D .1【关键词】几何体 【答案】D解析:本题考查几何体的翻转,第一种,当骰子向右翻滚一次1点朝下,6点朝上,继续向右翻滚一次2点朝下,5点朝上,继续向外翻滚一次,3点朝下,4点朝上,同理可以得到其它滚法得到的结论,所以骰子朝上的点数不可能是1,故选D .3.(2009年贵州黔东南州)下列图形中,面积最大的是( )学科网 A .对角线长为6和8的菱形; B .边长为6的正三角形;学科网 C .半径为3的圆; D .边长分别为6.8.10的三角形; 【关键词】面积问题 【答案】A4.(2009年贵州黔东南州)方程0|84|=--+-m y x x ,当0>y 时,m 的取值范围是( )A .10<<mB .2≥mC .2<mD .2≤m【关键词】方程.不等式.非负数的性质综合应用 【答案】C5.(2009年杭州市)某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当2k ≥时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点的坐标为( )A .(5,2009)B .(6,2010)C .(3,401)D (4,402) 【关键词】 【答案】D6.(2009年娄底)下列命题,正确的是 A .如果|a |=|b |,那么a=bB.等腰梯形的对角线互相垂直C .顺次连结四边形各边中点所得到的四边形是平行四边形D .相等的圆周角所对的弧相等【关键词】绝对值的概念.等腰梯形的性质.四边形的判定.等角对等弧 【答案】C7.(2009丽水市)如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是( ) A. π24 B. π12 C.π6 D. 12【关键词】立体几何,圆锥的侧面积 【答案】B8.(2009烟台)视力表对我们来说并不陌生。
2007年吉林省长春市数学中考真题(word版含答案)
长春市2007年初中毕业生学业考试数 学 试 题本试题卷包括七道大题,共26小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试题卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题卷上答题无效.一、选择题(每小题3分,共24分) 1.6-的相反数是( ) A .6-B .6C .16-D .162.方程组34231x y x y +=⎧⎨-=-⎩,的解是( )A .11.x y =-⎧⎨=-⎩,B .11.x y =⎧⎨=⎩,C .22.x y =-⎧⎨=⎩,D .21.x y =-⎧⎨=-⎩,3.某地区五月份连续6天的最高气温依次是:28,25,28,26,26,29(单位:℃),则这组数据的中位数是( ) A .26℃ B .26.5℃ C .27℃ D .28℃ 4.如图,小手盖住的点的坐标可能为( )A .(52),B .(63)-,C .(46)--,D .(34)-,5.如图,已知线段8cm AB =,P 与Q 的半径均为1cm .点P Q ,分别从A B ,出发,在线段AB 上按箭头所示方向运动.当P Q ,两点未相遇前,在下列选项中,P 与Q 不.可能..出现的位置关系是( ) A .外离 B .外切 C .相交 D .内含6.一根单线从钮扣的4个孔中穿过(每个孔只穿过一次),其正面情形如右图所示,下面4个图形中可能是其背面情形的是( )(第4题)yxO(第5题)A BQP (第6题)A .B .C .D .7.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( ) A .34224x ⨯+< B .34224x ⨯+≤ C .32424x +⨯≤ D .32424x +⨯≥8.如图,AOB △中,30B =∠.将AOB △绕点O 顺时针旋转52得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( ) A .22B .52C .60D .82二、填空题(每小题3分,共18分) 9.计算:182+= .10.将下面四张背面都是空白的卡片混在一起,在看不到正面图案的情况下,从中随机选取一张,这张卡片上的图案恰好为2007年长春亚冬会吉祥物“鹿鹿”的概率是 . 11.如图,下面的图案由三个叶片组成,绕点O 旋转120后可以和自身重合,若每个..叶片的面积为24cm ,AOB ∠为120,则图中阴影部分的面积之和为 2cm .12.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .13.在二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如下表:x2- 1- 0 1 2 3 4 y721-2-m27则m 的值为 .14.如图,1∠的正切值等于 .(第8题)AA 'BCOB '(第10题) (第11题) A O B (第12题) AB CD EF l三、解答题(每小题5分,共20分)15.先化简,再求值:(2)(2)(1)x x x x +---,其中1x =-.16.如图,在ABC △中,AB AC =,D 是BC 的中点,连接AD .DE AB ⊥,DF AC ⊥,E F ,是垂足.图中共有多少对全等三角形?请直接用“≌”符号把它们分别表示出来(不要求证明).17.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.18.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(3分) (2)摸出的两个球上数字之和为多少时的概率最大?(2分)四、解答题(每小题6分,共12分)19.如图,Rt ABC △中,90C =∠,4AC =,3BC =,以ABC △的一边为边画等腰三角形,使它的第三个顶点在ABC △的其他边上.请在图①,图②,图③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,并在图中标明所画等腰三角(第14题)yO x1 1223 3 1A B C DE F形的腰长(不要求尺规作图).20.小刚有一块含有30角的直角三角板,他想测量其短直角边的长度,而手中另外只有一个量角器,于是他采用了如下的方法,并获得了相关数据:第一步,他先用三角板标有刻度的一边测出量角器的直径AB 的长度为9cm ;第二步,将三角板与量角器按如图所示的方式摆放,并量得BOC ∠为80(O 为AB 的中点).请你根据小刚测得的数据,求出三角板的短直角边AC 的长.(参考数据:sin800.98=,cos800.17=,tan80 5.67=;sin 400.64=,cos 400.77=,tan 400.84=,结果精确到0.1cm )五、解答题(每小题6分,共12分) 21.网瘾低龄化问题已引起社会各界的高度关注.有关部门在全国范围内对12~35岁的网瘾人群进行了抽样调查.下图是用来表示在调查的样本中不同年龄段的网瘾人数的,其中30~35岁的网瘾人数占样本总人数的20%.(1)被抽样调查的样本总人数为 人.(2分)图① A B C图②A BC图③ABCA CO B 网瘾人数(人) 750 700 650600 550 500 450 0600576 480 12~17 18~23 24~29 30~35 年龄(岁)(2)请把统计图中缺失的数据、图形补充完整.(2分)(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~17岁的网瘾人数约有多少人?(2分)22.在北方冬季,对某校一间坐满学生、门窗关闭的教室中2CO 的总量进行检测,部分数据如下:教室连续使用时间x (分)5 10 15 20 2CO 总量3(m )y0.61.11.62.1经研究发现,该教室空气中2CO 总量3(m )y 是教室连续使用时间x (分)的一次函数. (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围).(2分)(2)根据有关资料推算,当该教室空气中2CO 总量达到36.7m 时,学生将会稍感不适,请通过计算说明,该教室连续使用多长时间学生将会开始稍感不适?(2分)(3)如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室空气中2CO 的总量减少到30.1m ,求开门通风时教室空气中2CO 平均每分钟减少多少立方米?(2分)六、解答题(每小题7分,共14分)23.如图①,将一组对边平行的纸条沿EF 折叠,点A B ,分别落在A B '',处,线段FB '与AD 交于点M .(1)试判断MEF △的形状,并证明你的结论.(3分) (2)如图②,将纸条的另一部分CFMD 沿MN 折叠,点C D ,分别落在C D '',处,且使MD '经过点F ,试判断四边形MNFE 的形状,并证明你的结论.(3分) (3)当BFE =∠ 度时,四边形MNFE 是菱形.(1分)图① A B C D E F M A ' B ' 图② A B C D E F M A ' B ' C ' D ' N24.如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过A 作x 轴的平行线,交函数2(0)y x x =-<的图象于B ,交函数6(0)y x x =>的图象于C ,过C 作y 轴的平行线交BD的延长线于D .(1)如果点A 的坐标为(02),,求线段AB 与线段CA 的长度之比.(3分)(2)如果点A 的坐标为(0)a ,,求线段AB 与线段CA 的长度之比.(3分) (3)在(2)的条件下,四边形AODC 的面积与 .(1分)七、解答题(每小题10分,共20分)25.如图①,在Rt ABC △中,90C =∠,边BC 的长为20cm ,边AC 的长为h cm ,在此三角形内有一个矩形CFED ,点D E F ,,分别在AC AB BC ,,上,设AD 的长为cm x ,矩形CFED 的面积为y (单位:2cm ).(1)当h 等于30时,求y 与x 的函数关系式(不要求写出自变量x 的取值范围).(3分) (2)在(1)的条件下,矩形CFED 的面积能否为2180cm ?请说明理由.(3分) (3)若y 与x 的函数图象如图②所示,求此时h 的值.(4分)(参考公式:二次函数2y ax bx c =++,当2b x a =-时,244ac b y a-=最大(小)值.)26.如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴,y 轴于A B ,两点,A B C O D x y 6y x= 2y x =- 图①ABFC DE图②O 2(cm )y(cm)x10 150以OA OB ,为边作矩形OACB ,D 为BC 的中点.以(40)M ,,(80)N ,为斜边端点作等腰直角三角形PMN ,点P 在第一象限,设矩形OACB 与PMN △重叠部分的面积为S .(1)求点P 的坐标.(1分)(2)当b 值由小到大变化时,求S 与b 的函数关系式.(4分) (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQM ∠等于90,请直接写出....b 的取值范围.(2分)(4)在b 值的变化过程中,若PCD △为等腰三角形,请直接写出....所有符合条件的b 值.(3分)ABCDy O M PN x长春市2007年初中毕业生学业考试数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.B 3.C 4.D 5.D 6.A7.B8.D二、填空题(每小题3分,共18分) 9.4210.1411.4 12.1013.1-14.13三、解答题(每小题5分,共20分)15.原式2244x x x x =--+=-. ····················································································· 3分 当1x =-时,原式145=--=-. ······················································································ 5分 16.共有3对. ······················································································································ 1分 ABD ACD △≌△;ADE ADF △≌△;BDE CDF △≌△. ··································· 5分 (写对1对得2分,写对2对得3分,写对3对得4分)17.设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. ··································································································· 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. ·················································································· 5分 注:此题将方程列为30020020010x x -=⨯或其变式,同样得分. 18.(1)或2342 4 5 6 4678··········································································································· 2分 摸出的两个球上数字之和为5的概率为16. ········································································ 3分 (2)摸出的两个球上数字之和为6时概率最大. ······························································· 5分 四、解答题(每小题6分,共12分)19.提供以下方案供参考(每画对1个得2分)2 2 43 24 42 4 甲袋 乙袋 和 465768甲袋和 乙袋20.解法一:80BOC =∠,40BAC ∴=∠. ··················································································· 2分在Rt ABC △中,40BAC =∠,9AB =,9cos4090.77 6.9(cm)AC ∴=⨯=⨯≈.答:三角板的短直角边AC 的长约为6.9cm . ······································································ 6分 解法二:作OE AC ⊥于E .80BOC =∠,40BAC ∴=∠. ··················································································· 2分在Rt AOE △中,40BAC =∠, 4.5OA =,4.5cos 40AE ∴=⨯.29cos40 6.9(cm)AC AE ∴==⨯≈.答:三角板的短直角边AC 的长约为6.9cm . ······································································ 6分 五、解答题(每小题6分,共12分) 21.(1)2400. ······················································································································ 2分 (2)如图.··········································································································· 4分 (3)744200622400⨯=(万人), ∴12~17岁的网瘾人数约有62万人. ··················································································· 6分 22.(1)设(0)y kx b b =+≠,3 3442.52.5332.52.5258258网瘾人数(人)750 700 650600 550 500 450 0600 57648012~17 18~23 24~29 30~35 年龄(岁) 744由已知,得50.610 1.1.k b k b +=⎧⎨+=⎩,解得0.10.1.k b =⎧⎨=⎩,0.10.1y x ∴=+. ················································································································· 2分(2)在0.10.1y x =+中,当 6.7y =时,66x =(分).答:该教室连续使用66分钟学生将会开始稍感不适.························································ 4分 (3)当45x =时, 4.6y =,4.60.10.95-∴=(立方米). 答:开门通风时教室空气中2CO 的总量平均每分钟减少0.9立方米. ······························· 6分 六、解答题(每小题7分,共14分) 23.(1)MEF △为等腰三角形.证明:AD BC ∥,MEF EFB ∴=∠∠. MFE EFB =∠∠,MEF MFE ∴=∠∠. ME MF ∴=,即MEF △为等腰三角形. ········································································· 3分 (2)四边形MNFE 为平行四边形. 证法一:ME MF =,同理NF MF =, ME NF ∴=.又ME NF ∥,∴四边形MNFE 为平行四边形. ··························································· 6分 证法二:AD BC ∥,EMF MFN ∴=∠∠.又MEF MFE =∠∠,FMN FNM =∠∠, FMN MFE ∴=∠∠,MN EF ∴∥.∴四边形MNFE 为平行四边形.·························································································· 6分 注:其他正确证法同样得分. (3)60. 24.(1)(02)A ,,BC x ∥轴,(12)B ∴-,,(32)C ,.1AB ∴=,3CA =.∴线段AB 与线段CA 的长度之比为13. ············································································· 3分 (2)(0)A a ,,BC x ∥轴,2B a a ⎛⎫∴- ⎪⎝⎭,,6C a a ⎛⎫ ⎪⎝⎭,.2AB a ∴=,6CA a=. ∴线段AB 与线段CA 的长度之比为13. ············································································· 6分 (3)15. ································································································································ 7分 七、解答题(每小题10分,共20分) 25.(1)30AC =,AD x =,30CD x ∴=-. 四边形CFED 为矩形,DE BC ∴∥.DE AD BC AC ∴=,即2030DE x=. 23DE x ∴=.2(30)3y x x ∴=-.即22203y x x =-+. ············································································································ 3分(2)2224020431502443ac b a ⎛⎫⨯-⨯- ⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭, y ∴的最大值为150. 150180<,∴矩形CFED 的面积不能为2180cm . ················································································ 6分 (3)由图象可知,当10x =时,150y =. 当10x =时,10CD h =-,200DE h=, 200(10)150h h∴-=, 解得40h =.经检验40h =是方程的解. 40h ∴=. ···························································································································· 10分26.(1)作PK MN ⊥于K ,则122PK KM NM ===.6KO ∴=,(62)P ∴,. ······································································································· 1分(2)当02b <≤时,如图①,0S =. 当23b <≤时,如图②, 设AC 交PM 于H .24AM HA b ==-.21(24)2S b ∴=-. A B C D yO MPN x 图①图②ABCDyOM PN xH即22(2)S b =-. 或2288S b b =-+.当34b <<时,如图③, 设AC 交PN 于H . 82NA HA b ==-.22(4)4S b ∴=--+,或221628S b b =-+-.当4b ≥时,如图④,4S =. ··································································································································· 5分 (此问不画图不扣分)(3)051b <+≤. ···················································· 7分 (提示:以OM 为直径作圆,当直线1(0)2y x b b =-+>与此圆相切时,51b =+.)(4)b 的值为4,5,826±. ······························· 10分(提示:当PC PD =时,4b =.当PC CD =时,12b =(舍),25b =.当P D C D =时,826b =±.) (写对2个得1分,写对3个得2分,写对4个得3分)图③A BC Dy O MPN x H图④A BCD yO MPN x图⑤A B CD yOMPN xQ。
2009年吉林省中考数学试题(word版含答案)
吉林省2009年初中毕业生学业考试数 学 试 卷一、填空题(每小题2分,共20分)1.数轴上A 、B 两点所表示的有理数的和是 .2.计算25(3)a a ·= .3.为鼓励大学生创业,某市为在开发区创业的每位大学生提供货款150 000元,这个数据用科学记数法表示为 元.4.不等式23x x >-的解集为 .5.如图,点A 关于y 轴的对称点的坐标是 . 6.方程312x =-的解是 . 7.若a 5,2,0,b ab a b ==->+=且则 .8.将一个含有60°角的三角板,按图所示的方式摆放在半圆形纸片上,O 为圆心,则ACO ∠= 度.9.如图,OAB △的顶点B 的坐标为(4,0),把OAB △沿x 轴向右平移得到CDE △,如果1,CB =那么OE 的长为 .(第5题)0 1 2 3 A B (第1题)(第8题)B(第9题) C 34° B A(第10题)10.将一张矩形纸片折叠成如图所示的形状,则∠ABC = 度. 二、单项选择题(每小题3分,共18分)11.化简2244xy yx x --+的结果是( ) A .2x x + B .2x x - C .2y x + D .2y x -12.下列图案既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 13.下列几何体中,同一个几何体的主视图与俯视图不同的是( )A .B .C .D .14.A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ) A .2(1)313x x -+= B .2(1)313x x ++= C .23(1)13x x ++= D .23(1)13x x +-=15.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .中位数B .众数C .平均数D .极差16.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( ) A B C D .2cm 三、解答题(每小题5分,共20分)圆柱正方体 圆锥 球 60°P Q2cm(第16题)17.在三个整式2222,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.18.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率: (1) 两次取出小球上的数字相同;(2) 两次取出小球上的数字之和大于10.19.如图,,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.20.如图所示,矩形ABCD 的周长为14cm ,E 为AB 的中点,以A 为圆心,AE 长为半径画弧交AD 于点F .以C 为圆心,CB 长为半径画弧交CD 于点G .设AB x =cm ,BC y =cm ,当DF DG =时,求,x y 的值.G(第20题)(第19题)B D CFA郜E四、解答题(每小题6分,共12分)21.下图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为 ; (2)把两幅统计图补充完整.22.如图,⊙O 中,弦AB CD 、相交于AB 的中点E ,连接AD 并延长至点F , 使DF AD =,连接BC 、BF . (1)求证:CBE AFB △∽△;(2)当58BE FB =时,求CBAD的值.五、解答题(每小题7分,共14分)23.小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm )(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)(第22题)F B (第21题)冰箱 % % 35% 10% 电脑 电视机 热水器 洗衣机 注意..:将答案写在横线上 5%(第23题)C24.如图,反比例函数ky x=的图象与直线y x m =+在第一象限交于点62P (,),A B 、为直线上的两点,点A 的横坐标为2,点B 的横坐标为3.D C 、为反比例函数图象上的两点,且AD BC 、平行于y 轴.(1)直接写出k m ,的值; (2)求梯形ABCD 的面积.六、解答题(每小题8分,共16分)25.A B 、两地相距45千米,图中折线表示某骑车人离A 地的距离y 与时间x 的函数关系.有一辆客车9点从B 地出发,以45千米/时的速度匀速行驶,并往返于A B 、两地之间.(乘客上、下车停留时间忽略不计)(1)从折线图可以看出,骑车人一共休息 次,共休息 小时; (2)请在图中画出9点至15点之间客车与A 地距离y 随时间x 变化的函数图象; (3)通过计算说明,何时骑车人与客车第二次相遇.(第24题)(第25题) 10 11 12 13 14 15 9 x /时26.两个长为2cm ,宽为1cm 的长方形,摆放在直线l 上(如图①),CE =2cm ,将长方形ABCD绕着点C 顺时针旋转α角,将长方形EFGH 绕着点E 逆时针旋转相同的角度. (1)当旋转到顶点D 、H 重合时,连接AG (如图②),求点D 到AG 的距离; (2)当45α=°时(如图③),求证:四边形MHND 为正方形.七、解答题(每小题10分,共20分)27.某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中AE MN =.准备在形如Rt AEH △的四个全等三角形内种植红色花草,在形如Rt AEH △的四个全等三角形内种植黄色花草,在正方形MNPQ 内种植紫色花草,每种花草的价格如下表:设的长为米,正方形的面积为平方米,买花草所需的费用为元,解答下列问题:图② A D B C G EF l图① A D B C H GE Fl 图③ A DM C H G E F l CN (第26题) (H )(1)S 与x 之间的函数关系式为S = ;(2)求W 与x 之间的函数关系式,并求所需的最低费用是多少元; (3)当买花草所需的费用最低时,求EM 的长.28.如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;(3)求y 与x 之间的函数关系式.吉林省2009年初中毕业生学业考试数学试卷参考答案及评分标准阅卷说明:1. 评卷采分最小单位为1分,每步标出的是累计分.(第27题)FCG HE (第28题)2. 考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分.一、填空题(每小题2分,共20分)1.1- 2.97a 3.1.5×105 4.x >1 5.(5,3) 6.x =5 7.7- 8.120 9.7 10.73 二、单项选择题(每小题3分,共18分)11.D 12.D 13.C 14.A 15.A 16.B 三、解答题(每小题5分,共20分)17.解:222(2)222();x xy x x xy x x y ++=+=+ 或222(2)();y xy x x y ++=+或2222(2)(2)()();x xy y xy x y x y x y +-+=-=+- 或2222(2)(2)()().y xy x xy y x y x y x +-+=-=+-说明:选择整式正确得2分,整式加(减)结果正确得1分,因式分解正确得2分,累计5分.18. 解:········································································································································· (2分)(1)P (两数相同)=13. ·························································································· (3分) (2)P (两数和大于10)=49. ················································································· (5分)19. 解:(1)ADB ADC △≌△、ABD ABE △≌△、AFD AFE △≌△、BFD BFE △≌△、ABE ACD △≌△(写出其中的三对即可).··························· (3分) (2)以△ADB ≌ADC 为例证明.证明:,90AD BC ADB ADC ⊥∴∠=∠= °. 在Rt ADB △和Rt ADC △中,,,AB AC AD AD ==树形图 6 7 6 -2 7 6 7 7 6 -2 -2 -2∴ Rt ADB △≌Rt ADC △. ·························································································· (5分) 说明:选任何一对全等三角形,只要证明正确均得分.20. 解:根据题意,得2214,2x y x x y y +=⎧⎪⎨-=-⎪⎩ ··············································································································· (3分) 解得4,3.x y =⎧⎨=⎩ ···················································································································· (5分)答:x 为4,y 为3.说明:不写答不扣分.四、解答题(每小题6分,共12分) 21.解:(1)500. ········································································································· (1分) (2)········································································································································· (6分) 说明:第(2)问中每图补对一项得1分,条形图中不标台数不扣分. 22.(1)证明:,,AE EB AD DF ==ED ∴是ABF △的中位线,ED ∴,BF ∥ ··········································································································· (1分),CEB ABF ∴∠=∠ ································································································· (2分)又,C A ∠=∠ ············································································································ (3分),CBE AFB ∴△∽△ ······························································································· (4分)(2)解:由(1)知, CBE AFB △∽△,5.8CB BE AF FB ∴== ·········································································································· (5分) 又2,AF AD =冰箱 % % 35% 10% 电脑 电视机 热水器 洗衣机注意:将答案写在横线上20 30 5%54CB AD ∴=. ·················································································································· (6分) 五、解答题(每小题7分,共14分)23. 解:作BE l ⊥于点E ,DF l ⊥于点F . ·························································· (1分)18018090909036.DAF BAD ADF DAF ADF αα+∠=-∠=-=∠+∠=︒∴∠==︒ °°°°,,根据题意,得BE =24mm ,DF =48mm. ········································································ (2分)在Rt ABE △中,sin BEABα=, ···················································································· (3分)2440sin 360.60BE AB ∴===°mm ··················································································· (4分)在Rt ADF △中,cos DFADF AD∠=, ·········································································· (5分)4860cos360.80DF AD ∴===°mm .··············································································· (6分)∴矩形ABCD 的周长=2(40+60)=200mm . ······························································· (7分)24. 解:(1)k =12,m =4-. ······················································································ (2分)Cl(2)把x =2代入y =12x,得y =6.D ∴(2,6). 把x =2代入4y x =-,得 2.y =-A ∴(2,2-).6(2)8.DA ∴=--= ····································································································· (4分) 把x =3代入4y x =-,得y =1-,B ∴(3,1-).BC ∴=4-(-1)=5. ································································································ (6分)(58)113.22ABCD S +⨯∴==梯形 ······················································································· (7分) 六、解答题(每小题8分,共16分)25. 解:(1)两.两. ································································································· (2分)(2)········································································································································· (4分)(3)设直线EF 所表示的函数解析式为.y kx b =+把(10,0),(11,45)E F 分别代入y kx b =+,得1001145k b k b +=⎧⎨+=⎩················································································································· (5分) 解得45450.k b =⎧⎨=-⎩, ∴直线EF 所表示的函数解析式为45450.y x =- ··························································· (6分) 把30y =代入45450,y x =-得4545030.x -= ············································································································· (7分)2103x ∴=. 答:10点40分骑车人与客车第二次相遇. ···································································· (8分) 说明:第(3)问时间表达方式可以不同,只要表达正确即可得分,不写答不扣分.26.解:(1)2CD CE DE === cm ,CDE ∴△是等边三角形.60CDE ∴∠=°. ·········································································································· (1分) 36029060120ADG ∴∠=-⨯-=°°°°.10 11 12 13 14 15 9 x /时又1AD DG ==cm ,30DAG DGA ∴∠=∠=°. ························································································· (2分) 如图②作DK AG ⊥于点K .1122DK DG ∴==cm . ∴点D 到AG 的距离为12cm . ·························································································· (4分) (2)45α= °45NCE NEC ∴∠=∠=°,90CNE ∴∠=°. ··············································································································· (5分) 9090DNH D H ∴∠=∠=∠= °°,∴四边形MHND 是矩形. ···························································································· (6分) 又,CN NE =DN NH ∴=, ·············································································································· (7分)∴矩形MHND 是正方形. ···························································································· (8分) 七、解答题(每小题10分,共20分)27.解:(1)222(4)2816.x x x x +--+或 ································································ (2分)(2)604AEB EFGN MNPQ MNPQ W S S S =⨯+△正方形正方形正方形80(-S )+120 =60222214(4)80[(4)]120.2x x x x x x ⨯⨯-++--+··················································· (4分) =8021601280.x x -+····································································································· (5分) 配方,得280(1)1200.W x =-+ ·································································································· (6分) H 图③ A C E F l B 图②A GE F l K 45。
2013年吉林省长春市中考数学试题及答案
2013年长春市初中毕业生学业考试
数学
本试卷包括三道大题,共24小题.共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题卷上答题无效.
一、选择题(每小题3分,共24分)
1.1
4
的绝对值等于
(A)1
4
.(B)4.(C)
1
4
.(D)4.
2.右图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是
(A)(B)(C)(D)
3.我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为
(A)6
1410.(B)7
1.410.(C)8
1.410. (D)8
0.1410. 4.不等式24
x的解集在数轴上表示为
(A)(B)(C)(D)
5.如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若B为锐角,BC∥DF,则B的大小为
(A)30°. (B)45°. (C)60°. (D)75°.
(第5题)(第6题)
6.如图,△ABC内接于⊙O,∠ABC=71,∠CAB=53,点D在AC上,则∠ADB的大小为
(A)46°. (B)53°. (C)56°. (D)71°.
(第2题)
数学第页(共6页)
1。
吉林省长春市2009年中考数学试题(含答案)
A.外离B.外切C.相交D.内切
5.在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为:6,3,6,5,5,6,9.这组数据的中位数和众数分别是()
A.5,5B.6,5C.6,6D.5,6
6.如图,将△ABC绕点A逆时针旋转80°得到△AB′C′.若∠BAC=50°,则∠CAB′的度数为()
的运动时
-1-
2009年长春市初中毕业生学业考试
数学试题
本试卷包括七道大题,共26小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸上、试卷上答题无效.
A.30°B.40°C.50°D.80°
B′
CB(第6题)(第7题)
7.菱形OABC
在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=的坐标为(
A
.)B
.(1C
.+11),,则点BD
.(1+1)
8.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P
一、选择题(每小题3分,共24分)
1.下列四个数中,小于0的是()
A.−2B.0C.1
2.右边的几何体是由五个大小相同的正方体组成的,它的正视图为(D.3)
A.B.C.D
长春十年中考数学真题解答题精选
长春市中考原题之5-7分圆专题(2005-2012)2012.18. 如图,在同一平面内,有一组平行线1l 、2l 、3l O 在直线1l 上,⊙O 与直线3l 的交点为A 、B ,AB =12,求⊙O 的半径.2011.21.(2011吉林长春,21,6分)如图,平面直角坐标系中,⊙P 与x 轴交于A 、B 两点,点P 的坐标为(3,-1),3AB (1)求⊙P 的半径.(4分)(2)将⊙P 向下平移,求⊙P 与x 轴相切时平移的距离.(2分)2010.18.如图,将一个两边带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆交于点D 、E ,量出半径OC =5cm ,弦DE =8cm ,求直尺的宽.y xBA OP21题图2008.16.如图,AB 、CD 是⊙O 的两条弦,延长AB 、CD 交于点P ,连接AD 、BC 交于点E .∠P =30°,∠ABC =50°,求∠A 的度数.2006.23.如图,P 为正比例函数x y 23=图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y ). (1)求⊙P 与直线2=x 相切时点P 的坐标.(4分)(2)请直接写出⊙P 与直线2=x 相交、相离时x 的取值范围.(3分)2005.16.如图,AB 为⊙O 的直径,P 为AB 的延长线上一点,PT 切⊙O 于T ,若PT=6,PB=3,求⊙O 的直径。
解:长春市数学中考原题之7-9分感知拓展应用专题(2008-2013)2013.22.(9分)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD, AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为.(第22题)2012.24.感知:如图①,点E在正方形ABCD的BC边上,BF⊥AE于点F,DG⊥AE于点G.可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上, ∠1 、∠2分别是△ABE、△CAF AB=AC,∠1 =∠2=∠BAC.求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为.2011.24.探究如图①,在ABCD 的形外分别作等腰直角△ABF 和等腰直角△ADE,FAB ∠=90EAD ∠=, 连结AC 、EF .在图中找一个与△FAE 全等的三角形,并加以证明.(5分) 应用以ABCD 的四条边为边,在其形外分别作正方形,如图②,连结EF 、GH 、IJ 、KL , 若ABCD 的面积为5,则图中阴影部分四个三角形的面积和为________.(2分)2008.24.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D .点E 、F 分别在边AB 、AC 上,且BE =AF ,图②I J KL EF GD AC B 图①FED A CBFG ∥AB 交线段AD 于点G ,连接BG 、EF .(1)求证:四边形BGFE 是平行四边形.(4分)(2)若△ABC ∽△AGF ,AB =10,AG =6,求线段BE 的长.(3分)长春市中考原题之5-7分反比例函数专题(2009-2012)2012.22. 如图,在平面直角坐标系中,□ABCO 的顶点A 、C 的坐标分别为A (2,0) 、C (1-,2),反比例函数(0)ky k x=≠的图象经过点B . (1)求k 的值.(2)将□ABCO 沿x 轴翻折,点C 落在点C 'C’是否落在反比例函数(0)ky k x=≠的图象上,请通过计算说明理由.2011.19.(2011吉林长春,19,5分)如图,平面直角坐标系中,直线1122y x =+与x 轴交于点A ,与双曲线ky x=在第一象限内交于点B ,BC ⊥x 轴于点C ,OC=2AO ,求双曲线的解析式.yxOCBA2009.21.如图,点P 的坐标为(2,23),过点P 作x 轴的平行线交y 轴于点A ,交双曲线xk y =(x>0)于点N ;作PM ⊥AN 交双曲线xky =(x>0)于点M ,连结AM.已知PN=4. (1)求k 的值.(3分) (2)求△APM 的面积.(3分)长春市数学中考原题之6-8分一次函数专题(2012-2013)2013.21.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y (米)与时间x (时)的函数图象为线段OA ,乙队铺设完的路面长y (米)与时间x (时)的函数图象为折线BC -CD -DE ,如图所示,从甲队开始工作时计时. (1)分别求线段BC 、DE 所在直线对应的函数关系式. (2)当甲队清理完路面时,求乙队铺设完的路面长.(第21题)2012.23.y (元)与加工个数x (个)之间的部分函数图象为折线OA -AB -BC ,如图所示. (1)求工人一天加工零件不超过20个时每个零件的加工费. (2)求40≤x ≤60时y 与x 的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元.在这两天中,小王第一天加工零件不足20个,求小王第一天加工的零件个数.长春市数学中考原题之6-9分二次函数专题(2009-2011)2011.23.如图,平面直角坐标系中,抛物线32212+-=x x y 交y 轴于点A .P 为抛物线上一点,且与点A 不重合.连结AP ,以AO 、AP 为邻边作□OAPQ ,PQ 所在直线与x 轴交于点B .设点P 的横坐标为m .(1)点Q 落在x 轴上时m 的值.(3分)(3)若点Q 在x 轴下方,则m 为何值时,线段BQ 的长取最大值,并求出这个最大值.(4分)【参考公式:二次函数)0(2≠++=a c bx ax y 的顶点坐标为(ab ac a b 44,22--)】2009.23.如图,抛物线232--=x ax y 与x 轴正半轴交于点A (3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF. (1)求a 的值.(2分) (2)求点F 的坐标.(5分)长春市中考原题之倒2专题(2008-2013)2013.23.(10分)如图,在平面直角坐标系中,抛物线y=ax 2+bx-2 与x 轴交于点A (-1,0)、B (4,0).点M 、N 在x 轴上,点N 在点M 右侧,MN=2.以MN 为直角边向上作等腰直角三角形CMN ,∠CMN=90°.设点M 的横坐标为m . (1)求这条抛物线所对应的函数关系式. (2)求点C 在这条抛物线上时m 的值.(3)将线段CN 绕点N 逆时针旋转90°后,得到对应线段DN.①当点D 在这条抛物线的对称轴上时,求点D 的坐标.②以DN 为直角边作等腰直角三角形DNE, 当点E 在这条抛物线的对称轴上时,直接写出所有符合条件的m 值.【参考公式:抛物线2y ax bx c =++(a≠0)的顶点坐标为24()24,b ac b a a--】(第23题)2012.25. 如图,在平面直角坐标系中,直线242y x =-+交x 轴于点A ,交直线y x =22y ax x c =-+分别交线段AB 、OB 于点C 、D ,点C 和点D 的横坐标分别为16和4,点P 在这条抛物线上. (1)求点C 、D 的纵坐标. (2)求a 、c 的值.(3)若Q 为线段OB 上一点,且P 、Q 两点的纵坐标都为5,求线段PQ 的长.(4)若Q 为线段OB 或线段AB 上一点,PQ ⊥x 轴.设P 、Q 两点之间的距离为d (d>0),点Q 的横坐标为m ,直接写出d 随m 的增大而减小时m 的取值范围.【参考公式:二次函数2y ax bx c =++(a≠0)图象的顶点坐标为24()24,b ac b a a--】2011.25.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)的函数图象如图所示. (1)求甲组加工零件的数量y 与时间x 之间的函数关系式.(2分) (2)求乙组加工零件总量a 的值.(3分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)AB 图①图②C y /升t /分 y Cy A21086 4O20 120 100 80 60 402010.25.如图①,A 、B 、C 三个容积相同的容器之间有阀门连接.从某一时刻开始,打开A 容器阀门,以4升/分的速度向B 容器内注水5分钟,然后关闭,接着打开B 阀门,以10升/分的速度向C 容器内注水5分钟,然后关闭.设A 、B 、C 三个容器的水量分别为y A 、y B 、y C (单位:升),时间为t(单位:分).开始时,B 容器内有水50升.y A 、y C 与t 的函数图象如图②所示.请在0≤t≤10的范围内解答下列问题:(1)求t =3时,y B 的值.(2)求y B 与t 的函数关系式,并在图②中画出其图象. (3)求y A ∶y B ∶y C =2∶3∶4时t 的值.2009.25.甲(棵),乙班植树的总量为y 乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x (时).y 甲、y 乙分别与x 之间的部分函数图象如图所示.(1)当0≤x≤6时,分别求y 甲、y 乙与x 之间的函数关系式.(3分)(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当x=8时,甲、乙两班植树的总量之和能否超过260棵.(3分)(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x=8时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.(4分)2008.25.在直角坐标系中,抛物线c bx x y ++=2经过点(0,10)和点(4,2).(1)求这条抛物线的解析式.(3分)(2)如图,在边长一定的矩形ABCD 中,CD=1,点C 在y 轴右侧沿抛物线c bx x y ++=2滑动,在滑动过程中CD ∥x 轴,AB 在CD 的下方.当点D 在y 轴上时,AB 落在x 轴上. ①求边BC 的长.(2分)②当矩形ABCD 在滑动过程中被x 轴分成两部分的面积比为1:4时,求点C 的坐标.(5分)长春市中考原题之压轴专题(2005-2013)2013.24:(12分)如图①,在□ABCD 中,AB =13,BC =50,BC 边上的高为12.点P 从点B 出发,沿B -A -D -A 运动,沿B -A 运动时的速度为每秒13个单位长度,沿A -D -A 运动时的速度为每秒8个单位长度.点Q 从点 B 出发沿BC 方向运动,速度为每秒5个单位长度. P 、Q 两点同时出发,当点Q 到达点C 时,P 、Q 两点同时停止运动.设点P 的运动时间为t (秒).连结PQ . (1)当点P 沿A -D -A 运动时,求AP 的长(用含t 的代数式表示).(2)连结AQ ,在点P 沿B -A -D 运动过程中,当点P 与点B 、点A 不重合时,记△APQ 的面积为S .求S与t 之间的函数关系式.(3)过点Q 作QR //AB ,交AD 于点R ,连结BR ,如图②.在点P 沿B -A -D 运动过程中,当线段PQ 扫过的图形(阴影部分)被线段BR 分成面积相等的两部分时t 的值.(4)设点C 、D 关于直线PQ 的对称点分别为'C 、'D ,直接写出''C D //BC 时t 的值.(第24题)2012.26.如图,在Rt △ABC 中,∠ACB =90°,AC =8cm,BC =4cm,D 、E 分别为边AB 、BC 的中点,连结DE .点P 从点A 出发,沿折线AD-DE -EB 运动,到点B 停止.点P 在AD 5的速度运动,在折线DE -EBP 与点A 不重合时,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN ,使点M 落在线段ACP 的运动时间为t (s ).(1)当点P 在线段DE 上运动时,线段DP 的长为 cm (用含t 的代数式表示).(2)当点N落在AB边上时,求t的值.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.(4)连结CD.当点N与点D重合时,有一点H从点M出发,在线段MNM-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN 的中点处. 直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.2011.26.(2011吉林长春,26,10分)如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).(1)用含x的代数式表示CE的长.(2分)(2)求点F与点B重合时x的值.(2分)(3)当点F 在线段CB 上时,设四边形DECP 与四边形DEFB 重叠部分图形的面积为y(平方单位).求y 与x 之间的函数关系式.(3分)(4)当x 为某个值时,沿PD 将以D 、E 、F 、B 为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x 的值(3分)F EACBP2010.26.如图①,在平面直角坐标系中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A 的坐标为(3,3),AD 为斜边上的高.抛物线y =ax 2+2x 与直线y = 12x 交于点O 、C ,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE ∥y 轴,交射线OA 于点E .设点P 的横坐标为m ,以A 、B 、D 、E 为顶点的四边形的面积为S .(1)求OA 所在直线的解析式. (2)求a 的值.(3)当m ≠3时,求S 与m 的函数关系式.(4)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中RN = 32.直接写出矩形RQMN 与△AOB 重叠部分为轴对称图形时m 的取值范围.2009.26.如图,直线643+-=x y 分别与x 轴、y 轴交于A 、B 两点;直线x y 45=△ACD 重叠部分(阴影部分)的面积为S (平方单位),点E 的运动时间为t (秒). (1)求点C 的坐标.(1分)(2)当0<t<5时,求S 与t 之间的函数关系式.(4分) (3)求(2)中S 的最大值.(2分) (4)当t>0时,直接写出点(4,29)在正方形PQMN 内部时t 的取值范围.(3分) 【参考公式:二次函数y=ax 2+bx+c 图象的顶点坐标为(ab ac a b 44,22--).】。
2008-2009学年度吉林省长春市南关区九年级数学上学期期末调研试卷含答案
2008-2009学年度上学期某某市南关区九年级期末调研题(数学)2009-1-6一、选择题(每小题3分,共24分)1.x的取值X围是(A) x≥2.(B) x≤2.(C)x>2.(D)x<2.2.下列计算错误的是(A)22(2)=-.-.2.(D)23.已知3sin5α=,α为锐角,则tanα的值为(A)45.(B)43.(C)34.(D)12.4.从某班学生中随机选取一名学生是男生的概率为53,则该班男生与女生的人数比是(A)23.(B)53.(C)32.(D)52.5.抛物线()223y x=-+的顶点坐标是(A)(2-,3).(B)(2,3-).(C)(2-,3-).(D)(2,3).6.二次函数2y kx=-(第8题)(第13题)(A ). (B ). (C ). (D ).7.如图是二次函数c bx ax y ++=2的图象,图象上有两点分别为(2.18,0.51)A -、(2.68,0.54)B ,则方程02=++c bx ax 的一个解只可能是(A ). (B ). (C )0.51-. (D ).8.相似的三角形是 (A )△NBD . (B )△MBD . (C )△EBD . (D )△FBD . 二、填空题(每小题3分,共18分) 9.=. 10.方程2250x -=的解为.11.在比例尺为1:50 000的地图上,量得甲、乙两地的距离是2cm ,则两地的实际距离是m .12.梯形的上底长为6 cm ,下底长为12 cm ,则它的中位线长为cm .13.如图,点G 是△ABC 的重心,且△ABC 的面积为9 cm 2,则△ABG 的面积为cm 2.14.如图所示的转盘被分成面积相等的82的概率是.三、解答题(每小题5分,共20分)BAABCG15.计算:.解:16.解方程:2250x x +-=.解:17.如图,D 、E 、F 分别是△ABC 的AB 、AC 、BC 边上的点,且DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC . 证明:18.将5个分别标有数字1、2、3、4、5的小球装在一个不透明的口袋中,他们除标号不同外其他都相同.搅拌均匀后闭上眼睛从中同时摸出两个小球.用列表法或画数状图法,求摸出的两个小球上数字之积为偶数的概率.FABCD E解:四、解答题(每小题6分,共12分)19.如图,在△ABC 中, DE ∥BC ,BC =16,梯形DBCE 的面积是△ABC 面积的34, 求DE 的长.解:20.如图,请设计三种不同方法,将直角三角形分割成四个小三角形,使得每个小三角形与原三角形都相似.五、解答题(每小题6分,共12分)21.如图,为了测量学校操场的旗杆高度AB ,在离旗杆9米的D 处,用高的测角仪CD测得旗杆顶端的仰ABCD E角为44°,求旗杆的高度.(精确到,sin44°≈,cos44°≈0.72,tan44°≈) 解:22.如图,二次函数c bx ax y ++=2的图象经过A (1,0)-、B (2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 解:六、解答题(每小题7分,共14分)23.水果店花1000元购进了一批橘子,按50%的利润定价,由于受“蛆橘风波”影响,无人购买.决定打折出售,但仍无人购买,风波稍平息后又一次打折才售完.经结算,这批橘子共亏损265元.若两次打折相同,每次打了几折? 解:24.如图,直线l 经过(2,0)A -和(0,2)B 两点,它与抛物线2ax y =在第二象限内相交于点P ,且△AOP 的面积为1,求a 的值.解:七、解答题(每小题10分,共20分)25.如图,小明把一X长为20cm,宽为10cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子.设剪去的正方形边长为x (cm),折成的长方体盒子的侧面积为y (cm2),底面积为S (cm2).(1)求S与x之间的函数关系式,并求S= 44 (cm2) 时x的值;(结果可保留根式)(2)求y与x之间的函数关系式;在x的变化过程中,y会不会有最大值?x取何值时取得最大值,最大值是多少?解:26.如图,在矩形ABCD 中,AB =8cm ,AD =6cm ,点F 是CD 延长线上一点,且DF =2cm .点P 、Q 分别从A 、C 同时出发,以1cm/s 的速度分别沿边AB 、CB 向终点B 运动,当一点运动到终点B 时,另一点也停止运动.FP 、FQ 分别交AD 于E 、M 两点,连结PQ 、AC ,设运动时间为t (s). (1)用含有t 的代数式表示DM 的长;(2)设△FCQ 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)线段FQ 能否经过线段AC 的中点,若能,请求出此时t 的值,若不能,请说明理由;(4)设△FPQ 的面积为S (cm 2),求S 与t 之间的函数关系式,并回答,在t 的取值X 围内,S 是如何随t 的变化而变化的. 解:九年级期末调研题(数学)参考答案一、1.A 2.B 3.C 4.A 5.D 6.C 7.D 8.B 二、9.2 10.5±11.100012.913.314.38三、15.3+.1-.证出一组对应角相等得2分,结论得1分.Q18.(只画对树状图得2分)四、19.由已知△ADE 与△ABC 面积比为1:4(2分)DE ∥BC ,△ADE ∽△ABC .(4分)DE :BC =1:2,DE =8(6分) 20.如图,(几个图仅供参考,画对一图得2分) 五、21.AE ≈.(4分)AB ≈(6分)22.正确列出方程组(2分)1a =-,b =2,c =3(3分)223y x x =-=+(4分)对称轴x =1(5分)最大值为4(6分)六、23.()21000150%100026510x ⎛⎫⨯+=- ⎪⎝⎭,7x =,7x =-(舍)(设、解、检验、答各1分,列3分,共7 分)24.求出P 点的纵坐标为1 (2分)求出l 的解析式为y =x +2(4分)代入得P 点坐标为(1,1)P -(6分)a = 1 (7分)七、25.解:(1)()()102202S x x =--=2460200x x -+,(3分)246020044x x -+=,215390x x -+=,1x =,2x =(5分)(2)()()22022102y x x x x =-+-2860x x =-+,(8分)215225842y x ⎛⎫=--+ ⎪⎝⎭,当154x =时,y 有最大值2252(10分)26.解:(1)15DM t =(2分)(2) S △FCQ =5t (4分)(3)DM =BQ ,165t t =-,t =5(6分)(4) S 梯形FCBP =16(108)2t ⨯⨯+-543t =-(7分)S △BPQ 1(8)(6)2t t =--217242t t =-+(8分)S =S 梯形FCBP -S △FCQ -S △BPQ 21302t t =--+2161(1)22t =-++(9分) S 随t 的增大而减小.即:从t =0,S =30变化到t =6,S =6(10分)(本参考答案以外的正确答案按步骤给分)。
吉林省长春市中考数学卷及答案版
2008年吉林省长春市初中学业水平测试数学试题一、选择题(每小题3分,共分39,每小题给出4个答案,其中只有一个正确,把所选答案的编号写在题目后面的括号内)1、如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是【 】A .内含B .相交C .相切D .外离 2、化简(-3)2的结果是【 】B.-3C.±3 D .93、如果2是方程02=-c x 的一个根,那么c 的值是 【 】A .4B .-4C .2D .-24、下列成语所描述的事件是必然发生的是 【 】A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖5、如图,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为【 】 A 、10 B 、8 C 、6 D 、46、抛物线()223y x =++的顶点坐标是 【 】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 7、观察下列银行标志,从图案看是中心对称图形的有( )个A 、1个B 、2个C 、3个D 、4个 8、二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是【 】A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且9、某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是 【 】A .150B .12C .120D . 2510、在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是【 】A .23B .1C .2D . 3211、如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则r 与R 之间的关系是【 】A 、R =2r ;B 、3R r =;C 、R =3r ;D 、R =4r .12.已知反比例函数xk y =的图象如下右图所示,则二次函数222k x kx y +-=的图象大致为【 】13、如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于,点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是【 】 A .94π-B .984π-C .948π-D .988π- 二、填空题(每小题3分,共15分,请把答案填在横线上) 14、点(4,-3)关于原点对称的点的坐标是 _____________.15、⊙O 的半径为3cm ,点M 是⊙O 外一点,OM =4 cm ,则以M 为圆心且与⊙O 相切的圆的半径是 cm.16、将抛物线2(0)y ax bx c a =++≠向下平移3个单位,再向左平移4个单位得到抛物线2245y x x =--+,则原抛物线的顶点坐标是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年黑龙江省齐齐哈尔市中考数学试卷-(word整理版)一、选择题(共10小题,每小题3分,满分30分)1.﹣的绝对值是()A.B.﹣C.7 D.﹣72.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米3.下列运算正确的是()A.B.(π﹣3.14)0=1 C.()﹣1=﹣2 D.4.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5 C.5.5,7 D.6.5,75.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.6.梯形ABCD中,AD∥BC,AD=1,BC=4,∠C=70°,∠B=40°,则AB的长为()A.2 B.3 C.4 D.57.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种8.一个水池接有甲,乙,丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量v(m3)与时间t(h)之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是()A.乙>甲B.丙>甲C.甲>乙D.丙>乙9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a﹣b+c<0,其中正确的个数()A.4个B.3个C.2个D.1个10.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A.②③B.③④C.①②④D.②③④二、填空题(共10小题,每小题3分,满分30分)11.中国齐齐哈尔SOS儿童村座落在齐齐哈尔市区西部,建成于1992年3月,是由国际SOS儿童村资助,以家庭形式收养、教育孤儿的社会福利事业单位,占地面积为37 000平方米,这个数用科学记数法表示为_________平方米.12.函数y=中,自变量x的取值范围是_________.13.在英语句子“Wish you success!”(祝你成功!)中任选一个字母,这个字母为“s”的概率为_______.14.反比例函数(m≠0)与一次函数y=kx+b(k≠0)的图象,如图所示,请写出一条正确的结论:___ .15.已知相交两圆的半径分别为5cm和4cm,公共弦长为6cm,则这两个圆的圆心距是_______cm.16.当x=_________时,二次函数y=x2+2x﹣2有最小值.17.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_________.18.已知10m=2,10n=3,则103m+2n=_________.19.如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1,为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________.20.用直角边分别为3和4的两个直角三角形拼成凸四边形,所得的四边形的周长是_________.三、解答题(共8小题,满分60分)21.先化简:,当b=﹣1时,请你为a任选一个适当的数代入求值.22.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3)、B(﹣3,2)、C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2;(3)△A′B′C′与△ABC是位似图形,请写出位似中心的坐标:_________;(4)顺次连接C、C1、C′、C2,所得到的图形是轴对称图形吗?23.在直角边分别为5cm和12cm的直角三角形中作菱形,使菱形的一个内角恰好是三角形的一个角,其余顶点都在三角形的边上,求所作菱形的边长.24.为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3:5:2,随机抽取一定数量的观众进行调查,得到如下统计图:(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”);(2)写出折线统计图中A、B所代表的值;A:_________;B:_________;(3)求该地区喜爱娱乐类节目的成年人的人数.25.邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s(千米)和小王从县城出发后所用的时间t(分)之间的函数关系如图,假设二人之间交流的时间忽略不计.(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)求小王从县城出发到返回县城所用的时间.(3)李明从A村到县城共用多少时间?26.如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.27.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?28.直线y=﹣x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M 的坐标.2009年黑龙江省齐齐哈尔市中考数学试卷答案1.A.2.D.3.B.4.D.5.A.6.B.7.C.8.C.9.C.10.D.11.3.7×104平方米.12.x≥0且x≠1.13..14.有两个不同的交点.15.4±cm.16.﹣1.17.18.18.72.19.()n﹣1.20.14或16或18.21.解:原式===,∵a≠0、a≠±1,∴答案不唯一.当a=2时,原式=1.22.解:画出平移后的图形(2分),画出旋转后的图形(2分),写出坐标(0,0)(1分),答:“是轴对称图形”(1分).23.解:∵AC=12,BC=5,∴AB=13,如图1所示:设DE=x,∵四边形ADEF是菱形,∴DE∥AB,∴△CDE∽△CAB,∴=,即=,解得x=cm;如图2所示,同上可知△CEF∽△CAB,设EF=x,∴=,解得x=cm;如图3所示,同理△AEF∽△ABC,∴=,即=,解得x=cm.故所作菱形的边长为:cm、cm、cm.24.解:(1)抽样调查;(2)A=20,B=40;(3)300000×=150000,,150000×30%=45000.25.解:(1)4千米(2分);(2)解法一:=(1分)+60=84(1分)∵小王比预计时间晚到1分钟,∴小王所用时间为:84+1=85(1分);解法二:求出解析式,s=﹣t+21(1分)s=0,t=84(1分)84+1=85(1分);(3)写出解析式s=﹣t+5(1分)s=6,t=﹣20(1分)20+85=105(1分).26.解:(1)等腰三角形.(2)判断出直角三角形.证明:如图连接BD,取BD的中点H,连接HF、HE,∵F是AD的中点,∴HF∥AB,HF=AB,同理,HE∥CD,HE=CD,∵AB=CD∴HF=HE,∵∠EFC=60°,∴∠HEF=60°,∴∠HEF=∠HFE=60°,∴△EHF是等边三角形,∴∠3=∠EFC=∠AFG=60°,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°∴∠AGD=90°即△AGD是直角三角形.27.解:(1)设今年三月份甲种电脑每台售价x元.则:.(1分)解得:x=4000.(1分)经检验,x=4000是原方程的根.(1分)所以甲种电脑今年每台售价4000元;(2)设购进甲种电脑x台.则:48000≤3500x+3000(15﹣x)≤50000.(2分)解得:6≤x≤10.(1分)因为x的正整数解为6,7,8,9,10,所以共有5种进货方案;(1分)(3)设总获利为W元.则:W=(4000﹣3500)x+(3800﹣3000﹣a)(15﹣x)=(a﹣300)x+12000﹣15a.(1分)当a=300时,(2)中所有方案获利相同.(1分)此时,购买甲种电脑6台,乙种电脑9台时对公司更有利.(1分)28.解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是(秒),∴点P的速度是=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10﹣2t=16﹣2t,如图,做PD⊥OA于点D,由,得PD=.∴S=OQ•PD=﹣.(3)当S=时,∵,∴点P在AB上当S=时,﹣=∴t=4 ∴PD==,AP=16﹣2×4=8AD==∴OD=8﹣=∴P(,)M1(,),M2(﹣,),M3(,﹣)。