七年级数学上册科学计数法
2.3.2 科学记数法【新课标版】七年级上册数学
2.3.2 科学计数法
学习目标
1.了解科学记数法的现实意义,学会用科学记数法 表示较大的数. 2.会用科学记数法表示的数进行简单的运算.
导入新课
生活中常常遇到比100万还大的数, 如:太阳半径约为696000000米,光的 速度约为300000000米/秒等等,这些大 数书写起来非常不便,也容易写错。
当堂训练
能力提升题
已知光的传播速度为300000000 m/s,太阳光到达地球 的时间大约是500 s,试计算太阳与地球的距离大约是多少 千米.(结果用科学记数法表示)
答案:1.5×108km
当堂训练 拓广探索题
已知1平方千米的土地1年内从太阳得到的能量相当于燃 烧1.3亿千克煤所产生的能量,那么我国960万平方千米土地 上1年内从太阳得到的能量相当于燃烧a×10n千克煤所产生 的能量,求a,n的值.
巩固练习
填一填: 6.74×105的原数有__6__位整数;
-3.251×107原数有__8__位整数;
9.6104×1012原数有_1_3__位整数.
探究新知
素养考点 3 科学记数法的实际应用
例3 废旧电池对环境的危害十分巨大,一粒纽扣电池能污 染600立方米的水(相当于一个人一生的饮水量).某班有50 名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有 被回收,那么被该班学生一年丢弃的纽扣电池能污染的水 量用科学记数法表示为___3_×__1_0_4__立方米.
当堂训练
解:1.3亿=1.3×108,960万平方千米=9.6×106平方千米 9.6×106×1.3×108=1.248×1015
所以a=1.248,n=15.
课堂小结
1.用科学计数法表示较大的数应注意以下两点: (1)1≤a<10 (2)当大数是大于10的整数时,n为整数位减去1.
七年级数学上册综合算式专项练习题科学计数法的计算练习
七年级数学上册综合算式专项练习题科学计数法的计算练习一、科学计数法的概念和规则科学计数法是一种表示极大或极小数的方法,它使用数字和指数的形式来表示数值。
在科学计数法中,数值被写成一个介于1到10之间的数字乘以10的指数次方。
例如,1.23 × 10^6 表示1.23乘以10的6次方,即1230000。
为了进行科学计数法的计算练习,我们首先需要了解科学计数法的概念和规则。
根据科学计数法的规则,一个数值被转化为科学计数法时,小数点要被移动到使得只有一个非零数字位于小数点的右边,并且这个数值乘以10的指数次方的形式表示。
若数值大于0,则指数必须是正数;若数值小于0,则指数必须是负数。
例如, 1230000 转化为科学计数法为 1.23 × 10^6。
二、综合算式的科学计数法运算练习下面是一些综合算式的科学计数法运算练习题,通过解答这些题目可以加深对科学计数法的理解和应用。
1. 计算下列科学计数法的乘法:a) (4.5 × 10^3) × (6.2 × 10^2)解:将乘法转化为数值的乘法和指数的加法,进行计算。
= (4.5 × 6.2) × (10^3 × 10^2)= 27.9 × 10^5= 2.79 × 10^6b) (2.3 × 10^-4) × (1.5 × 10^-3)解:将乘法转化为数值的乘法和指数的加法,进行计算。
= (2.3 × 1.5) × (10^-4 × 10^-3)= 3.45 × 10^-72. 计算下列科学计数法的除法:a) (3.6 × 10^6) ÷ (2.4 × 10^3)解:将除法转化为数值的除法和指数的减法,进行计算。
= (3.6 ÷ 2.4) × (10^6 ÷ 10^3)= 1.5 × 10^3b) (9.2 × 10^-5) ÷ (2 × 10^-2)解:将除法转化为数值的除法和指数的减法,进行计算。
2.3.2科学计数法+课件2024-2025学年人教版数学七年级上册
情景引入
世界人口约7 000 000 000人
光速约300 000 000m/s
太阳的半径 约为696 000km
学习目标
1、掌握用科学计数法表示大数的方法;
2、感受科学记数法的作用,体会科学记数 法表示生活中大数的优越性.
活动研学
活动一:先计算,再观察10的乘方有什么特点?
反馈答疑
6 400 000 =
5.67X 100 000 000
5.67乘10的8次方(幂)
6.4×1 000 000 = 6.4×106
a 像这样,把一个大于10的数表示成 x 10n 的形
a 式( 1≤ <10,n为正整数 ),这样的记数方法叫
做科学记数法。
学以致用 判断下列是否使用的是科学记数法。
6 400 000 = 64×105
a x 10n a (1≤ <10)
活动三:如何快速确定 ax10n中的 a和n?
例1: 1 1 000 000 =1×106= 106
n=6
整数位7位
2 57 000 000 =5.7×107
n=7
整数位8位
3 103 000 000 000 =1.03×1011 n=11
10的n次幂,就是在1的后面有n个0.
100 ··· 0
n个0
100 000 = 1 000 000 = 1 000 000 000 =
活动二:(7分钟)
1、先自学教材第45页练习以上的部分, 思考问题: (1)怎样的记数方法是科学记数法? (2)如何用科学记数法表示大数?
2、再完成学案上活动2部分的填空。 3、最后小组交流填空的内容。
-70 004 000 000
华师版七年级数学上册第1章2 科学计数法
探究:(1) 等号左边整数中 0 的个数与右边 10 的 指数有什么关系?
(2) 等号左边整数的位数与右边 10 的指数有什么关系?
方法总结 (1) 10 ···0 = 10n,n 恰好是 1 后面 0 的个数.
n个0 (2) 10 ···0 = 10n ,n 比运算结果的总位数少 1.
(n + 1) 位 想一想:利用 10 的乘方的表示一些大数,例如:
300 000 000 = 3×100 000 000 = 3×108. 8 000 000 000 = 8×1 000 000 000 = 8×109.
定义总结
把一个大于 10 的数可以记成 a×10n 的形式 , 其中 1 ≤ a < 10 ,n 是正整数,像这样的计数法 叫做科学记数法.
想一想 对于小于 -10 的数能否用类似的科学记数法表示? 若能怎么表示? -567 000 000 = -5.67 ×100 000 000 = -5.67×108 .
第一章 有理数
1.11 有理数的乘方
2 科学计数法
华师版七年级(上)
1. 能用科学记数法表示大数. 2. 会把用科学记数法表示的大数还原. 3. 通过探究活动,用科学记数法方便、简洁地表示大
数,感受数学的简洁美. 重点:能用科学记数法表示大数. 难点:探索归纳出用科学记数法表示的数中 10 的指数
与原数整数位数之间的关系.
太阳半径约为 696 000 km
光的速度约为 300 000 000 m/s
截至 2022 年底,全世界人口数 大约是 8 000 000 000 .
有简单的表示 方法吗?
1 用科学记数法表示数
合作探究
问题1:下列用幂的形式表示的数,原来分别是什么数?
北师大版七年级上册数学教案:2.10科学计数法
一、教学内容
北师大版七年级上册数学教案:2.10科学计数法
1.科学计数法的定义与表示方法;
2.科学计数法的转换规则;
3.科学计数法在生活中的应用;
4.实际问题的解决:使用科学计数法进行计算;
5.练习:相关科学计数法的练习题。
二、核心素养目标
1.培养学生运用数学语言表达和理解科学计数法的能力,提升数学交流素养;
-科学计数法的转换规则:如何将一个数转换为科学计数法的形式,包括小数点的移动和指数的确定,是教学的重点。
-科学计数法的应用:在实际问题中,如何使用科学计数法进行计算,提高解题效率。
-举例:将123400转换为科学计数法,即1.234×10^5,以及如何利用科学计数法进行乘除运算。
2.教学难点
-指数n的正负判断:在将一个数转换为科学计数法时,判断指数n的正负是学生容易混淆的地方,需要通过实例讲解和练习加以突破。
2.培养学生掌握科学计数法的基本概念和运算规则,增强数学逻辑推理和抽象思维能力;
3.培养学生将科学计数法应用于实际问题,提高数学建模和解决问题的素养;
4.激发学生探索科学计数法在实际生活中的应用,培养数学应用意识和创新意识。
三、教学难点与重点
1.教学重点
-科学计数法的定义及其表示形式:a×10^n(1≤a<10,n为整数),这是科学计数法的核心表达方式,需让学生熟练掌握。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解科学计数法的基本概念。科学计数法是一种表示极大或极小数值的方法,形式为a×10^n。它在我们处理大数据和精确计算中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。比如,我们要表示13亿人,可以写成1.3×10^9,这样的表示简洁且易于理解。
七上数学科学计数法
七上数学科学计数法
科学计数法(Scientific Notation)是一种用于表示非常大或非常小的数字的方法,它由一个数乘以10的幂次方组成。
以下是七年级上册数学中关于科学计数法的一些概念和例子:
1. 科学计数法的表示形式为:a × 10ⁿ,其中a是1到10之间的数,n 是整数。
2. 科学计数法将一个较大的数转化为一个乘法表达式,其中基数是1到10之间的数,指数表示原数需要乘以10的多少次方。
3. 例子1:230,000,000可以写成2.3 × 10⁸,其中2.3是基数,8是指数。
4. 例子2:0.000032可以写成3.2 × 10⁻⁵,其中3.2是基数,-5是指数。
注意,指数为负数表示小于1的数。
5. 使用科学计数法可以简化大数和小数的表达,方便计算和比较。
6. 当进行科学计数法的加减乘除计算时,需要对基数和指数进行相应的运算。
7. 科学计数法也可用于表示物理学、化学等领域中出现的极大或极小的数值。
希望以上内容对你有所帮助!。
人教版-数学-七年级上册-《科学计数法》知识点解读
《科学计数法》知识点解读学习目标:1.能了解科学记数法的意义.2.能掌握用科学记数法表示比较大的数.重点、难点:用科学记数法表示数.知识要点梳理:科学记数法:一般地,一个数可以表示成a×10n的形式,其中1≤a<10,n是整数,这种记数方法叫做科学记数法.注意:1.对于数目很大的数用科学记数法的形式表示起来又科学、又简单。
2.科学记数法的形式是由两个数的乘积组成的。
其中一个因数为a(1≤a<10),另一个因数为10n(n是比A的整数部分少1的正整数)。
3.用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已。
当有了负整数指数幂的时候,小于1的正数也可以用科学记数法表示。
例如:0.00001=10的负5次方,即小于1的正数也可以用科学记数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。
4.在a×10n中,a的范围是1≤a<10,即可以取1但不能取10.而且在此范围外的数不能作为a.如:1300不能写作0.13×104.例1填空:(1)地球上的海洋面积为36100000千米2,用科学记数法表示为__________.(2)光速约3×108米/秒,用科学记数法表示的数的原数是__________.点拨:(1)用科学记数法写成a×10n,注意a的范围,原数共有8位,所以n =7.原数有单位,写成科学记数法也要带单位.(2)由a×10n还原,n=8,所以原数有9位.注意写单位.解:(1)3.61×107千米2.(2)300000000米/秒.注意:1.科学记数法形式与原数互化时,注意a的范围,n的取值.2.转化前带单位的,转化后也要有单位,一定不能漏.例2分别用科学记数法表示下列各数.(1)100万;(2)10000;(3)44;(4)0.000128-.点拨:(1)1万=10000,可先把100万写成数字再写成科学记数法的形式.(2)(3)(4)直接写成科学记数法形式即可.解:(1)100万=1000000=1×106=106.(2)10000=104.(3)44=4.4×10.(4)4-=-⨯0.000128 1.2810-说明:Ⅰ.在a×10n中,当a=1时,可省略,如:1×105=105.Ⅱ.对于44和4.4×101虽说数值相同,但写成4.4×10并非简化.所以科学记数法并非在所有数中都能起到简化作用,对于数位较少的数,用原数较方便.记住:Ⅲ.对于10n,n为几,则10n的原数就有几个零.例3设n为正整数,则10n是()A.10个n相乘B.10后面有n个零C.a=0D.是一个(n+1)位整数点拨:A错,应是10n表示n个10相乘;B错,10n共有n个零,10中已有一个零,故10后面有(n-1)个零;C当a=1时,a×10n=1×10n=10n,可有1.若a=0,a×10n=0;D在10n中,n是用原数的整数位数减1得来的,故原数有(n +1)位整数.解答:D.。
人教版七年级数学上册2.3.2科学计数法优秀教学案例
1.设计启发性问题:引导学生思考科学计数法的表示意义,如“为什么科学计数法可以表示极大或极小数?”、“科学计数法与普通表示法有什么区别?”等,激发学生的思考。
2.引导学生自主探究:鼓励学生通过尝试、实验、讨论等方式,自主发现科学计数法的转换规则,培养学生的自主学习能力。
3.创设悬念:在教学过程中,故意留下一些疑问,激发学生的求知欲,如“如何将一个数精确到小数点后几位?”等问题,引导学生继续探究。
在实际教学中,我观察到学生们对于科学计数法的理解和运用存在一定的困难,主要表现在对幂次概念的不清晰,以及在实际运算中的运用不当。因此,在设计本节课的教学案例时,我旨在通过生活情境的引入、小组合作探究、多媒体辅助教学等手段,让学生们能够深刻理解科学计数法的概念,熟练掌握其转换和运算方法,提高解决实际问题的能力。
(三)学生小组讨论
1.设计讨论问题:让学生围绕以下问题展开讨论:“科学计数法有哪些优点?在实际生活中有哪些应用场景?”
2.小组内交流:鼓励学生积极发表自己的观点,共同探讨科学计数法的意义和应用,培养学生的团队合作意识。
3.分享讨论成果:各小组派代表分享讨论成果,教师给予点评和指导,让学生在交流中收获更多知识。
1.通过生活情境的引入,激发学生对科学计数法的兴趣,引导学生主动探究其表示方法和转换规则。
2.利用多媒体辅助教学,形象地展示科学计数法的运算过程,帮助学生直观地理解幂次的概念。
3.组织小组合作探究,让学生在讨论中互相学习,培养团队合作意识和问题解决能力。
4.提供丰富的实际问题素材,引导学生运用科学计数法进行计算和解决,提高学生的应用能力。
(三)小组合作
1.分组讨论:将学生分为若干小组,让学生在小组内讨论科学计数法的表示方法和转换规则,培养学生的团队合作意识。
七年级数学上册有理数科学计数法知识点及习题
知识点:1、科学计数法:把一个大于10得数表示成a×10n得形式(其中a大于或等于1且小于10,n就是正整数)。
例如567000000=5、67×1082、(1)近似数:接近准确数但与准确数有区别。
例如学校约有200名同学参加了数学辅导班,而实际参加数学辅导班得有213人。
(2)近似数与准确数得接近程度,可以用精确度表示。
按四舍五入法对圆周率π取近似数时,有π≈3(精确到个位)π≈3、1(精确到0、1,或叫做精确到十分位)π≈3、14(精确到0、01,或叫做精确到百分位)π≈3、142(精确到 ,或叫做精确到 )π≈3、1416(精确到 ,或叫做精确到 )(3)一般地,一个近似数,四舍五入到哪一位,就说这个近似数_______到哪一位;科学记数法1、填空(1)一般地,一个大于10得数可以表示成a×10n得形式,其中1≤|a|<10,n就是正整数,这种记数方法叫做________、(2)a与n得取法:在a×10n形式中,n就是原数整数位数减1,a得范围就是________、2、我省各级人民政府非常关注“三农问题”。
截止到年底,我省农村居民年人均纯收入已连续二十一年位居全国各省区首位,据统计局公布得数据,年我省农村居民年人均纯收入约6 660元,用科学记数法应记为( )A、0、666 0×104元B、6、660×103元C、66、60×102元D、6、660×104元3、用科学记数法表示下列各数、(1)503 000; (2)200 000; (3)-981、2; (4)0、023×109、4、2002年5月15日,我国发射得海洋1号气象卫星进入预定轨道后,若绕地球运行得速度为7、9×103米/秒,则运行2×102秒走过得路程就是(用科学记数法表示)( )A. 15.8×105米 B、 1、58×105米 C、 0、158×107米 D、 1、58×106米5、地球绕太阳转动每小时通过得路程约就是1、1×105千米,用科学记数法表示地球转动一天(24小时)通过得路程约就是( )A、0、264×107千米B、2、64×106千米C、26、4×105千米D、264×104千米6、用科学记数法表示下列各数:(1)1 000 000; (2)57 000 000;(3)-851 340; (4)-12 300、7、下列用科学记数法表示出来得数,原数就是多少?(1)7、2×105; (2)-3、07×104; (3)5、2×102、8、 (1)用科学记数法表示1 080 000 000 000;(2)用科学记数法表示数2、01×106得原数就是什么?近似数与有效数字1、台湾就是我国最大得岛屿,总面积为35 989、76平方千米、用科学记数法应表示为(保留三个有效数字)( )A.3.59×106平方千米 B 、3、60×106平方千米C 、3、59×104平方千米D 、3、60×104平方千米2、填空(1)一般地,一个近似数,四舍五入到哪一位,就说这个近似数_______到哪一位;(2)一个近似数,从左边第一个不就是0得数字起,到末位数字止,所有得数字都叫做这个数得_________;(3)除了四舍五入法,常用得近似数得取法还有两种,_______与_______、3、判断下列各题中哪些就是精确数,哪些就是近似数、(1)某班有32人;(2)半径为10 cm 得圆得面积约为314 cm 2;(3)张明得身高约为1.62米;(4)取π为3、14、4、用四舍五入法取近似值,0、012 49精确到0、001得近似数就是______,保留三个有效数字得近似数就是______、5、用四舍五入法得到得近似值0、380精确到_______位,48、68万精确到_____位、6、用四舍五入法取近似值, 396、7精确到十位得近似数就是________;保留两个有效数字得近似数就是_______、7、下列由四舍五入得到得数各精确到哪一位?各有哪几个有效数字?(1)54、9; (2)0、070 8; (3)6、80万; (4)1、70×1068、用四舍五入法,求出下列各数得近似数、(1)0、632 8(精确到0、01); (2)7、912 2(精确到个位);(3)47 155(精确到百位); (4)130、06(保留4个有效数字);(5)460 215(保留3个有效数字); (6)1、200 0(精确到百分位)、9、有玉米45、2吨,用5吨得卡车一次运完,需要多少辆卡车?10、计算:(1)(-1、25)×(-1)×(-2、5)×(+)×32; (2)(-105)×[--(-)]-178×6、67-7、67×(-178)、 【巩固练习】1、 填空:(1)地球上得海洋面积为36 100 000千米2,用科学记数法表示为_______;(2)光速约3×108米/秒,用科学记数法表示得数得原数就是_________、2、 据测算,我国每天因土地沙漠化造成得经济损失为1、5亿元、若一年按365天计算,用科学记数法表示我国一年因沙漠化造成得经济损失为( )A 、5、475×1011(元)B 、5、47 5×1010(元)C 、0、547 5×1011(元)D 、5 475×108(元)3、 设n 为正整数,则10n 就是( )A 、10个n 相乘B 、10后面有n 个零C 、a =0D 、就是一个(n +1)位整数4、 分别用科学记数法表示下列各数:29911354753(1)100万; (2)10 000; (3)44;(4)679 000; (5)30 000; (6)113、2、5、已知a=2,b=3,求(a b-b a)(b a-a b)、7、少林武术节开幕式上有一个大型团体操得节目,表演要求在队伍变成10行、15行、18行、24行时,队形都能成为矩形、教练最少要挑选多少演员?8、聪明一休萌发了个奇怪得念头,她想造一个巨形图书馆,这个图书馆大约有1 0001 000 000本书就够了、这些书中包含了过去得、现在得与未来得所有著作,包括地球上得,也包括许多星球上住着得能说话、会印刷与学习数学得居民们所用得各种书籍、您能想象一下1 0001 000 000这个数有多大吗?能用科学记数法把这个数表示出来吗?9、近似数0、020有_____个有效数字,4、998 4精确到0、01得近似值就是_____、10 、地球上陆地得面积为149 000 000平方千米,用科学记数法表示为_____、11、若有理数a,b满足|3a-1|+b2=0,则a(b+1)得值为________、12、年我国国内生产总值(GDP)为22 257亿美元,用科学记数法表示约为________亿美元(四舍五入保留三个有效数字)、13、下列由四舍五入得到得近似数,各精确到哪一位?(1)29、75; (2)0、002 402; (3)3、7万;(4)4 000; (5)4×104; (6)5、607×102、14、下列各近似数有几个有效数字?分别就是哪些?(1)43、8; (2)0、030 800;(3)3、0万; (4)4、2×10315、按四舍五入法,按括号里得要求对下列各数求近似值、(1)3、595 2(精确到0、01);(2)29、19(精确到0、1);(3)4、736×105(精确到千位)、16、把一个准确数四舍五入就可得到一个近似数,这个准确数就就是这个近似数得真值、试说明近似数1、80与1、8有什么不同,其真值有何不同?17、求近似数16、4,1、42,0、387 4,2、561 8得与(结果保留三个有效数字)、18、甲、乙两学生得身高都就是1、7×102 cm,但甲学生说她比乙高9 cm、问有这种可能吗、若有,请举例说明、。
2023-2024学年人教版数学七年级上册 -科学计数法 课件
解:1.804 ≈1.80;
课堂小结:
几点注意: 1、两个近似数1.6与1.60表示的精确程度不一样 2、两个近似数6.3万与6.3精确到的数位不同。
10 000, 800 000, 56 000 000, 7 400 000. =104 =8×105 =5.6×107 =7.4×106 2 下列用科学记数法写出的数,原来分别是 什么数?
1×107 =10 000 000 4×103 =4 000
8.5×106 =8 500 000 7.04×105 =704 000
2 400 000 0.24107 不是 2 400 000 2.4106
3 100 000 31105 不是
3 100 000 3.1106
练习2.下列用科学记数法表示的数,原数是什么?
3.2104 =32 000
6103 =6 000
3.25107 =32 500 000
练一练,你一定行 1 用科学记数法写出下列各数:
10n的意义和规律是什么?
10的乘方有如下的特点:
102 100
103 1 000 104 10 000 …
一般地,10的n次幂等于10···0(在1的后 面有n个0),所以就可以用10的乘方表示一 些大数.
例如:567 000 000 = 5.67×100 000 000 =5.67× 108
⑵.检查一双没洗过的手,发现带有各种细菌800000万个;
( 近似数 )
⑷.1990年人口普查,我国人口总数约为11.6亿; (近似数)
(5).月球与地球相距38万千米;( (近似数) (6).圆周率∏ 取3.14159. (近似数 )
二.精确度(近似数与准确数的接近程度)
数学人教版七年级上册《科学计数法》
第一章有理数第17课时科学计数法(课本P44~P45)借助身边熟悉的事物进一步感受大数;会用科学记数法表示大数.通过身边事例了解科学记数法,通过例题学习,掌握科学记数法的一般形式●课本助读(带着问题学习课本吧!)1、你知道234510,10,10,10分别等于多少吗?10n的意义是什么?运算结果等于多少?●合作探究(围绕问题互学、群学,讨论、探究吧!)2、讨论:目前世界人口约6100000000人.这么大的数,我们能不能用一种简单的方法来表示它,使得书写简短而且读起来较为容易?【个性导学与学习笔记】学习与交流目标与方法我说:同伴说:3、写一个数,请同伴用科学记数法表示并读出来.归纳:1、科学记数法:把一个大于10的数表示成a×10n的形式,(其中a是整数位只有一位的数,n是正整数,)这种表示法便是 .2、当把一个大于10的数用科学记数法形式表示时,10的指数与原数整数位数关系是 .●尝试练习(相信自己,我能行!)1. 用科学记数法表示下列各数:(1) 6300=__________(2) 3120000=_______________(3) -23231.47=_________(4) -16000000=______________(5)地球表面积为5110000000平方千米,陆地面积占其中的29%,请计算一下,并用科学计数法表示.(6)2011年,某省高校毕业生和中等职业学校毕业生人数达到34万人,34万用科学记数法表示为。
2.下列用科学记数法表示的数,原来分别是什么数?1×107 8.5×106 -7.04×105●学习反馈1.本节课学会了什么内容?还有哪些不懂?2.做错的题目有:原因:。
人教版七年级上册1.5.2科学计数法(教案)
-科学计数法在实际问题中的应用,如天文、物理等领域的数值表示;
-通过科学计数法进行数值比较、估算和简化计算。
举例:重点讲解如何将一个较大的数(如5,600,000)转换为科学计数法(5.6×10^6),以及如何进行科学计数法之间的加、减运算(如3.2×10^3 + 4.5×10^3)。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解科学计数法的基本概念。科学计数法是一种表示较大或较小数值的方法,形式为a×10^n(1≤a<10,n为整数)。它在数学、科学研究和日常生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。比如,我们要表示奥运会金牌含金量为0.999...,可以写作9.99...×10^-1。这个案例展示了科学计数法在实际中的应用,以及它如何帮助我们简化数值表示。
2.培养学生通过科学计数法解决实际问题的能力,提高数学应用意识和问题解决能力;
3.引导学生掌握科学计数法的基本概念和转换方法,培养数学抽象和逻辑推理素养;
4.培养学生在小组合作中交流、讨论、分享科学计数法的应用,提升合作交流与团队协作能力。
三、教学难点与重点
1.教学重点
-科学计数法的定义及其表示形式:a×10^n(1≤a<10,n为整数);
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“科学计数法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
七年级数学上册第一章有理数1.5.2科学计数法(图文详解)
人=_1_0_0_, 103 =__1__0_0_0_, 104 =_1_0__0_0_0_,
【解析】选C.4.6×108 的原数应有8+1=9位整数,所
以4.6×108 =460 000 000.
人教版七年级数学上册第一章有理数
4.(成都中考)上海“世博会”吸引了来自全球众多国家数
以千万的人前来参观.据统计,2010年5月某日参观世博
园的人数约为256 000,这一人数用科学记数法表示为
人教版七年级数学上册第一章有理数
3.(丹东中考)在“2008北京”奥运会国家体育场的“鸟
巢”钢结构工程施工建设中,首次使用了我国科研人员 自主研制的强度为4.6×108 帕的钢材,那么它的原数为
()
(A)4 600 000
(B)46 000 000
(C)460 000 000
(D)4 600 000 000
(
)
(A)2.56×105
(B)25.6×105
(C)2.56×104
(D)25.6×104
【解析】选A.256 000的整数位数有6位,所以在用科学
记数法表示时应为10的6-1=5次方.所以256 000=2.56×
105,同时要注意1≤ a <10.
人教版七年级数学上册第一章有理数
5.(南安中考)温家宝总理在2010年3月5日的十一届
_____2_×__1_0_12___ 千瓦时.
人教版七年级数学上册第一章有理数
2.下面信息中的大数已经用科学记数法表示了,你知道原数 是谁吗? (1)一口痰大约含有细菌1.3×108个;___1_3_0__0_0_0__0_0_0_个 (2)温岭市去年总共缺水6.2×106吨; __6__2_0_0__0_0_0__吨 (3)据中国电监会统计,我国今年预计将缺电6×1010千瓦时; ___6_0__0_0_0__0_0_0__0_0_0___千瓦时 (4) -2.4×104=____-_2_4__0_0_0______.
人教版七年级数学上册1.5.2《科学计数法》导学案
人教版七年级数学上册1.5.2《科学计数法》导学案【学习目标】1.会用科学记数法表示大于10的数;弄清科学记数法中10的指数n与这个数的整数位数的关系;2.知道如何用科学记数法表示的数的原数.3.感受科学记数法的作用,体会科学记数法表示大数的优越性及必要性.重点:正确运用科学记数法表示较大的数.难点:正确掌握10的幂指数特征.【学习过程】一、旧知回顾,问题诱思任务一、了解科学记数法的意义1.回顾有理数的乘方运算,算一算:10=10=10=10=_(1)(—10)表示(2)10n=10…..0(在1后面有个0).2.借助10的乘方的特点记数:归纳:科学记数法的概念:一个大于的数可以表示成的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.试一试:用科学记数法表示下列各数:(1)1 000 000;(2) 57 000 000;(3)696 000;(4) -78 000;___任务三:会将用科学记数法的数还原成原数:下列用科学记数法表示的数,它的原数是什么?(1)3.8×10=;(2)5.007 ×107=;(3)5.9406×102=______________;(4)—7.0010×=______________.注意:1.科学记数法中的a的范围_____________;2.把科学记数法表示的数还原时,只要把a×10中a的小数点向右移动位即可.任务四:科学计数法的应用与拓展:请你把其中的数据用科学记数法表示出来:(1)人的大脑约有10,000,000,000个细胞:.(2)全世界人口约为61亿人:人.变式一:(1)2012年某省国内生产总值达到6030亿元:_________________亿元.(2)18547.9亿元=元.变式二:(3)50302=_________;(4)16.71×104=________;(5)0.0051×106=________.注意:(1)用科学记数法表示实际问题中的数量时,必须带上单位;(2)单位的统一.变式三:你能用科学记数法表示吗?(1)-56 0300 0000 0000=___________;(2)-50.01×106=_____________.注意:小于—10的数也可以用科学记数法表示,只是多一个负号,记作—a×10变式四:若a=6.3×106,则a的整数位数是()A.5B.6C.7D.8三、围绕问题,反思总结本节课你有什么收获?有哪些注意点?⑴什么叫做科学记数法?.⑴灵活运用科学记数法,注意解题技巧,总结解题规律.⑴用科学记数法表示大数应注意以下几点:⑴1≤a<10.⑴当大数是大于10的整数时,n为整数位减去1.。
人教版七年上册1.5.2科学计数法优秀教学案例
4.通过成功解决实际问题,增强学生自信心,培养学生的成就感。
三、教学策略
(一)情景创设
1.利用生活实例引入:通过展示生活中常见的大数或小数,如身高、体重、物价等,让学生感受科学Leabharlann 数法的实际应用,激发学生的学习兴趣。
2.设计有趣的数学问题:创设与科学计数法相关的问题,如“计算外星人身高”、“修建高速路的预算”等,让学生在解决问题的过程中自然引入科学计数法。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入:通过展示生活中常见的大数或小数,如身高、体重、物价等,让学生感受科学计数法的实际应用,激发学生的学习兴趣。
2.创设有趣的数学问题:创设与科学计数法相关的问题,如“计算外星人身高”、“修建高速路的预算”等,让学生在解决问题的过程中自然引入科学计数法。
3.利用多媒体手段:通过动画、视频等形式展示科学计数法的应用场景,增强学生的直观感受,提高学生的学习兴趣。
(二)问题导向
1.设计层层递进的问题:从简单的问题开始,逐渐增加难度,引导学生逐步深入探讨科学计数法的内涵。
2.引导学生自主探究:鼓励学生主动提出问题,引导学生通过讨论、思考解决问题,培养学生的独立思考能力。
(四)反思与评价
1.让学生进行自我评价:让学生反思自己在学习过程中的优点和不足,明确改进方向。
2.同伴评价:鼓励学生相互评价,取长补短,共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的成长,给予鼓励和指导。
4.建立评价机制:设立积分制度,对学生在学习过程中的表现进行量化评价,激发学生的学习动力。
3.使学生熟练运用科学计数法处理实际问题,提高解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
≈2.7(年)
36 792 000
方法二:36 792 000 ×10=360 792 000
360 792 000>100 000 000
有关资料表明,一个在刷牙过程中如果一直打 开水龙头,将浪费大约7杯水(每杯水约250mL), 我们临海市人口除婴幼儿外,约有100万人口,如 果所有的人在刷牙过程中都不关水龙头,则一次 刷牙将浪费多少mL水? (用科学记数法表示)
解: 1000 000 = 106
57 000 000 = 5.7×10 000 000 =5.7×10 7
123 000 000 000 = 1.23×100 000 000 000 =1.23×1011
a×10n
在用科学记数法表示一个数的时候,怎 样快速地确定出形式中的a和 n呢?
1000 000 = 106 57 000 000= 5.7×10 000 000 =5.7×107 123 000 000 000 = 1.23×100 000 000 000
(5)三峡水电站的四台机组年内预计可发电 (5 500 000 000)度; _5_._5_×__1_0_9_
(6)光年是指光一年所走过的路程,一光年约等于 (9 460 000 000 000)千米; _9_._4_6_×__1_0_1_2
(7) -27 600 000=_-_2_._7_6_×__1_0__7____;
象这样较大的数据,书写和阅读都有一 定困难,那么有没有这样一种表示方法,使
102=_1_0_0_, 103=_1_0_0_0, 104=_10_0_0_0,
那么100 000 可以表示成_____1_0_5____, 10 000 000 可以表示成____1_0_7_____, 1后面有11个零呢?______1_0_1_1_______.
(4) -2.4×10 4 =____-_2_4_0_0_0_______.
一个正常人的平均心跳速率是每分70次,一年 大约跳多少次?用科学记数法表示这个结果 一个正常人一生心跳次数能达到1亿次吗?
解 70×60×24 ×365= 36792000=3.6792×107
100 000 000
方法一:
解: 浪费的水为 250×7 ×1 000 000=1 750 000 000
= 1. 75 ×109 (mL)
答:刷牙一次将浪费水1.75 ×109 mL .
将一个较大的数用科学记数法表示成 a×10n形式
a×10n形式中,a是整数位数只有一位的 数,即1≤a<10. 用科学记数法表示一个数时,10的指数 比原数的整数位数少1.
用科学记数法表示下列数字. (1)太阳的半径为(696 000)_6_._9_6_×__1_0_5千米; (2)光的速度为(300 000 000)__3_×__1_0_8__米/秒; (3)我国人口已达(1 300 000 000)_1_._3_×__1_0;9
(4)我国去年发电总量约(2 000 000 000 000) _____2_×__1_0_12___ 千瓦时;
下面信息中的数已经用科学记数法表示 了,你知道原数是多少吗? (1)一口痰大约含有细菌1.3×10 8个;
___1_3_0_0__0_0_0_0_0_______个
(2)温岭市去年总共缺水6.2×10 6 吨; ____6__2_0_0__0_0_0________吨
(3)据中国电监会统计,我国今年预计将缺电 6×1010千瓦时; ___6_0__0_0_0_0_0_0__0_0_0____千瓦时
300 000 = 3 ×10 5 2 600 000 = 2.6×10 6 57 600 000 =5.76×10 7
像下面那样,把一个数表示成a×10n的形式 (其中1≤a<10,n是整数),既简单明了,又 便于阅读和进行计算,这种记数法,叫科学记数 法。
例:用科学记数法表示下列各数:
1 000 000, 57 000 000, 123 000 000 000
=1.23×1011
a×10n 中10的指数总比整数的位数少1
(1)如果一个数是6位整数,用科学记 数法表示它时,10的指数是__5_; 如果一个 数有9位整数,那10的指数是___8_______.
(2) 用科学记数法表示一个n位整数, 那10的指数应是__n_-_1_____.
a×10n 中10的指数总比整数的位数少1
淮北市开渠中学 王 毅
神六飞船在太空 中大约飞行
3 200 000千米
第五次人口普查时, 中国人口约为 1300 000 000人
太阳的半径约为 696 000 000米
光的速度约为 300 000 000米/秒
可见: 我国人口已达1 300 000 000人; 太阳的半径为 696 000 000千米; 光的速度为 300 000 000 米/秒; 神六飞船在太空中大约飞行 3 200 000千米. ……
思考:
知道300 000 可以怎样表示吗? 300 000 =3×100 000 = 3 ×10 5
2 600 000 =2.6×1 000 000 = 2.6×10 6 57 600 000 =5.76×10 000 000 =5.76×10 7
观察下面等式右边表示大数的式子,它们的形 式都有什么特点?