第3章 GIS数据处理

合集下载

地理信息系统概论-第三章

地理信息系统概论-第三章

2024/7/17
22
高斯-克吕格投影的特点:
① 中央经线上没有任何变形,满足中央经线投影后保持长度 不变的条件;
② 除中央经线上的长度比为1外,其他任何点上长度比均大 于1;
③ 在同一条纬线上,离中央经线越远,变形越大,最大值位 于投影带的边缘;
④ 在同一条经线上,纬度越低,变形越大,变形最大值位于 赤道上。
局部比例尺: 由于投影中必定存在某种变形,地图仅能在某些点或线上保 持比例尺,其余位置的比例尺都与主比例尺不相同,即大于 或小于主比例尺。这个比例尺被称为局部比例尺。
一般地图上注明的比例尺是主比例尺,而对用于测量长度的
地图要采用一定的方式设法表示出该图的局部比例尺。这就
是在大区域小比例尺地图(小于1:1 000 000)上常见的图解
地形图上公里网横坐标前2位就是带号, 例如:1∶5万地形图上的坐标为(18576000, 293300),其中18即为带号。
2024/7/17
24
当地中央经线经度的计算
六度带中央经线经度的计算: 当地中央经线经度=6°×当地带号-3°, 例如:地形图上的横坐标为18576000,其所处的六度带的中 央经线经度为:6°×18-3°=105°。
2、建立地图投影的目的: 采用某种数学法则,使空间信息在地球表面上的位置和地 图平面位置一一对应起来,以满足地图制图的要求。
2024/7/17
9
理解地图投影如何改变空间属性的一种简便方法:
观察光穿过地球投射到表面(称为投影曲面)上。 想像一下,地球表面是透明的,其上绘有经纬网。用一 张纸包裹地球。位于地心处的光会将经纬网投影到一张纸上 。现在,可以展开这张纸并将其铺平。纸张上的经纬网形状 与地球上的形状不同。 地图投影使经纬网发生了变形。

GIS原理-判断及选择题

GIS原理-判断及选择题
7.海量空间数据的管理主要采用分幅管理空间数据的方法。分幅的方法有经纬线分幅和矩形分幅两 种。 (对 错 )
二.选择题
8.数据库系统是:____。( ) A.存储在计算机内的有结构的数据集合 B.一个软件,用以维护数据库、接受并完成用户对数据库的一切操作 C.指由硬件设备、软件系统、专业领域的数据体和管理人员构成的一个运行系统 D.数据文件的集合
二.选择题
6.在地理信息系统中,通常使用的三个坐标系是:_____。( ) A.世界坐标系、规范化坐标系和设备坐标系 B.世界坐标系、用户坐标系和设备坐标系 C.世界坐标系、局部坐标系和设备坐标系 D.局部坐标系、用户坐标系和设备坐标系
7.图形数据的编辑功能主要是:________。( ) A.利用已知的理论数据和实际数据建一多项式变换公式,用此公式修改错误数据 B.利用 GIS 软件提供的程序,自动删除图形数据中的错误数据 C.利用开窗口功能和光标定位功能,人机交互的修改图形中的错误数据 D.利用图形变换功能来修改图形中的错误数据
第一章 绪论
一.判断题
1.在通常情况下,对信息和数据可不作严格区分,在不引起误解的情况下可以通用,因此信息和数 据无本质区别。 (对 错 )
2.GIS 与 DBS 的最大差别是前者具有处理图形数据功能,而后者没有。 (对 错 )
3.GIS 与 CAD 系统两者都有空间坐标,都能把目标和参考系统联系起来,都能描述图形拓扑关系,也 能处理属性数据,因而无本质差别。 (对 错 )
3.手扶跟踪数字化输入得到的是矢量数据。 (对 错 )
4.对于一条折线一般选择流方式数字化。 (对 错 )
5.对于不规则曲线图形常选择流方式数字化。 (对 错 )
6.扫描输入最大的缺点是噪声、数据量大。 (对 错 )

arcgis数据处理

arcgis数据处理

arccgisnaruto2020/4/29第一章软件的安装和课程设置软件安装设置•自定义——扩展模块,全部打钩;•地理处理——地理处理选项——后台处理,勾选掉;•将arctoolbox拖动到左侧内容列表处,这样二者可以随意切换;•在菜单栏右侧点击右键,可将编辑器添加到常用的位置;课程介绍•数据的获取•数据的处理•地形因子的提取•水文分析•地图可视化•操作技巧第二章数据的获取2-1 栅格数据的获取(DEM)•地理空间数据云,是个网站;•迅雷批量下载,使用通配符;2-2 矢量数据的获取1.矢量数据包括点线面三个;2.常用的是线、面之间的互转;3.也可以将一个图层的内容进行部分保存,以点文件为例;2-3 地图的地理配准1.鼠标右击菜单栏下方空白处,选择:地理配准——添加控制点;2.在控制点上右击:输入x和y;3.点击:查看链接表,显示已插入的控制点;4.配准完毕后,点击:更新地理配准;2-4 地图的矢量化1.打开栅格图形或者矢量图,双击即可;2.打开图片格式,不要双击;3.矢量化的流程:加载位置—开始编辑—创建要素—选择想要矢量化的图层—保存编辑内容;2-5 地图的自动矢量化1.双击图片,把3个图层都添加;2.一般而言,第2个图层的区分度最高;3.新建shapefile文件,折线;4.arcscan-开始编辑;5.在图片图层上右击,属性,符号系统,已分类,是,分类,类别,2类;6.调整左侧直方图位置,使线条最清晰;7.矢量化追踪,单击线条某个位置,隔段距离接着单击;保存编辑内容;2-6 利用google earth获取矢量数据1.google earth,选择“添加路径”,划定范围之后,即可导出。

“将位置另存为”,保存kml/kmz。

2.搜索“kml转图层”,选择导出的路径;2-7 矢量数据的编辑(1)要素转面,可以将线图层转面图层,同时交叉处被缝合;2-8 矢量数据的编辑(2)1.想要对线图层进行微调,启动编辑-选中线-双击线-编辑折点;2.不想将特定的封闭区域转换为面图层,可将线图层中间截断:选中线-右击-分割工具;2-9 利用FME转化KML格式文件(1)+(2)1.KMZ转图层-设置输入、输出位置、名称-确定;2.选中points图层-导出数据,设置为shp格式;3.右击导出的图层-打开属性表,可看到各种属性,也可能有部分属性丢失;4.FME Desktop 2018,是个软件,选中FME Data Inspector,导入数据,支持kml格式,可以获取经纬度坐标等完整的属性;5.FME workbench 2018-add reader-导入KML文件-选中placemark-点设置图标-选中kml_altlonaltbox_north等;6.add writer-search-选shp格式-点设置图标-设置名称和数据类型-拉动箭头-点击运行图标;7.添加数据到arcgis;第三章地图投影及图层编辑3-1 地图投影(1)+(2)1.不同投影的图层,大概率不能同时显示;2.右击图层-属性-源,可查找投影类型;3.坐标类型包括:a)投影坐标系;b)地理坐标系,如54,80,2000,wgs等;4.设置地理坐标系即可同时显示;5.arctoolbox-投影和变换-定义投影-地理坐标系-Asia-Beijing 1954-点添加坐标系图标-导入;6.arctoolbox-投影和变换-投影-投影坐标系;7.栅格文件的投影,arctoolbox-投影和变换-投影栅格;3-3 矢量数据的长度、面积计算1.要素转面-要素转线,这个操作可以消除交叉的线;2.计算长度和面积,需要地理坐标系和投影坐标系;3.图层属性-右击len-计算几何,计算出面积,如果没有某个属性,可以自己添加;3-4 图层的裁剪、拼接1.只能使用面图层裁剪;2.extract by mask-设置输入栅格、面图层路径、输出栅格路径;3.mosaic to new-选择需要拼接的栅格、设置输出位置、命名、选择像素类型(图层中查看)、波段数-确定;4.设置输出位置的时候,尽量设置为英文路径,无特殊字符;5.栅格数据的命名:小于13个字符;第四章特征点、线、面的提取4-1 坡度、坡向、等高线的生成1.工具箱-3D分析-栅格表面-坡向/坡度/等值线,设置完即可计算出结果;2.右击等高线图层-属性-标注-标注字段contour,即可显示等高距;4-2 变率和曲率的计算1.首先计算坡度,再对计算结果进行坡度计算,可得坡度的变率;2.首先计算坡向,再对坡向结果进行坡度计算,可得坡向的变率;3.空间分析-表面分析-曲率,依次可得到综合、坡面、平面曲率,3个图层;4-3 地形起伏度和地形粗糙度计算1.spatial analyst-邻域分析-焦点统计,计算出统计类型中的最大值、最小值;2.spatial analyst-地图代数-栅格计算器,最大值减去最小值(双击),确定,得到地形起伏度;3.工具箱-3D分析-栅格表面-坡度,计算出坡度,spatial analyst-地图代数-栅格计算器,1/Cos(坡度*3.14/180),得到地形粗糙度;4-4 地表切割深度和高程变异系数计算1.spatial analyst-邻域分析-焦点统计,统计类型MEAN;2.spatial analyst-邻域分析-焦点统计,统计类型MINIMUM;3.spatial analyst-地图代数-栅格计算器,MEAN-MINIMUM,输出,得到切割深度;4.spatial analyst-邻域分析-焦点统计,统计类型STD(标准差);5.spatial analyst-地图代数-栅格计算器,STD-MEAN,输出,得到高程变异系数;4-5 山顶点(1)1.spatial analyst-邻域分析-焦点统计,统计类型MAXIMUM;2.spatial analyst-地图代数-栅格计算器,MAXIMUM-原始图层=差值;3.spatial analyst-地图代数-栅格计算器,差值==0;4-6 山顶点(2)1.3D分析工具-栅格重分类-重分类;2.重分类:0设置为nodata,1不变,nodata不变;设置输出路径,确定;3.栅格转面-选图层、输出路径;4.要素转点-勾选内部-确定;4-7 山顶点(3)1.spatial analyst-地图代数-栅格计算器,原始地形*(-1),得到反地形;2.spatial analyst-水文分析-流向-D8算法,确定;3.spatial analyst-水文分析-汇,求出洼地;4.栅格转面;5.要素转点,内部;6.3D分析工具-栅格表面-等值线,导入原始DEM图层,等高距=20;7.要素转面;顶点附近可转化为面;8.只保留当前图层,选择-按位置选择,空间选择方法为“与源图层要素相交”,应用;9.编辑器-开始编辑-找到山顶点所在图层,-打开属性表,-切换选择,可选中冗余点,delete;第五章流域水文分析5-1 流域提取(1)+(2)1.地理处理-环境-并行处理(设置为0);2.spatial analyst-水文分析-填洼;3.spatial analyst-水文分析-流向;选择填洼图层,D8算法,确定;4.spatial analyst-水文分析-流量;选择流向图层,确认;5.spatial analyst-数学分析-逻辑运算-大于等于,选择流量图层,10000,确定;6.3D分析工具-栅格重分类-重分类;7.重分类:0设置为nodata,1不变,nodata不变;设置输出路径,确定;8.spatial analyst-水文分析-河流链接-输入重分类以后的栅格图层、流向图层、输出栅格,确定;9.spatial analyst-水文分析-集水区-输入流向数据、河流链接,确定;10.右击图层属性-符号系统-唯一值-确定;11.栅格转面,将栅格流域转为矢量流域-右击属性-显示-透明度50%-编辑器-开始编辑;12.按住shift,多选区-右击属性-表-切换选择,删除多余的面,保存;13.右击属性-显示-透明度0%-按掩膜提取,确定;5-3 建模流域提取(1)+(2)+(3)1.新建一个工具箱,命名水文分析1-右击此工具箱,新建一个模型;2.单击填洼不放,拖入模型-双击输入框-设置图层,应用,确定;3.单击流向不放,拖入模型-链接2步骤的结果到流向(单击);4.单击流量不放,拖入模型-链接3步骤的结果到流量(单击);5.选择-双击流量框,设置图层和路径,确认;6.spatial analyst-数学分析-逻辑运算-大于等于,拖入模型-链接5的结果到大于等于;7.双击大于等于,设置阈值,应用,确定;8.3D分析工具-栅格重分类-重分类,拖入模型-链接7的结果到重分类,输入栅格;9.选择,双击重分类,添加条目,应用,确定;10.将河流链接拖入模型,链接后双击,设置;应用,确定;11.将集水区拖入模型,链接后双击,设置;12.重新排版,运行;右击结果,选择添加至显示;13.调整模型后,需要:模型-删除中间数据;5-6 河流分级(1)1.填洼-重分类,操作统5-1节;2.水文分析-河网分级,输入重分类、流向数据,分级方法选STRAHLER;5-7 河流分级(2)1.河流分级的方法,常用的有Strahler(1953)、Shreve(1967);2.设置完确定,得到分级结果;3.水文分析-栅格河网矢量化,简化线不要勾选,可得矢量图;4.右击结果图层属性-符号系统-类别-唯一值-值字段grid_code-添加到所有值;得到各个级别不同颜色的线条;5.右击结果图层属性-符号系统-数量-分级符号-字段值grid_code,可得到每一级别不同宽度的矢量线条;5-8 鞍部点提取(1)1.所谓鞍部点,即是一个方向上的最低点,另一个方向的最高点;2.填洼-流向-流量-阈值-重分类-河流链接-集水区,这样即可求出栅格流域;3.栅格转面,得到矢量流域;4.要素转线;得到流域线边界;5.要素转栅格;6.栅格计算器,令>=0;7.栅格计算器,*原始栅格,得到具有高程属性的DEM;8.邻域分析-焦点统计,统计类型MINIMUM,求出最小值;9.栅格计算器,原始高程减去上述最小值,即是最低值的栅格;10.栅格计算器,令9的结果图层==0;11.邻域分析-焦点统计,统计量MEAN;12.栅格计算器,用原始DEM-MEAN;13.重分类,分类,类别2,中断值0,<0的nodata,>0的1,确定;得到正地形所在区域;14.栅格计算器,8*13,重分类,nodata,1,nodata,可得到鞍部点;15.栅格转面;要素转点;得到矢量鞍部点;16.值提取至点,给鞍部点赋高程值;第六章地图可视化6-1 分层设色地形渲染图1.色带第三组效果可能最好;2.3D分析-栅格表面-山体阴影,方位角315,高度角45,Z因子默认1;得到山体阴影;3.右击原始DEM属性-显示-透明度,50%;4.文件-导出地图-保存;6-2 三维地形示意图制作1.arcscene-点击导航图标-选择色带;2.右击原始DEM-属性-基本高度-在自定义表面浮动,添加原始DEM-应用、确定;3.基本高度,调整系数,可以调节立体效果;4.栅格范围(raster to domain)-输出要素类型,LINE;5.右击线边界图层-基本高度,自定义表面,原始DEM,拉伸系数=上面的图层;6.右击线边界图层-拉伸,拉伸方式:将其添加到各要素的最小高度;拉伸值或表达式:1;7.文件-导出场景-2D;6-3 3D地形制作(1)+(2)+(3)1.安装3D map generator terrain插件,到PS上;2.加载DEM-创建面-裁剪;3.在空白处右击-数据框属性-调整背景为黑色-导出图片;4.在google earth中保存对应DEM的遥感图片;5.PS中,将两个图片重叠在一起,选框工具-裁剪;6.打开插件,隐藏遥感图片-创建新地形-设置拉伸系数3,方向左;确认;7.返回6中的界面,隐藏DEM图层,复制遥感图层到6的结果图层所在界面;保存;8.添加等高线、水位、灯光、底座高程;放置图标;6-6 研究区出图(1)1.点击左下布局视图-文件,页面和打印设置,可更改页面设置;6-7 研究区出图(2)1.插入-数据框,右击数据框,可对齐位置;对齐的时候,参照物最后选取;2.右击数据框-添加数据,可加载角图到框中;3.右击角图-属性-框架-背景;4.平移(手型工具),可移动角图内的内容;6-8 研究区出图(3)1.工具-插入,添加指北针、比例尺、图例、2.双击比例尺,可以进行细节设置;右击,转化为图形,打散、分组也可进行细节设置;6-9 研究区出图(4)1.图框右击-绘图工具-添加文本;2.右击图框-属性-隔网-新建隔网-经纬度,添加经纬度;细节都可以在属性中修改;第七章其它7.1 文件夹链接和数据库建立1.添加数据图标-链接到文件夹,这样可以在右侧显示链接文件夹的大纲信息;2.输出栅格的路径默认是在C盘,.gdb数据库;3.在2中,想要一劳永逸的设置自定义路径,需要:右上角选项图标-目录选项-主目录文件夹;应用,确定;关闭软件后重启生效;4.新建数据库:右击文件夹-新建-文件地理数据库,或个人地理数据库;5.在arcgis中复制文件,优先在目录中复制,不容易丢失;7.2 建模数据快速处理(1)打开模型:右击工具箱-编辑;7.3 建模数据快速处理(2)1.模型计算完成之后,需要删除中间数据;然后再保存,以便下次使用;2.模型设置完之后,右击选择-添加至显示,可以将结果直接显示在左侧内容列表;3.右击模型中每一步的计算图块-获取变量-从参数;可将各个对话框中设置的内容反映在模型中,提供了便利;7.4 默认属性值的更改1.栅格图层中右击-打开属性表,这一栏有时候可能是灰色的,原因是其中有浮点型数据;2.栅格计算器,int(“图层名”),取整;3.使用自定义属性替代默认属性显示效果,以坡度为例:重分类-重分类字段VALUE,分类;确定;4.接3,表-添加字段aa;编辑器-开始编辑-选择重分类之后的坡度-保存-停止编辑;5.栅格转面-字段aa,简化面不勾选,确定;6.要素转栅格-字段grid code(aa转矢量之后的名称),像元大小30,确定;7.5 栅格点线面的相互转化(1)1.points to line(点集转线),闭合线勾选;2.圆滑线:制图工具-制图综合-平滑线,算法FAEK,容差0.5m,勾选保留闭合线的端点;7.6 栅格点线面的相互转化(2)1.分割面:需要在转面之前对线进行编辑;编辑器-开始编辑-创建要素-选择线,划线;-停止编辑-要素转面;2.合并面:编辑器-开始编辑-框选所有面,编辑器-合并;3.要素转点:要素转点-勾选内部;4.要素转点的使用场景:空间插值;这种情况下的转点为:要素折点转点-输入等高线,点类型ALL;7.7 空间插值简介(1)1.地统计分析-直方图•偏度:如果是正态分布,0;•峰度:如果是正态分布,0;2.地统计分析-正态QQ图:如果是正太分布,为斜率一定的直线;3.地统计分析-Voronoi图(泰森多边形图):多边形任意地方距离点的位置最近;7.8 空间插值简介(2)1.地统计分析-趋势分析;2.geostatistical analyst-子集要素3.地统计分析-克里金法;7.9 空间插值简介(3)按掩膜提取-输入栅格图层、polygon,确定;相当于mapgis中的裁剪;7.10 外部数据点的导入(1)+(2)1.excel导入arcgis:X代表经度、Y代表纬度;数据是小数点格式的;2.file-add data-add xy data- 将excel文件另存为.xls格式-添加;3.右击图层-导出数据-加载数据;即可进行数据分析;7.11 拓扑分析处理1.拓扑规则的建立:右击文件夹-新建-个人地理数据库;2.右击数据库-新建-要素数据集-设置地理坐标系,没有投影坐标系可以先空着;3.右击数据集-导入-要素类(单个)-生成矢量数据;4.右击3中生成的矢量图层-新建-拓扑-添加规则,规则:不能相交,确定;5.将拓扑结果拖入视图,显示相交的位置;。

GIS数据处理、制图、空间分析

GIS数据处理、制图、空间分析
5.掌握打印输出:按指定比例尺打印和按纸张打印;分幅打印和按行政区划输出打印;图框注记,花边图框的制作,局部切割打印;不规则图框制作,公里网制作数据模型和各种样式设置技巧;示意图、色带的制作;创建和输出高质量的地图;导出各种格式图片。
6.基于数据驱动的地图册制作方法,批量打印地图提供符号库和字体库:提供国土、林业等专用各种地类点、线、面样式符号库和各种字体库如扁宋,等线体,长线体,左斜字体库。
3.熟练影像各种分析:重分类的影像处理方法及适用范围。
【案例实操】
1.栅格计算器的各种使用案例。
2.影像格式转换。
第五章
专题图快
速制作和 打印输出
1.熟练地图配色和专题图制作:地图配色;矢量数据的专题图制作和符号化;栅格数据的专题图制作;饼图,直方图的制作和显示。
2.掌握制图表达:制图表达的特点、存储,制图表达与标准符号化的区别,制图表达的适用情况、规则,创建制图表达,标记符号对齐的实现,房屋阴影效果,聚类点放置规则,河流渐变,天桥符号,跳绘线等。
2.掌握缓冲区分析和统计分析方法;叠加分析、连接和应用:叠加分析工具和应用具体案例;提取分析、统计分析、邻域分析工具等工具的使用方法,栅格处理工具;插值工具和表面分析工具应用及案例。
【案例实操】
1.基于 ArcMap 文档(MXD)的批量裁剪。
2.应用提供老师自己开发批量合库工具和批量快速裁剪工具。
2.熟练拓扑检查方法:拓扑容差的概念和拓扑检查准备工作,拓扑规则和使用范围;拓扑建立和拓扑检查;常用的拓扑检查和经典案例分析。
3.熟练拓扑错误处理;拓扑错误定位;拓扑错误修改和编辑;拓扑共享编辑。
4.案例分析说明各种常见拓扑错误处理方法和技巧。
【案例实操】
1.各种空间查询方法和使用案例。

GIS空间数据处理与分析

GIS空间数据处理与分析
内边界
栅格单元(i,j)四角点坐标的计算:
X(i1,i2)=(j-1)*DX和J*DX Y(i1,i2)=(i-1)*DY和i*DY I,j:栅格单元行列值; DX,DY:栅格单元边长
⑴:识别内边界,并将内边界端点坐标置零. 判别方法: 判断与栅格单元某条边相邻的另一栅 格单元的值,若值小于零,则该边为内边界. 内边界端点坐标置零: 边界起点和终点坐标置零.
分区数据的方法就称为空间数据的内插。
第五节 空间数据的内插方法
1、点的内插:研究具有连续变化特征现象 的数值内插方法。
步骤: 数据取样;数据处内插;数据记录
第五节 空间数据的内插方法
2、区域的内插
研究根据一组分区的已知数据来推求
同一地区另一组分区未知数据的内插方法。
区域内插方法:
2.1 叠合法:认为源和目标区的数据是均匀 分布的,首先确定两者面积的交集,然后 计算出目标区各个分区的内插值。
1、遥感与GIS数据的融合:
遥感技术的优势 融合必要性 GIS技术的优势 遥感图像与图形的融合 融合方法: 遥感数据与DEM的融合 遥感数据与地图扫描图像的融合第三节 多源 Nhomakorabea间数据的融合
2、不同格式数据的融合
不同格式数据的融合方法主要有:
2.1基于转换器的数据融合:
一种软件的数据格式输出为交换格式,然后用于另
P3
P
0
x
判断点是否在多边形内,从该点向左引水平扫描线,计算此 线段与区域边界相交的次数,若为奇数,该点在多边形内;若为 偶数,在多边形外。利用此原理,直接做一系列水平扫描线,求 出扫描线和区域边界的交点,对每个扫描线交点按X值的大小进 行排序,其两相邻坐标点之间的射线在区域内。
第二节

GIS数据处理与空间分析教程

GIS数据处理与空间分析教程

GIS数据处理与空间分析教程引言:地理信息系统(Geographic Information System,简称GIS)是一种将地理空间数据与属性数据进行捆绑组织、存储、查询、分析、可视化并生成可输出图形报告的系统。

在各个领域,如城市规划、环境管理、资源分配、农业发展等都有广泛的应用。

本教程将就GIS数据处理与空间分析的相关内容进行深入的介绍和讲解。

第一章:GIS数据处理的基础知识GIS数据由地理空间数据和属性数据组成,地理空间数据包括点、线、面等地理要素。

在这一章节,我们将学习地图投影的基本知识,了解常见的地理坐标系和地图投影方式,并介绍GIS数据的各种数据格式,如Shapefile、GeoJSON等。

第二章:GIS数据获取与预处理本章节将介绍如何获取地理空间数据,包括地理信息系统数据和其他来源的数据。

我们将探讨如何使用GPS设备采集地理数据,并学习如何使用影像处理软件提取图像中的地理信息。

另外,还将涉及数据预处理的工作,如数据清洗、数据转换和数据拓扑校正等。

第三章:GIS数据管理与存储GIS数据管理与存储是GIS应用中关键的一环,本章节将重点介绍如何进行数据管理和数据存储。

我们将学习如何使用数据库管理系统(DBMS)对GIS数据进行组织和存储,并了解属性数据表的设计和建立。

此外,还将介绍如何维护和更新数据,以及数据备份和恢复的相关策略。

第四章:GIS空间分析基础在进行GIS空间分析之前,我们需要了解一些基础概念和方法。

本章节将介绍GIS空间分析的基本概念,如空间关系、空间查询和空间操作等。

我们还将学习常见的空间分析方法,如缓冲区分析、叠加分析和网格分析等,并通过具体案例来加深理解。

第五章:GIS空间分析进阶本章节将介绍一些进阶的GIS空间分析方法和技术,如网络分析、三维分析和时空分析等。

我们将详细讲解这些方法的原理和应用场景,并通过实际案例来展示如何使用这些方法进行空间分析。

第六章:GIS可视化和报告生成通过可视化和报告生成,我们可以有效地展示和传达GIS数据和分析结果。

gis数据处理流程

gis数据处理流程

GIS数据处理流程简介地理信息系统(GIS)是一种将地理位置信息与属性数据进行整合、存储、管理、分析和可视化的技术。

在GIS中,数据处理是一个至关重要的步骤,它涉及到从不同来源获取数据,将其转换为适用于分析和可视化的格式,并对数据进行清洗、处理和整合。

本文将详细介绍GIS数据处理的流程和步骤。

数据获取在开始进行GIS数据处理之前,首先需要获取所需的地理空间数据。

这些数据可以来自各种不同的来源,如卫星遥感影像、地面测量、GPS轨迹等。

以下是常见的数据获取方法:1.卫星遥感:通过卫星遥感技术获取高分辨率的影像数据。

2.地面测量:使用测量仪器(如全站仪)对地面特征进行测量,生成坐标点或线段。

3.GPS轨迹:使用GPS设备记录移动物体(如车辆)的位置信息。

数据预处理在进行进一步的分析之前,通常需要对原始数据进行预处理。

这些预处理步骤旨在清洗和准备原始数据以便后续分析。

以下是常见的预处理步骤:1.数据格式转换:将原始数据转换为GIS软件能够处理的格式,如Shapefile、GeoJSON等。

2.投影变换:将数据从原始坐标系统(如经纬度)转换为目标坐标系统(如UTM投影)。

3.数据清洗:删除重复、缺失或错误的数据,修复拓扑错误和几何错误。

4.数据合并:将多个数据集合并成一个数据集,以便后续分析。

空间分析空间分析是GIS数据处理的核心部分,它涉及到对地理空间数据进行各种统计、查询和模型操作。

以下是常见的空间分析操作:1.缓冲区分析:根据给定的距离,在地理空间中创建一系列缓冲区,并计算缓冲区内的要素数量或属性值。

2.可视化:使用符号化技术将地理空间数据可视化,例如制作点图、线图和面图。

3.空间查询:通过指定条件对地理空间数据进行查询,例如查找位于某个区域内的所有点或线段。

4.空间统计:对地理空间数据进行统计分析,例如计算某个区域内要素的平均值、最大值或最小值。

属性管理除了地理空间信息外,GIS还可以管理属性信息。

GIS空间数据处理与分析

GIS空间数据处理与分析

GIS空间数据处理与分析GIS(地理信息系统)是一种用于收集、存储、处理和分析地理空间数据的技术。

它通过将地理空间数据与属性数据相结合,可以帮助我们更好地理解地理现象,并做出科学决策。

在本文中,我将介绍GIS空间数据处理与分析的基本原理和一些常见的应用。

其次,GIS空间数据分析是通过使用GIS工具和分析方法对地理空间数据进行探索和解释。

常见的GIS空间数据分析方法包括空间查询、空间统计、空间插值、空间模型和空间决策支持等。

空间查询是指根据地理位置的特征进行数据提取和查询,常用的空间查询包括邻近查询、包含查询和相交查询等。

空间统计是利用统计方法对地理空间数据进行分析,常用的空间统计方法包括聚类分析、热点分析和空间自相关分析等。

空间插值是通过已知的数据点推断未知的地理空间数据,常用的空间插值方法包括反距离加权和克里金插值等。

空间模型是通过建立地理空间数据之间的关系模型来进行分析,常用的空间模型包括回归模型和地理加权回归模型等。

空间决策支持是利用GIS技术对地理空间数据进行可视化和模拟,以支持决策制定和规划设计等工作。

最后,GIS空间数据处理与分析在许多领域有广泛的应用。

例如,在城市规划中,可以使用GIS技术对城市的用地、交通、环境等进行分析,以支持城市规划决策。

在环境监测中,可以利用GIS技术对大气污染、水污染和土壤污染等进行监测和分析,以支持环境保护工作。

在资源管理中,可以利用GIS技术对土地利用、林业、农业和水资源等进行评估和管理,以支持可持续发展。

在灾害管理中,可以利用GIS技术对自然灾害的风险评估、应急响应和恢复规划进行分析,以提高灾害管理的效能。

综上所述,GIS空间数据处理与分析是一种强大的工具,可以帮助我们更好地理解地理现象,指导决策制定,并提高工作效率。

随着GIS技术的不断发展和应用,相信在未来,GIS空间数据处理与分析将在各个领域发挥更重要的作用。

地理信息系统原理第九版第三章课后答案

地理信息系统原理第九版第三章课后答案

地理信息系统原理第九版第三章课后答案第3章GIS的地理数学基础1、什么是地图投影,它与GIS的关系如何?答:将地球面上的点投影到平面上,而使其误差最小的各种投影方法称为地图投影。

其实质就是建立地球椭球面上的点的坐标(φ,λ)与平面上对应的坐标(x,y)之间的函数关系。

地图投影对GIS有较大的影响,其影响是渗透在地理信息系统建设的各个方面的,如数据输入,其数据包括地图投影数据;数据处理,需要对投影进行变换;数据应用中的检索、空间分析依据数据库投影数据;输出应有相应投影的地图。

2、地图投影的变形包括哪些?答:地图投影的变形,通常可分为长度、面积和角度三种变形,其中长度变形是其它变形的基础。

3、地图投影的分类方法有几种?它们是如何进行分类的?答:地图投影的分类方法很多,总的来说,基本上可以依外在的特征和内在的性质进行分类。

(1)根据地图投影的变形(内蕴的特征)分类根据地图投影中可能引入的变形的性质,可以分为等角、等面积和任意(其中包括等距离)投影。

(2)根据投影面与地球表面的相关位置分类根据投影面与地球表面的相对位置将投影区分为正轴投影(极点在两地极上,或投影面的中心线与地轴一致)、横轴投影(极点在赤道上,或投影面的中心线与地轴垂直)及斜轴投影(极点既不在两地极上又不在赤道上,或投影面的中心线与地轴斜交)。

4、我国地理信息系统中为什么要采用高斯-克吕格投影和正轴等角圆锥投影?答:是因为:(1)我国基本比例尺地形图(1∶5千,1∶1万,1∶2.5万,1∶5万,1∶10万,1∶25万,1∶50万和1∶100万)中大于等于1∶50万的图均采用高斯—克吕格投影为地理数学基础;(2)我国1∶100万地形图采用正轴等角割圆锥投影,其分幅与国际百万分之一所采用的分幅一致;(3)我国大部分省区图多采用正轴等角割圆锥投影和属于同一投影系统的正轴等面积割圆锥投影;(4)正轴等角圆锥投影中,地球表面上两点间的最短距离(即大圆航线)表现为近于直线,这有利于地理信息系统中空间分析和信息量度的正确实施。

测绘技术中的GIS数据获取与处理技巧

测绘技术中的GIS数据获取与处理技巧

测绘技术中的GIS数据获取与处理技巧随着科技的不断发展,地理信息系统(GIS)在测绘领域中扮演着越来越重要的角色。

GIS数据的获取和处理技巧对于准确地理信息的生成至关重要。

本文将探讨一些在测绘技术中常用的GIS数据获取和处理技巧,以帮助读者更好地应用这些技术。

一、GIS数据的来源GIS数据的获取可以通过多种途径完成。

其中,卫星遥感、航空摄影以及地面勘测是最常见的数据来源。

卫星遥感提供了高分辨率的遥感图像,这些图像可以用于测绘、环境监测和资源管理等方面。

航空摄影则通过飞机或无人机拍摄照片,获取地面上的连续图像,这些照片可以用于制作数字高程模型和三维地图。

地面勘测则涉及到在实地进行测量和观测,包括地形测量、土地调查以及建筑物测量等。

二、GIS数据的处理技巧1. 数据预处理在进行GIS数据处理之前,需要先进行数据预处理。

这包括数据清洗、校正和配准等过程。

数据清洗是指通过筛选、删除和修复无效的数据,以提高数据质量和准确性。

校正是指将数据与真实世界进行比对,并进行修正。

配准是将不同数据源的数据进行匹配,以确保数据层之间的一致性。

2. 数据转换GIS数据常以不同的格式存在,如矢量数据、栅格数据和点云数据等。

在数据处理过程中,可能需要将数据转换为其他格式以满足特定需求。

例如,将矢量数据转换为栅格数据可用于地形分析和可视化等。

数据转换还可以通过投影转换和坐标系统转换来处理不同坐标系的数据,以确保数据的准确性和一致性。

3. 空间分析空间分析是GIS数据处理的重要部分之一。

它包括对空间数据进行查询、统计、模拟和预测等操作。

通过空间分析,可以获取有关地理现象和空间关系的更多信息。

例如,通过空间查询可以找到某个区域内的所有医院和学校,以评估服务设施的分布情况。

模拟和预测可以根据已有数据进行模型建立和预测,以支持决策和规划。

4. 数据可视化数据可视化是将GIS数据以图形、图像或动态视觉展示的方式呈现给使用者。

它可以提供更直观、生动的数据呈现方式,帮助使用者更好地理解和分析数据。

GIS数据处理方法

GIS数据处理方法

GIS数据处理方法GIS(地理信息系统)是一种将地理空间数据进行管理、分析和展示的技术工具。

在现代社会中,GIS已经广泛应用于各个领域,包括城市规划、环境保护、农业管理等。

而GIS数据的处理方法则是GIS应用的关键一环。

在本文中,我们将介绍几种常见的GIS数据处理方法。

一、数据获取在进行GIS数据处理之前,首先需要获取所需数据。

数据获取的方式多种多样,主要包括以下几种:1.1 传感器数据采集:通过使用各种传感器,如卫星遥感影像、激光雷达等,可以获取大范围的地理数据。

这些数据具有高时空分辨率,适用于进行空间分析和地图制作。

1.2 数据库查询:利用现有的数据库,如地理数据库、气象数据库等,可以通过查询操作获取所需数据。

这种方式适用于获取局部区域或特定类型的数据。

1.3 野外调查:对于某些无法通过传感器获取的数据,需要进行野外调查。

例如,人口普查、植被调查等需要在实地进行数据采集。

二、数据预处理数据预处理是GIS数据处理的重要步骤,其目的是清洗、转换和标准化原始数据,使其适用于后续的分析和展示。

以下是几种常见的数据预处理方法:2.1 数据清洗:在数据采集过程中,由于各种原因可能导致数据出现错误或缺失。

数据清洗的目的是对这些异常数据进行检测和处理,以确保数据的准确性和完整性。

2.2 数据变换:对于不同源的数据,可能存在投影不同或坐标系不一致的问题。

数据变换的目的是将这些数据进行统一的坐标转换,以便进行地理分析。

2.3 数据标准化:不同数据的单位、量级不同,这将对后续的计算和分析造成困扰。

数据标准化的目的是调整数据的单位和量级,使其在同一尺度下进行比较和分析。

三、数据分析数据分析是GIS数据处理的核心环节,其目的是从数据中提取有价值的信息和知识,以支持决策和规划。

以下是几种常见的数据分析方法:3.1 空间查询:空间查询是GIS中最常用的数据分析方法之一,其目的是在空间范围内查找符合一定条件的地理对象。

例如,查找某一区域内的公园或学校。

MapGIS数据处理方法介绍

MapGIS数据处理方法介绍

MapGIS数据处理方法介绍引言MapGIS是一款功能强大的地理信息系统(GIS)软件,提供了丰富的数据处理方法,帮助用户进行地理数据的分析和处理。

本文将介绍一些常用的MapGIS数据处理方法,包括数据导入、数据编辑、空间分析等。

希望通过本文的介绍,读者们能更好地了解和使用MapGIS的数据处理功能。

数据导入MapGIS支持导入多种格式的地理数据,包括地理数据库、Shapefile、CAD数据等。

下面我们将介绍几种常用的数据导入方法。

导入地理数据库要导入地理数据库,首先需要在MapGIS中创建一个新的地理数据库,并设置数据库类型和连接信息。

然后,选择要导入的数据表,在数据导入向导中选择数据库类型和连接信息,并设置导入选项。

最后,点击导入按钮,等待MapGIS将数据导入到地理数据库中。

导入Shapefile要导入Shapefile,首先需要在MapGIS中创建一个新的地理数据集。

然后,选择要导入的Shapefile文件,在数据导入向导中设置坐标系统和投影信息,并设置导入选项。

最后,点击导入按钮,等待MapGIS将Shapefile导入到地理数据集中。

导入CAD数据要导入CAD数据,首先需要在MapGIS中创建一个新的地理数据集。

然后,选择要导入的CAD文件,在数据导入向导中设置坐标系统和投影信息,并设置导入选项。

最后,点击导入按钮,等待MapGIS将CAD数据导入到地理数据集中。

数据编辑MapGIS提供了丰富的数据编辑工具,帮助用户对地理数据进行编辑和更新。

下面我们将介绍几种常用的数据编辑方法。

添加图层要添加图层,首先需要在MapGIS中打开一个地理数据集。

然后,点击添加图层按钮,在图层管理器中选择要添加的图层类型和数据源。

最后,点击确定按钮,MapGIS将把选定的图层添加到地理数据集中。

修改图层属性要修改图层属性,可以在图层属性对话框中对图层的各个属性进行设置和修改。

例如,可以设置图层的名称、符号、标注等。

地理信息系统概论名词解释总结

地理信息系统概论名词解释总结
第六章 地理信息系统的应用模型
l 数字地面模型(DTM):是定义于二维区域上的一个有限项的向量序列,它以离散分布的平面点来模拟连续分布的地形。
l 数字高程模型(DEM):当数字地面模型的地面属性为海拔高程时,则该模型即为数字高程模型。
l 数字地形分析(DTA):是指在数字高程模型上进行地形属性计算和特征提取的数字信息处理技术。DTA技术是各种与地形因素相关空间模拟技术的基础。
l 地理信息:是指表征地理圈或地理环境固有要素或物质的数量、质量、分布特征、联系和规律的数字、文字、图像和图形等的总称;它属于空间信息,具有空间定位特征、多维结构特征和动态变化特征。
l 地理信息科学:与地理信息系统相比,它更加侧重于将地理信息视作为一门科学,而不仅仅是一个技术实现,主要研究在应用计算机技术对地理信息进行处理、存储、提取以及管理和分析过程中提出的一系列基本问题。地理信息科学在对于地理信息技术研究的同时,还指出了支撑地理信息技术发展的基础理论研究的重要性。
l 边界代数算法:边界代数多边形填充法是一种基于积分思想的矢量格式向栅格格式转换算法,它适用于记录拓扑关系的多边形矢量数据转换为栅格结构。它不是逐点判断与边界的关系完成转换,而是根据边界的拓扑信息,通过简单的加减代数运算将边界位置信息动态地赋给各栅格点,实现了矢量格式到栅格格式的高速转换,而不需要考虑边界与搜索轨迹之间的关系,因此算法简单、可靠性好,各边界弧段只被搜索一次,避免了重复计算。
l DIME文件:美国人口普查局在1980年的人口普查中提出了双重独立地图编码文件。它含有调查获得的地理统计数据代码及大城市地区的界线的坐标值,提供了关于城市街道,住址范围以及与人口普查局的列表统计数据相关的地理统计代码大纲要图。在1990年的人口普查中,TIGER取代了DIME文件。

GIS空间数据处理与分析

GIS空间数据处理与分析

GIS空间数据处理与分析GIS(地理信息系统)是一种将空间数据进行处理与分析的技术。

通过将地理空间数据与属性数据相结合,可以帮助我们更好地理解地理现象并做出有效的决策。

下面将详细介绍GIS空间数据处理与分析。

首先,GIS的数据处理包括数据收集、数据整理、数据清洗和数据转换。

数据收集是指获取与分析目标相关的地理数据,可以通过现场调查、卫星遥感、航拍图像等方式获得。

数据整理是将收集到的数据进行统一的数据格式和数据结构,以便于后续的数据分析。

数据清洗是对数据进行检查和清理,处理可能存在的错误数据或缺失数据,以确保数据的准确性和完整性。

数据转换是将数据从一种格式或坐标系统转换为另一种格式或坐标系统,以便于与其他数据进行配合使用。

其次,GIS的空间数据分析涉及到空间查询、空间统计和空间模型等。

空间查询是指通过GIS软件对空间数据进行查询与检索,可以根据特定的条件查找到感兴趣的地理空间要素。

空间统计是对空间数据进行统计分析,可以通过GIS软件进行空间统计分析,以发现地理现象的分布规律和相互关系。

空间模型是一种基于空间数据的建模方法,可以通过GIS软件构建空间模型,用于预测未来的空间发展趋势和做出相应的决策。

在实际应用中,GIS空间数据处理与分析可以应用于各个领域。

例如,在城市规划领域,可以使用GIS技术对城市的空间发展进行模拟和预测,以制定合理的城市规划政策。

在环境保护领域,可以利用GIS技术对污染源的分布进行分析和评估,并提出相应的治理措施。

在交通管理领域,可以使用GIS技术对交通流量进行实时监测和交通拥堵状况进行分析,从而制定更加高效的交通管理策略。

综上所述,GIS空间数据处理与分析是一项重要的技术,可以帮助我们更好地理解地理现象并做出有效的决策。

通过数据处理可以确保数据的准确性和完整性,通过空间分析可以揭示地理现象的规律和关系,从而为各个领域的决策提供科学依据。

随着技术的不断发展,GIS的应用领域将会越来越广泛,对于推动社会经济的发展具有重要意义。

第3章空间数据处理

第3章空间数据处理
• 地图比例尺反映了制图区域和地图的比例关系 • 纸质地图:内容、概括程度、数据精度等
GIS:数据精度 • 比例尺的含义:
制图区域较小,采用各方面变形都较小的地图投影,图上各 处的比例是一致的,故此时比例尺的含义是图上长度与相应地面 长度的比例;
制图区域较大时,地图投影比较复杂,地图上长度因地点和 方向的不同而有所变化,这种地图比例尺一般是指在地图投影时, 对地球半径缩小的比率, 称为主比例尺。地图经过投影后,体 现在图上只有个别点线没有长度变形,也就是说,只有在这些长 度没有变形的点或线上,才可用地图上注明的比例尺 • 我国地图比例尺分级系统:
• (1) 利用上述点转换法,将点A(x1, y1),B(x2, y2)分别转换 成栅格数据,求出相应的栅格的行列值。
• (2) 由上述行列值求出直线所在行列值的范围。
行 i=1+Integer(ymax-y/⊿y) 列 j=1+Integer(x-xmin/⊿x)
第 3 章 空间数据处理
(二)线的栅格化
• 由于曲线可用折线来表示,也就是当折线上取点足够多时, 所画的折线在视觉上成为曲线。因此,线的变换实质上是 完成相邻两点之间直线的转换。若已知一直线AB其两端点 坐标分别为A(x1, y1)和B(x2, y2),则其转换过程不仅包括标 点A,B分别从点矢量数据转换成栅格数据,还包括求出直 线AB所经过的中间栅格数据。其过程如下:
第 3 章 空间数据处理

第 3 章 空间数据处理
• 其转换公式为: • ⊿X=(xmax-xmin)/J ⊿Y=(ymax-ymin)/I • 式中:⊿X,⊿Y分别表示每个栅格单元的边长。
xmax,xmin分别表示矢量坐标中x的最大值和最小 值。ymax, ymin分别表示矢量坐标中y的最大值和 最小值。I, J分别表示栅格的行数和列数。 • 例如:已知某一地区x方向为15km,y方向为 30km,现要把该地区的地块图转换成栅格数据。 要求栅格的分辨率为30mx30m,则由上式可知: • 行数I=30km/30m=1000 列数J=15km/30m=500

黄杏元《地理信息系统概论》(第3版)章节题库-第三章至第四章【圣才出品】

黄杏元《地理信息系统概论》(第3版)章节题库-第三章至第四章【圣才出品】

第3章空间数据处理一、名词解释1.栅格数据压缩编码答:栅格数据压缩编码是指在不丢失信息的前提下,缩减数据量以减少存储空间,提高传输、存储和处理效率的一种技术方法。

编码方式有键码、游程长度编码、块码和四叉树编码等。

其类型又有信息无损编码和信息有损编码之分。

2.边界代数算法答:边界代数算法是一种基于积分思想的矢量格式向栅格格式转换算法,它适合于将记录拓扑关系的多边形矢量数据转换为栅格结构。

它不是逐点判断与边界的关系完成转换,而是根据边界的拓扑信息,通过简单的加减代数运算将边界位置信息动态地赋给各栅格点,实现了矢量格式到栅格格式的高速转换,而不需要考虑边界与搜索轨迹之间的关系,因此算法简单、可靠性好,各边界弧段只被搜索一次,避免了重复计算。

3.DIME文件答:DIME文件是美国人口普查局在1980年的人口普查中提出的双重独立地图编码文件。

它含有调查获得的地理统计数据代码及大城市地区的界线的坐标值,提供了关于城市街道、住址范围以及与人口普查局的列表统计数据相关的地理统计代码的纲要图。

在1990年的人口普查中,TIGER取代了DIME文件。

4.空间数据内插答:空间数据内插是通过已知点或分区的数据,推求任意点或分区数据的方法。

在已观测点的区域内估算未观测点的数据的过程称为内插。

一般情况下,空间位置越靠近已观测点的未观测点越有可能获得与实际值相似的数据,而空间位置越远的点则获得与实际值相似的数据的可能性越小。

5.坐标变换答:坐标变换是把一个坐标系下的空间对象转换到另一个坐标系下的过程,是空间实体的位置描述。

其实质是建立两个平面点之间的一一对应关系,包括几何纠正和投影转换,是空间数据处理的基本内容之一。

两个及以上的坐标转换时由极坐标相对参照确定维数空间。

6.仿射变换答:仿射变换是GIS数据处理中使用最多的一种几何纠正方法。

是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。

它的主要特性为:同时考虑到因地形突变而引起的实际比例尺在x和y方向上的变形,因此纠正后的坐标数据在不同方向上的长度比将发生变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 GIS数据处理主要内容本章内容主要包括:空间参考地图投影数据格式的转换数据类型的转换地图裁剪如何将外部属性表中的属性添加到已有矢量数据中如何让线数据变的平滑如何提取道路的中心线碎多边形合并如何把分幅的矢量数据合并到一起如何把分幅的栅格数据拼接在一起空间参考空间参考描述了一个地物在地球上的真实位置。

为了正确的对位置进行描述,需要引入一个可供测量和计算的框架,使得大地测量的结果能够在这个框架上进行描述。

而地球是一个不规则形状的椭球体,那么使用什么样的方法来模拟地球的形状,又该如何将球面上的坐标投影在平面的地图上?这就需要先了解大地水准面、参考椭球体、基准面的概念,和它们之间的关系。

大地水准面和参考椭球体大地水准面提供一个可供测量的表面,它基本与静止的海平面吻合,且处处与重力方向垂直。

因为地球表面各个点的重力方向不同,因此大地水准面是个不规则的椭球体。

为了能够使用数学法则来描述地球的形状,处理测量的成果,这就需要引入一个规则的球体,即参考椭球体的概念。

参考椭球体是由二维平面上的椭圆绕着短轴旋转而形成的。

参考椭球体的长半轴(右图中的a)指的是地心距赤道的距离,参考椭球体的短半轴(右图中的b)指的是地心距地球极点的距离。

不同的参考椭球体的长、短半轴都是不同的。

基准面地球是一个表面高低起伏不平的椭球体,大部分是海洋,最低处和最高处相差近20km。

椭球体我们确定了,那椭球体的怎么和地球体去贴和?基于整个地球的还好,但如果是基于亚洲,基于中国的一个空间参考呢?例如一个基于中国的空间参考,椭球体已经定义好了,在没有基准面的情况下,直接把椭球体贴合到地球上,地球表面是起伏不平的,因为要考虑整体贴合,所以对中国而言就贴合的不是很好。

但如果我们只研究中国这块区域,是不是可以把这个椭球体调整一下,让椭球体的表面更加贴近中国的区域?答案是可以的,调整的参数其实就是基准面了。

所以这就不难理解每个洲、国家甚至区域都有自己的基准面。

我们常说的北京54、西安80、CGCS2000,实际上指的是我国的三个大地基准面。

定义了参考椭球和基准面,我们就可以用经纬度描述地物在地球上的真实位置了。

要想将球面上的点显示在平面坐标系上,那么我们还需要了解地图投影。

地图投影地图投影就是通过特定的数学方程式将经纬坐标转换为平面坐标。

从三维坐标转换为二维坐标时总会出现扭曲变形,地图投影就是用来减小这种变形的。

如果要是通过坐标来计算面积、距离和方向,那么选择投影就非常重要了。

为了更好的理解投影,我们据投影构成方式可以分为两类:几何投影和解析投影。

几何投影是将椭球面上的经纬线网投影到几何平面上,然后将几何面展为平面。

几何投影可以分为方位投影、圆柱投影和圆锥投影。

这三种投影纬线的形状不同。

方位投影纬线的形状是同心圆;圆柱投影纬线的形状是直线;圆锥投影纬线的形状是偏心圆。

解析投影是根据某些条件,用数学解析法确定球面与平面间点与点的函数关系。

大多数情况下,每个国家或区域都有一个特定的投影,不需要我们自己来进行判断。

地图投影类型根据地图投影的变形性质,投影的类型分为等角投影、等积投影、等距投影和任意投影。

等角投影等角投影是投影以后角度没有变形的投影。

等角投影面积变形较大。

多用于编制航海图、洋流图、风向图等。

等积投影等积投影是投影以后面积没有变化的投影。

等积投影角度变形大。

一般用于绘制对面积精度要求较高的自然地图和经济地图。

如人口密度图、土地利用图等。

等距投影等距投影是任意投影的一种特殊情况。

任意投影任意投影是既不等角,也不等积的投影。

任意投影面积变形、角度变形都不大。

多用于教学地图、交通地图等。

我国常用的地图投影我国常用的地图投影有高斯克吕格投影和兰伯特投影。

高斯克吕格投影(Gauss-Kruger Projection)高斯克吕格投影简称高斯投影。

可以想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。

高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。

高斯投影6°和3°分带为了控制变形,我国地图采用分带方法。

6°分带6°分带起始经线为0°,每6°为一个投影带,全球共有60个带,各带的中央经线L=6n-3°(n为带号)。

我国处于13-23带。

3°分带3°分带起始经线为1.5°,每3°为一个投影带,全球共有120个带,各带的中央经线L=3n(n为带号)。

我国处于24-45带。

地形图上公里网横坐标前2位是带号,例如:1:5万地形图上的横坐标为18576000,其中18即为带号。

那么如何确定一组坐标是3°带还是6°带呢?在我国陆地范围内,坐标(Y坐标,8位数,前两位是带号)带号小于等于23的是6°带,大于等于24的是3°带。

如果Y坐标不是8位,那么就是没有带号。

兰伯特投影(Lambert Projection)兰伯特投影是将一圆锥面套在地球椭球外面,将地球表面上的要素投影到圆锥面上,然后将圆锥面沿某一母线(经线)展开,形成的投影面。

我国1:100万比例尺地形图采用兰伯特投影。

SuperMap iDesktop提供的坐标系SuperMap iDesktop提供了平面坐标系、地理坐标系和投影坐标系。

平面坐标系一般用来作为与地理位置无关的数据的坐标参考,也是默认新建数据的坐标参考,如 CAD 设计图、纸质地图扫描后的图片、与地理位置无关的示意图等。

地理坐标系使用经纬度坐标来表示椭球上任意一点的坐标。

地理坐标系中,通常包含对水平基准、中央子午线和角度单位的定义。

常用的地理坐标系如:WGS1984、Beijing1954等。

投影坐标系通过某种投影方式和投影类型,将椭球上的任意一点投影到平面上。

使用二维平面坐标(X、Y)来表示点线面地物的位置。

投影坐标系中,通常包含对地理坐标系、地图投影、投影参数及距离单位的定义。

如何查看当前数据的投影我们可以通过查看数据源或数据的属性来查看投影信息。

在数据源或数据集上单击右键,选择【属性】—【投影信息】,查看当前数据源或是数据集的投影。

如何设置投影如果新加载的数据的数据没有投影信息,我们可以通过重新设定坐标系来设置投影。

在属性对话框中,单击重新设定坐标系,出现投影设置对话框。

选择适当的坐标系,然后单击确定,对该数据定义了坐标。

SuperMap数据间的投影关系数据源、数据集、地图可以有各自的投影,不需要一致。

新创建的数据集,如果没有设置投影,那么数据集会按照数据源的投影进行定义。

如何进行投影转换要进行空间分析,数据必须具有相同的空间坐标系,相同的投影。

如果数据的投影不同,我们需要进行投影转换。

如果对转换后的数据的精度要求不高,那么可以不输入参数,直接选择投影,进行转换即可。

如果对转换后的数据的精度要求很高,需要使用三参数或是七参数进行投影转换。

对于参数的确定,可以购买权威的测量数据,或者通过两个坐标系统中已知控制点的坐标进行参数的计算。

单击【开始】选项卡中的【数据】—【投影转换】,出现投影转换对话框,选择转换方法,选择投影,然后单击确定进行投影转换。

任何投影都存在着投影变形,因而不同投影间的变换过程通常不是完全可逆的,即能把地图数据从它的原投影转换到某些其他投影,但不是总能非常精确地把它转换回来,因此在进行投影转换前应将原有文件另存。

而且在进行投影变换时应尽量减少投影变换的次数,以求投影变换结果的精确性。

动态投影如果只是将不同投影的数据显示在地图窗口中,还不想改变数据的投影,那么我们可以使用动态投影。

在【地图】—【属性】—【地图属性】,点击坐标系统,然后勾选动态投影,数据就进行了动态投影。

一般是,后加载的数据会转换投影,和先加载数据的投影保持一致。

不过,我们也可以进行投影设置,设置成我们希望的投影。

Web 地图(包括 OGC、超图云服务、Google 地图等)、影像地图、地图缓存等类型暂不不支持动态投影。

数据格式的转换我们在处理数据时,还会遇到很多不同格式的数据,比如shapefile格式、CAD格式、图片格式等。

我们要编辑、处理这些数据,还需要把这些数据转换成SuperMap自己的数据格式。

我们可以使用【开始】选项卡中的【数据】—【数据导入】工具,将不同格式的数据转换为我们自己的格式。

在弹出的数据导入对话框中,加载数据,然后选择输出数据源的位置,即可完成数据格式的转换。

这里面,我们重点介绍下CAD数据和Excel数据的导入。

导入CAD数据在数据导入对话框中,数据集类型分为复合数据集和简单数据集。

复合数据集保留了原来CAD的风格,点、线、面、文本共存,不支持空间分析。

简单数据集不保留原来CAD的风格,点、线、面、文本分别存储,支持空间分析。

如果你想用CAD数据来进行空间分析,那么数据集类型要选择简单数据集。

导入Excel数据Excel导入进来为属性数据。

Excel文件的版本需是2007版本及以上。

当我们导入Excel文件时,转换参数中有个‘首行为字段信息’。

如果Excel表中的第一行为字段信息,那么我们在转换的时候需要勾选首行为字段信息,这样才能得到正确的结果。

数据类型的转换我们可以进行数据类型间的互相转换。

在【工具】—【数据】—【类型转换】中,可以进行点、线、面数据糊状、复合数据与简单数据互转等操作。

我们重点介绍下属性数据转为点数据和字段转文本数据。

属性数据转为点数据要将属性数据转换为点数据,那么属性数据中必须有X、Y坐标值。

外业利用GPS采集的点或是轨迹,可以通过此方法转为点呈现到地图中。

字段转文本数据字段转文本就是将数据集中的某个字段,转换成文本数据集,完成地图的标注。

文本的标注和标签专题图的区别是,标注的字段可以逐个进行修改,并保存风格。

地图裁剪在实际应用中,我们可能只对地图区域中的某一小块范围感兴趣,需要提区这部分感兴趣的地图区域,同时也可以减小后续处理的数据量,这时候我们可以使用地图裁剪功能。

单击【地图】—【地图裁剪】,可以看到地图裁剪方式的四种方式,分别是矩形裁剪、圆形裁剪、多边形裁剪和选中对象区裁剪。

其中,前三种是需要先绘制矩形、圆形、多边形后,会弹出地图裁剪对话框。

选中对象裁剪,首先要使选则的图层处于可选中状态,然后先选中一个区域,点击选中对象区裁剪,裁剪出这个范围的数据。

矩形裁剪多用于裁剪遥感影像边界的黑边,选中区域裁剪多用于行政区域的裁剪。

如何将外部属性表中的属性添加到已有矢量数据中我们有全国的气象站点数据,想添加上降水属性,然后制作降水分布图,降水属性是在外部的excel表中,这时候我们可以采用追加列操作。

相关文档
最新文档