中国数学史-
中国数学发展历史
文典型域上的多元复变量函数论被国际学术界 称为「华氏定理」.
陈景润,中国现代数学家,世界著名解析数论 学家之一. 1966年,陈景润攻克了世界著名数 学难题哥德巴赫猜想中的1+2,创造了距摘取 这颗数论皇冠上的明珠1+ 1只是一步之遥的 辉煌.他在哥德巴赫猜想的研究上居世界领 先地位.他研究哥德巴赫猜想和其他数论问 题的成就,至今,仍然在世界上遥遥领先.世界 级的数学大师、美国学者阿 ·威尔A Weil曾 这样称赞他:陈景润的每一项工作,都好像 是在喜马拉雅山山巅上行走. 陈景润于1978 年和1982年两次收到国际数学家大会请他作 45分钟报告的邀请,这是中国人的自豪和骄 傲
唐朝在数学教育方面有长足的发
展.656年国子监设立算学馆,设有算学
博士和助教,由太史令淳风等人编纂注
释算经十书
包括周髀算经、九章算术
海岛算经、孙子算经
张丘建算经、夏侯阳算经
缉古
算经、五曹算经
五经算术、缀术,
作为算学馆学生用的课本.对保存古代
数学经典起了重要的作用.
淳风 公元604-672年 唐代岐州雍人今陕西风翔
梅文鼎幼时注意观察天象,27岁起,始治数学、 历法,终身潜心学术.后接触西方书籍.康熙年间进 京,以学识为康熙帝赏识,曾系统考察古今中外历 法,又介绍欧洲数学,研究中西历算.其间,为明史馆 校订历志舛错10余处,撰成明史历志拟稿.近人称 梅文鼎和日本的关孝和、英国的牛顿为当时世界 的三大数学家,著有方田通法、方程论.
近现代数学发展时期
陈省身
数学家,美国国籍 .曾获美国国家科学 奖1975,沃尔夫数学奖1984等.1994年当选 为中国科学院外籍院士.陈省身是20世纪 的伟大几何学家,在微分几何方面的成就尤 为突出,被世人称为微分几何之父.
第一讲 中国数学史——中国文明史的重要篇章
第一讲中国数学史——中国文明史的重要篇章§1.1学习和研究数学史的意义数学产生于人类的生产实践,数学发明发现的历史揭示了人类智慧的演变和发展过程,是人类认识自然改造自然的真实写照。
然而,今天的数学教科书和数学专业书籍,未能反应出数学发展的历史,反应出人类在发现数学知识过程中所走过的艰难曲折的道路;特别是没能揭示出人类在发现数学知识时数学思想和数学方法的形成过程,而这些正是我们今天学习数学知识乃至将来发展数学科学所必需的。
由此说明我们今天学习和研究数学史的重要意义。
1、通过数学史的学习和研究,认识数学发展的规律,吸收数学发展过程中的经验教训,创造条件,促使数学科学的进步。
数学史告诉我们,数学的发展不是一帆风顺的,它经历了兴盛、衰落、迅速、迟缓的曲折过程,通过历史的回忆,揭示数学的发展规律,发挥历史的借鉴作用,扬长避短,促进数学的迅速发展。
2、通过数学史的学习和研究,能更深刻的认识数学的本质,理解数学的内容和方法,特别是理解重大的数学思想的形成过程,并从中学习创造性的数学思维,探索数学研究的道路和方法。
历史的数学完善过程也是人类的一个认识的完善过程,学生在教师指导下学习不是否定了这一过程而是精练、简化了这一过程,教学中适当地让学生了解一些重要概念,理解概念的诞生背景对培养学生发现概念,理解概念的能力,学好基础知识甚至培养学生的辨证主义观点都是大有裨益的。
3、有句俗话说:“不知伟人,就不会成为伟人”。
通过数学史的学习和研究,了解历史上的杰出数学家的事迹。
学习他们热爱科学、勇于创新的精神和正确的科研态度与科研方法,提高我们的数学素养和不怕挫折、敢于创造的勇气。
数学史表明,数学概念和数学理论是通过一系列矛盾,汇聚不同方面的成果,点滴积累而成的。
数学家不是万能的。
他们在取得的一项重大成果前,往往要经历艰苦漫长的道路,有成功,也有失败,有迷雾中摸索,也有成果在望前的碰壁。
如牛顿、莱布尼兹、欧拉等开初都曾嘲笑和讽刺过“虚数”,都曾被“无穷小”愚弄过;罗巴切夫斯基在研究非欧几何时遭到同行的挖苦,康托高集合论和超限基数、序数理论时,受到同行权威的攻击达十多年之久,使他一度精神崩溃,但他们对科学都有惊人的毅力,充分发挥了他们的聪明才智,对数学作出了巨大的贡献,成为世界著名数学家。
《中国数学史简介》课件
当代数学家的贡献
总结词
国际领先、创新发展
详细描述
当代中国数学家在许多领域的研究已经达到国际领先 水平,如陈景润在解析数论领域的“陈氏定理”,该 成果被国际数学界称为“陈景润定理”。此外,中国 数学家在几何、拓扑学、概率论等领域也取得了重要 的研究成果,如吴文俊在几何定理机器证明方面的贡 献,为中国数学在国际舞台上赢得了声誉。这些当代 数学家的创新发展为中国数学的未来发展奠定了坚实 的基础。
05
中国数学史的意义与影响
Chapter
对世界数学史的影响
推动世界数学发展
01
中国数学史为世界数学史贡献了独特的数学思想和成就,促进
了全球数学的发展和进步。
丰富世界数学文化
02
中国数学史的发展过程中,形成了具有中国特色的数学文化,
为世界数学文化增添了多样性。
启发其他文明数学进步
03
中国数学史上的重要思想和成就可以为其他文明所借鉴,促进
《中国数学史简介》ppt课件
目录
• 中国数学史的起源 • 古代数学的主要成就 • 近现代数学的发展 • 中国数学家的杰出贡献 • 中国数学史的意义与影响
01
中国数学史的起源
Chapter
起源时期
起源时期概述
从远古时代到先秦时期,中国数 学逐渐萌芽,经历了从简单的计 数到初步的数学体系的发展过程
《九章算术》
是中国古代第一部数学专著,是 《算经十书》中最重要的一种, 成于公元一世纪左右。
南北朝的数学家与数学著作
祖冲之
南北朝时期杰出的数学家、科学家。他的主要成就 有《大明历》、圆周率、水碓磨、指南车等。
《张丘建算经》
这是南北朝时期的一部重要数学著作,主要介绍了 代数和几何的基本概念,为后来的数学发展奠定了 基础。
中国的数学历史
中国的数学历史中国是古代文明的重要代表之一,同时也有着光辉的数学历史。
以下是有关中国数学历史的一些重要内容:1.最早的数学发展:约在公元前11世纪,中国的商代就已开始发展数学。
商代的贡献主要包括单位的建立,长度和重量的标准化以及简单的算数。
2.数学家张丘建的贡献:在东汉末年,张丘建发表的《算经》成为了数学史上的重要经典之一。
这部作品包括594个题目,主要涵盖了算术、代数、几何和三角学四个方面的内容。
3.数学家李冶的成就:唐代数学家李冶贡献了许多重要的发现,特别是在解释和应用三角函数方面做出了重要贡献。
他还发明了多种算术方法,并开发了新的几何工具。
4.算学的发展:在宋代,算学成为了学校的主要课程之一,并且开始出现了关于代数学和几何学的研究。
宋代数学家朱世杰发明了一种新的十进制计数方法,并提出若干关于除法和乘方的原则。
5.《数学九章》的出现:明代数学家秦九韶和杨辉共同编写了《数学九章》这部长篇巨著。
这本书详细介绍了代数学、几何学和三角学的各个方面。
它不仅仍然是数学研究的必读之书,而且还影响了欧洲的数学研究。
6.数学教育的革新:在清朝,数学成为了中国的高等教育的重要课程之一。
清末时期的数学家严复通过翻译数学教材的方式,将西方的数学思想引入到中国。
总的来说,中国的数学历史相当悠久而且丰富,其成就在几何、代数以及计算机等领域对现代科学技术的发展做出了积极的贡献。
虽然现代数学已经发生了很大的变化,但中国数学所开创的理性、系统、严密的数学思想仍然有着深远的影响。
中国数学史各阶段的特点
中国数学史各阶段的特点1.引言1.1 概述中国数学史是指中国数学发展的历史过程,经历了古代、中世纪和近代三个阶段。
每个阶段都具有自己独特的特点和贡献。
本文将详细探讨每个阶段的数学特点,并总结各个阶段的特点,同时对未来发展方向进行展望。
在古代数学阶段,中国数学的特点主要体现在其对整数、代数、几何和算法的研究上。
古代中国人培养了一种强大的计算能力,他们通过日常生活中的实际问题激发了数学研究的动力。
重要的数学著作如《九章算术》和《孙子算经》被广泛传播和使用,成为后来数学发展的基础。
古代数学家在几何学上取得了突破,发展了割圆术和尺规作图法等重要的几何方法。
此外,他们还在代数学方面引入了象数、算术和代数基本理论,使得数学在提升计算能力的同时也开始具备了抽象思维能力。
进入中世纪数学阶段,中国数学面临了一定的停滞和衰退。
这个时期受到了外来文化的影响,特别是印度和阿拉伯数学的传入。
因此,在一段时间内,中国数学的发展主要借鉴了这些外来数学的成就。
然而,尽管主要受外来文化的影响,中国数学家依然在算法、代数和几何等方面进行了创新。
值得一提的是,中世纪时期中国数学家发展了一种新的计算方法,即推算和筹算,这种方法将数学与实际问题相结合,为后来数学的应用奠定了坚实基础。
进入近代数学阶段,中国数学经历了现代科学的兴起和西方数学的传入。
这个时期,中国数学面临了重大的挑战和机遇。
中国数学家开始研究西方的数学方法和理论,并通过翻译和借鉴逐渐吸收了西方数学的成就。
这使得中国数学在代数、几何、数论和概率论等领域取得了突破性的进展。
同时,中国数学家也借鉴了现代科学研究的方法和理念,将实证主义和数学方法相结合,为中国数学的发展开辟了新的道路。
总结各个阶段的特点,古代数学以其强大的计算能力和几何研究的突破而闻名;中世纪数学虽然受到外来文化的影响,但仍然在算法和几何等方面有所创新;近代数学则面临着西方数学的传入和现代科学思想的冲击,为中国数学发展带来了宝贵的机遇和挑战。
数学在中国的发展历史
数学在中国的发展历史中国的数学发展历史可以追溯到古代,最早的数学文化可以追溯到商周时期,此时已经有扁鹊算术、卜筮等各种数学科技的应用。
接下来,随着战国时期的发展,数学逐渐形成了一些基本概念和计算方法,如乘法、几何应用等。
汉代是中国数学发展的重要时期之一,汉武帝时期出现了《九章算术》,它包含了“A+B”、“一元二次方程”、“直角三角形”等数学概念。
此外,还有另一部重要的数学著作《孙子算经》,它在数学领域的发展和应用方面都有重大的作用。
这些著作的出现标志着中国数学从此开始了一个新的时期。
唐代是中国数学史上又一个伟大的时期,数学领域的繁荣要归功于宋朝的一位伟大的数学家李冶。
他的著作“欧几里德几何原本”和“数学通轨”为中国数学发展的奠基石。
在中国数学的发展史上,唐朝还出现了用于计算圆周率的平积法、线性同余方程以及大中等肋芝麻算法等重要的数学方法。
宋朝是中国数学史上的黄金时期之一,这个时期的数学领域达到了一个新的高峰。
这一时期著名的数学家有杨辉、李之仪、祖冲之、秦九韶等,他们的数学著作成为了学术研究成果的代表。
此外,宋朝还出现了加减乘除、高次方程、三角函数以及应用微积分等数学方法。
明朝是中国数学史上的又一个重要时期,明朝时期数学家朱载堉的“借芝麻将军之名开设算术课”的做法,引发了全国的数学热潮,使中国数学进入了一个新的时代。
总的来说,中国古代数学的发展历程非常悠久,这个发展过程的关键在于它不仅继承发扬了古代数学遗产,而且还对数学的发展提供了自己的贡献,成为了中华民族数学文化的一部分。
随着时代的发展与进步,如今的中国数学正在不断发展壮大。
中国数学史简述
中国数学史简述摘要:一、古代数学的发展1.古代数学的起源2.春秋战国时期的数学家及成就3.汉代数学的繁荣二、中世纪数学的兴盛1.隋唐时期的数学家及成就2.宋元时期的数学繁荣3.数学著作的涌现三、近代数学的崛起1.明清时期的数学发展2.19世纪中后期的数学突破3.20世纪数学的迅速发展四、现代数学的辉煌1.20世纪下半叶的数学成就2.数学领域的分支及应用3.中国数学家的国际影响力正文:中国数学史是一部悠久而辉煌的历程,自古以来,数学便在中华大地生根发芽,茁壮成长。
古代数学的发展可追溯至远古时期,当时的先民们为了日常生活和生产需要,逐渐发现并掌握了简单的数学知识。
春秋战国时期,数学家如墨子、荀子等开始对数学进行系统性研究,为后世奠定了基础。
汉代数学家如张衡、刘洪等人在天文、算术等领域取得了举世瞩目的成就,如发明了浑天仪和编撰了《九章算术》。
进入中世纪,数学发展迎来了又一春。
隋唐时期,数学家如祖冲之、贾宪等人致力于数学研究,为宋元时期的数学繁荣奠定了基础。
宋元时期,如秦九韶、杨辉、李冶等众多数学家涌现,他们的研究成果如《数书九章》、《算法统宗》等成为数学史上的瑰宝。
近代数学的崛起始于明清时期,数学家如梅文鼎、汪莱等人继续拓展数学领域。
19世纪中后期,随着西方数学的传入,中国数学家逐渐接触到现代数学体系,如柯西、黎曼等数学家的理论为中国数学的发展提供了新的思路。
进入20世纪,中国数学家在各个领域取得了突破性成果,如华罗庚、陈省身在代数、几何等领域的研究。
现代数学辉煌时期,中国数学家在20世纪下半叶取得了举世瞩目的成就。
数学领域不断涌现出新分支,如计算机科学、信息论、混沌理论等,这些分支的发展为我国科技进步做出了巨大贡献。
此外,中国数学家在国际舞台上的影响力逐渐提升,如陈省身荣获菲尔兹奖等荣誉。
总之,中国数学史是一部充满智慧与创新的历程,古代的摸索、中世纪的繁荣、近代的崛起和现代的辉煌共同见证了中国数学家的不懈努力。
中国数学的起源与发展
中国数学的起源与发展中国数学的起源与发展经历了漫长的历史过程,主要如下:1.起源:- 远古时期的记数意识:在远古时代,人们就有了记数的意识。
大约7000年以前,人们对数字的认知还非常有限,甚至数到2以上都有困难。
后来人们逐渐把数字和双手联系起来,每只手代表一个“1”,这是最初对数字的直观理解。
为了记录和表达数量,祖先们先是结绳记数,后来发展到“书契”记数。
在五六千年前,已经能够书写1至30的数字,到了春秋时代,能书写3000以上的数字,并且有了加法和乘法的意识。
- 早期的数学知识记载:春秋时期孔子修改过的《周易》中出现了八卦,这是一种具有深刻数学内涵的符号系统,对后世数学的发展产生了深远影响。
八卦在数学、天文、物理等多方面都发挥着重要作用。
- 战国时期的数学突破:这一时期中国数学取得了显著进展。
算术领域,四则运算得到确立,乘法口诀已经在一些著作中零散出现,分数计算也开始应用于生产生活,比如种植土地、分配粮食等方面;几何领域,出现了勾股定理;代数领域,出现了负数概念的萌芽;并且出现了“对策论”的萌芽,如战国时期孙膑提出的“斗马术”问题,就反映了对策论中争取总体最优的数学思想。
2.发展:- 秦汉时期:这一时期在记数和计算方法上有了进一步的发展。
乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法口诀。
在几何方面,对于长方形面积的计算以及体积计算的知识也更加丰富。
同时,算筹和十进位制系统的出现和应用,为数学计算提供了便利的工具和有效的计数方法。
算筹是一些直径1分、长6分的小棍儿,质料有竹、木、骨、铁、铜等,其功用与算盘珠相仿。
- 西汉末期至隋朝中叶:这是中国数学理论的第一个高峰期,标志是《九章算术》的诞生。
《九章算术》是中国秦汉时期一二百年的数学知识结晶,全书共分为九章,收录了246道数学应用题,每道题都分为问、答、术(解法,有的一题一术,有的一题多术)三部分,内容与社会生产紧密联系。
这一时期除了《九章算术》,还出现了刘徽注的《九章算术》以及《海岛算经》《孙子算经》等数学专著。
中国古代数学发展史3篇
中国古代数学发展史第一篇:中国古代数学发展概述自古以来,我国对数学的研究就十分重视。
我国古代数学以算术、代数、几何和数论为主要研究对象,经历了从简单直观的初步认知到严谨的定理证明的发展历程。
本文将概述中国古代数学的发展历程。
中国古代数学的起源可以追溯到商代(公元前16世纪-公元前11世纪)的骨牌文字和甲骨文。
骨牌文字中有许多“上、下相加等于中”的运算式,说明当时我国已经有了基本的算术知识。
到了周代(公元前11世纪-公元前256年),一些有关算法和几何学的书籍也开始出现,如庄子《齐物论》中关于无穷大与无穷小的论述,和《九章算术》。
《九章算术》是一部古代数学的经典著作,其中涉及到了初等代数、方程、余数、幂指数、圆周率和勾股定理等重要概念和方法。
随着时间的推移,自然数的数位表示法和算学运算逐渐成熟。
汉代(公元前206年-公元220年)以后,中国古代数学出现了独特的代数学派别,在代数学发展过程中,最有代表性的是《海峤算经》、《算数书》和《高经》等九部著作。
其中,《海峤算经》是我国古代代数中最早的代数学著作,其中提出了“望高方”、“全量数”、“分配术”等代数运算概念。
这些运算概念对未来代数学发展起到了至关重要的作用。
在数学几何学方面,中国古代对于几何学的研究主要从事以量求形的实用几何学研究。
数学几何学的历史可追溯到元代(公元1271年-1368年)的宋元时期,宋算学家李冶在《数书九章》中提出了勾股定理。
此外,清朝时期的数学家祖冲之发现了圆周率的取值方法,并将圆周率的值计算到小数点后第六位,这在当时是令人惊叹的成果。
从上述发展历程我们可以看出,中国古代数学得以长足发展的主要原因是其注重实践应用,并赋予了这些实践意义以及更广阔的文化内涵。
此外,应该指出的是古代数学还蕴含了我国深厚的哲学、文化和历史内涵,这也是我们重视古代数学研究的一个重要原因。
第二篇:中国古代代数学中国古代代数学发展最为明显、最为独特的特点便是“天元术”和“方程式”的使用。
数学史第十讲中国数学发展简史
数学史第十讲中国数学发展简史数学史第十讲:中国数学发展简史关键词:中国数学,历史发展,数学思想,古代数学,近现代数学一、引言中国是世界上最古老的文明之一,其数学发展源远流长,且在不断发展过程中,形成了自己独特的数学思想和体系。
从原始社会的结绳记事到现代数学,中国的数学发展见证了无数智慧的闪光。
本篇文章将带您探寻中国数学的发展历程,从古代的数学成果到近现代的数学发展,感受中国数学的魅力。
二、中国古代数学1、数学起源与背景在中国的远古时代,数学便已萌芽。
随着生产力的提高和土地测量、赋税、水利等实际需要的增加,数学逐渐成为人们日常生活中不可或缺的一部分。
2、春秋战国时期的数学成就春秋战国时期,中国的数学成就开始显现。
《周髀算经》和《九章算术》的问世,标志着中国古代数学体系的初步形成。
其中,《周髀算经》是世界上最古老的数学著作之一,阐述了勾股定理及其应用。
秦汉时期,中国的数学思想进一步发展。
这一时期,人们对分数、小数的认识日益深化,十进位值制记数法应运而生,勾股定理得到广泛应用。
此外,赵爽的“勾股圆方图”和刘徽的“割圆术”也是秦汉时期数学的重要成果。
4、三国两晋南北朝时期的数学成就三国两晋南北朝时期,中国的数学成就达到了新的高度。
祖冲之的“圆周率”和王孝光的“沈括算图”是这一时期数学的杰出代表。
此外,这一时期还出现了《算经十书》等重要的数学著作。
三、中国近现代数学1、隋唐时期的数学思想和发展隋唐时期,中国的数学思想进一步发展,唐代的《算经十书》成为了一个时代的数学经典。
这一时期,人们开始关注数学的实际应用,如天文学、工程学等。
2、宋元时期的数学成就和发展宋元时期,中国的数学成就达到了一个新的高峰。
杨辉的“杨辉三角”和朱世杰的“四元术”是这一时期数学的杰出代表。
此外,这一时期还出现了《算学启蒙》等重要的数学著作。
明清时期,中国的数学思想逐渐走向封闭和保守,但仍有不少数学家在不懈探索。
这一时期,徐光启的《几何原本》、李善兰的《代数学》等著作对于中国的数学发展起到了推动作用。
中国数学简史
中国数学简史引言概述中国数学作为世界上最古老、最有影响力的数学传统之一,经历了漫长的发展历程。
自古以来,中国数学家们在数理思维、数学文化、数学理论等方面作出了许多重要贡献。
本文将对中国数学的历史进行回顾,探讨其重要成就及对世界数学发展的影响。
正文内容一、古代中国数学的起源与发展1.古代中国数学概述:从原始时代到商周时期2.古代中国算术的基础:十进制、计算术与算筹3.战国时期的数学发展:几何学、勾股定理与尺规作图4.西汉时期的数学研究:数论、方程与幂等式5.晋朝与隋唐时期的数学成就:天元术、衍术与斜弧术二、古代中国数学理论的发展与贡献1.四元数的发展:杨辅之与《九章算术》2.古代中国数学的天元术:对数表的发明与应用3.衍术的研究与应用:多项式、立方与二次剩余理论4.印度数学的传入对古代数学的影响5.尺规作图的研究:《大衍经》与《测圆海镜》三、中国数学的盛世与再现1.唐宋时期数学的繁荣:李冶、宋赵爽与《数术书》2.明清时期数学的全面发展:数论、象数、解析几何等3.数学的教育与普及:《数学钥》等教材的编纂与推广4.数学的应用:计算机、测量、天文学等领域5.中国数学史的传承与发展:数学学会等机构的建立及学术交流四、中国数学在世界数学发展中的地位与影响1.中国数学对印度、波斯等地的影响与交流2.中国数学在文化传统中的地位:易经、兵法与数学的关联3.数学文化的传承与普及:书法、绘画与各类艺术形式中的数学元素4.中国数学在现代数学学科中的位置与影响5.中国数学的国际影响:世界数学大会与国际期刊的参与与领导五、现代中国数学的发展与挑战1.数学教育与研究的现状:重视理论研究与应用研究的平衡2.中国数学学科与学术团队的崛起:多个领域的重要突破3.未来的发展方向与挑战:数学交叉学科与国际竞争的压力4.数学人才培养与引进政策:培养人才的重要性与措施5.中国数学的未来:文化传统与现代科技的结合总结中国数学作为世界数学史上的重要组成部分,具有悠久的历史和独特的特点。
中国数学史(68页)(68页)
中国数学史(68页)一、远古至先秦时期的数学成就1. 结绳记事与原始数学早在远古时期,我国先民们就已经开始运用结绳记事的方法来处理简单的计数问题。
这种原始的计数方式,为数学的发展奠定了基础。
随着时间的推移,先民们逐渐掌握了更复杂的数学知识,如分数、乘除法等。
2. 夏商周时期的数学夏商周时期,我国的数学得到了进一步的发展。
这一时期,出现了专门从事数学研究的官员,如《周髀算经》中记载的“数为官”制度。
甲骨文、金文等古文字中,也发现了大量的数学符号和计算方法。
3. 先秦诸子与数学先秦时期,诸子百家争鸣,数学得到了前所未有的重视。
儒家、道家、墨家等学派都有涉及数学的研究。
其中,墨子及其弟子对数学的贡献尤为突出,他们在《墨经》中记载了丰富的数学知识和理论。
4. 《九章算术》的问世二、秦汉时期的数学繁荣1. 秦朝的数学统一秦始皇统一六国后,为了加强中央集权,对度量衡进行了统一,这对数学的发展产生了积极影响。
统一的度量衡制度为数学的传播和应用提供了便利,使得数学知识在更广泛的范围内得到应用。
2. 汉代数学家的贡献汉代,我国数学家层出不穷,如张苍、耿寿昌等,他们在继承和发展《九章算术》的基础上,提出了许多新的数学理论和方法。
其中,张苍的《算术经》和耿寿昌的《算术》都是当时颇具影响力的数学著作。
3. 《周髀算经》与古代天文学汉代,另一部数学名著《周髀算经》问世。
这部著作不仅包含了丰富的数学知识,还与古代天文学密切相关。
它通过数学方法解释了天文现象,为后世数学在天文学领域的应用奠定了基础。
4. 刘徽与极限思想东汉时期,数学家刘徽在《九章算术》的基础上,提出了“割圆术”,用以计算圆周率。
他的方法体现了极限思想,为后世数学家探索圆周率及其他数学问题提供了新的思路。
三、魏晋南北朝时期的数学发展1. 数学家群体的兴起魏晋南北朝时期,我国数学家群体日益壮大,如王弼、郭象等,他们在数学理论研究方面取得了显著成果。
这一时期的数学研究,更加注重理论探索和抽象思考。
中国数学史——精选推荐
•中国数学史研究中国数学的发展进程与规律。
•中国数学史这门课程介绍从上古时起到二十世纪初叶(清代结束)止的中国数学发生发展的历史,重点讲述中国传统数学的术语、算法及算法中蕴涵的数学思想。
•其主要内容包括中国传统数学中的方程论与开方术,垛积术、招差术与积较术,极限思想,不定分析,非十进制,组合,整数勾股形,幂级数展开式等内容。
•通过该课程的学习,使学生了解并掌握中国传统数学的成就和思想实质。
绪论•中国传统数学的各个发展时期的主要数学家和主要成就。
•问题:1.筹算与算筹;2.算经十书;3.《九章算术》;4.宋元时期代表成就;5.《数理精蕴》;6.李善兰和华蘅芳翻译的数学著作;7.17世纪初到20世纪初西方数学有3次集中传入中国。
第一(二或三)次传入的主要数学内容及特点。
第一章:面积与体积•面积:1.出入相补原理;2.刘徽割圆术的数理过程;3.π的徽率、密率、约率;•体积:1.堑堵、阳马、鳖臑、刍童、牟合方盖;2.阳马术与刘徽原理;3.《九章》开立圆术;4.祖暅原理、牟合方盖与球体积公式;5.五种正多面体课后题1.叙述刘徽割圆术的数理过程,并利用求出n=192时圆周率不足近似值和过剩近似值222()n n n n S S S S S <<+-•2.简述阳马术的数理过程。
•3.运用刘徽原理求证刍童体积公式。
•4.运用牟合方盖和祖暅原理求证球体积公式。
第二章勾股形•勾股恒等式:1.勾股定理与赵爽弦图;2.勾股形13事(勾股弦五和五较);3.勾股恒等式与吴嘉善勾股和较比例表;4.勾股和较术•勾股形与圆:1.《九章》勾股容圆题——《测圆海镜》圆城图式——勾股测圆术——十三率勾股形——陈维祺泛积;2.识别杂记的泛积-证明•勾股测量:1.勾中容横股中容直——旁要术——重差术——勾股不失本率原理;2.日高术• 1.仿照赵爽弦图运用出入相补原理证明勾股恒等式。
•2.求证十三率勾股形的周长及各求圆径公式,如证3111p b a c =+- 333332a b d b a c =+-•3.求某个量的泛积。
简述中国数学的发展史
简述中国数学的发展史中国数学发展史:历史与传统一直保鲜中国数学的发展史可以追溯到两千多年前,是基于当时基于当时用数学领域发展出的算法和工具而演变而成。
中国数学 but 研究的深远性及其贡献享誉全球,令它在古代文明的巅峰时期占据重要地位。
本文将重点讨论近代中国数学发展史。
一、古代中国数学的起源古代中国数学的发展可以追溯到夏朝以前,一步步演变而来,从简单计数工具到绘制有规律图形。
其中有很多方面的研究,如分形计算、比例、极坐标、等值线、相似概念等,可以追溯到秦朝以前。
《九章算术》是古代中国数学的伟大成就,记载了中国古代研究数学的基础知识,并以此为基础发展出很多数学领域的算法和工具。
二、唐宋数学的复兴唐宋时期,中国的数学研究逐渐受到重视,诸如《郑玄算经》、《裴达森算经》、《支学算经》等著作相继推出,大大推动了中国数学的发展。
值得一提的是,巫马可以将数学技术应用到天文、地理和医学等领域,把它们作为辅助手段,让中国古代数学技术的发展取得了质的飞跃。
三、明清数学的蓬勃发展明清时期,中国数学技术受到国内外的瞩目,得到大幅提升。
榜样最高的是范仲淹,《流沙池记》、《定经》以及集大成的《算学启蒙》让中国数学技术具有世界性的影响力,被公认为是专业数学著作,有很高的学术地位。
另外,著名数学家周辩和穆蔚在回归分析、拉格朗日法及新型椭圆函数领域也做出了重要贡献。
四、近代中国数学的发展近代,中国的哲学数学发展遭受中国历史的沉重打击,不得不向西方学习数学知识,从而推动了中国储存数学知识的转变。
现在,数学大多由实验研究提供的数据进行计算,而不是像以前那样,通过计算机技术来求解问题。
20世纪,中国出现了一些著名的数学家,他们在微积分、线性代数和实分析等领域做出了卓越的贡献。
五、结论提及中国数学发展史,我们不得不从古代,从夏朝开始说起,历时上千年,中国数学系统地学习了很多西方数学知识,把它应用到了日常生活中。
中国数学的传承有着悠久的历史,它的传统一直保留良好,并给后人留下了无尽的财富和影响力。
中国古代数学发展的历程
中国古代数学发展的历程数学是一门神秘而又精妙的学科,它不仅仅是现代科学中不可或缺的一部分,也是人类智慧的结晶。
数学的起源古老而传奇,在中国,古代人民也曾经在数字游戏和计算中探索、创新,创造出了许多具有深远影响的数学成果。
本文将探讨中国古代数学的发展历程。
(一)先秦时期在中国古代先秦时期,数学仍处于萌芽状态,这时期的著作主要是《周髀算经》和《九章算术》,它们是中国最古老的数学著作。
《周髀算经》是一部经过多次修订而形成的著作,在古代中国数学历史中拥有举足轻重的地位。
这部书主要讲述了关于九章的数学问题,例如分数运算、勾股定理、解方程等。
在书中,应用算筹、数九形式进行运算,其中“算筹”是指古代中国中用来计算的一种器械,“数九”则是一种数码,在算数学习的过程中被广泛使用。
《九章算术》是中国古代数学典籍之一,包含九个章节,主要论述了整数的运算、方程的求解及其应用、几何问题的解决等。
其中,较为突出的是对代数方程的处理方法。
此书在日本、韩国和越南等国家的教育中还被广泛使用。
(二)汉代汉代是中国古代数学发展的一个重要阶段,汉武帝时期通过辟谷治病,提高民众的智力、健康和政治素质,也极大地促进了数学的发展。
在汉代,地位不高的算师得到了发展的机会,大量优秀的数学书籍逐渐形成。
在汉代,数学逐渐成为研究的主题之一。
《数书九章》是古代数学著作中的名著之一,这本书包含36章,主要论述了计算方法,如加减乘除、求无理数、解代数方程、求解几何等问题。
汉代著名数学家刘徽的《九章算法》是我国古代数学最早编写完整、最具有代表性的著作之一。
此书除了收录《九章算术》外,还有其他的九个部分,如平衡法、交错法等。
这些方法在处理分数、代数方程组等问题时,有着非常重要的应用。
(三)唐宋元时期唐宋元时期,中国数学迎来了繁荣的时期。
期间,我国的文化和科技得到了快速的发展,形成了海纳百川、开放进取的理念,这也为中国数学的发展提供了广阔的空间。
唐代数学家贾思勰的《钱数》是一本高度实用的数学著作。
中国数学史
李善兰(清, 1811-1882)
李善兰恒等式
19世纪的中国数学
李善兰(清, 1811-1882)翻译部分西方学术著作
《几何原本》(1857) 《谈天》(1858, 赫谢尔) 《重学》(1859, 惠威尔)
徐光启等译《几何原本》 后250年
万有引力定律及天体力学 牛顿运动定律
《代微积拾级》(1859, 卢米斯)
《代数学》(1859, 德摩根)
“此书为算学中上乘功夫,此书一出,非特中
法几可尽废,即西法之古者亦无所用之矣。”
19世纪的中国数学
直线之公式,地=甲天丄乙,则地为天的函数。
dx a x ln (a x) c
禾 彳天 (甲 天)对 丙 甲 天
xdx ydy mydx
3.14159261<π<3.14159271
割之又割
《算经十书》
《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》 《夏候阳算经》、《张邱建算经》、《缀术》、《五曹算经》 《五经算术》、《缉古算经》。
《算经十书》
公元656年
汉唐千余年间中国 数学发展的水平
3.中算发展的第三次高峰
数学全盛时期
承前启后、融会中西的数学家 “历算第一名家”、“开山之袓” 《梅氏历算丛书辑要》62卷 代数(笔算)、几何、三角 康熙:历象算法,朕最留心,此 学今鲜知者,如梅文鼎实仅见也。
(清, 1633-1721)
光禄大夫、左都御史 “会通中西”、“西学中源”
18世纪的中国数学
康熙:“即西洋算法亦善,原系中国算法,
《缀术》
《隋书〃律历志》
公元462年, 祖冲之算出 3.1415926<π<3.1415927 密率355/113,约率22/7。 所著之书,名为《缀术》, 学官莫能究其深奥,是故废 而不理。 1913年起称355/113为祖率。
《中国数学史简介》课件
结语
《中国数学史简介》希望通过对中国古代数学发展的回顾,让大家更加了解 和欣赏中国数学的伟大成就。
参考文献
1. 张家平,《中国数学史》。 2. 陈志敏,《中国数学史纲要》。 3. 陈天石,《中国古代数学》。
附录:中国数学符号字典
朱世杰的《算法统宗》等著 作,为数论的发展做出了重 要贡献。
渊源阁等学术机构的建立, 为数学教育的推广奠定了基 础。
数学在现代中国的发展
1 新中国数学的崛起
2 数学应用的广泛领域
3 数学奥林匹克运动
创立数学学科体系,提高数 学研究水平和科技创新能力。
数学在计算机科学、金融学 等领域的应用取得了重大突 破。
隋唐数学
大明历等数学成就,标志着数学研究进入了新的阶 段。
秦汉数学
著名数学家刘徽等人的工作,推动了数学的发展与 应用。
宋元明清数学
数学家朱世杰、杨辉等的重要贡献,使中国数学蓬 勃发展。
算盘和九章算术
算盘
中国古代最重要的计算工具之一,为数学的快速计算提 供了有效的方法。
九章算术
著名的数学著作,涵盖了各个数学领域的知识和技巧。
多次在国际数学奥林匹克竞 赛中获得佳绩,培养了大批 数学人才。
中国数学家的贡献
杨辉
杨辉三角的发现者,对组合数学 的研究做出了巨大贡献。
钟家庆
提出了著名的韦达定理,对数学 的发展产生了重要影响。
华罗庚
华罗庚猜想的提出和解决,为中 国数学界做出了巨大贡献。
与西方数学的比较
古代数学 近代数学 现代数学
战国时期的数学
1
赵爽李筌之争
两位数学家在战国时期的辩论,对数学思想的发展产生了重要影响。
2
战国七雄的数学竞赛
我国数学史成就
我国数学史成就
中国数学史是对中国古代数学发展及其成就的研究。
中国数学自古代就有着悠久的发展历史,其成就对世界数学的发展有着重要的影响。
中国古代数学的研究主要集中在两个时期:先秦时期和宋明清时期。
在先秦时期,中国数学主要体现在《九章算术》和《孙子算经》两部经典著作中。
这些著作包含了算术、代数、几何、方程等方面的内容,对于古代数学的发展起到了重要的推动作用。
在宋明清时期,中国数学进入了一个较为繁荣的时期。
明代数学家刘徽著有《九章算术大成》和《海岛算经》,其中涉及了代数方程的解法、几何学等内容。
清代数学家杨辉则在组合数学和数学归纳法方面做出了重要贡献,他的杨辉三角是世界数学史上的重要发现之一。
另外,中国古代的数学成就还体现在其他方面,比如天文学、测量学和算术等。
中国古代的天文学家和数学家通过观测和计算,建立了精确的历法体系,如夏历、秦历、汉历和宋历等。
测量学方面,中国古代发展了一系列测量方法和工具,如经纬仪、水平仪和浑天仪等。
总的来说,中国数学史的研究对于我们了解中国古代数学的发展轨迹、数学思想和数学方法有着重要的意义。
这些成就不仅对中国古代科学文化的发展产生了深远影响,也对世界数学的进展做出了重要贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国数学史数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。
到原始公社末期,已开始用文字符号取代结绳记事了。
西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。
为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。
据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。
商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。
公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。
《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。
春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。
战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。
名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。
还提出了“一尺之棰,日取其半,万世不竭”等命题.而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。
墨家给出一些数学定义。
例如圆、方、平、直、次(相切)、端(点)等等。
墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。
名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。
名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。
中国古代数学体系的形成秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。
例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。
其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。
就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。
这些特点是同当时社会条件与学术思想密切相关的。
秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。
最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。
《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。
它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。
中国古代数学的发展魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。
赵爽与刘徽的工作赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。
他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。
在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。
刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。
他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。
刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。
刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。
在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
东晋以后,中国长期处于战争和南北分裂的状态。
祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。
他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。
据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。
他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。
祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久;祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。
祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。
隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。
唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。
王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。
此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。
唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。
由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。
李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。
他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。
隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。
算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。
其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。
尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。
但由于当时乘除算法仍然不能在一个横列中进行。
算珠还没有穿档,携带不方便,因此仍没有普遍应用。
唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。
中国古代数学的繁荣960年,北宋王朝的建立结束了五代十国割据的局面。
北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。
1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。
这些都为数学发展创造了良好的条件。
从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。
杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。
根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。
这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。
把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。
《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。
秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。
为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。
当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。
在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。
元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。
秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。
用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。
现存最早的天元术著作是李冶的《测圆海镜》。
从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。