统计学常用公式汇总情况

合集下载

(完整版)统计学公式大全

(完整版)统计学公式大全

(完整版)统计学公式大全统计学公式大全本文档旨在提供统计学领域常用的公式大全,便于大家在研究和实践中进行参考和应用。

描述统计学公式中心趋势度量1. 平均数(Mean):$\bar{x} =\frac{{\sum_{i=1}^{n}x_i}}{n}$2. 中位数(Median):若数据个数为奇数,中位数为排序后的中间值;若数据个数为偶数,中位数为排序后的中间两个值的平均值。

3. 众数(Mode):出现频率最高的数值。

离散趋势度量1. 方差(Variance):$Var(x) = \frac{{\sum_{i=1}^{n}(x_i - \bar{x})^2}}{n}$2. 标准差(Standard Deviation):$SD(x) = \sqrt{Var(x)}$3. 极差(Range):$Range(x) = \max(x) - \min(x)$分布形状度量1. 偏度(Skewness):$\text{Skewness} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^3}}{n \cdot SD(x)^3}$2. 峰度(Kurtosis):$\text{Kurtosis} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^4}}{n \cdot SD(x)^4}$ 推断统计学公式参数估计1. 样本均值的抽样分布标准差(Standard Error of the Mean):$SE(\bar{x}) = \frac{{SD(x)}}{\sqrt{n}}$2. 双侧置信区间公式(Confidence Interval):$\bar{x} \pm Z\cdot SE(\bar{x})$3. 样本比例的抽样分布标准差(Standard Error of Proportion):$SE(p) = \sqrt{\frac{{p(1-p)}}{n}}$4. 双侧置信区间公式(Confidence Interval):$p \pm Z \cdotSE(p)$假设检验1. 样本均值和总体均值的差异(t检验):$t = \frac{{\bar{x} -\mu}}{{SE(\bar{x})}}$2. 双侧拒绝域临界值(t分布):$t_{\text{critical}} = \pmt_{\alpha/2, df}$3. 样本比例和总体比例的差异(z检验):$z = \frac{{\hat{p} - p}}{{SE(p)}}$4. 双侧拒绝域临界值(z分布):$z_{\text{critical}} = \pmz_{\alpha/2}$回归分析公式简单线性回归模型1. 回归方程(Simple Linear Regression):$y = \beta_0 +\beta_1x + \epsilon$2. 线性预测公式(Simple Linear Regression):$\hat{y} =\hat{\beta}_0 + \hat{\beta}_1x$3. 斯皮尔曼秩相关系数(Spearman's Rank Correlation Coefficient):$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$4. 相关系数的显著性检验(t检验):$t = \frac{r}{\sqrt{\frac{1 - r^2}{n-2}}}$结论本文档列举了统计学领域常用的公式,包括描述统计学中的中心趋势度量、离散趋势度量和分布形状度量,推断统计学中的参数估计和假设检验,以及回归分析中的简单线性回归模型等相关公式。

统计学常用公式

统计学常用公式

统计学常用公式统计学是一门研究数据收集、分析、解释和表达的科学。

在统计学中,有许多常用的公式被广泛应用于数据处理和推断分析。

本文将介绍一些统计学常用公式,并对其进行说明和用途解释。

一、描述统计学公式1. 平均值(Mean)平均值是一组数据的总和除以数据的个数,即:$\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$其中,$\bar{X}$表示平均值,$X_i$表示第i个数据,n表示数据的个数。

2. 中位数(Median)中位数是将一组数据按照大小排列后,处于中间位置的数值。

当数据个数为奇数时,中位数即为排列后正中间的数;当数据个数为偶数时,中位数为排列后中间两个数的平均值。

3. 众数(Mode)众数是一组数据中出现频率最高的数值。

4. 标准差(Standard Deviation)标准差衡量数据的离散程度,其计算公式为:$SD = \sqrt{\frac{(X_1 -\bar{X})^2 + (X_2 -\bar{X})^2 + \cdots + (X_n -\bar{X})^2}{n-1}}$5. 方差(Variance)方差是标准差的平方,即:$Var = SD^2$6. 百分位数(Percentile)百分位数是指一组数据中某个特定百分比处的数值。

比如,第25百分位数是将一组数据从小到大排列后,处于前25%位置的数值。

二、概率与统计公式1. 随机变量期望(Expectation)随机变量期望是描述随机变量平均值的指标,也称为均值。

对于离散型随机变量X,其期望计算公式为:$E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$对于连续型随机变量X,其期望计算公式为:$E(X) = \int_{-\infty}^{\infty} x \cdot f(x)dx$其中,$X_i$表示随机变量X的取值,$P(X_i)$表示对应取值的概率,$f(x)$表示X的概率密度函数。

统计学公式汇总

统计学公式汇总

统计学公式汇总统计学是研究数据收集、分析、解释和预测的一门学科。

在统计学中,有许多重要的公式被广泛应用于数据的处理和分析过程中。

本文将汇总一些常见的统计学公式,并简要介绍其应用场景和使用方法。

1. 均值(Mean)均值是统计学中最常用的概念之一,用于衡量一组数据的集中趋势。

对于一个样本集合,均值可以通过将所有观测值相加,然后除以样本容量来计算。

其数学公式如下:均值= ∑(观测值) / 样本容量2. 方差(Variance)方差是用于衡量一组数据的离散程度的指标。

方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。

方差的计算公式如下:方差= ∑((观测值-均值)^2) / 样本容量3. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度,并且具有和原始数据相同的单位。

标准差的计算公式如下:标准差 = 方差的平方根4. 相关系数(Correlation Coefficient)相关系数用于衡量两组变量之间的线性关系强度和方向。

相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。

相关系数的计算公式如下:r = Cov(X,Y) / (σX * σY)5. 回归方程(Regression Equation)回归方程用于建立一个或多个自变量与因变量之间的线性关系。

回归方程的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示模型的误差项。

6. 样本容量和置信水平(Sample Size and Confidence Level)在统计学中,样本容量和置信水平是决定实验或调查结果可靠性的重要因素。

样本容量是指从总体中抽取的样本大小,而置信水平是指对总体参数的估计值的信任程度。

统计学常用公式

统计学常用公式

统计学常用公式在我们的日常生活和各种研究领域中,统计学发挥着至关重要的作用。

它帮助我们从大量的数据中提取有价值的信息,做出合理的决策和推断。

而统计学中的各种公式,则是实现这些目标的有力工具。

接下来,让我们一起了解一些常见的统计学公式。

首先,我们来谈谈平均数。

平均数是最常见的统计量之一,它反映了一组数据的集中趋势。

算术平均数的公式为:平均数=总和 ÷个数。

例如,有一组数据:3、5、7、9、11,它们的总和是 35,个数是 5,那么平均数就是 35 ÷ 5 = 7 。

除了算术平均数,还有几何平均数。

当数据存在比例关系或者增长率时,几何平均数就派上用场了。

其公式为:几何平均数=(数据 1×数据2 × …… × 数据 n )^(1 / n )。

比如,某公司连续三年的增长率分别为 10%、20%、30%,将其转化为小数 11、12、13 ,则三年的平均增长率,即几何平均数为(11 × 12 × 13 )^(1 / 3 )≈ 119 ,意味着平均每年的增长率约为 19% 。

接下来是中位数。

它将数据按照大小顺序排列后,位于中间位置的数值。

如果数据个数为奇数,中位数就是中间的那个数;如果个数为偶数,则是中间两个数的平均值。

例如,数据 2、4、6、8、10 ,个数为 5 ,中间的数 6 就是中位数;而数据 2、4、6、8 ,个数为 4 ,中间的两个数是 4 和 6 ,中位数就是(4 + 6)÷ 2 = 5 。

众数是一组数据中出现次数最多的数值。

例如,在数据 1、2、2、3、3、3、4 中,3 出现的次数最多,所以众数是 3 。

方差和标准差则用于衡量数据的离散程度。

方差的公式为:方差=(每个数据平均数)^ 2 的总和 ÷个数。

标准差是方差的平方根。

方差和标准差越大,说明数据的离散程度越大;反之,则越小。

比如,有两组数据 A:10、20、30 ,B:15、20、25 。

统计学常用公式汇总

统计学常用公式汇总

《统计学原理》常用公式汇总(一)第三章统计整理a) 组距=上限-下限b) 组中值=(上限+下限)÷2c) 缺下限开口组组中值=上限-1/2邻组组距d) 缺上限开口组组中值=下限+1/2邻组组距第四章综合指标i. 相对指标1.结构相对指标=各组(或部分)总量/总体总量2.比例相对指标=总体中某一部分数值/总体中另一部分数值3.比较相对指标=甲单位某指标值/乙单位同类指标值4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5.计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标1.简单算术平均数:2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值2.差: 简单σ= ;加权σ=3.差系数:第五章抽样估计1.平均误差:重复抽样:不重复抽样:2.抽样极限误差3.重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析1.相关系数2.配合回归方程y=a+bx3.估计误:第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

( - )此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。

( -)此差额说明由于质量指标的变动对价值量指标影响的绝对额。

加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:= ×绝对值变动分析:- = ( - )×( -)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算在间断时点数列的条件下计算:a.若间断的间隔相等,则采用“首末折半法”计算。

公式为:b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。

统计学常用公式

统计学常用公式

公式一1. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。

(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。

下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。

上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。

2.中位数【MEDIAN 】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。

设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭当N 为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值:式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。

3.均值的计算【AVERAGE 】(1)未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…(2)分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i k kii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为: 式中:G 表示几何平均数;∏表示连乘符号。

统计学常用公式

统计学常用公式

统计学常用公式统计学是一门研究数据收集、整理、分析和解释的学科。

在统计学中,公式是非常重要的工具,用于计算和推导各种统计指标和结果。

下面是一些统计学中常用的公式,它们可以帮助我们理解和应用统计学的基本概念和方法。

1. 数据的中心趋势度量在统计分析中,我们经常需要了解数据的中心趋势,即数据的集中程度或平均水平。

以下是几个常用的中心趋势度量公式:- 平均值(Mean):一组数据中所有观测值的总和除以观测值的个数。

- 中位数(Median):将一组数据按照大小排序,位于中间位置的观测值。

- 众数(Mode):出现次数最多的观测值。

- 加权平均值(Weighted Mean):将每个观测值乘以相应的权重,然后求和并除以总的权重和。

2. 数据的离散程度度量除了了解数据集中在哪里,我们还需要了解数据的离散程度,即数据分散的程度。

以下是几个常用的离散程度度量公式:- 方差(Variance):一组数据与其平均值之差的平方的平均值。

- 标准差(Standard Deviation):方差的算术平方根。

- 平均绝对偏差(Mean Absolute Deviation):一组数据与其平均值之差的绝对值的平均值。

3. 数据的相关性度量在统计分析中,我们常常需要了解两个或多个变量之间的相关性。

以下是几个常用的相关性度量公式:- 协方差(Covariance):一组数据中两个变量之间的协方差。

协方差的正负表示两个变量是正相关还是负相关。

- 相关系数(Correlation Coefficient):协方差除以两个变量各自的标准差的乘积。

相关系数的取值范围为-1到1,越接近-1或1表示相关性越强。

4. 抽样误差估计在统计学中,我们通常只能对样本数据进行分析,从而推断总体的特征。

以下是几个常用的抽样误差估计公式:- 样本标准差(Sample Standard Deviation):类似于总体标准差,但在计算时使用样本数据。

- 样本均值(Sample Mean):类似于总体均值,但在计算时使用样本数据。

统计学原理常用公式

统计学原理常用公式

统计学原理常用公式1.样本均值公式:样本均值是用来估计总体均值的一种方法,公式为:\bar{x} = \frac{{\sum_{i=1}^n x_i}}{n}\]其中,\(\bar{x}\) 是样本均值,\(x_i\) 是第 \(i\) 个观察值,\(n\) 是样本容量。

2.样本方差公式:样本方差是用来估计总体方差的一种方法,公式为:s^2 = \frac{{\sum_{i=1}^n (x_i - \bar{x})^2}}{n-1}\]其中,\(s^2\) 是样本方差,\(x_i\) 是第 \(i\) 个观察值,\(\bar{x}\) 是样本均值,\(n\) 是样本容量。

计算样本方差时使用的是无偏估计公式。

3.标准差公式:标准差是样本方差的平方根,公式为:s = \sqrt{s^2}\]其中,\(s\)是样本标准差。

4.离差平方和公式:离差平方和是指每个观察值与均值之差的平方的总和,公式为:\sum_{i=1}^n (x_i - \bar{x})^2\]5.切比雪夫不等式:切比雪夫不等式给出了随机变量与其均值之间的关系,公式为:P(,X-\mu,\geq k\sigma) \leq \frac{1}{k^2}\]其中,\(X\) 是随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(k\) 是大于零的常数。

6.二项分布的期望值和方差公式:二项分布用于描述在\(n\)次独立重复试验中成功的次数的概率分布。

其期望值和方差分别为:E(X) = np\]Var(X) = np(1-p)\]其中,\(X\)是二项分布随机变量,\(n\)是试验次数,\(p\)是单次试验成功的概率。

7.正态分布的概率密度函数和累积分布函数公式:正态分布描述了大部分自然现象中的连续性随机变量的分布。

f(x) = \frac{1}{{\sqrt{2\pi}\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]F(x) = \frac{1}{2}\left[1 + \text{erf}\left(\frac{x -\mu}{\sqrt{2}\sigma}\right)\right]\]其中,\(x\) 是正态分布的随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(\text{erf}\) 是误差函数。

统计学常用公式

统计学常用公式

公式一1. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。

(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再依据下面的公式计算计算众数的近似值。

下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。

上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。

2.中位数【MEDIAN 】〔1〕未分组数据中中位数的计算依据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。

设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 当N 为偶数〔2〕分组数据中位数的计算分组数据中位数的计算时,要先依据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采纳下面的公式计算中位数的近似值:式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。

3.均值的计算【A VERAGE 】〔1〕未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…〔2〕分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i kkii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为: 式中:G 表示几何平均数;∏表示连乘符号。

统计学常用公式总结

统计学常用公式总结

心理统计常用公式总结1 、组数 K(总体分布为正态)( N 为数据个数, K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中 W i 为权数,其中为各小组的平均数, n i 为各小组人数6 、几何平均数,其中 n 为数据个数, X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中 S 为标准差, M 为平均数10 、标准分数,其中 X 为原始数据,为平均数, S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中 L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数, i 为组距, N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目, S x 、 S y 分别为 X 和 Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中 R X 、 R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数, p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差18 、二列相关,其中 S T 与是连续变量的标准差与平均数, y 为 P 的正态曲线的高度19 、多系列相关,其中 P i 为每系列的次数比率, y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数, S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。

统计学常用公式

统计学常用公式

公式一1. 众数【】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。

(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。

下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。

上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。

2.中位数【】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。

设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭当N 为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值:N=1m-1e m-S 2M =L+ii fd f ⨯∑式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。

3.均值的计算【】 (1)未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…(2)分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i k kii x f x f x f x f x f f f f==+∑∑L L +4.几何平均数【】几何平均数是N 个变量值乘积的N 次方根,计算公式为:式中:G 表示几何平均数;∏表示连乘符号。

(完整word版)统计学常用公式

(完整word版)统计学常用公式

公式一1. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。

(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。

下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。

上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。

2.中位数【MEDIAN 】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。

设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 当N 为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值:N=1m-1e m-S 2M =L+ii fd f ⨯∑式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。

3.均值的计算【A VERAGE 】(1)未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…(2)分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i k kii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为:式中:G 表示几何平均数;∏表示连乘符号。

初级统计学公式大全

初级统计学公式大全

初级统计学公式大全统计学是研究收集、整理、分析和解释数据的科学,广泛应用于各个领域。

以下是一些初级统计学中常用的公式,供参考:1. 均值(Mean)均值是统计数据的平均值,计算公式为:mean = (x1 + x2 + ... + xn) / n其中,xi为数据集中的每个观察值,n为数据集中的总观察数。

2. 中位数(Median)中位数是将数据集按照从小到大顺序排列后,位于中间位置的值,计算公式为:若n是奇数,中位数=第(n+1)/2个观察值若n是偶数,中位数=(第n/2个观察值+第(n/2+1)个观察值)/23. 众数(Mode)众数是数据集中出现频率最高的值,可能有多个众数。

4. 方差(Variance)方差是衡量数据集观察值与其均值差异的平均数,计算公式为:variance = (Σ(xi - mean)²) / (n-1)其中,xi为数据集中的每个观察值,mean为数据集的均值,n为数据集的总观察数。

5. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据集观察值与均值的离散程度,计算公式为:std_deviation = sqrt(variance)6. 离散系数(Coefficient of Variation)离散系数是标准差与均值之比的绝对值,通过比较不同数据集的离散性,计算公式为:CV = (std_deviation / mean) × 100%7. 百分位数(Percentile)百分位数是将数据集按照从小到大顺序排列后,一些特定百分比位置的值。

8. 四分位数(Quartile)四分位数将数据集分割为四个等份,将数据集按照从小到大顺序排列后,计算公式为:Q1=第(n+1)/4个观察值Q2=中位数Q3=第3(n+1)/4个观察值9. 相关系数(Correlation Coefficient)相关系数度量两个变量之间线性关系的强度和方向,常用的是皮尔逊相关系数,计算公式为:correlation = (Σ((xi - mean_x) /std_deviation_x) × ((yi - mean_y) / std_deviation_y)) / (n - 1)其中,xi为第一个变量的观察值,mean_x为第一个变量的均值,std_deviation_x为第一个变量的标准差;yi为第二个变量的观察值,mean_y为第二个变量的均值,std_deviation_y为第二个变量的标准差。

高等统计学常用公式汇总

高等统计学常用公式汇总

高等统计学常用公式汇总.txt 高等统计学常用公式汇总本文档汇总了高等统计学中常用的一些公式,以供参考和使用。

1.概率与统计1.1.概率公式概率密度函数(PDF)公式。

$f(x) = \frac{dF(x)}{dx}$,表示连续型随机变量的概率密度函数。

概率密度函数(PDF)公式。

$f(x) = \frac{dF(x)}{dx}$,表示连续型随机变量的概率密度函数。

概率密度函数(PDF)公式。

$f(x) = \frac{dF(x)}{dx}$,表示连续型随机变量的概率密度函数。

概率密度函数(PDF)公式。

$f(x) = \frac{dF(x)}{dx}$,表示连续型随机变量的概率密度函数。

概率密度函数(PDF)公式。

$f(x) = \frac{dF(x)}{dx}$,表示连续型随机变量的概率密度函数。

概率密度函数(PDF)公式。

$f(x) =\frac{dF(x)}{dx}$,表示连续型随机变量的概率密度函数。

概率密度函数(PDF)公式。

$f(x) = \frac{dF(x)}{dx}$,表示连续型随机变量的概率密度函数。

概率密度函数(PDF)公式。

$f(x) =\frac{dF(x)}{dx}$,表示连续型随机变量的概率密度函数。

概率密度函数(PDF)公式。

$f(x) = \frac{dF(x)}{dx}$,表示连续型随机变量的概率密度函数。

累积分布函数(CDF)公式。

$F(x) = P(X \leq x)$,表示随机变量的累积分布函数。

累积分布函数(CDF)公式。

$F(x) = P(X \leq x)$,表示随机变量的累积分布函数。

累积分布函数(CDF)公式。

$F(x) = P(X \leq x)$,表示随机变量的累积分布函数。

累积分布函数(CDF)公式。

$F(x) = P(X \leq x)$,表示随机变量的累积分布函数。

累积分布函数(CDF)公式。

$F(x) = P(X \leq x)$,表示随机变量的累积分布函数。

统计学常用公式

统计学常用公式

统计学常用公式在我们的日常生活和各种研究领域中,统计学都发挥着重要的作用。

它帮助我们从大量的数据中提取有价值的信息,做出合理的决策。

而要进行有效的统计分析,就离不开各种公式的运用。

接下来,让我们一起了解一些统计学中常用的公式。

首先,要提到的是均值(Mean)的计算公式。

均值是一组数据的平均水平,对于样本数据,其计算公式为:\\bar{x} =\frac{1}{n} \sum_{i=1}^{n} x_i \其中,\(\bar{x}\)表示样本均值,\(n\)是样本数量,\(x_i\)表示第\(i\)个样本值。

例如,有一组数据:\(5\)、\(8\)、\(10\)、\(12\)、\(15\),那么这组数据的均值为:\\bar{x} =\frac{1}{5} \times (5 + 8 + 10 + 12 + 15) =10 \均值是最常用的描述数据集中趋势的指标,但它容易受到极端值的影响。

方差(Variance)和标准差(Standard Deviation)也是重要的统计量。

样本方差的计算公式为:\ s^2 =\frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2\标准差则是方差的平方根,即:\s =\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2} \方差和标准差反映了数据的离散程度,数值越大,说明数据的分布越分散;数值越小,说明数据越集中。

在概率分布中,最常见的是正态分布(Normal Distribution)。

对于正态分布,其概率密度函数为:\ f(x) =\frac{1}{\sigma \sqrt{2\pi}} e^{\frac{1}{2}(\frac{x \mu}{\sigma})^2} \其中,\(\mu\)是均值,\(\sigma\)是标准差。

在假设检验中,经常会用到\(Z\)分数(\(Z\)Score)的公式:\ Z =\frac{x \mu}{\sigma} \通过计算\(Z\)分数,可以将原始数据标准化,以便与标准正态分布进行比较。

统计学原理重要公式大全

统计学原理重要公式大全

一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=fxf x 或 ∑∑=f f x x加权调和平均数: ∑∑∑∑==f xf xm m x频数也称次数。

在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。

频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。

而频率则每个小组的频数与数据总数的比值。

在变量分配数列中,频数(频率)表明对应组标志值的作用程度。

频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。

掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=f xf x 或 ∑∑=f f x xx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。

加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。

比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。

依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。

加权和与所有权重之和的比等于加权算术平均数。

加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xmm x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学常用公式汇总
项目三 统计数据的整理与显示
组距=上限-下限 a) 组中值=(上限+下限)÷2
b) 缺下限开口组组中值=上限-邻组组距/2 c) 缺上限开口组组中值=下限+1/2邻组组距 例
按完成净产值分组(万元)
10以下 缺下限: 组中值=10—10/2=5 10—20 组中值=(10+20)/2=15 20—30 组中值=(20+30)/2=25 30—40 组中值=(30+40)/2=35 40—70 组中值=(40+70)/2=55 70以上 缺上限:组中值=70+30/2=85
项目四 统计描述
i. 相对指标
1. 结构相对指标=各组(或部分)总量/总体总量
2. 比例相对指标=总体中某一部分数值/总体中另一部分数值
3. 比较相对指标=甲单位某指标值/乙单位同类指标值
4. 动态相对指标=报告期数值/基期数值
5. 强度相对指标=某种现象总量指标/另一个有联系而性质不同的现
象总量指标
6. 计划完成程度相对指标K =
计划数
实际数 =%%计划规定的完成程度实际完成程度 7. 计划完成程度(提高率):K=
%10011⨯++计划提高百分数实际提高百分数
计划完成程度(降低率):K=
%10011⨯--计划提高百分数
实际提高百分数
ii. 平均指标
1.简单算术平均数:
2.加权算术平均数 或
iii. 变异指标
1. 全距=最大标志值-最小标志值
2.标准差: 简单σ=
; 加权 σ=
成数的标准差(1)
p p p σ=-3.标准差系数:
项目五 时间序列的构成分析
一、平均发展水平的计算方法:
(1)由总量指标动态数列计算序时平均数
①由时期数列计算
n a a ∑= ②由时点数列计算
在连续时点数列的条件下计算(判断标志按日登记):∑
∑=f af a 在间断时点数列的条件下计算(判断标志按月/季度/年等登记): 若间断的间隔相等,则采用“首末折半法”计算。

公式为:
1
212
11
21-++++=-n a a a a a n n
若间断的间隔不等,则应以间隔数为权数进行加权平均计算。

公式为:
∑--++++++=f f a a f a a f a a a n n n 1
123212
1222
(2) (选用)由相对指标或平均指标动态数列计算序时平均数 基本公式为:
b a
c =
式中:c 代表相对指标或平均指标动态数列的序时平均数;
a 代表分子数列的序时平均数;
b 代表分母数列的序时平均数;
逐期增长量之和
累积增长量
二、(选用)平均增长量=─────────=─────────
逐期增长量的个数
逐期增长量的个数
计算平均发展速度的公式为:
n x x ∏=
三 平均增长速度的计算
平均增长速度=平均发展速度-1(100%) 四 增长1%的绝对值
=
100
⨯环比增长速度逐期增长量
=100
⨯--前一期水平前一期水平
报告期水平前一期水平报告期水平=
10011⨯--++i
i
i i
i a a a a a =
100
前期水平
项目六 统计指数
一 综合指数的计算与分析 (1)数量指标指数
q K =
01p
q p q ∑∑
此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(01p q ∑ -00p q ∑)
该差额说明由于数量指标的变动对价值量指标影响的绝对数额。

(2)质量指标指数
p K =
∑∑0
1
11p
q p q
此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。

(11p q ∑-01p q ∑)
此差额说明由于质量指标的变动对价值量指标影响的绝对数额。

(3)(选用)平均指标指数
加权算术平均数指数=
∑∑0
00
0p
q p kq
加权调和平均数指数=
∑∑1
1
1
1
1p
q k p q
二 复杂现象总体总量指标变动的因素分析 相对数变动分析:
11p
q p q ∑∑=
01p
q p q ∑∑×
∑∑0
1
11p
q p q
绝对值变动分析:
1
1
p q ∑-00
p q
∑= (01p q ∑ -00p q ∑)+(11p q ∑-01p q ∑)
项目七抽样推断
样本可能数目计算公式
1.抽样平均误差:(重复与不重复的判断标志是否已知N 的数值) (1)重复抽样: n
x σ
μ=
n
p p p )
1(-=
μ (2)不重复抽样: )1(2
N n
n
x -
=
σμ (1)(1p p p n
n N
μ-=- 2.抽样极限误差 x x t μ=∆ ; p p t μ∆= 3 总体区间估计:
总体平均数: x x x X x ∆+≤≤∆- 总体成数:p p p P p ∆+≤≤∆-
项目八 相关与回归分析(选用)
1.相关系数
[][
]
∑∑∑∑∑∑∑---=
2
2
2
2
)
()(y y n x x
n y
x xy n γ
2.配合回归方程 y=a+bx
∑∑∑∑∑--=
2
2
)
(x x n y x xy n b
x b y a -=
3.估计标准误:
2
2
---=
∑∑∑n xy b y a y
s y。

相关文档
最新文档