高中数学《函数的表示法》导学案

合集下载

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

【新教材】3.1.1 函数的概念(人教A版)1.理解函数的定义、函数的定义域、值域及对应法则。

2.掌握判定函数和函数相等的方法。

3.学会求函数的定义域与函数值。

重点:函数的概念,函数的三要素。

难点:函数概念及符号y=f(x)的理解。

一、预习导入阅读课本60-65页,填写。

1.函数的概念(1)函数的定义:设A,B是,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中都有和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作.(2)函数的定义域与值域:函数y=f(x)中,x叫做,叫做函数的定义域,与x的值相对应的y值叫做,函数值的集合叫做函数的值域.显然,值域是集合B的.2.区间概念(a,b为实数,且a<b)3.其它区间的表示1.判断(正确的打“√”,错误的打“×”) (1)区间表示数集,数集一定能用区间表示. ( ) (2)数集{x |x ≥2}可用区间表示为[2,+∞]. ( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)函数值域中每一个数在定义域中一定只有一个数与之对应.( ) (5)函数的定义域和值域一定是无限集合. ( ) 2.函数y =1x +1的定义域是 ( )A .[-1,+∞)B .[-1,0)C .(-1,+∞)D .(-1,0) 3.已知f (x )=x 2+1,则f ( f (-1))= ( ) A .2 B .3 C .4 D .5 4.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________. (2){x |x >1}用区间表示为________.题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x ;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x+2)|x |-x ; (2)f(x)=x 2-1x -1−√4-x . 跟踪训练四1.求函数y=√2x +3√2-x1x 的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x; ④y =2x -√x −1.跟踪训练五1.求下列函数的值域: (1)y = √2x +1 +1;(2)y =1−x 21+x 2.1.对于集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},由下列图形给出的对应f 中,不能构成从A 到B 的函数有( )个A.1个B.2个C.3个D.4个2.函数()2121f x ax x =++的定义域为R ,则实数a 的取值范围为( )A .a >1B .0<a <1C .a <0D .a <13.函数f (x )=√x−1x+3的定义域为 A .{x|1≤x <3或x >3} B .{x|x >1} C .{x|1≤x <2} D .{x|x ≥1}4.已知函数f (2x +1)的定义域为(−2,0),则f (x )的定义域为( ) A.(−2,0)B.(−4,0)C.(−3,1)D.(−12,1)5.下列各组函数中,()f x 与()g x 相等的是( )A .()()2,2f x x g x x =-=-B .()()32,f x x g x ==C .()()22,2x f x g x x x=+=+D .()()22,1x x x f x g x x x-==- 6.集合A ={x |x ≤5且x ≠1}用区间表示____________.7.已知函数8()2f x x =-(1)求函数()f x 的定义域; (2)求(2)f -及(6)f 的值. 8.求下列函数的值域: (1)f (x )=211x x -+;(2)f (x )=x .答案小试牛刀1.(1)× (2) × (3)√ (4)× (5 )× 2.C 3.D4. (1)[10,100] (2)(1,+∞) 自主探究 例1 【答案】D 跟踪训练一【答案】C 例2 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 跟踪训练二【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 例3 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 跟踪训练三【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3).例4【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 跟踪训练四【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−√2-x+1x 的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32.∴函数f(2x+1)的定义域是[-1,32]. 例5【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.跟踪训练五【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 当堂检测1-5.CADCD 6.(,1)(1,5]-∞7.【答案】(1)()f x 的定义域为[3,2)(2,)-⋃+∞;(2)(2)1f -=-;(6)5f = 【解析】(1)依题意,20x -≠,且30x +≥,故3x ≥-,且2x ≠,即函数()f x 的定义域为[)()3,22,-⋃+∞. (2)()8223122f -=+-+=---,()8663562f =+=-. 8. 【答案】(1)(–∞,2)∪(2,+∞); (2)[–54,+∞). 【解析】(1)因为f (x )=()2131x x +-+=2–31x +,所以f (x )≠2, 所以函数f (x )的值域为(–∞,2)∪(2,+∞).(21x +(t≥0),则x=t 2–1,所以y=t 2–t –1(t≥0). 因为抛物线y=t 2–t –1开口向上,对称轴为直线t=12∈[0,+∞),所以当t=12时,y取得最小值为–54,无最大值,所以函数f(x)的值域为[–54,+∞).。

函数的表示方法导学案

函数的表示方法导学案

綦江实验中学2014级数学学科一四八高效课堂学与导第一节函数的表示方法(一)主编:姜小林 审核:高一数学备课组 学生姓名:_______________ 学习目标:1:掌握函数的三种表示方法-----------解析法、图像法、列表法。

2:在实际情景中,卉根据不同的需要选择适当的方法表示函数。

热点提示1.准确画出函数图象是学习函数的必备基本功.2解析法表示函数是本课时常考内容.学习引导:问题一:1.解析法:用 表示两个变量之间的 关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.问题二:2.图象法:以自变量x 的取值为横坐标,对应的函数值y 为 ,在平面直角坐标系中描出各个点,这些点构成了函数y =f (x )的图象,这种用 表示两个变量之间 关系的方法叫做图象法.问题三:3.列表法:列一个两行多列的表格,第一行是 取的值,第二行是对应的 ,这种用表格来表示两个变量之间对应关系的方法叫做列表法.自测自评1.垂直于x 轴的直线与函数y =x +1x图象的交点至多有( ) A .0个 B .1个C .2个D .无数个2.下列点中不在函数y =2x +1的图象上的是( ) A .(1,1) B .(-2,-2)C .(3,12) D .(-1,0) 3则f (1)=________.4.已知一次函数f (x )满足f (2)=1,f (3)=-5,求f (x )的解例1:(1)已知反比例函数f(x)满足f(3)=-6,求f(x)的解析式;(2)一次函数y=f(x),f(1)=1,f(-1)=-3,求f(3).变式一:已知二次函数f(0)=0,,f(1)=6,f(-1)=4求函数f(x)的解析式归纳总结:小结提升:达标自测:1某商场新进了10台彩电,每台售价3000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来2 已知函数f(x)由下表给出,则f(3)等于()A. -1C.-3 D.-4▲3 (1)已知一次函数f(x)满足f[f(x)]=4x+6,则f(x)=________.(2)已知二次函数f(x)满足f(0)=1,f(1)=2,f(2)=5,求该二次函数的解析式.★4 已知二次函数f(x)满足f(0)=0,且对任意x∈R总有f(x+1)=f(x)+x+1,求f(x).自我反思:。

函数的表示(导学案)

函数的表示(导学案)

§2.2函数的表示1、函数的表示法(1)解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.(2)列表法:就是列出表格来表示两个变量的函数关系.优点:不需要计算就可以直接看出与自变量的值相对应的函数值.(3)图象法:就是用函数图象表示两个变量之间的关系.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势.2、分段函数:有些函数在它的定义域中,对于自变量x 的不同取值范围,对应法则不同,这样的函数称为分段函数.分段函数是一个函数,而不是几个函数.3、求函数解析式的方法:(1)待定系数法;(2)换元法;(3)方程法 ;(4)配凑法等.4、作函数图象的一般步骤:(1)确定函数定义域;(2)化简或变形函数表达式(一般来说可化简成常见函数或其复合函数);(3)利用描点法或图象变换法作出图象.5、常见的图象变换有:平移变换、对称变换和翻折变换等.独立自测1.下列四种说法正确的有( )①函数是从其定义域到值域的映射;②f(x)=x -3+2-x 是函数;③函数y =2x(x ∈N)的图象是一条直线;④f(x)=x2x与g(x)=x 是同一函数. A .1个 B .2个C .3个D .4个2.下列各个图形中,不可能是函数y =f(x)的图象的是( )3.函数y =f(x)的图象如图所示,根据函数图象填空:(1)f(0)=________;(2)f(1)=________;(3)若-1<x1<x2<1,则f(x1)与f(x2)的大小关系是________.4、函数2)1(+=x y -2的图象可由函数2x y =的图象经过( )得到.A 、先向右平移1个单位,再向下平移2个单位B 、先向右平移1个单位,再向上平移2个单位C 、先向左平移1个单位,再向下平移2个单位D 、先向左平移1个单位,再向上平移2个单位5、函数1)1(2-+-=x y 的图象与函数1)1(2+-=x y 的图象关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、以上都探究案例. (1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )(2)已知)(x f 是一次函数, 且14))((-=x x f f ,求)(x f 的解析式 ;(3)已知2211)11(x x xx f +-=+-,试求)(x f 的解析式.( 4)已知x x x f 2)1(+=+,求)(x f ;(5)已知)(x f 满足x x f x f 3)1()(2=+,求)(x f训练案1、已知11)1(+=x x f ,那么)(x f 的解析式为 ( ) A 、11+x B 、x x +1 C 、1+x xD 、x +1A 、B 、C 、D 、2、已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ,则_______)]}1([{=-f f f .3、已知f (x )=x x 22+,则f (2x +1)= .4、已知二次函数y =f(x)的最大值为13,且f(3)=f(-1)=5,求f(x)的解析式,。

函数的表示方法导学案

函数的表示方法导学案

潍坊滨海中学 高三数学◆必修1◆导学案编写:张慧 校审:高三数学§2.1.2《函数的表示方法》导学案教学目的:(1)掌握函数的三种表示方法(图象法、列表法、解析法);(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数教学重点:(1)图像法、列表法、解析法表示函数(2)会画简单的函数图像教学难点:如何选择恰当的方法表示函数※ 理解概念1列表法:用列表来表示两个变量之间函数关系的方法,优点:不必通过计算就可以知道自变量取某个值时,相应的函数值是多少.2图像法:用图象表示两个变量之间函数关系的方法。

优点::可以从整体上直观而形象地表示出函数的变化情况.3解析法:用等式来表示两个变量之间函数关系的方法。

优点:函数关系清楚,容易从自变量求出其对应的函数值,便于用解析式研究函数性质.※ 合作探究问题:购买某种饮料x 听所需钱数为y 元,若每听2元,试分别用解析法,列表法,图像法将y 表示成x(x {1,2,3,4})的函数,并指出函数的值域. 讨论:(1)三种表示方法的各自的特点是什么? (2)函数图像上的点满足什么条件?满足函数关系式y =f (x )的点(x ,y )在什么地方?小结:这是一个实际问题,x 的取值只能为正整数.用三种方法表示这个函数问题,既体现了函数在生活中的用途,也体现了三种方法表示函数时的各自特点※ 典型例题例1:设x 是任意的一个实数,y 是不超过x 的最大整数,试问x 和y 之间是否是函数关系?如果是,画出这个函数的图像。

2009年第一学期◆高一 9月 23 日 班级: 姓名:2例2:已知函数y=f(n),满足f(0)=1,且f(n)=nf(n-1),n ∈N +。

求f(1),f(2),f(3),f(4),f(5)。

※当堂训练1、下图都是函数的图像吗?为什么?2、某人从甲镇去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示运动的时间,纵轴表示此人与乙村的距离,则较符合该人走法的图像是( ).3、用长为4m 的铁丝围成矩形,试将矩形面积S(m 2)表示为矩形一边长x(m)的函数,并画出函数的图像.4、函数解析式5,032.4 2.2,3x y x x <≤⎧=⎨->⎩,回答下列问题.(1)函数的定义域是_______________. (2)若x = 8,则y =_______________;若y = 12.2,则x =_______________. (3)画出函数的图像.(4)函数的值域是_______________.※课后练习:(1)画出函数f(x)=|x|的图像,并求出f(-3),f(3),f(-1),f(1)的值.(2)常州市出租车收费标准如下:在3km 以内(含3km )路程按起步价9元收费,超过3km 以外的路程按1.8元/km 收费,试写出收费额关于路程的函数解析式,并画出它的图象※ 归纳总结教材P 41~ P 42。

高一数学:函数及其表示(导学案含答案)

高一数学:函数及其表示(导学案含答案)

第一节 函数及其表示1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)函数y =ln (1-x )x +1+1x的定义域是( ) A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[答案] (1)D (2)B 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x );所以f (x )=x 2-5x +9(x ∈R).考点三 分段函数考法(一) 求函数值[典例] 已知f (x )=⎩⎪⎨⎪⎧ log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=()A .-2B .2C .3D .-3[答案] B考法(二) 求参数或自变量的值(或范围)[典例] 设函数f (x )=⎩⎪⎨⎪⎧ 2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[答案] D[题组训练]1.设f (x )=⎩⎨⎧ x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( )A .2B .4C .6D .8综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________. 解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2.答案:23.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧ ⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4故选B.2.函数f (x )=2x -1+1x -2的定义域为( )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧ 2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( )A.74 B .-74C.43 D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.下列函数中,同一个函数的定义域与值域相同的是( )A .y =x -1B .y =ln xC .y =13x -1 D .y =x +1x -1解析:选D5.已知函数f (x )=⎩⎪⎨⎪⎧ log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516 B .3C .-6364或3 D .-1516或3 解析:选A 6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( ) A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1],得0≤x ≤1,故-1≤2x -1≤1,∴f (x )的定义域是[-1,1],∴要使函数f (2x +1)log 2(x +1)有意义, 需满足⎩⎪⎨⎪⎧ -1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .① 解析:选B 9.函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 答案:(0,1]10.若函数f (x )=⎩⎨⎧ lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________. 答案:-211.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。

2014—2015学年高一数学必修一导学案:2.1.2函数的表示方法(2)

2014—2015学年高一数学必修一导学案:2.1.2函数的表示方法(2)

x 的函数解析式为
5、某公司将进货单价为 8 元一个的商品按 10 元一个销售,每天可卖出 100 个,若这 种商品的销售价每个上涨 1 元,则销售量就减少 10 个。 (1)求销售价为 13 元时每天的销售利润; (2)如果销售利润为 360 元,那么销售价上涨了几元?高度 x(km) 的气温为 y(C ) ,在距地面高度不超过 11km 时, y 随着 x 的 增加而降低,且每升高 1km ,大气温度降低 6C ;高度超过 11km 时,气温可视 为不变。 设地面温度为 22 C , 试写出 y f ( x) 的解析式, 并分别求高度为 3.5km 和 12 km 的气温。
x x 20
4
4 3 2 1 o -4 -3 -2 -1 1 2 3 4
x
例 2、国内投寄信函(外埠) ,邮资按以下规则计算:① 信函的质量不超过 100g 时,每
20g 付邮资 80 分,即信函质量不超过 20g 时,付邮资 80 分;质量超过 20g ,但不超 过 40g 付邮资 160 分,依次类推。② 信函质量超过 100g 时,超出部分每 100g 付邮资 200 分,即信函质量超过 100g ,但不超过 200g 付邮资 ( A 200) 分( A 为质量等于 100g 的信函的邮资) ,信函的质量超过 200g 但不超过 300g 付邮资 ( A 400) 分,依 次类推,设一封质量 xg (0 x 200) 的信函应付邮资为 y (单位:分) ,试写出以 x 为
函数的表示方法:第 2 课时
班级: 姓名: 学号:
一、学习目标
了解分段函数的生活中的运用, 会求实际问题的函数解析式; 培养抽象概括能力和 解决问题的能力。
一、课前预习
1.函数的三种表示方法,各自优缺点。 2.在实际问题中的应用及其注意点。

函数的表示法教案三篇

函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。

第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。

另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。

通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

人教A版(2019)高中数学必修第一册 3 函数的表示法(二)导学案(无答案)

人教A版(2019)高中数学必修第一册 3   函数的表示法(二)导学案(无答案)

§3.1.2 函数的表示法(二)【探究学习】分段函数的表示例1画出函数y=|x|的图象定义:像y=|x|这样的,对于自变量x的不同的取值范围,有着不同的对应关系的函数通常称为_________ 【知识应用】变式1画出函数y=|x-2|的图象变式2画出函数y=|x2-1|的图象变式3画出函数y=|x-1|(x+1)的图象例2给定函数f(x)=x+1,g(x)=(x+1)2,x∈R(1)在同一直角坐标系中画出函数f(x),g(x)的图象(2)x∈R,用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},例如,当x=2时,M(2)=max{f(2),g(2)}=max{3,9}=9 请分别用图像法和解析法表示函数M(x) 练习1.给定函数f(x)=-x+1,g(x)=(x-1)2,x∈R(1)在同一直角坐标系中画出函数f(x),g(x)的图象(2)x∈R,用m(x)表示f(x),g(x)中的较小者,记为m(x)=min{f(x),g(x)},请分别用图像法和解析法表示函数m(x)例3设函数()22,1,122,2x xf x x xx x+≤-⎧⎪=-<<⎨⎪≥⎩,(1)求()32,2f f f⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值;(2)若f(x)=3,求x的值.练习2.已知f(x)=⎩⎪⎨⎪⎧x2,-1≤x≤1,1,x>1或x<-1.(1)画出f(x)的图象;(2)若f(x)≥14,求x的取值范围;(3)求f(x)的值域.例4.某市招手即停公共汽车的票价按下列规则制定(1)5km以内(含5km),票价2元;(2)5km以上,每增加5km,票价增加1元(不足5km 按5km算)如果某条线路的总里程为20km,请写出票价与里程之间的函数解析式,并画出图像.【小结】【作业】作业本3837-P。

1.2.2《函数的表示法》导学案

1.2.2《函数的表示法》导学案

1.2.2《函数的表示法》导学案姓名: 班级: 组别: 组名:____________【学习目标】1、明确函数的三种表示方法,会根据不同的实际情境选择合适的方法表示函数;2、通过具体实例,了解简单的分段函数及其应用3、知道映射的定义;【重点难点】重点:函数的三种表示方法,分段函数的概念难点:分段函数的表示、求值及其图象【知识链接】我们在初中接触过的函数有些事用表格的形式呈现的,如小明从小学一年级至六年级每年的身高与体重之间对应的函数关系,可以用一个表格的形式表示出来;有的可以用函数解析式,如二次函数1232-+=x x y ;当然有的也可以用图象表示,如二次函数的图象是一条抛物线.【学习过程】阅读课本19至20页的内容,尝试回答以下问题:知识点一:函数的表示法解析法就是用___________表示两个变量之间的对应关系,图像法就是用___________表示两个变量之间的对应关系,列表法就是用___________表示两个变量之间的对应关系.练习:①某商场新近了10台彩电,每台售价3000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.②课本23页1,2,4.知识点二 分段函数阅读课本21至22页的内容,尝试回答以下问题:定义:例5中得出的票价与里程之间的函数关系式中对于不同范围内的x 对应不同的y 的表达式,像这种在定义域的不同部分对应________________的函数称为分段函数.注意:①虽然分段函数在定义域的不同部分对应不同的对应关系,但分段函数是一个函数,不能误认为分段函数是“几个函数”;②分段函数的定义域是各段自变量取值范围的并集③分段函数的值域是各段函数值的并集同步练习:若函数⎪⎩⎪⎨⎧≥<<--≤+=2,222,2,2)(2x x x x x x x f ,(1) 试求)]3([),3(),5(---f f f f 的值;(2) 若1)(=a f ,求a 的值;(3) 写出函数的定义域、值域;(4) 作出函数的图象.知识点三 映射阅读课本22页至23页的内容,尝试回答下列问题:1、一般地,设B ,A 是_____________,如果按照某种确定的___________,使对于集合A 中的____________,在集合B 中都有______________________,那么就称____________为从集合A 到集合B 的一个_______.集合A 中的元素叫原象,集合B 中与A 中的元素相对应的元素叫象.2、与函数概念相比,在映射的概念中只是将函数概念中的__________换为____________,所以可以说函数是一种特殊的映射,但映射不一定是函数.同步练习:1、下列集合A 到集合B 的对应中,哪些是A 到B 的映射?(1)B y A x x y x f B N ∈∈-=→==,,:,Z ,A 对应法则;(2)B x A x xy x f R B R A ∈∈=→==++,,1:,,; (3){}{}B y A x x y x f B A ∈∈±=→--=--=,,,2,1,1,2,4,1,1,4:对应法则;(4){}三角形平面内边长不同的等边=A ,{}平面内半径不同的圆=B ,对应法则圆:作等边三角形的内切f .2、已知在)(y x ,映射f 下的象是),(2y x y x -+, (1))2,3(-的象;(2))2,2(-的原象【基础达标】A1、以下几个命题:① 从映射角度看,函数是其定义域到值域的映射;② 函数]3,3(,1-∈∈-=x Z x x y 且的图象是一条线段③ 分段函数的定义域是各段定义域的并集,值域是各段值域的并集;④若21,D D 分别是分段函数的两个不同对应关系的值域,则=⋂21D D ∅.其中正确的有 ( )A 、0个B 、1个C 、2个D 、3个B2、给出下列对应:①{}应为矩形到它的面积的对对应关系,矩形f R N M ,==;②{}xy x f N R 1,M =→==:,正实数, ③{}{}为求平方根f N M ,2,2,1,1,4,1--==.其中是从集合M 到集合N 的映射有 ( )A 、0个B 、1个C 、2个D 、3个C3、已知函数⎩⎨⎧<+≥-=6),2(6,4)(x x f x x x f ,则)3(f =___________,=)]1([f f ____________.C4、已知⎩⎨⎧≥<=0,0,2)(2x x x x x f ,若16)(=x f ,则x 的值为___________.D5、已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式5)2()2(≤+++x f x x 的解集是_________________.【小结】1、 函数的三种表示方法:2、 分段函数:3、 映射:【当堂检测】A1、作出下列函数的图象:(1)⎩⎨⎧>≤=0,100)(x x x f ,;(2){}3,2,1,13)(∈+=n n n g ;B2、设集合{}{}1,0,,,A ==B c b a ,试问:从A 到B 的映射共几个?将它们分别表示出来.【课后反思】本节课我最大的收获是我还存在的疑惑是我对导学案的建议是。

高中数学 第二章 函数概念与基本初等函数I 2.1 函数的概念 2.1.4 函数的表示方法课堂导学案

高中数学 第二章 函数概念与基本初等函数I 2.1 函数的概念 2.1.4 函数的表示方法课堂导学案

2.1.4 函数的表示方法课堂导学三点剖析一、用适当方法表示函数及分段函数【例1】 已知f(x)=⎩⎨⎧<+≥+.012,012x x x x(1)求f(1),f(-2),f(a 2+1),f [f(0)]的值;(2)画出f(x)的图象.思路分析:(1)先确定自变量的取值属于哪一段,再用该段的解析式求函数值.(2)分两段作函数的图象,每一段一般都先作出端点.解析:(1)f(1)=12+1=2,f(-2)=2×(-2)+1=-3,f(a 2+1)=(a 2+1)2+1=a 4+2a 2+2,f [f(0)]=f(1)=12+1=2.(2)f(x)的图象如下图所示.温馨提示(1)关键是理解分段函数的意义,即自变量在不同范围内取值时,相应的函数解析式不同.(2)f [g(x)]是g(x)作为自变量执行“f ”这个对应法则,求f [f(x 0)]的值应从里向外求.二、求函数解析式【例2】 (1)已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x);(2)已知f(x +4)=x+8x ,求f(x 2).思路分析:(1)可设出二次函数,根据已知条件,确定待定系数.(2)中应先求出f(x),再求f(x 2).解析:(1)∵f(x)是二次函数,设f(x)=ax 2+bx+c(a ≠0).由f(0)=1得c=1.由f(x+1)-f(x)=2x,得a(x+1)2+b(x+1)+1-(ax 2+bx+1)=2x.左端展开整理得2ax+(a+b)=2x.由恒等式原理知⎩⎨⎧=+=,0,22b a a ∴⎩⎨⎧-==.1,1b a ∴f(x)=x 2-x+1.(2)设t=x +4.∴x =t-4(t ≥4).由f(x +4)=x+8x 可得f(t)=(t-4)2+8(t-4)=t 2-16(t ≥4).∴f(x)=x 2-16(x ≥4).∴f(x 2)=x 4-16(x ≥2或x ≤-2).温馨提示在(2)中求f(x 2),千万不能直接代入f(x +4)=x+8x ,得f(x 2)=x 2+8|x|,这是没明白x 2与x +4有同等地位,都执行“f ”这个对应法则导致的.三、利用分段函数解决实际问题【例3】 在国内投寄外埠平信,每封信不超过20克付邮资80分,超过20克不超过40克付邮资160分,超过40克不超过60克付邮资240分,依此类推,每封x 克(0<x ≤100)的信应付多少分邮资?写出函数的表达式,作出函数的图象,并求函数的值域.解析:设每封信的邮资为y ,则y 是信件重量x 的函数.这个函数关系的表达式为f(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈∈∈∈],100,80(,400],80,60(,320],60,40(,240],40,20(,160],20,0(,80x x x x x函数值域为{80,160,240,320,400}.在直角坐标系中描点作图,函数图象如下图.温馨提示用函数知识解实际问题,一要注意自变量的取值范围;二要注意自变量x 和函数y 的取值是否具有实际意义.各个击破类题演练 1已知函数y=f(x),f(0)=1,且当n∈N *时,有f(n)=nf(n-1),求f(0),f(1),f(2),f(3),f(4),f(5).解析:f(0)=1;f(1)=1·f(1-1)=1·f(0)=1;f(2)=2·f(2-1)=2·f(1)=2×1=2;f(3)=3·f(3-1)=3·f(2)=3×2=6;f(4)=4·f(4-1)=4·f(3)=4×6=24;f(5)=5·f(5-1)=5·f(4)=5×24=120;变式提升 1已知x∈N *,f(x)=⎩⎨⎧<+≥-),6()2(),6(5x x f x x 则f(3)=__________. 解析:∵f(x)= ⎩⎨⎧<+≥-),6()2(),6(5x x f x x∴f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2,故f(3)=2.答案:2类题演练 2(2004湖北卷高考理,3)已知f(x x +-11)=2211xx +-,则f(x)的解析式可取为( ) A.21x x + B.-212x x + C.212x x + D.-21xx + 解析:设x x +-11=t ,则x=tt +-11. ∴f(t)=)11(1)11(12tt t t +-++--=2224t t +=212tt + 即f(x)=212x x +,故选C. 答案:C变式提升 2已知函数φ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且φ(31)=16,φ(1)=8,求φ(x)的表达式. 解析:设f(x)=k 1x,g(x)=x k 2,则φ(x)=k 1x+xk 2, ∵φ(31)=16,φ(1)=8, ∴⎪⎩⎪⎨⎧+=+=,8,33162121k k k k 解得⎩⎨⎧==,5,321k k ∴φ(x )=3x+x5. 类题演练 3某地出租车的出租费为4千米以内(含4千米),按起步费收10元,超过4千米按每千米加收2元,超过20千米(不含20千米)每千米再加收0.2元,若将出租车费设为y ,所走千米数设为x ,试写出y=f(x)的表示式.解析:当0<x ≤4,y=10.当4<x ≤20时,y=10+(x-4)×2=2x+2.当x>20时,y=10+32+(x-20)×2.2=2.2x-2.综上所述,y 与x 的函数关系为y=⎪⎩⎪⎨⎧>-≤<+≤<).20(22.2),204(22),40(10x x x x x变式提升 3如下图,在边长为4的正方形ABCD 上有一点P ,沿着折线BC 、CD 、DA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x,△ABP 的面积为y=f(x).(1)求△ABP 的面积与P 移动的路程间的函数关系式;(2)作出函数的图象,并根据图象求y 的最大值.解析:函数定义域为(0,12).当0<x ≤4时,S=f(x)=21×4×x=2x ; 当4<x ≤8时,S=f(x)=8; 当8<x<12时,S=f(x)=21×4×(12-x)=24-2x, ∴函数解析式为f(x)=⎪⎩⎪⎨⎧∈-∈∈].12,8(224],8,4(8(0,4],x 2x x x x(2)作出f(x)的图象(下图).由图象看出[f(x)]max =8.。

高中数学 第三章 函数的概念与性质 3.1.2 第1课时 函数的表示法学案(含解析)新人教A版必修第

高中数学 第三章 函数的概念与性质 3.1.2 第1课时 函数的表示法学案(含解析)新人教A版必修第

3.1.2 函数的表示法第1课时函数的表示法[目标] 1.掌握函数的三种表示方法——解析法、图象法、列表法;2.会求函数解析式,并正确画出函数的图象;3.在实际情境中,会根据不同的需要选择恰当的方法表示函数.[重点] 函数解析式的求法及函数图象的画法.[难点] 求函数解析式的两种通法.知识点函数的表示法[填一填]函数有解析法、列表法、图象法三种表示法.(1)解析法:就是用数学表达式表示两个变量之间的对应关系;(2)列表法:就是列出表格来表示两个变量之间的对应关系;(3)图象法:就是用图象表示两个变量之间的对应关系.[答一答]1.任何一个函数都可以用解析法表示吗?提示:不一定.如学校安排的月考,某一地区绿化面积与年份关系等受偶然因素影响较大的函数关系就无法用解析法表示.2.函数的三种表示方法各有什么优点?提示:解析法:简单、全面地概括了变量间的关系;可以通过解析式求定义域内的任意自变量对应的函数值;图象法:直观、形象地反映出函数关系变化的趋势,便于研究函数的性质;列表法:查询方便,不需计算便可得自变量对应的函数值.3.作出函数y=x2-3,x∈{-2,-1,0,1,2,3}的图象.提示:函数的图象是一些离散的点,图象如图所示:类型一列表法表示函数[例1]已知函数f(x),g(x)分别由下表给出:则f(g(1))的值为________;当g(f(x))=2时,x=________.[分析]这是用列表法表示的函数求值问题,在解答时,找准变量对应的值即可.[解析]由g(x)对应表,知g(1)=3,∴f(g(1))=f(3).由f(x)对应表,得f(3)=1,∴f(g(1))=f(3)=1.由g(x)对应表,得当x=2时,g(2)=2,又g(f(x))=2,∴f(x)=2.又由f(x)对应表,得x=1时,f(1)=2,∴x=1.[答案]1 1列表法是表示函数的重要方法,这如同我们在画函数图象时所列的表,它的优点是变量对应的函数值在表中可直接找到,不需计算.[变式训练1](1)在例1中,函数f(x)的定义域是{1,2,3},值域是{2,1};_f(1)=2;若f(x)=1,则x=2或3.(2)已知函数f(x),g(x)分别由下表给出.则g (f (2))=1;f (g (2))=3.解析:(2)∵f (2)=3,g (2)=2,∴g (f (2))=g (3)=1,f (g (2))=f (2)=3.类型二 图象法表示函数[例2] 作出下列函数的图象并求出其值域. (1)y =2x +1,x ∈[0,2]; (2)y =2x ,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].[分析] 列表⇒描点⇒用平滑曲线连成图象⇒观察图象 求得值域. [解] (1)列表:x 0 12 1 32 2 y12345描点,作出图象(如图).当x ∈[0,2]时,图象是直线的一部分,观察图象可知,其值域为[1,5].(2)列表:x 2 3 4 5 … y1231225…描点,作出图象(如图).当x ∈[2,+∞),图象是反比例函数y =2x 的一部分,观察图象可知,其值域为(0,1].(3)列表:x -2 -1 0 1 2 y-138描点,作出图象(如图),图象是抛物线y =x 2+2x 在-2≤x ≤2之间的部分.由图可得函数的值域是[-1,8].作函数图象应注意:(1)在定义域内作图,即树立定义域优先的意识;(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;(3)要标出某些关键点,例如图象的顶点、端点与坐标轴的交点等.要分清这些关键点是实心点还是空心点.[变式训练2]作出下列函数图象,并求其值域.(1)y=1-x(x∈Z,且|x|≤2);(2)y=2x2-4x-3(0≤x<3).解:(1)因为x∈Z,且|x|≤2,所以x∈{-2,-1,0,1,2}.所以该函数图象为一直线上的孤立点(如图①).由图象知,y∈{-1,0,1,2,3}.(2)因为y=2(x-1)2-5,所以当x=0时,y=-3;当x=3时,y=3;当x=1时,y=-5.因为x∈[0,3),故图象是一段抛物线(如图②).由图象可知,y∈[-5,3).类型三 解析法表示函数[例3] 求函数的解析式.(1)已知f (x )是一次函数,且f (f (x ))=9x +4,求f (x )的解析式; (2)已知f (x +1)=x +2x ,求f (x ); (3)已知2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x ). [解] (1)设f (x )=kx +b (k ≠0).则f (f (x ))=k (kx +b )+b =k 2x +kb +b =9x +4.所以⎩⎪⎨⎪⎧k 2=9,kb +b =4.解得k =3,b =1,或k =-3,b =-2. 所以f (x )=3x +1或f (x )=-3x -2. (2)法1:(配凑法)因为f (x +1)=x +2x =(x +1)2-1(x +1≥1). 所以f (x )=x 2-1(x ≥1). 法2:(换元法) 令x +1=t (t ≥1). 则x =(t -1)2(t ≥1). 所以f (t )=(t -1)2+2(t -1)2=t 2-1(t ≥1).所以f (x )=x 2-1(x ≥1).(3)f (x )+2f ⎝⎛⎭⎫1x =x ,令x =1x ,得f ⎝⎛⎭⎫1x +2f (x )=1x. 于是得关于f (x )与f ⎝⎛⎭⎫1x 的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x.解得f (x )=23x -x3(x ≠0).求函数解析式的方法:(1)代入法:已知f (x )的解析式,求f [g (x )]的解析式常用代入法.(2)配凑法:已知f [g (x )]的解析式,求f (x )的解析式时,可先从f [g (x )]的解析式中拼凑出“g (x )”,即把“g (x )”作为整体,再将解析式的两边的g (x )用x 代替即可求得f (x )的解析式.(3)换元法:已知f [g (x )]的解析式,要求f (x )的解析式时,可令t =g (x ),利用t 表示出x ,然后代入f [g (x )]中,最后把t 换为x 即可.注意换元后新元的范围.(4)待定系数法:已知f (x )的函数类型,求f (x )的解析式时,可根据函数类型先设出函数解析式,再代入关系式,利用恒等式求出待定系数即可.[变式训练3] (1)已知f ⎝⎛⎭⎫1x =x1-x 2,求f (x );(2)已知函数f (x )=x 2,g (x )为一次函数,且一次项系数大于零,若f [g (x )]=4x 2-20x +25,求g (x )的表达式.解:(1)设t =1x ,则x =1t(t ≠0),代入f ⎝⎛⎭⎫1x =x 1-x 2,得f (t )=1t1-⎝⎛⎭⎫1t 2=tt 2-1(t ≠0), 故f (x )=x x 2-1(x ≠0).(2)由g (x )为一次函数, 设g (x )=ax +b (a >0),∵f [g (x )]=4x 2-20x +25,∴(ax +b )2=4x 2-20x +25,即a 2x 2+2abx +b 2=4x 2-20x +25,从而a 2=4,2ab =-20,b 2=25,解得a =2,b =-5, 故g (x )=2x -5(x ∈R ).1.已知一次函数的图象过点(1,0)和(0,1),则此一次函数的解析式为( D ) A .f (x )=-x B .f (x )=x -1 C .f (x )=x +1D .f (x )=-x +1解析:设f (x )=ax +b (a ≠0),则有⎩⎪⎨⎪⎧a +b =0,b =1,所以a =-1,b =1,f (x )=-x +1.2.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图所示的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))=( B )x 1 2 3 f (x )23A .3B .2C .1D .0解析:由函数图象可知g (2)=1,由表格可知f (1)=2,故f (g (2))=2. 3.已知函数f (2x +1)=6x +5,则f (x )的解析式为f (x )=3x +2. 解析:解法一:令2x +1=t ,则x =t -12.∴f (t )=6×t -12+5=3t +2,∴f (x )=3x +2.解法二:∵f (2x +1)=3(2x +1)+2,∴f (x )=3x +2.4.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是y =80x 2+800x,_x ∈(0,+∞).解析:由题意可知,长方体的长为(x +10)cm ,从而长方体的体积y =80x (x +10),x >0,化简为:y =80x 2+800x ,x ∈(0,+∞).5.某商场新进了10台彩电,每台售价3 000元,试分别用列表法、图象法、解析法表示售出台数x(x∈{1,2,3,4,5,6,7,8,9,10})与收款总额y(元)之间的函数关系.解:用列表法表示如下:x/台1234 5y/元 3 000 6 0009 00012 00015 000x/台678910y/元18 00021 00024 00027 00030 000 用图象法表示,如图所示.用解析法表示为y=3 000x,x∈{1,2,3,…,10}.——本课须掌握的三大问题1.函数三种表示法的优缺点2.描点法画函数图象的步骤:(1)求函数定义域;(2)化简解析式;(3)列表;(4)描点;(5)连线.3.求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)消元法等.。

高中数学第二章函数2.2.2函数的表示法一学案含解析北师大版必

高中数学第二章函数2.2.2函数的表示法一学案含解析北师大版必

学习资料2.2 函数的表示法(一)内容标准学科素养1。

掌握函数的三种表示法:解析法、列表法、图像法以及各自的优缺点.2。

在实际问题中,能够选择恰当的表示法来表示函数.3。

能利用函数图像求函数的值域,并确定函数值的变化趋势。

加强逻辑推理提升数学运算增强直观想象授课提示:对应学生用书第20页[基础认识]知识点函数的表示法错误!某同学计划买x(x∈{1,2,3,4,5})支2B铅笔,每支铅笔的价格为0。

5元,共需y元,于是y与x之间建立起了一个函数关系.(1)函数的定义域是什么?提示:{1,2,3,4,5}.(2)y与x有何关系?提示:y=0.5 x。

(3)试用表格表示y与x之间的关系.提示:表格如下:支数(x)1234 5钱数(y)0。

51 1.52 2.5知识梳理函数的表示方法错误!思考:1。

任何一个函数都能用解析法表示吗?提示:不一定.如一年内每天的气温与日期间的关系,每日股票的价格同开盘时间的关系等等,都不能用解析法表示.2.你能说一下三种表示法各自的优缺点吗?提示:表示法优点缺点解析法简明、全面概括了变量间的关系;利用解析式可以求任一点处的函数值不够形象、直观而且并非所有的函数都有解析式列表法不需计算可以直接看出自变量对应的函仅能表示自变量取较少的有限的对应关数值系图像法能形象直观地表示函数的变化情况只能近似求出自变量的值所对应的函数值,而且有时误差较大3。

如何判断一个图形是否可以作为函数的图像?提示:任取一条垂直于x轴的直线l,在定义域上移动此直线,若直线l与图形只有一个交点,则是函数的图像,若有两个或两个以上的交点,则不是函数的图像.[自我检测]1.下列各图像中,不可能是函数y=f(x)的图像的有()A.1个B.2个C.3个D.4个解析:判断一个图像是否是函数图像,其关键是分析是否满足定义域内的任意一个x,都有唯一确定的y与之对应.故①②可能是函数图像.③④一定不是y=f(x)的图像.答案:B2.下列用图表给出的函数关系中,当x=6时,对应的函数值y=()x 0<x≤11<x≤55<x≤10x>10y 123 4A.2 B.解析:5<x≤10时,y=3,∴x=6时,y=3.答案:B3.已知f(x)是正比例函数且过点(1,1),则f(x)=________.解析:设f(x)=kx(k≠0),由题意可知f(1)=k=1,∴f(x)=x.答案:x授课提示:对应学生用书第21页探究一函数的三种表示方法[例1]下列式子或表格:①y=2x,其中x∈{0,1,2,3},y∈{0,2,4};②x2+y2=2;③y=x-2+1-x;④x 1234 5y 9089888595其中表示y是x[思路点拨]解答本题的关键是分析所给式子或表格是否满足函数的定义.[解析]①不表示y是x的函数,因为当x=3时,y没有值与其对应;②不表示y是x的函数,因为当x=1时,y=±1,即y有两个值与x的值对应;③不表示y是x的函数,因为原表达式中x∈∅;④能表示y是x的函数,因为该表格既满足函数概念中的确定性也满足唯一性.[答案]④方法技巧函数表示法的注意事项:(1)列表法、图像法、解析法均是函数的表示方法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图像、表格、解析式是否表示函数的关键在于是否满足函数的定义.跟踪探究1。

2导学案1.2.2函数的表示法

2导学案1.2.2函数的表示法

函数的表示法导学案唐河县友兰实验高中赵琳卓学习目标:1、明确函数的三种表示方法,能对函数的三种不同表示进行相互间的转化;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用;4、了解映射的概念,知道函数是一种特殊的映射。

一、自主学习:1、阅读课本19-20页例3和例4,了解函数的三种表示方法。

2、你能说出几种函数表示法的各自优缺点吗?_______________________________________________________________________________ 3、阅读课本21页例5和例6,学习分段函数的知识。

练习:⑴画出函数y=|x-2|的图象。

⑵2,0(),(3)(2),0x xf x ff x x≥⎧=-=⎨+<⎩则______⑶函数f(x)=[x]的函数值表示不超过x的最大整数,例f(-3.5)=[-3.5]=-4,f(2.1)=[2.1]=2. 当x∈(-2.5,3]时,写出函数f(x)的解析式,并画出函数的图象。

4、阅读课本22、23页(1)了解什么是映射;(2)对比函数概念与映射概念,你有何感想?练习(1)设A={x|x是锐角},B=(0,1),从A到B的映射是“求正弦”。

则与A中元素060相对应的B中的元素是___________,与B相对应的A中的元素是___________.(2)设集合A={a,b,c},B={0,1},则从A到B的映射共有_______个。

二、巩固练习1、画出下列函数的图象(1) F(x)={1)0()0(>≤xx(2) G(n)= 3n+1 , n∈{1,2,3}2、已知f(x)=⎪⎩⎪⎨⎧<--=>+-,1,1,22xxxxxx(1) 求f(-1), f(f(-1)), f{ f [f(-1)]} (2) 画出函数的图象。

3、观察下列几组对应,是映射的是__________________。

1.2.2函数的表示法2学案

1.2.2函数的表示法2学案

1.2.2《函数的表示方法》导学案【使用说明】1、认真阅读课本,提前预习,明确基本概念,完成课前导学与自测部分, 要求:人人参与并独立完成;2、课堂积极讨论,大胆展示,发挥高效学习小组作用,完成合作探究部分;3、针对学生在预习环节可能解决不了的问题,课堂上教师进行点拨指导。

【学习目标】1.进一步理解函数的概念,了解函数表示的多样性,能熟练掌握函数的三种不同的表示方法;2.在理解掌握函数的三种表示方法基础上,了解函数不同表示法的优缺点,针对具体问题能合理地选择表示方法;【课前导学与自测】预习教材第20-22页,找出疑惑之处,完成新知学习分段函数:在函数的定义域内,对于自变量x 的不同取值区间,有着 ,这样的函数通常叫做 。

我市出租汽车收费标准如下:在3km 以内(含3km)路程按起步价8元收费,超过3km 以外的路程按1.6元/km 收费.试写出收费额关于路程的函数解析式,并画出函数图象.【精讲点拨】例1.作出下列各函数的图象,并指出函数的定义域和值域:(提示:分段函数的定义域和值域分别是各段函数的定义域和值域的并集。

)(1)1(01)()(1)x f x x x x ⎧<<⎪=⎨⎪≥⎩; (2)222(0)()2(0)x x x f x x x x ⎧+≥=⎨--<⎩例2.将函数1y x =-表示成分段函数的形式,并画出图象,并根据图象指出函数的定义域和值域。

变式1:函数y=|x-2|(x +1)。

变式2:f (x )= | x +1|+| x -2|。

【巩固练习】1.设函数22(2)()2(2)x x f x x x ⎧+≤=⎨>⎩,则(4)f -= ,若0()8f x =,则0x = 。

2.已知1(0)()(0)0(0)x x f x x x π+>⎧⎪==⎨⎪<⎩,则{[(1)]}f f f -= 。

3.国内投寄信函(外埠),假设每封信函不超过20g 时付邮资80分;超过20g 不超过40g 时付邮资160分;依次类推,写出每封xg(100x 0≤<)的信与所付邮资y 之间的函数解析式,并画出这个函数的图象。

3.1.2函数的概念及表示导学案

3.1.2函数的概念及表示导学案

即墨二中高一数学导学案 时间:2019.10 编写人:大师兄 审核人: 编号: 课题:函数的表示法【学习目标】(1)掌握函数的三种表示方法:解析法、图象法、列表法;(2)会根据不同的需要选择恰当的方法表示函数;(3)(3)会画简单的函数图象;(4)了解分段函数的概念,能画分段函数的图象。

【学习重难点】重点:掌握函数的三种表示方法:解析法、图象法、列表法 难点:会求简单的函数解析式,会画简单的函数图象课前预习案函数的表示方法解析法,就是用____________表示两个变量之间的对应关系, 图象法,就是用____________表示两个变量之间的对应关系, 列表法,就是用____________表示两个变量之间的对应关系,课堂探究案例1:某种笔记本的单价是5元,买{}()5,4,3,2,1∈x x 个笔记本需要y 元。

试用函数的三种表示法表示函数()x f y =思考1:结合例4比较函数的三种方法,它们各自的优点是什么? 解析法:列表法:图象法:例2:作出下列函数的图象并求出函数的定义域、值域(1)x y 8= (2)1+-=x y (3)762+-=x x y变式1:作出下列函数的图象并根据图象求出值域(1)[)+∞∈=,2,2x x y (2)[)2,2,22-∈+=x x x y例3:画出函数x y =的图象分段函数:有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数。

思考2:结合例3思考,分段函数是一个函数还是几个函数?思考3:分段函数的定义域、值域是各段函数定义域、值域的并集吗? 注意:分段函数的书写方式。

变式2:画出函数2-=x y 的图象例4:给定函数()()()R x x x g x x f ∈+=+=,1,12(1)在同一直角坐标系中画出函数()()x g x f ,的图象;(2)R x ∈∀,用()x M 表示()()x g x f ,中的较大者,记为()()(){}x g x f x M ,m ax =,请分别用图象法和解析法表示函数()x M变式3:给定函数()()()R x x x g x x f ∈-=+-=,1,12(1)在同一直角坐标系中画出函数()()x g x f ,的图象;(2)R x ∈∀,用()x m 表示()()x g x f ,中的较小者,记为()()(){}x g x f x x m ,m in =,请分别用图象法和解析法表示函数()x m。

高中数学 函数的表示法教案 新人教A版必修1

高中数学 函数的表示法教案 新人教A版必修1

课题:函数的表示法〔一〕课 型:新授课 教学目标:〔1〕掌握函数的三种表示方法〔解析法、列表法、图像法〕,了解三种表示方法各自的优点; 〔2〕在实际情境中,会根据不同的需要选择恰当的方法表示函数; 〔3〕通过具体实例,了解简单的分段函数,并能简单应用。

教学重点:会根据不同的需要选择恰当的方法表示函数。

教学难点:分段函数的表示及其图象。

教学过程: 一、课前准备〔预习教材19p ---21p ,找出疑惑之处)复习1.回忆函数的定义;复习2.函数的三要素分别是什么? 二、新课导学: 〔一〕学习探究探究任务:函数的三种表示方法讨论:结合课本P 15 给出的三个实例,说明 三种表示方法的适用X 围及其优点 小结:解析法:就是用数学表达式表示两个变量之间的对应关系,如的实例〔1〕; 优点:简明扼要;给自变量求函数值。

图象法:就是用图象表示两个变量之间的对应关系,如的实例〔2〕; 优点:直观形象,反映两个变量的变化趋势。

列表法:就是列出表格来表示两个变量之间的对应关系,如的实例〔3〕;优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。

*典型例题 例1.〔课本P 19 例3〕某种笔记本的单价是2元,买x (x ∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x) .{}5,4,3,2,1,5∈=x x y变式:作业本每本0.3元,买x 个作业本的钱数y 〔元〕,试用三种方法表示此实例中的函数。

反思:例1及变式的函数有何特征?所有的函数都可用解析法表示吗?例3:某市“招手即停〞公共汽车的票价按以下规那么制定:〔1〕5公里以内〔含5公里〕,票价2元;〔2〕5公里以上,每增加5公里,票价增加1元〔不足5公里的俺公里计算〕。

如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。

⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<=.2015,5,1510,4,105,3,50,2x x x x y 图象〔略〕变式:邮局寄信,不超过20g 重时付邮资0.5元,超过20g 重而不超过40g 重付邮资1元,每封x 克〔400≤<x 〕重的信应付邮资数y 〔元〕,试写出y 关于x 的函数解析式,并画出函数图象。

学高中数学第二章函数函数函数的表示法教案北师大版必修第一册

学高中数学第二章函数函数函数的表示法教案北师大版必修第一册

第二章函数第2.2节函数的表示法教学设计函数的表示法是“函数及其表示”这一节的主要内容之一.学习函数表示法,可以加深对函数概念的理解,领悟数形结合,化归等函数思想,函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.一.教学目标:(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;a(3)通过具体实例,了解简单的分段函数及应用.二. 核心素养1.数学抽象:函数的表示方法的理解2.逻辑推理:通过引导学生回答问题,培养学生的自主学习能力;通过画图像,培养学生的动手操作能力;3.数学运算:会函数图像,根据图像分析函数的定义域,值域4.直观想象:通过一些实际生活应用题,让学生感受到学习函数表示的必要性,并体会数学源于生活用于生活的价值;通过函数的解析式与图像的结合,渗透数形结合思想方法。

5.数学建模:通过本节课的教学,使学生进一步认识到,数学源于生活,数学也可应用于生活,能够解决生活中的实际问题.教学重点函数的三种表示方法,分段函数的概念 教学难点根据题目的已知条件,写出函数的解析式并画出图像PPT1. 函数的表示方法(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。

如初中: 学习的一次函数、一元二次函数、反比例函数的关系式,都是解析法.(2)列表法:列表法直接通过表格读数,不必通过计算,就表示出了两个变量之间的对应值,非常直 观.但任何一个表格内标出的数都是有限个,也就只能表示有限个数值之间的函数关系.若 自变量有无限多个数,则只能给出局部的对应关系.(3)图象法:用函数图象表示两个变量之间的关系。

例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。

(见课本P 53页图2—2 我国人口出生变化曲线)比如心电图:但不是所有函数都可以用图像表示:如狄利克雷函数:{1,0()x x f x =为有理数,为无理数2. 函数表示的三种方法对比: 函数表示方法优点缺点 解析法1、简明、全面地概括了变量间的关系; 2、通过解析式求出任意一个自变量的值对应的函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2函数的表示法第1课时函数的表示法1.函数的表示法(1)解析法:□1用数学表达式表示两个变量之间的对应关系.(2)图象法:□2用图象表示两个变量之间的对应关系.(3)列表法:□3列出表格来表示两个变量之间的对应关系.2.对三种表示法的说明(1)解析法:利用解析式表示函数的前提是变量间的对应关系明确,且利用解析法表示函数时要注意注明其定义域.(2)图象法:图象既可以是连续的曲线,也可以是离散的点.(3)列表法:采用列表法的前提是函数值对应清楚,选取的自变量要有代表性.1.判一判(正确的打“√”,错误的打“×”)(1)任何一个函数都可以用列表法表示.()(2)任何一个函数都可以用解析法表示.()(3)函数的图象一定是定义区间上一条连续不断的曲线.()答案(1)×(2)×(3)×2.做一做(1)函数f(x)是一次函数,若f(1)=1,f(2)=2,则函数f(x)的解析式是________.(2)某教师将其1周课时节次列表如下:X(星期)12345Y (节次)2 4 53 1从这个表中看出这个函数的定义域是________,值域是________.(3)(教材改编P 23T 3)画出函数y =|x +2|的图象.答案 (1)f (x )=x (2){1,2,3,4,5} {2,4,5,3,1}(3)探究1 作函数的图象例1 作出下列函数的图象并求出其值域.(1)y =2x ,x ∈[2,+∞);(2)y =x 2+2x ,x ∈[-2,2].解 (1)列表:x2 3 4 5 … y 1 23 12 25 …画图象,当x ∈[2,+∞)时,图象是反比例函数y =2x 的一部分(图1),观察图象可知其值域为(0,1].(2)列表:x-2-1012y0-1038画图象,图象是抛物线y=x2+2x在-2≤x≤2之间的部分(图2).由图可得函数的值域是[-1,8].拓展提升常见函数图象的画法技巧(1)对于一次函数的图象,描出与坐标轴的交点,连线即得.(2)对于二次函数的图象,描出与坐标轴的交点、顶点,连线即得.注意:所选的点越多画出的图象越精确,同时所选的点应该是关键处的点.【跟踪训练1】 作出下列函数的图象,并指出其值域.(1)y =x 2+x (-1≤x ≤1);(2)y =2x (-2≤x ≤1,且x ≠0).解 (1)用描点法可以作出函数的图象如图(1).由图可知y =x 2+x (-1≤x ≤1)的值域为⎣⎢⎡⎦⎥⎤-14,2.(2)用描点法可以作出函数的图象如图(2).由图可知y =2x (-2≤x ≤1,且x ≠0)的值域为(-∞,-1]∪[2,+∞).探究2 待定系数法求函数解析式例2 求下列函数解析式.(1)已知f (x )是一次函数,且f [f (x )]=9x +4,求f (x )的解析式;(2)已知二次函数满足f (3x +1)=9x 2-6x +5,求f (x ).解 (1)设f (x )=kx +b (k ≠0),则f [f (x )]=k (kx +b )+b =k 2x +kb +b =9x +4.∴⎩⎪⎨⎪⎧ k 2=9,kb +b =4,解得⎩⎪⎨⎪⎧ k =3,b =1或⎩⎪⎨⎪⎧k =-3,b =-2. ∴f (x )=3x +1或f (x )=-3x -2.(2)设f (x )=ax 2+bx +c (a ≠0),则f (3x +1)=a (3x +1)2+b (3x +1)+c=9ax 2+(6a +3b )x +a +b +c=9x 2-6x +5.比较系数,得⎩⎪⎨⎪⎧ 9a =9,6a +3b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧ a =1,b =-4,c =8,∴f (x )=x 2-4x +8.拓展提升待定系数法求函数解析式已知函数的模型求函数解析式,常采用待定系数法,由题设条件求待定系数.待定系数法求函数解析式的步骤如下:(1)设出所求函数含有待定系数的解析式.如一次函数解析式设为f (x )=ax +b (a ≠0),反比例函数解析式设为f (x )=k x (k ≠0),二次函数解析式设为f (x )=ax 2+bx +c (a ≠0).(2)把已知条件代入解析式,列出关于待定系数的方程或方程组.(3)解方程或方程组,得到待定系数的值.(4)将所求待定系数的值代回所设解析式.【跟踪训练2】 (1)已知函数f (x )=x 2,g (x )为一次函数,且一次项系数大于零,若f [g (x )]=4x 2-20x +25,求g (x )的表达式;(2)已知二次函数f (x )满足f (0)=1,f (1)=2,f (2)=5,求该二次函数的解析式.解 (1)由g (x )为一次函数,设g (x )=ax +b (a >0),∵f [g (x )]=4x 2-20x +25,∴(ax +b )2=4x 2-20x +25,即a 2x 2+2abx +b 2=4x 2-20x +25,从而a 2=4,2ab =-20,b 2=25,解得a =2,b =-5,故g (x )=2x -5(x ∈R ).(2)设二次函数的解析式为f (x )=ax 2+bx +c (a ≠0),由题意得⎩⎪⎨⎪⎧ c =1,a +b +c =2,4a +2b +c =5,解得⎩⎪⎨⎪⎧ a =1,b =0,c =1,故f (x )=x 2+1.探究3 换元法(或配凑法)、方程组法求函数解析式例3 (1)已知函数f (x +1)=x 2-2x ,求f (x )的解析式;(2)已知函数y =f (x )满足f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,求函数y =f (x )的解析式. 解 (1)解法一(换元法):令x +1=t ,则x =t -1,t ∈R ,可得f (t )=(t -1)2-2(t -1)=t 2-4t +3,即f (x )=x 2-4x +3.解法二(配凑法):因为x 2-2x =(x 2+2x +1)-(4x +4)+3=(x +1)2-4(x +1)+3,所以f (x +1)=(x +1)2-4(x +1)+3,即f (x )=x 2-4x +3.(2)在已知等式中,将x 换成1x ,得f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x ,与已知方程联立,得⎩⎪⎨⎪⎧ f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x ,解得f (x )=-x 3+23x .[结论探究]对于本例中的(1)若把“求f(x)的解析式”改为“求f(2)的值”,应如何求解.解解法一:直接求f(x)的解析式,然后把x=2代入即可.解法二:令x=1代入即可,f(2)=-1.拓展提升求函数解析式的五种常用方法(1)待定系数法:已知函数f(x)的函数类型,求f(x)的解析式时,可根据类型设出其解析式,确定其系数即可.(2)换元法:令t=g(x),再求出f(t)的解析式,然后用x代替所有的t即可.(3)配凑法:已知f[g(x)]的解析式,要求f(x)时,可从f(g(x))的解析式中拼凑出“g(x)”,即用g(x)来表示,再将解析式两边的g(x)用x代替即可.(4)代入法:已知y=f(x)的解析式求y=f[g(x)]的解析式时,可直接用新自变量g(x)替换y=f(x)中的x.(5)方程组法:当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.【跟踪训练3】(1)已知f(x+1)=x+2x,求f(x)的解析式;(2)已知f(x)+2f(-x)=x2+2x,求f(x)的解析式.解(1)解法一(配凑法):∵f(x+1)=x+2x=(x+1)2-1(x+1≥1),∴f(x)=x2-1(x≥1).解法二(换元法):令x+1=t(t≥1),则x=(t-1)2(t≥1),∴f(t)=(t-1)2+2(t-1)2=t2-1(t≥1).∴f(x)=x2-1(x≥1).(2)因为f(x)+2f(-x)=x2+2x,将x 换成-x ,得f (-x )+2f (x )=x 2-2x ,将以上两式消去f (-x ),得3f (x )=x 2-6x ,所以f (x )=13x 2-2x .1.函数三种表示法的优缺点2.作函数图象时应注意的几点(1)在定义域内作图.(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象.(3)要标出某些关键点,例如图象的顶点、端点与坐标轴的交点等.要分清这些关键点是实心点还是空心点.1.y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( )A .y =1xB .y =-1xC .y =2xD .y =-2x答案 C 解析 设y =k x (k ≠0),则1=k 2,∴k =2,∴y =2x .2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则函数f (x )的图象是( )答案 A解析 当x =-1时,y =0,即图象过点(-1,0),D 错;当x =0时,y =1,即图象过点(0,1),C 错;当x =1时,y =2,即图象过点(1,2),B 错.故选A.3.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y 与x 的函数关系式为______.答案 y =2.5x ,x ∈N *解析 由题意得,y =2.5x (x ∈N *).4.若3f (x -1)+2f (1-x )=2x ,则f (x )的解析式为________. 答案 f (x )=2x +25解析 (换元法)令t =x -1,则x =t +1,t ∈R , 原式变为3f (t )+2f (-t )=2(t +1),①以-t 代替t ,①式变为3f (-t )+2f (t )=2(1-t ),② 由①②消去f (-t )得f (t )=2t +25,∴f (x )=2x +25. 5.已知f (x )=x +b ,f (ax +1)=3x +2,求a ,b 的值. 解 由f (x )=x +b ,得f (ax +1)=ax +1+b .∴ax +1+b =3x +2,∴a =3,b +1=2,即a =3,b =1.A 级:基础巩固练一、选择题1.若g (x +2)=2x +3,g (3)的值是( ) A .9 B .7 C .5 D .3 答案 C解析 解法一:令x +2=3,则x =1, ∴g (3)=2×1+3=5.解法二:令x +2=t ,则x =t -2,∴g (t )=2(t -2)+3, ∴g (3)=5.2.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7答案 B解析 解法一:∵g (x +2)=2x +3=2(x +2)-1, ∴g (x )=2x -1.解法二:g (x )=f (x -2)=2(x -2)+3=2x -1.3.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则( )A .f (x )=3x +2B .f (x )=3x -2C .f (x )=2x +3D .f (x )=2x -3答案 B解析 设f (x )=kx +b (k ≠0).因为2f (2)-3f (1)=5,2f (0)-f (-1)=1,所以⎩⎨⎧ 2(2k +b )-3(k +b )=5,2b -(-k +b )=1,即⎩⎨⎧k -b =5,k +b =1,所以⎩⎨⎧k =3,b =-2.所以f (x )=3x -2.4.李明放学回家的路上,开始和同学边走边讨论问题,走的比较慢;然后他们索性停下来将问题彻底解决;最后他快速地回到了家.下列图象中与这一过程吻合得最好的是( )答案 D解析由题意知当时间t=0时,离家的距离不应为0,故排除A,B.又因为一开始慢,到最后快,比较C,D,只有D符合题意.5.若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为()A.2 B.1 C.-1 D.无最大值答案B解析在同一坐标系中画出函数y=2-x2,y=x的图象,如图所示,根据题意,图中实线部分即为函数f(x)的图象.∴当x=1时,f(x)max =1,故选B.二、填空题6.观察数表:x-3-2-1123f(x)41-1-335g(x)1423-2-4则f[g(3)-f(-1)]=________.答案4解析由数表,可得g(3)=-4,f(-1)=-1,∴g(3)-f(-1)=-3,∴f[g(3)-f(-1)]=f(-3)=4.7.若2f (x )+f ⎝ ⎛⎭⎪⎫1x =2x +12(x ≠0),则f (2)=______.答案 52解析 令x =2得2f (2)+f ⎝ ⎛⎭⎪⎫12=92,令x =12得2f ⎝ ⎛⎭⎪⎫12+f (2)=32, 消去f ⎝ ⎛⎭⎪⎫12得f (2)=52. 8.一水池有2个进水口,1个出水口,每个口进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定能确定正确的论断序号是________.答案 ①解析 设进水量为y 1,出水量为y 2,时间为t ,由图象知y 1=t ,y 2=2t .由图丙知,从0~3时蓄水量由0变为6,说明0~3时两个进水口均打开进水但不出水,故①正确;3~4时蓄水量随时间增加而减少且每小时减少一个单位,若3~4时不进水只出水,应每小时减少两个单位,故②不正确;4~6时为水平线说明水量不发生变化,因为至少打开一个水口,所以是所有水口都打开,进出均衡.故③不正确.三、解答题9.作出下列函数的图象: (1)f (x )=x +x 0;(2)f (x )=1-x (x ∈Z ,且-2≤x ≤2); (3)f (x )=x 2-2|x |-1; (4)f (x )=|x 2+3x -4|. 解 (1)如图.(2)如图.(3)f (x )=x 2-2|x |-1=⎩⎨⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0.如图.(4)f (x )=⎩⎨⎧x 2+3x -4,x ≤-4或x ≥1,-(x 2+3x -4),-4<x <1.如图.B 级:能力提升练10.求下列函数的解析式:(1)已知函数f (x -1)=x 2-4x ,求函数f (x )的解析式;(2)已知f (x )是二次函数,且f (x +1)+f (x -1)=2x 2-4x ,求f (x )的解析式.解 (1)解法一:已知f (x -1)=x 2-4x , 令x -1=t ,则x =t +1,代入上式得, f (t )=(t +1)2-4(t +1)=t 2-2t -3, 即f (x )=x 2-2x -3(x ∈R ).解法二:∵f (x -1)=(x -1)2-2(x -1)-3, ∴f (x )=x 2-2x -3(x ∈R ).(2)设f (x )=ax 2+bx +c (a ≠0),则依题意代入,∴a (x +1)2+b (x +1)+c +a (x -1)2+b (x -1)+c =2x 2-4x ,即2ax 2+2bx +2a +2c =2x 2-4x ,利用等式两边对应项的系数相等,可得 2a =2,2b =-4,2a +2c =0.解得a =1,b =-2,c =-1,∴f (x )=x 2-2x -1.。

相关文档
最新文档