南开大学2014(1)大学文科数学试卷(A)
2014年天津市高考数学试卷(文科)答案与解析
2014年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2014•天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:将复数的分子与分母同时乘以分母的共轭复数3﹣4i,即求出值.解答:解:复数==,故选A.点评:本题考查了复数的运算法则和共轭复数的意义,属于基础题.2.(5分)(2014•天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2B.3C.4D.5考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)(2014•天津)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤1考点:命题的否定;全称命题.专题:简易逻辑.分析:据全称命题的否定为特称命题可写出命题p的否定.解答:解:根据全称命题的否定为特称命题可知,¬p为∃x0>0,使得(x0+1)e≤1,故选:B.点评:本题主要考查了全称命题的否定的写法,全称命题的否定是特称命题.4.(5分)(2014•天津)设a=log2π,b=logπ,c=π﹣2,则()A.a>b>c B.b>a>c C.a>c>b D.c>b>a考点:对数值大小的比较.专题:函数的性质及应用.分析:根据对数函数和幂函数的性质求出,a,b,c的取值范围,即可得到结论.解答:解:log2π>1,logπ<0,0<π﹣2<1,即a>1,b<0,0<c<1,∴a>c>b,故选:C点评:本题主要考查函数值的大小比较,利用对数函数和幂函数的性质是解决本题的关键,比较基础.5.(5分)(2014•天津)设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=()A.2B.﹣2 C.D.﹣考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:由等差数列的前n项和求出S1,S2,S4,然后再由S1,S2,S4成等比数列列式求解a1.解答:解:∵{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,∴S1=a1,S2=2a1﹣1,S4=4a1﹣6,由S1,S2,S4成等比数列,得:,即,解得:.故选:D.点评:本题考查等差数列的前n项和公式,考查了等比数列的性质,是基础的计算题.6.(5分)(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.解答:解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.点评:本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.7.(5分)(2014•天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④考点:与圆有关的比例线段;命题的真假判断与应用.专题:直线与圆.分析:本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.解答:解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立.正确结论有①②④.故答案为D点评:本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于基础题.8.(5分)(2014•天津)已知函数f(x)=sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B.C.πD.2π考点:三角函数的周期性及其求法;正弦函数的图象.专题:三角函数的图像与性质.分析:根据f(x)=2sin(ωx+),再根据曲线y=f(x)与直线y=1的交点中,相邻交点距离的最小值为,正好等于f(x)的周期的倍,求得函数f(x)的周期T的值.解答:解:∵已知函数f(x)=sinωx+cosωx=2sin(ωx+)(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,正好等于f (x)的周期的倍,设函数f(x)的最小正周期为T,则=,∴T=π,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象特征,得到正好等于f(x)的周期的倍,是解题的关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.考点:分层抽样方法.专题:概率与统计.分析:先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.解答:解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.点评:本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.10.(5分)(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11.(5分)(2014•天津)阅读如图的框图,运行相应的程序,输出S的值为﹣4.考点:程序框图.专题:算法和程序框图.分析:写出前二次循环,满足判断框条件,输出结果.解答:解:由框图知,第一次循环得到:S=﹣8,n=2;第二次循环得到:S=﹣4,n=1;退出循环,输出﹣4.故答案为:﹣4.点评:本题考查循环结构,判断框中n≤1退出循环是解题的关键,考查计算能力.12.(5分)(2014•天津)函数f(x)=lgx2的单调递减区间是(﹣∞,0).考点:复合函数的单调性.专题:函数的性质及应用.分析:先将f(x)化简,注意到x≠0,即f(x)=2lg|x|,再讨论其单调性,从而确定其减区间;也可以函数看成由复合而成,再分别讨论内层函数和外层函数的单调性,根据“同増异减”再来判断.解答:解:方法一:y=lgx2=2lg|x|,∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;当x<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).方法二:原函数是由复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).点评:本题是易错题,学生在方法一中,化简时容易将y=lgx2=2lg|x|中的绝对值丢掉,方法二对复合函数的结构分析也是最常用的方法,此外,本题还可以利用数形结合的方式,即画出y=2lg|x|的图象,得到函数的递减区间.13.(5分)(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF,若•=1,则λ的值为2.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论.解答:解:∵BC=3BE,DC=λDF,∴=,=,=+=+=+,=+=+=+,∵菱形ABCD的边长为2,∠BAD=120°,∴||=||=2,•=2×2×cos120°=﹣2,∵•=1,∴(+)•(+)=++(1+)•=1,即×4+×4﹣2(1+)=1,整理得,解得λ=2,故答案为:2.点评:本题主要考查向量的基本定理的应用,以及数量积的计算,要求熟练掌握相应的计算公式.14.(5分)(2014•天津)已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值范围为(1,2).考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:由y=f(x)﹣a|x|=0得f(x)=a|x|,利用数形结合即可得到结论.解答:解:由y=f(x)﹣a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象,当a≤0,不满足条件,∴a>0,当a=2时,此时y=a|x|与f(x)有三个交点,当a=1时,此时y=a|x|与f(x)有五个交点,∴要使函数y=f(x)﹣a|x|恰有4个零点,则1<a<2,故答案为:(1,2)点评:本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.(13分)(2014•天津)某校夏令营有3名男同学,A、B、C和3名女同学X,Y,Z,其年级情况如表:一年级二年级三年级男同学 A B C女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.考点:古典概型及其概率计算公式;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(Ⅰ)用表中字母一一列举出所有可能的结果,共15个.(Ⅱ)用列举法求出事件M包含的结果有6个,而所有的结果共15个,由此求得事件M发生的概率.解答:解:(Ⅰ)用表中字母列举出所有可能的结果有:(A,B)、(A,C)、(A,X)、(A,Y)、(A,Z)、(B,C)、(B,X)、(B,Y)、(B,Z)、(C,X)、(C,Y)、(C,Z)、(X,Y)、(X,Z )、(Y,Z),共计15个结果.(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,则事件M包含的结果有:(A,Y)、(A,Z)、(B,X)、(B,Z)、(C,X)、(C,Y),共计6个结果,故事件M发生的概率为=.点评:本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.16.(13分)(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a ﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.17.(13分)(2014•天津)如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.(Ⅰ)证明EF∥平面PAB;(Ⅱ)若二面角P﹣AD﹣B为60°,(i)证明平面PBC⊥平面ABCD;(ii)求直线EF与平面PBC所成角的正弦值.考点:二面角的平面角及求法;直线与平面平行的判定;平面与平面垂直的判定;直线与平面所成的角.专题:空间角;空间向量及应用;立体几何.分析:(Ⅰ)要证明EF∥平面PAB,可以先证明平面EFH∥平面PAB,而要证明面面平行则可用面面平行的判定定理来证;(Ⅱ)(i)要证明平面PBC⊥平面ABCD,可用面面垂直的判定定理,即只需证PB⊥平面ABCD即可;(ii)由(i)知,BD,BA,BP两两垂直,建立空间直角坐标系B﹣DAP,得到直线EF的方向向量与平面PBC法向量,其夹角的余弦值的绝对值即为所成角的正弦值.解答:解:(Ⅰ)证明:连结AC,AC∩BD=H,∵底面ABCD是平行四边形,∴H为BD中点,∵E是棱AD的中点.∴在△ABD中,EH∥AB,又∵AB⊂平面PAB,EH⊄平面PAD,∴EH∥平面PAB.同理可证,FH∥平面PAB.又∵EH∩FH=H,∴平面EFH∥平面PAB,∵EF⊂平面EFH,∴EF∥平面PAB;(Ⅱ)(i)如图,连结PE,BE.∵BA=BD=,AD=2,PA=PD=,∴BE=1,PE=2.又∵E为AD的中点,∴BE⊥AD,PE⊥AD,∴∠PEB即为二面角P﹣AD﹣B的平面角,即∠PEB=60°,∴PB=.∵△PBD中,BD2+PB2=PD2,∴PB⊥BD,同理PB⊥BA,∴PB⊥平面ABD,∵PB⊂平面PBC,∴平面PAB⊥平面ABCD;(ii)由(i)知,PB⊥BD,PB⊥BA,∵BA=BD=,AD=2,∴BD⊥BA,∴BD,BA,BP两两垂直,以B为坐标原点,分别以BD,BA,BP为X,Y,Z轴,建立如图所示的空间直角坐标系B﹣DAP,则有A(0,,0),B(0,0,0),C(,﹣,0),D(,0,0),P(0,0,),∴=(,﹣,0),=(0,0,),设平面PBC的法向量为,∵,∴,令x=1,则y=1,z=0,故=(1,1,0),∵E,F分别是棱AD,PC的中点,∴E(,,0),F(,﹣,),∴=(0,,),∴===﹣,即直线EF与平面PBC所成角的正弦值为.点评:本题主要考查空间直线与平面平行的判定定理以及线面角大小的求法,要求熟练掌握相关的判定定理.18.(13分)(2014•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=2,求椭圆的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)分别用a,b,c表示出|AB|和|F1F2|,根据已知建立等式求得a和c的关系,进而求得离心率e.(Ⅱ)根据(1)中a和c的关系,用c表示出椭圆的方程,设出P点的坐标,根据PB为直径,推断出BF1⊥PF1,进而知两直线斜率相乘得﹣1,进而求得sinθ和cosθ,表示出P点坐标,利用P,B求得圆心坐标,则可利用两点间的距离公式分别表示出|OB|,|OF2|,利用勾股定理建立等式求得c,则椭圆的方程可得.解答:解:(Ⅰ)依题意可知=•2c,∵b2=a2﹣c2,∴a2+b2=2a2﹣c2=3c2,∴a2=2c2,∴e==.(Ⅱ)由(Ⅰ)知a2=2c2,∴b2=a2﹣c2=c2,∴椭圆方程为+=1,B(0,c),F1(﹣c,0)设P点坐标(csinθ,ccosθ),以线段PB为直径的圆的圆心为O,∵PB为直径,∴BF1⊥PF1,∴k BF1•k PF1=•=﹣1,求得sinθ=﹣或0(舍去),由椭圆对称性可知,P在x轴下方和上方结果相同,只看在x轴上方时,cosθ==,∴P坐标为(﹣c,c),∴圆心O的坐标为(﹣c,c),∴r=|OB|==c,|OF2|==c,∵r2+|MF2|2=|OF2|2,∴+8=c2,∴c2=3,∴a2=6,b2=3,∴椭圆的方程为+=1.点评:本题主要考查了直线与圆锥曲线的位置关系.第(1)相对简单,主要是求得a和c 的关系;第(2)问较难,利用参数法设出P点坐标是关键.19.(14分)(2014•天津)已知函数f(x)=x2﹣ax3(a>0),x∈R.(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a 的取值范围.考点:导数在最大值、最小值问题中的应用;函数在某点取得极值的条件;利用导数研究函数的极值.专题:导数的综合应用.分析:(Ⅰ)求导数,利用导数的正负,可得f(x)的单调区间,从而求出函数的极值;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,分类讨论,即可求a的取值范围.解答:解:(Ⅰ)f′(x)=2x﹣2ax2=2x(1﹣ax),令f′(x)=0,解得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x (﹣∞,0)0(0,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)递减0 递增递减所以,f(x)的单调递减区间为:(﹣∞,0)和,单调递增区间为,当x=0时,有极小值f(0)=0,当x=时,有极大值f()=;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,显然A≠∅下面分三种情况讨论:①当>2,即0<a<时,由f()=0可知,0∈A,而0∉B,∴A不是B的子集;②当1≤≤2,即时,f(2)≤0,且f(x)在(2,+∞)上单调递减,故A=(﹣∞,f(2)),∴A⊆(﹣∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(﹣∞,0),即(﹣∞,0)⊆B,∴A⊆B;③当<1,即a>时,有f(1)<0,且f(x)在(1,+∞)上单调递减,故B=(,0),A=(﹣∞,f(2)),∴A不是B的子集.综上,a的取值范围是[].点评:利用导数可以求出函数的单调区间和极值;解决取值范围问题,很多时候要进行等价转化,分类讨论.20.(14分)(2014•天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.考点:数列与不等式的综合;数列的求和.专题:等差数列与等比数列;点列、递归数列与数学归纳法.分析:(Ⅰ)当q=2,n=3时,M={0,1},A={x|,xi∈M,i=1,2,3}.即可得到集合A.(Ⅱ)由于a i,b i∈M,i=1,2,…,n.a n<b n,可得a n﹣b n≤﹣1.由题意可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1],再利用等比数列的前n项和公式即可得出.解答:(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.a n<b n,∴a n﹣b n≤﹣1.可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1]=<0.∴s<t.点评:本题考查了考查了集合的运算及其性质、等比数列的前n项和公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.。
2014年高考文科数学大纲卷及答案
绝密★启用前2014年普通高等学校招生全国统一考试(大纲卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,4,6,8}M =,{1,2,3,5,6,7}N =,则M N 中元素的个数为( )A .2B .3C .5D .7 2.已知角α的终边经过点(4,3)-,则cos α=( )A .45B .35C .35- D .45- 3.不等式组(x 2)0,||1,x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16BC .13D5.函数1)(1)y x =>-的反函数是( )A .3(1e )(1)x y x =->-B .3(e 1)(1)x y x =->-C .3(1e )()x y x =-∈R D .3(e 1)()x y x =-∈R6.已知a 、b 为单位向量,其夹角为60,则(2a -b )b =( )A .1-B .0C .1D .27.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60 种B .70 种C .75 种D .150 种 8.设等比数列{}n a 的前n 项和为n S .若23S =,415S =,则6S =( )A .31B .32C .63D .649.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,,过2F 的直线l 交C 于A ,B 两点.若1AF B △的周长为,则C 的方程为( )A .22132x y+= B .2213x y +=C .221128x y +=D .221124x y += 10.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .81π4B .16πC .9πD .27π411.双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A .2B.C .4 D.12.奇函数()f x 的定义域为R .若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( ) A .2- B .1-C .0D .1第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分.共20分,把答案填写在题中的横线上. 13.6(2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos22sin y x x =+的最大值为 .15.设x ,y 满足约束条件02321x y x y x y -⎧⎪+⎨⎪-⎩≥≤≤,则4z x y =+的最大值为 .16.设直线1l 和2l 是圆222x y +=的两条切线.若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分10分)数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+. (Ⅰ)设1n n n b a a +=-,证明{}n b 是等差数列; (Ⅱ)求{}n a 的通项公式.18.(本小题满分12分)ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________求B .19.(本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,90ACB ∠=,1BC =,12AC CC ==.(Ⅰ)证明:11AC A B ⊥;(Ⅱ)设直线1AA 与平面11BCC B求二面角1A AB C --的大小.20.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.21.(本小题满分12分)函数32()33(0)f x ax x x a =++≠. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 在区间(1,2)是增函数,求a 的取值范围.22.(本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (Ⅰ)求C 的方程;(Ⅱ)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l '与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.2014年全国统一高考数学试卷(文科)(大纲版)数学(文科)答案解析{1,2,4,6,8}{1,2,3,5,6,7}{M N==M N{1,2,6=M N3.与N,找出两集合的交集,找出交集中的元素即可.CE EF =11cos60a b=⨯⨯21b=,22(2)22||||||0a b b a b b a b b-=-=-=,故选:B.【提示】由条件利用两个向量的数量积的定义,求得a b、2b的值,可得(2)a b b-的值.【考点】平面向量数量积的运算.2981π44⎛⎫=⎪⎝⎭故选:A.2323a c ac a a=【提示】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论662r r r rC x-333362C x =-,即3x 的系数是根据题意,由二项式定理可得6(2)x -代入通项,计算可得⎩x y -=⎧∴二面角1A AB C--的大小为arctan15.0.60.5⨯⨯(0,)⎫+∞⎪⎭:(Ⅰ)函0,则∆=(0,)⎫+∞⎪⎭.通过导数为0,344(2y m=-的坐标为⎛⎝。
2014年高考真题——文科数学(天津卷)word版含解析
x2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么 •圆锥的体积公式13V Sh =.()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ 解:()()()()73472525134343425i i ii i i i i +-+-===-++-,选A (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5 解:作出可行域,如图结合图象可知,当目标函数通过点()1,1时,z 取得最小值3,选B . (3)已知命题p :0x ">,总有()11x x e +>,则p Ø为( )(A )00x $£,使得()0011xx e £+ (B )00x $>,使得()0011xx e £+(C )0x ">,总有()11x x e +£ (D )0x "£,总有()11x x e +£ 解:依题意知p Ø为:00x $>,使得()0011xx e £+,选B .(4)设2log a p =,12log b p =,2c p-=,则( )(A )a b c >> (B )b a c >> (C )a c b >> (D )c b a >> 解:因为1a >,0b <,01c <<,所以a c b >>,选C .(5)设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-,选D . (6)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= 解:依题意得22225b ac c a b ìï=ïïï=íïïï=+ïî,所以25a =,220b =,选A . (7)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF Ð;②2FB FD FA = ;③AE CEBE DE ? ;④AF BD AB BF ? .E D CBA 则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ 解:由弦切角定理得FBD EAC BAE ?? ,又BFDAFB ? ,所以BFD D ∽AFB D ,所以BF BDAF AB=, 即AF BD AB BF ? ,排除A 、C .又FBDEAC DBC ?? ,排除B ,选D .(8)已知函数()cos f x x x w w =+()0w >,x R Î,在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3p,则()f x 的最小正周期为( ) (A )2p(B )23p (C )p (D )2p解:因为()2sin 6f x x p w 骣÷ç=+÷ç÷ç桫,所以()1f x =得1sin 62x p w 骣÷ç+=÷ç÷ç桫, 所以266x k p p w p +=+或5266x k ppw p +=+,k Z Î. 因为相邻交点距离的最小值为3p,所以233p pw =,2w =,T p =,选C . 第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2014年高考天津文科数学试题及答案(word解析版)
2014年普通高等学校招生全国统一考试(天津卷)数学(文科)第Ⅰ卷(共40分)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2014年天津,文1,5分】i 是虚数单位,复数7i34i+=+( )(A )1i - (B )1i -+ (C )1731i 2525+ (D )1725i 77-+ 【答案】A【解析】()()()()7i 34i 7i 2525i 1i 34i 34i 34i 25+-+-===-++-,故选A . (2)【2014年天津,文2,5分】设变量x ,y 满足约束条件02012x y x y y ≥--≤+≥-⎧⎪⎨⎪⎩,则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5 【答案】B【解析】作出可行域,如图结合图象可知,当目标函数通过点()1,1时,z 取得最小值3,故选B . (3)【2014年天津,文3,5分】已知命题p :0x ∀>,总有()11x x e +>,则p ⌝为( )(A )00x ∃≤,使得()0011x x e +≤ (B )00x ∃>,使得()0011x x e +≤ (C )0x ∀>,总有()11x x e +≤ (D )0x ∀≤,总有()11x x e +≤【答案】B【解析】根据全称命题的否定为特称命题可知,p ⌝为00x ∃>,使得()0011x x e +≤,故选B . (4)【2014年天津,文4,5分】设2log a π=,12log b π=,2c π-=,则( )(A )a b c >> (B )b a c >> (C )a c b >> (D )c a b >> 【答案】C【解析】∵2log 1a π=>,12log 0b π=<,211c π=<,∴b c a <<,故选C .(5)【2014年天津,文5,5分】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前项和,若124S S S ,,,成等比数列,则1a =( )(A )2 (B )2- (C )12 (D )12- 【答案】D 【解析】∵()4114341462S a a ⨯=+⨯-=-,又∵124S S S ,,,成等比数列,∴()()21112146a a a -=-,解之得112a =-,故选D .(6)【2014年天津,文6,5分】已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -=【答案】A【解析】依题意得22225b a c c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,双曲线的方程为221520x y -=,故选A . (7)【2014年天津,文7,5分】如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF Ð;②2FB FD FA =?;③AE CE BE DE ??;④AF BD AB BF ??.则所有正确 结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ 【答案】D【解析】∵圆周角DBC ∠对应劣弧CD ,圆周角DAC ∠对应劣弧CD ,∴DBC DAC ∠=∠.∵弦切角FBD ∠对应劣弧BD ,圆周角BAD ∠对应劣弧BD ,∴FBD BAF ∠=∠.∵BD 是BAC ∠的平分线,∴BAF DAC ∠=∠. ∴DBC FBD ∠=∠.即BD 平分CBF ∠.即结论①正确.又由FBD FAB ∠=∠,BFD AFB ∠=∠,得FBD FAB ∆∆:.由FB FD FA FB =,2FB FD FA =⋅.即结论②成立.由BF BDAF AB=,得AF BD AB BF ⋅=⋅. 即结论④成立.正确结论有①②④,故选D . (8)【2014年天津,文8,5分】已知函数()3sin cos (0),f x x x x R ωωω=+>∈,在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( ) (A )2π (B )23π (C )π (D )2π【答案】C【解析】∵()2sin 16f x x πω⎛⎫=+= ⎪⎝⎭,∴1sin 62x πω⎛⎫+= ⎪⎝⎭,∴1112,66x k k Z ππωπ+=+∈或2252,66x k ππωπ+=+,2k Z ∈,则()()2121223x x k k πωπ-=+-,又∵相邻交点距离的最小值为3π,∴2ω=,T π=,故选C .第II 卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.(9)【2014年天津,文9,5分】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生. 【答案】60【解析】应从一年级抽取4604556300?+++名.(10)【2014年天津,文10,5分】已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m . 【答案】203p【解析】由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积22182014224333V πππππ=⨯⨯+⨯⨯⨯=+=. (11)【2014年天津,文11,5分】阅读右边的框图,运行相应的程序,输出q 的值为 .【答案】4-【解析】依题由框图知,第一次循环得到:8S =-,2n =;第二次循环得到:4S =-,1n =;退出循环,输出4-.(12)【2014年天津,文12,5分】函数()2lg f x x =的单调递减区间是 . 【答案】(),0-∞【解析】解法一:2lg 2lg y x x ==,∴当0x >时,()2lg f x x =在()0,+∞上是增函数;当0x <时,()()2lg f x x =-在(),0-∞上是减函数.∴函数()2lg f x x =的单调递减区间是(),0-∞.244242俯视图侧视图正视图否是输出 S n ≤ 1?n = n 1S = S +(2)n结束开始S = 0, n = 3解法二:原函数是由2lg t x y t⎧=⎨=⎩复合而成,∵2t x =在(),0-∞上是减函数,在()0,+∞为增函数;又lg y t =在其定义域上为增函数,∴()2lg f x x =在(),0-∞上是减函数,在()0,+∞为增函数∴函数()2lg f x x =的单调递减区间是(),0-∞.(13)【2014年天津,文13,5分】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1AE AF ⋅=u u u r u u u r,则λ的值为 .【答案】2【解析】建立如图所示坐标系,且()1,0A -、()0,3B -、()1,0C 、()0,3D ,设()11,E x y ,()22,F x y ,由3BC BE =得()()111,33,3x y =+,解之得123,3E ⎛⎫- ⎪ ⎪⎝⎭,由DC DF λ=得()()221,3,3x y λ-=-,解之得13,3F λ⎛⎫- ⎪ ⎪⎝⎭, 又∵42313102,1,31333AE AF λλ⎛⎫⎛⎫⋅=-⋅+-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,∴2λ=. (14)【2014年天津,文14,5分】已知函数()2540220x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若函数()y f x a x =-恰有4个零点,则实数a 的取值范围为 . 【答案】12a <<【解析】由()0y f x a x =-=得()f x a x =,作出函数()y f x =,y a x =的图象,当0a ≤,不满足条件,∴0a >,当2a =时,此时y a x =与()f x 有三个交点, 当1a =时,此时y a x =与()f x 有五个交点,∴要使函数()y f x a x =-恰有4个零点,则12a <<.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)【2014年天津,文15,13分】某校夏令营有3名男同学,,A B C 和3名女同学,,X Y Z ,其年级情况如下表:一年级 二年级 三年级 男同学 A B C 女同学 X YZ 现从这6(1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发表的概率. 解:(1)从6名同学中随机选出2人参加竞赛的所有可能结果为{}{}{},,,,,,A B A C A X {}{}{},,,,,,A Y A Z B C{},,B X {}{}{}{}{}{}{}{},,,,,,,,,,,,,,,B Y B Z C X C Y C Z X Y X Z Y Z 共15种;(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{}{}{}{}{}{},,,,,,,,,,,A Y A Z B X B Z C X C Y 共6种,故所求概率为()62155P M ==.(16)【2014年天津,文16,13分】在ABC ∆中,内角ABC 所对的边分别为,,a b c ,已知6a cb -=,sin 6sin B C =. (1)求cos A 的值;(2)求cos(2)6A π-的值.解:(1)在ABC ∆中,由sin sin b cB C=,及sin 6sin B C =可得6b c =,故2a c =, 从而22222226cos 226b c a A bc c +-===.PFEDCBA(2)由(1)得6cos A =,故10sin A =,因此15sin 22sin cos A A A ==,21cos22cos 14A A =-=-,从 而13151153cos 2642A π-⎛⎫-=-⋅+⋅= ⎪⎝⎭.(17)【2014年天津,文17,13分】如图,四棱锥P ABCD -的底面是平行四边形,2BA BD ==,2AD =,5PA PD ==,,E F 分别是棱AD ,PC 的中点.(1)证明 //EF 平面PAB ;(2)若二面角P AD B --为60o ,(ⅰ)证明 平面PBC ^平面ABCD ;(ⅱ)求直线EF 与平面PBC 所成角的正弦值.解:(1)如图,取PB 的中点M ,连接,MF AM .因F 为PC 中点,故//MF BC 且2BCMF =. 由题//BC AD ,BC AD =,且E 为AD 的中点,故//MF AE ,且MF AE =. 因此四边形AMEF 为平行四边形,有//EF AM .又AM Ì平面PAB ,EF ⊄平面 PAB ,所以//EF 平面PAB . (2)(ⅰ)连接,PE BE ,因PA PD =,BA BD =,而E 为AD 的中点,故PE AD ^,BE AD ^,所以PBE Ð为二面角P AD B --的平面角.在PAD ∆中,由5PA PD ==,2AD =,可解得2PE =.在ABD ∆中,由2BA BD ==,2AD =,可解得1BE =.在PEB ∆中,2PE =,1BE =,060PEB ?,由余弦定理可解得3PB =.从而090PBE ?,即BE PB ^.又//BC AD ,BE AD ^,故BE BC ^. 因此BE ^平面PBC .又BE Ì平面ABCD ,所以平面PBC ⊥平面ABCD . (ⅱ)解法一:连接BF ,由(ⅰ)知BE ^平面PBC ,故EFB Ð为直线EF 与平面PBC 所成的角.由3PB =及已知,可得090ABP ?.而32PB MB ==,可得11AM =.故11EF =.又1BE =,故在Rt EBF D 中,211sin BE EBF EF ?=.所以直线EF 与平面PBC 所成的角的正弦值为211. 解法二:由(ⅰ)知,PB BD ⊥,PB BA ⊥,2BA BD ==Q ,2AD =,BD BA ∴⊥, ∴BD ,BA ,BP 两两垂直,以B 为坐标原点,分别以BD ,BA ,BP 为X ,Y ,Z 轴,建立如图所示的空间直角坐标系B DAP -,则有()0,2,0A ,()0,0,0B ,()2,2,0C-,()2,0,0D,()0,0,3P ,∴()2,2,0BC =-u u u r ,()0,0,3BP =u u u r,设平面PBC 的法向量为(),,n x y z =r ,∵00n BC n BP ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r,∴22030x y z ⎧-=⎪⎨=⎪⎩,令1x =, 则1y =,0z =,故()1,1,0n =r ∵E ,F 分别是棱AD ,PC 的中点∴22,,0E ⎛⎫ ⎪ ⎪⎝⎭,223,,F ⎛⎫- ⎪ ⎪⎝⎭,∴30,2,EF ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,∴2211cos ,1122n EF n EF n EF ⋅-===⋅⨯r u u u rr u u u r r u u u r , 即直线EF 与平面PBC 所成角的正弦值为211.(18)【2014年天津,文18,13分】设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知1232AB F F =.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切FED CBAPM于点M,2MF =,求椭圆的方程.解:(1)设椭圆的右焦点2F 的坐标为(),0c .由12AB F =,可得2223a b c +=,又222b ac =-,则2212c a =.所以,椭圆的离心率2e =,所以22223a c c -=,解得a =,2e =. (2)由(1)知222a c =,22b c =,故椭圆方程为222212x y c c +=.设()00,P x y ,由()1,0F c -,()0,B c ,有()100,F P x c y u u u r =+,()1,F B c c u u u r=.由已知,有110F P F B u u u r u u u r ?,即()000x c c y c ++=.又0c ¹,故有000x y c ++=.又因为点P 在椭圆上,故22002212x y c c +=.因此可得200340x cx +=.而点P 不是椭圆的顶点,故043c x =-,从而得03c y =,即4,33c c P 骣÷ç-÷ç÷ç桫.设圆的圆心为()11,T x y ,则123x c =-,123y c =, 进而圆的半径r =.由已知有222222||||8TF MF r r =+=+,故可得 22222508339c c c c 骣骣鼢珑++-=+鼢珑鼢珑桫桫,解得23c =.所以所求椭圆方程为22163x y +=. (19)【2014年天津,文19,14分】已知函数232()(0),3f x x ax a x R =->∈.(1)求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围.解:(1)由题()()2220f x ax a ¢=->,令()0f x ¢=可得0x =或1x a=.当x 变化时,()f x ¢,()f x 的变化情况如右表.故()f x 的单增区间是10,a 骣÷ç÷ç÷ç桫,单减区间是(),0-∞和 1,a ⎛⎫+∞ ⎪⎝⎭.当0x =时()f x 有极小值()00f =,当1x a =时()f x 有极大值2113f a a 骣÷ç=÷ç÷ç桫. (2)由()3002f f a ⎛⎫== ⎪⎝⎭及(1)知,当302x a <<时()0f x >,当32x a>时()0f x <.设集合(){}|2A f x x =>,集合()()1|1,0B x f x f x ⎧⎫⎪⎪=>≠⎨⎬⎪⎪⎩⎭.则“任意的()12,x ∈+∞,都存在()21,x ∈+∞,使得()()121f x f x ⋅=”等价于A B Í.显然0B Ï.①当322a >即304a <<时,由302f a 骣÷ç=÷ç÷ç桫知0A Î, 而0B Ï,故A B Í;②当3122a #即3342a ≤≤时,有()20f £.此时()f x 在()2,+?单调递减,故()(),2A f =-∞,因此(),0A ⊆-∞.由()10f ³,有()f x 在()1,+?上的取值范围包含(),0-∞, 即(),0B -∞⊆,故A B Í;③当312a <即32a >时,有()10f <.此时()f x 在()1,+?单调递减, 故()1,01B f ⎛⎫= ⎪⎪⎝⎭,()(),2A f =-∞,因此A B Í.综上,33,42a ⎡⎤∈⎢⎥⎣⎦. (20)【2014年天津,文20,14分】已知q 和n 均为给定的大于1的自然数,设集合{}0,1,21M q =-L ,集合{}112,,1,2,n n i A x x x x q x q x M i n -==++∈=L L . (1)当2,3q n ==时,用列举法表示集合A ;(2)设111212,,,n n n n s t A s a a q a q t b b q b q --∈=+++=++L L ,其中,,1,2,i i a b M i n ∈=L 证明:若n n a b <,则s t <.解:(1)2q =,3n =时,{}0,1M =,{}12324,,1,2,3i A x x x x x M x i ==+?+.故可得{}0,1,2,3,4,5,6,7A =. (2)由,s t A Î,112n n s a a q a q L -=+++,112n n t b b q b q L -=+++,,i i a b M Î,1,2,,n i L =及n n a b <,可得()()()()()2111111111101n n n n n n n n q s t a b a b q a b q a b qq qq L L-------=-+-++-+-?+++=-<-,所以s t <.。
2014年天津高考数学(文科)答案word版
2014年普通高等学校招生全国统一考试(天津卷)文科数学试题答案与解析1. 解析 ()()()()7i 34i 7i2525i 1i 34i 34i 34i 25+-+-===-++-,故选A.2. 解析 由线性约束条件画出可行域(如图所示).由2z x y =+,得1122y x z =-+,12z 的几何意义是直线1122y x z =-+在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线1122y x z =-+过点()1,1A 时,z 最小,最小值为3,故选B.3. 解析 命题p 为全称命题,所以p ⌝为00x ∃>,使得()001e 1x x +….故选B.4. 解析 因为π3>,所以2log π1a =>,12log π0b =<,2210π1πc -<==<,故a c b >>,选C.5. 解析 由题意知11S a =,2121S a =-,4146S a =-,因为1S ,2S ,4S ,成等比数列,所以2214S S S =⋅,即()()21112146a a a -=-,解得112a =-,故选D. 6. 解析 由题意知,双曲线()222210,0x y a b a b-=>>的一条渐进线为2y x =,所以2ba =,即224b a =,又双曲线的一个焦点是直线l 与x 轴的交点,所以该焦点的坐标为()5,0-,所以5c =,即2225a b +=,联立得2222425b a a b ⎧=⎪⎨+=⎪⎩,解得25a =,220b =,故双曲线的方程为221520x y -=,故选A. 7. 解析 由题意知F B D B A D ∠=∠,DBC DAC ∠=∠,BAD DAC ∠=∠,所以F B D D B C ∠=∠,故①正确;由切割线定理知②正确;易证ACE BDE △∽△,所以AE BECE DE=,所以③不正确;因为在ABF △和BDF △中,F B D B F A ∠=∠,BFD BFA ∠=∠,所以ABF BDF △∽△,所以AF ABBF BD=,所以AF BD AB BF ⋅=⋅,所以④正确.故选D.8.分析 本题考查三角函数值及图像变换,可利用三角函数图像的变换原理求解.解析 因为()cos f x x x ωω=+π=2sin 6x ω⎛⎫+ ⎪⎝⎭, 所以可以将曲线2sin y x =向左平移π6个单位,再将所有点横坐标变为原来的1ω倍得到. 曲线()y f x =与直线1y =的交点横坐标即为方程π2sin 16x ω⎛⎫+= ⎪⎝⎭的解. 由图像变换原理知,又1sin 2x =相邻实数距离的最小值为5ππ2π663-=,5πππ663ωω-=,即2ω=,所以()f x 的最小正周期为2ππ2T ==.故选C. 评注 本题也可用推理法处理,令1ππ2π66x k ω+=+,k ∈Z ,得12πx k ω=⋅,k ∈Z ,再令2π5π2π66x k ω+=+,k ∈Z ,得22π2π3x k ωω=+⋅,k ∈Z .则12min 2ππ33x x ω-==,解得2ω=,所以()f x 的最小正周期为2ππ2T ==.故选C. 9. 解析 413003006045565⨯=⨯=+++(名). 10. 解析 由三视图知该几何体是由一个圆锥与一个圆柱构成的组合体,其体积为22120ππ22π1433⨯⨯+⨯⨯=3m . 11. 解析 3n =,()3028S =+-=-,121n -=>;()2824S =-+-=-,111n -=…,终止循环,故输出4S =-.12. 解析 ()f x 的定义域为()(),00,-∞+∞,lg y u =在()0,+∞上为增函数,2u x =在(),0-∞上递减,在()0,+∞上递增,故()f x 在(),0-∞上单调递减.13. 解析 如图,13AE AB BE AB BC =+=+uu u r uu u r uur uu u r uu u r ,11AF AD DF AD DC BC AB λλ=+=+=+uu u r uuu r uuu r uuu r uuu r uu u r uu u r ,所以22111111333AE AF AB BC BC AB AB BC AB BC λλλ⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭uu u r uu u r uu u r uu u r uu u r uu u r uuu r uu u r uu u r uu u r144122cos120133λλ⎛⎫+⨯⨯⨯++= ⎪⎝⎭.解得2λ=.14.分析 本题考查函数的图像变换,零点问题,利用导函数秒杀.分段函数的零点问题,通常借助函数图象处理更快捷.解析 首先作函数()y f x =的图像,如图所示.当0x ≤时,函数()y f x =的图像是将抛物线254y x x =++在x 轴下方的部分沿x 轴对称到x 轴的上方,原x 轴上方,以及y 轴左侧的部分不变;当0x >时,只需将直线24y x =-在x 轴下方且y 轴右侧的部分沿着x 轴对称到x 轴的上方,原来x 轴上方的保持不变.其次要将()y f x a x =-恰有4个零点进行转化处理. 等价于方程()f x a x =恰有4个不等实根,又等价于曲线()y f x =与折线y a x =恰有4个公共点.又函数y a x =为偶函数,故需考虑折线y a x =与曲线()y f x =在y 轴两侧的交点个数.最后根据a 的取值,大致可以分成3类.① 当0a =时,0y =与曲线()y f x =有三个公共点,故不符合题意; ② 当0a <时,y a x =与曲线()y f x =无公共点,故不符合题意; ③ 当0a >时,设y a x =与曲线()y f x =相切于点P ,如图所示,易知方程254x x ax ---=-的()25160a ∆=--=,解得1a =或9a =(舍).D当1a =时,1y x =与()y f x =在y 轴左侧有3个公共点,在y 轴右侧有2个公共点;当2a =时,22y x =与()y f x =在y 轴左侧有2在y 轴右侧有1个公共点.结合图像知,实数a 的取值范围为()1,2.15. 解析 (I )从6名同学中随机选出2人参加知识竞赛的所有可能结果为{},A B ,{},A C ,{},A X ,{},A Y ,{},A Z ,{},B C ,{},B X ,{},B Y ,{},B Z ,{},C X ,{},C Y ,{},C Z ,{},X Y ,{},X Z ,{},Y Z ,共15种.(II )选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{},A Y ,{},A Z ,{},B X ,{},B Y ,{},B Z ,{},C X ,{},C Y ,共6种.因此,事件M 发生的概率()62155P M ==. 评注 本题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力. 16. 解析 (I )在ABC △中,由sin sin b cB C=,及sin B C =,可得b =.又由a c -=,有2a c =.所以,222222cos 2b c a A ab +-===(II )在ABC △中,由cos 4A =,可得sin 4A =.于是,21cos 22cos 14A A =-=-,sin 22sin cos 4A A A =⋅=. 所以,πππcos 2cos 2cos sin 2sin 6668A A A ⎛⎫-=⋅+= ⎪⎝⎭. 评注 本题主要考查同角三角函数的基本关系、二倍角的正弦与余弦公式、两角差的余弦公x式以及正弦定理、余弦定理等基础知识.考查运算求解能力.17. 解析 (I )证明:如图,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,故//MF BC且12MF BC =.由已知有//BC AD ,BC AD =.又由于E 为AD 中点,因而//MF AE 且MF AE =,故四边形AMFE 为平行四边形,所以//EF AM .又AM ⊂平面PAB ,而EF ⊄平面PAB ,所以//EF 平面PAB .(II )(i )证明:连接PE ,BE .因为PA PD =,BA BD =,而E 为AD 中点,故PE AD ⊥,BE AD ⊥,所以PEB ∠为二面角P AD B --的平面角.在PAD △中,由PA=2AD =,可解得2PE =.在ABD △中,由BA=BD ,2AD =,可解得1BE =.在PEB △中,2PE =,1BE =,60PEB =∠,由余弦定理,可解得PB =,从而90PBE =∠,即BE PB ⊥.又//BC AD ,BE AD ⊥,从而BE BC ⊥,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以,平面PBC ⊥平面ABCD .(ii )连接BF .由(i )知,BE ⊥平面PBC ,所以EFB ∠为直线EF 与平面PBC 所成的角.由PB =及已知,得ABP ∠为直角.而12MB PB ==,可得AM =,故EF =,又1BE =,故在直角三角形EBF中,sin BE EFB EF ∠==.所以,直线EF 与平面PBC所成角的正弦值为11. 评注 本题主要考查直线与平面平行、平面与平面垂直、直线与平面所成的角、二面角等基础知识.考查空间想象能力、运算求解能力和推理论证能力.MFECBAP18. 解析 (I )设椭圆右焦点2F 的坐标为(),0c .由12AB F =,可得2223a b c +=,又222b ac =-,则2212c a =.所以,椭圆的离心率2e =.(II )由(I )知222a c =,22b c =.故椭圆方程为222212x y c c+=.设()00,P x y .由()1,0F c -,()0,B c ,有()100,F P x c y =+uuu r ,()1,F B c c =uuu r.由已知,有110F P F B ⋅=uuu r uuu r,即()000x c c y c ++=.又0c ≠,故有000x y c ++=.①因为点P 在椭圆上,故22002212x y c c+=②由①和②可得200340x cx +=.而点P 不是椭圆的顶点,故043x c =-,代入①得03cy =,即点P 的坐标为4,33c c ⎛⎫-⎪⎝⎭. 该圆的圆心为()11,T x y ,则1402323c x c -+==-,12323ccy c +==,进而圆的半径r ==.由已知,有22222TF MF r =+,又2MF =22222508339c c c c ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭,解得23c =.所以,所求椭圆的方程为22163x y +=.评注 本题主要考查椭圆的标准方程和几何性质、直线的方程、圆的方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.19.分析 本题考查导数、不等式恒成立与存在性问题.(1)利用导数求解函数的单调性,极值(最值)问题;(2)存在、任意问题与函数零点、单调性,值域之间的关系. 解析 (1)求导()()2'2221f x x ax x ax =-=-,x ∈R . 因为0a >,令()'0f x =,即()210x ax -=,解得10x =,21x a=. x 、()'f x 、()f x 的变化如下表:所以()f x 的单调递减区间为(),0-∞,1,a ⎛⎫+∞⎪⎝⎭,单调递增区间为10,a ⎛⎫ ⎪⎝⎭. 当0x =时,()f x 取得极小值为()00f =, 当1x a=时,()f x 取得极大值为222112133f a aa a ⎛⎫=-= ⎪⎝⎭.(2)因为对于任意的()12,x ∈+∞,都存在()21,x ∈+∞,使得12()()1f x f x ⋅=, 所以任意的()12,x ∈+∞,()1f x 都不能为0, 结合(1)可知,()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,且()12103f x a =>,故12a ≥且()20f ≤,即16403a -≤,解得34a ≥. 此时()()()211,0f x f x =∈-∞. 对任意的()12,x ∈+∞,都存在()21,x ∈+∞,使得12()()1f x f x ⋅=, 需使得()(){},0,1y y f x x -∞⊆=>,即()231134f a =-≥,解得32a ≤. 综上,实数a 的取值范围是33,42⎡⎤⎢⎥⎣⎦. 评注 对含量词“任意∀”,“存在∃”的问题,关键在于将其等价转化为相关的单调性或极值(最值)问题.20 分析 本题考查数列与不等式.新定义与数列相关的集合问题,要理解集合中元素的性质特征.解析 (1)当2q =,3n =时,由题意{}0,1M =,12324x x x x =++,(),1,2,3i x M i ∈=. 则{}0,1,2,3,4,5,6,7A =.(2)因为,s t A ∈,所以112+++n n a s a a q q -=()()11+1++n n q q q a q ---≤…()()1111+n n n q q qa q --=-+++… ()111=1+1n n n q q a q q-----11=1n n n q a q ---+()1=11n n a q -+-.1112+++n n n n t b b b q b q q --=≥,又,n n a b M ∈,且n n a b <,所以1n n b a +≥. 所以()()111111n n n n n n q q b a a q ---+>+-≥.即()1111n n n n q q t s b a -->-+≥≥,所以n n a b <,则s t <.。
2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版
2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72.已知角α的终边经过点(4,3)-,则cos α=( ) A .45 B .35 C .35- D .45-3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .16 B .36 C .13D .335.函数3ln(1)(1)y x x =+>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)xy e x =->- C .3(1)()x y e x R =-∈ D .3(1)()xy e x R =-∈6.已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( ) A .31 B .32 C .63 D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为33,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A .814π B .16π C .9π D .274π11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为23,则C的焦距等于( )A .2B .22C .4D .4212.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答)14.函数cos 22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为.16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是111()(21)nnk k k k a a k +==-=-∑∑于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=13,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA, 所以3tanAcosC=2sinC.因为tanA=13,所以cosC=2sinC.tanC=1 2 .所以tanB=tan[180︒-(A+C)]=-tan(a+c)=tan tan1tan tanA CA C+--=-1,即B=135︒.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90︒,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1的距离为3,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D⊂平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC⊂平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A13,因为A1C为∠ACC1的平分线,故A1D=A13作DF⊥AB,F为垂足,连结A1F,由三垂线定理得A1F⊥AB,故∠A1FD为二面角A1-AB-C的平面角,由AD=1=,得D 为AC 的中点,DF=125AC BC AB ⨯⨯=,tan ∠A 1FD=1A DDF=,所以二面角A 1-AB-C 的大小为解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则AF =(-2,1,0),1(2,0,0),(2,0,)AC AA a c =-=-,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-,由12AA =2=,即2240a a c -+=,于是11AC BA ⋅=2240a a c -+=①,所以11AC BA ⊥.(2)设平面BCC 1B 1的法向量(,,)m x y z =,则m CB ⊥,1,m CB m BB ⊥⊥,即10,0m CB m BB ⋅=⋅=,因11(0,1,0),(2,0,)CB BB AA a c ==-,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,(,0,2)m c a =-,点A到平面BCC 1B 1的距离为cos ,CA m CA m CA c mc ⋅⋅<>===,又依题设,点A 到平面BCC 1B 1的距c= .代入①得a=3(舍去)或a=1.于是1(1AA =-,设平面ABA 1的法向量(,,)n p q r =,则1,n AA n AB⊥⊥,即10,0n AA n AB ⋅=⋅=.0p-=且-2p +q =0,令p =,则q =2,r=1,(3,2n =,又(0,0,1)p =为平面ABC 的法向量,故cos 1,4n p n p n p⋅<>==,所以二面角A 1-AB-C 的大小为arccos 1420. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2·B ·CP(B)=0.6,P(C)=0.4,P(A i )=220.5,0,1,2i C i ⨯=.所以P(D)=P(A 1·B ·C+A 2·B+A 2·B ·C )= P(A 1·B ·C)+P(A 2·B)+P(A 2·B ·C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p (B )·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ). (i )若a ≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.(ii )由于a ≠0,故当a<1时,()0f x '=有两个根:1211x x a a---==, 若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数.若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞. 22. (本小题满分12分)已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由22(0)y px p =>中得x 0=8p, 所以088,22p p PQ QF x p p ==+=+,由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2.所以C 的方程为24y x =.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为1x my =+,(m ≠0)代入24y x =中得2440y my --=,设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,故AB 的中点为D (2m 2+1,2m ),2124(1)AB y m =-=+,有直线l '的斜率为-m ,所以直线l '的方程为2123x y m m=-++,将上式代入24y x =中,并整理得2244(23)0y y m m+-+=. 设M(x 3,y 3),N(x 4,y 4),则234344,4(23)y y y y m m+=-=-+. 故MN的中点为E(223422224(23,),m m MN y m m m+++-=-=). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即222222224224(1)(21)4(1)(2)(2)m m m m m m m +++++++=,化简得m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=0.。
2014年南开大学数学试点班自主招生考试题解析
2014年南开大学数学试点班自主招生考试题(A 卷)总分:200分 考试时间:2014-2-16 8:30-11:30一.填空题(每小题7分,共70分)1.若单位向量a ,b 满足|23|10a b -=,则|32|a b += .【答案】 4 【解析】由|23|10a b -=平方得:11312104a b a b -⋅=⇒⋅=, 则2|32|131213316a b a b +=+⋅=+=,所以|32|4a b +=.2.若非零复数z 满足2||(1)0z z i z +⋅+-=,则复数z 的实部为 .【答案】25- 【解析】设(,)z x yi x y R =+∈,由2||(1)0z z i z +⋅+-=得:22()(2)0x y y x y i +-++=.则2200020x x y y y x y =⎧+-=⎧⇒⎨⎨=+=⎩⎩,或2515x y ⎧=-⎪⎪⎨⎪=⎪⎩.又0z ≠,所以z 的实部为25-. 3.无重复数字(不含0)且4与5不相邻的五位数共有 个.【答案】13440【解析】用排除法.不含0的无重复数字的五位数共5915120A =个,其中,4和5相邻的无重复数字(不含0)的五位数共3427421680C A A =个,所以,无重复数字(不含0)且4与5不相邻的五位数共有15120168013440-=个.4.在三棱锥P ABC -中,底面为边长为3的正三角形,且3PA =,4PB =,5PC =,则三棱锥 P ABC -的体积P ABC V -= .【解析】易知PBC ∆是直角三角形,取斜边PC 的中点为O ,因为AP AB AC ==,所以点A 在平面PBC 上的射影为直 角PBC ∆的外心O ,连接AO ,即有AO ⊥平面PBC . P AB C O 3 3 33 4 5。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)
2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年高考天津文科数学试题及答案
2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么•圆锥的体积公式13V Sh =.()()()P A B P A P B =+U其中S 表示圆锥的底面面积, •圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积, h 表示棱柱的高.一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. i 是虚数单位,复数=++ii437( ) A. i -1 B. i +-1 C.i 25312517+ D. i 725717+- 2. 设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+.1,02,02y y x y x 则目标函数y x z 2+=的最小值为( )A. 2B. 3C. 4D. 53. 已知命题为则总有p e x x p x ⌝>+>∀,1)1(,0:( ) A. 00≤∃x ,使得1)1(00≤+x ex B. 00>∃x ,使得1)1(00≤+x e xC. 0>∀x ,总有 1)1(≤+x e xD. 0≤∀x ,总有1)1(≤+x e x 4. 设,,log ,log 2212-===πππc b a 则( )A. c b a >>B. c a b >>C. b c a >>D. a b c >>5. 设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比 数列,则1a =( )A. 2B. -2C.21 D . 216. 已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.120522=-y x B. 152022=-y x C. 1100325322=-y x D. 1253100322=-y x 7. 如图,ABC ∆是圆的内接三角行,BAC ∠的平分线交圆于点D ,交BC 于E ,过点B 的圆的切线与AD的延长线交于点F ,在上述条件下,给出下列四个结论:① BD 平分CBF ∠;②FA FD FB ⋅=2;③DE BE CE AE ⋅=⋅;④BF AB BD AF ⋅=⋅.则所有正确结论的序号是( ) A. ①② B. ③④ C. ①②③D. ①②④ 8. 已知函数()cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( ) A. 2πB. 23πC. πD. 2π二.填空题:本大题共6小题,每小题5分,共30分.9. 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 _________名学生. 10. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .11. 阅读右边的框图,运行相应的程序,输出S 的值为________. 12. 函数()3lg f x x =的单调递减区间是________.13. 已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1=⋅,则λ的值为________.14. 已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤 15.(本小题满分13分)某校夏令营有3名男同学C B A ,,和3名女同学Z Y X ,,,其年级情况如下表:现从这6(1) 用表中字母列举出所有可能的结果(2) 设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.16.(本小题满分13分)俯视图侧视图正视图PFECBA在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知b c a 66=-,C B sin 6sin = (1) 求A cos 的值; (2) 求)62cos(π-A 的值.17.(本小题满分13分)如图,四棱锥ABCD P -的底面ABCD 是平行四边形,2==BD BA ,AD=2,5==PD PA , E ,F 分别是棱AD ,PC 的中点. (1) 证明: //EF 平面PAB ; (2) 若二面角P-AD-B 为ο60,① 证明:平面PBC ⊥平面ABCD② 求直线EF 与平面PBC 所成角的正弦值.18.(本小题满分13分)设椭圆22221x y a b +=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知12AB F =.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切于点M,2MF =,求椭圆的方程.19.(本小题满分14分) 已知函数232()(0),3f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2) 若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围20(本小题满分14分)已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M Λ,集合{}n i M x q x q x x x x A i n n ΛΛ,2,1,,121=∈++==-,(1) 当3,2==n q 时,用列举法表示集合A ;(2) 设,,,,121121--++=+++=∈n n n n q b q b b t q a q a a s A t s ΛΛ其中,,2,1,,n i M b a i i Λ=∈证明:若,n n b a <则t s <.2014年天津高考数学(文科)试卷参考答案一、选择题A B B C D A D C1. 解:()()()()73472525134343425i i ii i i i i +-+-===-++-,选A .2. 解:作出可行域,如图,结合图象可知,当目标函数通过点()1,1时,z 取得最小值3,选B . 3. 解:依题意知p ⌝为:00>∃x ,使得1)1(00≤+x ex ,选B .4. 解:因为1a >,0b <,01c <<,所以a c b >>,选 C .5. 解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-,选D . 6. 解:依题意得⎪⎩⎪⎨⎧+===22252b a c c a b ,所以25a =,220b =,选A .7. 解: 由弦切角定理得EAC BAE FBD ∠=∠=∠,又AFB BFD ∠=∠,所以BFD ∆∽AFB ∆,所以BF BDAF AB=,即BF AB BD AF ⋅=⋅,故④正确,排除A 、C . 又DBC EAC FBD ∠=∠=∠,故①正确,排除B ,选D . 8. 解:因为)6sin(2)(πω+=x x f ,所以()1f x =得21)6sin(=+πωx , 所以626πππω+=+k x 或6526πππω+=+k x ,Z k ∈. 因为相邻交点距离的最小值为3π,所以332πωπ=,2w =,π=T ,选C .二、填空题9. 60 10.320π11.-4 12. )0,(-∞ 13. 2 14. )2,1( 9. 解: 应从一年级抽取6065544300=+++⨯名.10.解: 该几何体的体积为32041223122πππ=⨯⨯+⨯⨯=V 3m .11. 解:3n =时,8S =-;2n =时,4S =-,所以输出的S 的值为-4. 12. 解:由复合函数的单调性知,)(x f 的单调递减区间是)0,(-∞.13. 解:因为120BAD ∠=︒,菱形的边长为2,所以2-=⋅AD AB . 因为1)1()31(=+⋅+=⋅AB AD AD AB AF AE λ, 所以1323442=-++-λλ,解得2=λ. [解2] 建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2),由BC →=3BE →,得(1,3)=3(x 1,y 1+3),可得E ⎝⎛⎭⎫13,-233;由DC →=λDF →,得(1,-3)=λ(x 2,y 2-3),可得F ⎝ ⎛⎭⎪⎫1λ,3-3λ.∵AE ·AF =⎝⎛⎭⎫43,-233·⎝ ⎛⎭⎪⎫1λ+1,3-3λ=103λ-23=1,∴λ=2. 14.解: 在同一坐标系内分别作出y =f (x )与y =a |x |的图像,如图所示,当y =a |x |与y =f (x )的图像相切时,联立⎩⎪⎨⎪⎧-ax =-x 2-5x -4,a >0,整理得x 2+(5-a )x +4=0,则Δ=(5-a )2-414=0,解得a =1或a =9(舍去),∴当y =a |x |与y =f (x )的图像有四个交点时,有1<a <2.三、解答题15.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2) 选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.16.解:(1)在△ABC 中,由b sin B =c sin C ,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c .所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64.(2) 在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.17.解:(1)证明:如图所示,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB .(2) (i) 证明:连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P - AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB中,PE =2,BE =1,∠PEB =60˚,由余弦定理,可解得PB =3,从而∠PBE =90˚,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .(ii) 连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =112.又BE =1,故在直角三角形EBF中,sin ∠EFB =BE EF =21111.所以直线EF 与平面PBC 所成角的正弦值为21111.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2.又b 2=a 2-c 2,则c 2a2=12, 所以椭圆的离心率e =22.(2) 由(1)知a 2=2c 2,b 2=c 2,故椭圆方程为x 22c 2+y 2c 2=1.设P (x 0,y 0).由F 1(-c ,0),B (0,c ),有F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ).由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.①因为点P 在椭圆上,所以x 202c 2+y 20c2=1.②由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c ,代入①得y 0=c 3,即点P 的坐标为⎝⎛⎭⎫-4c 3,c 3.设圆的圆心为T (x 1,y 1),则x 1=-43c +02=-23c ,y 1=c 3+c 2=23c ,进而圆的半径r =(x 1-0)2+(y 1-c )2=53c .由已知,有|TF 2|2=|MF 2|2+r 2.又|MF 2|=22,故有⎝⎛⎭⎫c +23c 2+⎝⎛⎭⎫0-23c 2=8+59c 2,解得c 2=3,所以所求椭圆的方程为x 26+y 23=1.19.解:(1)由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a.当x 递减 递增 递减 所以,f (x )的单调递增区间是⎝⎛⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭⎫1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2. (2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知,当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0;当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0. 设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然0∉B .下面分三种情况讨论:(i)当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (ii)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0).由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以A ⊆B .(iii)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集.综上,a 的取值范围是⎣⎡⎦⎤34,32.20.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2) 证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t .。
2014年高考天津文科数学试题及答案(精校版)
2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么•圆锥的体积公式13V Sh =.()()()P AB P A P B =+ 其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积, h 表示棱柱的高.一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,复数=++ii437( ) A. i -1 B. i +-1 C.i 25312517+ D. i 725717+- 2. 设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+.1,02,02y y x y x 则目标函数y x z 2+=的最小值为( )A. 2B. 3C. 4D. 53. 已知命题为则总有p e x x p x ⌝>+>∀,1)1(,0:( )A. 00≤∃x ,使得1)1(00≤+x e xB. 00>∃x ,使得1)1(00≤+x e xC. 0>∀x ,总有 1)1(≤+x e xD. 0≤∀x ,总有1)1(≤+x e x 4. 设,,log ,log 2212-===πππc b a 则( )A. c b a >>B. c a b >>C. b c a >>D. a b c >>5. 设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比 数列,则1a =( )A. 2B. -2C.21 D . 21 6. 已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.120522=-y x B. 152022=-y x C. 1100325322=-y x D. 1253100322=-y x 7. 如图,ABC ∆是圆的内接三角行,BAC ∠的平分线交圆于点D ,交BC 于E ,过点B的圆的切线与AD 的延长线交于点F ,在上述条件下,给出下列四个结论:① BD 平分CBF ∠;②FA FD FB ⋅=2;③DE BE CE AE ⋅=⋅;④BF AB BD AF ⋅=⋅.则所有正确结论的序号是( )A. ①②B. ③④C.①②③ D. ①②④8. 已知函数()cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( ) A.2πB. 23πC. πD. 2π二.填空题:本大题共6小题,每小题5分,共30分.9. 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 _________名学生. 10. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .11. 阅读右边的框图,运行相应的程序,输出S 的值为________. 12. 函数()3lg f x x =的单调递减区间是________.13. 已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,俯视图侧视图正视图PFECBA3BC BE =,DC DF λ=.若1=⋅AF AE ,则λ的值为________.14. 已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a的取值范围为_______三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤 15.(本小题满分13分)某校夏令营有3名男同学C B A ,,和3名女同学Z Y X ,,,其年级情况如下表:现从这6 (1) 用表中字母列举出所有可能的结果(2) 设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.16.(本小题满分13分)在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知b c a 66=-,C B sin 6sin =(1) 求A cos 的值;(2) 求)62cos(π-A 的值.17.(本小题满分13分)如图,四棱锥ABCD P -的底面ABCD 是平行四边形,2==BD BA ,AD=2,5==PD PA , E ,F 分别是棱AD ,PC 的中点.(1) 证明: //EF 平面PAB ; (2) 若二面角P-AD-B 为60,① 证明:平面PBC ⊥平面ABCD② 求直线EF 与平面PBC 所成角的正弦值.18.(本小题满分13分)设椭圆22221x y b +=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知12AB F =.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F的直线l 与该圆相切于点M ,2MF =,求椭圆的方程.19.(本小题满分14分) 已知函数232()(0),3f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2) 若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围20(本小题满分14分)已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-,(1) 当3,2==n q 时,用列举法表示集合A ;(2) 设,,,,121121--++=+++=∈n n n n q b q b b t q a q a a s A t s 其中,,2,1,,n i M b a i i =∈证明:若,n n b a <则t s <.2014年天津高考数学(文科)试卷参考答案一、选择题A B B C D A D C 1. 解:()()()()73472525134343425i i i i i i i i +-+-===-++-,选A . 2. 解:作出可行域,如图,结合图象可知,当目标函数通过点()1,1时,z 取得最小值3,选B . 3. 解:依题意知p ⌝为:00>∃x ,使得1)1(00≤+x ex ,选B .4. 解:因为1a >,0b <,01c <<,所以a c b >>,选 C .5. 解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-,选D . 6. 解:依题意得⎪⎩⎪⎨⎧+===22252b a c c a b ,所以25a =,220b =,选A .7. 解: 由弦切角定理得EAC BAE FBD ∠=∠=∠,又A F B B F D ∠=∠,所以BFD ∆∽AFB ∆,所以BF BDAF AB=,即BF AB BD AF ⋅=⋅,故④正确,排除A 、C . 又DBC EAC FBD ∠=∠=∠,故①正确,排除B ,选D .8. 解:因为)6sin(2)(πω+=x x f ,所以()1f x =得21)6sin(=+πωx ,所以626πππω+=+k x 或6526πππω+=+k x ,Z k ∈.因为相邻交点距离的最小值为3π,所以332πωπ=,2w =,π=T ,选C . 二、填空题9. 60 10.320π11.-4 12. )0,(-∞ 13. 2 14. )2,1( 9. 解: 应从一年级抽取6065544300=+++⨯名. 10.解: 该几何体的体积为32041223122πππ=⨯⨯+⨯⨯=V 3m . 11. 解:3n =时,8S =-;2n =时,4S =-,所以输出的S 的值为-4. 12. 解:由复合函数的单调性知,)(x f 的单调递减区间是)0,(-∞.13. 解:因为120BAD ∠=︒,菱形的边长为2,所以2-=⋅. 因为1)1()31(=+⋅+=⋅AB AD AD AB AF AE λ,所以1323442=-++-λλ,解得2=λ. [解2] 建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2),由BC →=3BE →,得(1,3)=3(x 1,y 1+3),可得E ⎝⎛⎭⎫13,-233;由DC →=λDF →,得(1,-3)=λ(x 2,y 2-3),可得F ⎝ ⎛⎭⎪⎫1λ,3-3λ. ∵AE ·AF =⎝⎛⎭⎫43,-233·⎝ ⎛⎭⎪⎫1λ+1,3-3=103λ-23=1,∴λ=2.14.解: 在同一坐标系内分别作出y =f (x )与y =a |x |的图像,如图所示,当y =a |x |与y =f (x )的图像相切时,联立⎩⎪⎨⎪⎧-ax =-x 2-5x -4,a >0,整理得x 2+(5-a )x +4=0,则Δ=(5-a )2-414=0,解得a =1或a =9(舍去),∴当y =a |x |与y =f (x )的图像有四个交点时,有1<a <2.三、解答题15.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2) 选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.16.解:(1)在△ABC 中,由b sin B =c sin C ,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c .所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64.(2) 在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.17.解:(1)证明:如图所示,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB .(2) (i) 证明:连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P - AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60˚,由余弦定理,可解得PB =3,从而∠PBE =90˚,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .(ii) 连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =112.又BE =1,故在直角三角形EBF 中,sin ∠EFB =BE EF =21111.所以直线EF 与平面PBC 所成角的正弦值为21111.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2.又b 2=a 2-c 2,则c 2a 2=12,所以椭圆的离心率e =22.(2) 由(1)知a 2=2c 2,b 2=c 2,故椭圆方程为x 22c 2+y 2c 2=1.设P (x 0,y 0).由F 1(-c ,0),B (0,c ),有F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ).由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.①因为点P 在椭圆上,所以x 202c 2+y 20c2=1.②由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c ,代入①得y 0=c 3,即点P 的坐标为⎝⎛⎭⎫-4c 3,c 3.设圆的圆心为T (x 1,y 1),则x 1=-43c +02=-23c ,y 1=c 3+c 2=23c ,进而圆的半径r =(x 1-0)2+(y 1-c )2=53c .由已知,有|TF 2|2=|MF 2|2+r 2.又|MF 2|=22,故有⎝⎛⎭⎫c +23c 2+⎝⎛⎭⎫0-23c 2=8+59c 2,解得c 2=3,所以所求椭圆的方程为x 26+y 23=1.19.解:(1)由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a.当x 递减 递增 递减所以,f (x )的单调递增区间是⎝⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2. (2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知,当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0;当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0. 设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然0∉B .下面分三种情况讨论:(i)当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (ii)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A=(-∞,f (2)),因而A ⊆(-∞,0).由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以A ⊆B .(iii)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集. 综上,a 的取值范围是⎣⎡⎦⎤34,32.20.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2) 证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.。
2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版
2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合,则中元素的个数为( )A .2B .3C .5D .72.已知角的终边经过点,则( )A .B .C .D .3.不等式组的解集为( )A .B .C .D .4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .B .C .D .{1,2,4,6,8},{1,2,3,5,6,7}M N ==MN α(4,3)-cos α=453535-45-(2)0||1x x x +>⎧⎨<⎩{|21}x x -<<-{|10}x x -<<{|01}x x <<{|1}x x>1661335.函数的反函数是( )A .B .C .D .6.已知为单位向量,其夹角为,则( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列的前n 项和为,若则( ) A .31 B .32 C .63 D .641)(1)y x =>-3(1)(1)x y e x =->-3(1)(1)xy e x =->-3(1)()x y e x R =-∈3(1)()xy e x R =-∈a b 、60(2)a b b -∙={}n a n S 243,15,S S ==6S =9. 已知椭圆C :的左、右焦点为、,离心率为,过的直线交C 于A 、B 两点,若的周长为C 的方程为( )A .B .C .D .10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A.B .C .D .11.双曲线C :的离心率为2,则C的焦距等于()A .2B .C .4D .22221x y a b+=(0)a b >>1F 2F 32F l 1AF B ∆22132x y +=2213x y +=221128x y +=221124x y +=814π16π9π274π22221(0,0)x y a b a b-=>>12.奇函数的定义域为R ,若为偶函数,且,则( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中的系数为 .(用数字作答)14.函数的最大值为 .()f x (2)f x +(1)1f =(8)(9)f f +=6(2)x -3x cos 22sin y x x =+15. 设x 、y 满足约束条件,则的最大值为 .16. 直线和是圆的两条切线,若与的交点为(1,3),则与的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩4z x y =+1l 2l 222x y +=1l 2l 1l 2l 111()(21)nnk k k k a a k +==-=-∑∑△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA,所以3tanAcosC=2sinC.因为tanA=,所以cosC=2sinC.tanC=.所以tanB=tan[180-(A+C)]=-tan(a+c)==-1,即B=135.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A1,因为A1C为∠ACC1的平分线,故A1D=A1131312︒tan tan1tan tanA CA C+--︒︒⊂⊂作DF ⊥AB ,F 为垂足,连结A 1F,由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1-AB-C 的平面角,由,得D 为AC 的中点,DF=,tan ∠A 1FD=,所以二面角A 1-AB-C的大小为解法二:以C为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则(-2,1,0),,,由,即,于是①,所以.(2)设平面BCC 1B 1的法向量,则,,即,因,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,,点A到平面BCC 1B 1的距离为,又依题设,点A 到平面BCC 1B 1的距c=.代入①得a=3(舍去)或a=1.于是,设平面ABA 1的法向量,则,即.且-2p +q =0,令p,则q,r=1,,又为1=12AC BC AB ⨯⨯=1A DDF=AF =1(2,0,0),(2,0,)AC AA a c =-=-111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-12AA =2=2240a a c -+=11AC BA ⋅=2240a a c -+=11AC BA ⊥(,,)m x y z =m CB ⊥1,m CB m BB ⊥⊥10,0m CB m BB ⋅=⋅=11(0,1,0),(2,0,)CB BB AA a c ==-(,0,2)m c a =-cos ,CA m CA m CA c mc ⋅⋅<>===1(1AA =-(,,)n p q r =1,n AA n AB ⊥⊥10,0n AA n AB ⋅=⋅=0p -=(3,2n =(0,0,1)p =平面ABC 的法向量,故cos ,所以二面角A 1-AB-C 的大小为arccos20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2··CP(B)=0.6,P(C)=0.4,P(A i )=.所以P(D)=P(A 1·B ·C+A 2·B+A 2··C )= P(A 1·B ·C)+P(A 2·B)+P(A 2··C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p ()·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1),的判别式△=36(1-a ). (i )若a ≥1,则,且当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.1,4n p n p n p⋅<>==14B 220.5,0,1,2i C i ⨯=B B B 2()363f x ax x '=++2()3630f x ax x '=++=()0f x '≥()0f x '=(ii )由于a ≠0,故当a<1时,有两个根:, 若0<a<1,则当x ∈(-,x 2)或x ∈(x 1,+)时,,故f (x )在(-,x 2),(x 1,+)上是增函数;当x ∈(x 2,x 1)时,,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当且,解得. 综上,a 的取值范围是. 22. (本小题满分12分)已知抛物线C:的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由中得x 0=, 所以,由题设得,解得p =-2(舍去)或p =2.所以C 的方程为.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为,(m ≠0)代入中得,()0f x '=12x x ==∞∞()0f x '>∞∞()0f x '<()0f x '>(1)0f '≥(2)0f '≥504a -≤<5[,0)(0,)4-+∞22(0)y px p =>54QF PQ =l '22(0)y px p =>8p088,22p p PQ QF x p p ==+=+85824p p p+=⨯24y x =1x my =+24y x =2440y my --=设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4, 故AB 的中点为D (2m 2+1,2m ),,有直线的斜率为-m ,所以直线的方程为,将上式代入中,并整理得. 设M(x 3,y 3),N(x 4,y 4),则. 故MN的中点为E(). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于,从而,即,化简得 m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=02124(1)AB y m =-=+l 'l '2123x y m m=-++24y x =2244(23)0y y m m+-+=234344,4(23)y y y y m m+=-=-+23422223,),m MN y y m m ++-=-=12AE BE MN ==2221144AB DE MN +=222222224224(1)(21)4(1)(2)(2)m m m m m m m+++++++=。
2014年全国高考文科数学试题及答案-天津卷
2014年普通高等学校招生全国统一考试(天津卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,复数=++ii437( ) A. i -1 B. i +-1 C.i 25312517+ D. i 725717+- 2. 设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+.1,02,02y y x y x 则目标函数y x z 2+=的最小值为( )A.2B. 3C. 4D. 53. 已知命题为则总有p e x x p x⌝>+>∀,1)1(,0:( )A.1)1(,0000≤+≤∃x e x x 使得 B. 1)1(,0000≤+>∃x e x x 使得 C.1)1(,0000≤+>∃x ex x 总有 D.1)1(,0000≤+≤∃x e x x 总有4. 设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >>5. 设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .216. 已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x 7. 如图,ABC ∆是圆的内接三角行,BAC ∠的平分线交圆于点D ,交BC 于E ,过点B 的圆的切线与AD 的延长线交于点F ,在上述条件下,给出下列四个结论:①BD 平分CBF ∠;②FA FD FB ⋅=2;③DE BE CE AE ⋅=⋅;④BF AB BD AF ⋅=⋅.则所有正确结论的序号是( )A.①②B.③④C.①②③D. ①②④ 8.已知函数()cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( ) A.2πB.23πC.πD.2π二.填空题:本大题共6小题,每小题5分,共30分.9. 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生.10. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .11.阅读右边的框图,运行相应的程序,输出S 的值为________.12. 函数()3lg f x x =的单调递减区间是________.13. 已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1AE AE ⋅=,则λ的值为________.14. 已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______三.解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤(15)(本小题满分13分)某校夏令营有3名男同学C B A ,,和3名女同学Z Y X ,,,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同) (1)用表中字母列举出所有可能的结果(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.16、(本小题满分13分)在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知b c a 66=-,C B sin 6sin = (1)求A cos 的值; (2)求)62cos(π-A 的值.17、(本小题满分13分)如图,四棱锥P ABCD -的底面ABCD 是平行四边形,,,分别是棱的中点. (1) 证明平面; (2) 若二面角P-AD-B 为,① 证明:平面PBC ⊥平面ABCD② 求直线EF 与平面PBC 所成角的正弦值.18、(本小题满分13分)设椭圆的左、右焦点分别为,,右顶点为A ,上顶点为 B.已知=.(1) 求椭圆的离心率;(2) 设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线与该圆相切与点M ,=.求椭圆的方程.19. (本小题满分14分)已知函数232()(0),3f x x ax a x R =->∈ (1)求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围20.(本小题满分14分)已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-,(1)当3,2==n q 时,用列举法表示集合A ; (2)设,,,,121121--++=+++=∈n n n n q b q b b t qa q a a s A t s 其中,,2,1,,n i M b a i i =∈证明:若,n n b a <则t s <.参考答案一、选择题:本题考查基本知识和基本运算。
2014年高考全国1卷文科数学试题及答案(详细解析版,精校版)
2014年普通高等学校招生全国统一考试(全国I 卷)文科数学一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 2.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>03.设i iz ++=11,则|z |=( )A .21B .22C .23D .24.已知双曲线)0(13222>=-a y a x 的离心率为2,则a=( ) A .2 B .26 C .25D .15.设函数f (x ),g (x )的定义域为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数6. 设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+FC EB ( )A .ADB .AD 21C .BC 21D .BC7.在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱9.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .15810.已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=54x0,则x0=( )A.1 B.2 C.4 D.811.设x,y满足约束条件,1,x y ax y+≥⎧⎨-≤-⎩且z=x+ay的最小值为7,则a= ( )A.-5 B.3 C.-5或3 D.5或-312.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞, -2) D.(-∞, -1)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14.甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.15.设函数113,1(),1xe xf xx x-⎧<⎪=⎨⎪≥⎩,则使得f(x)≤2成立的x的取值范围是______.16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点. 从A点测得M点的仰角:∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°. 已知山高BC=100m,则山高MN=______m.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分. 17.(本小题满分12分)已知{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列2n na⎧⎫⎨⎬⎩⎭的前n项和.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125) 频数 6 26 38 22 8(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本题满分12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(Ⅰ)证明:B1C⊥AB;(Ⅱ)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.20.(本小题满分12分)已知点P(2,2),圆C: x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(Ⅰ)求M的轨迹方程;(Ⅱ)当|OP|=|OM|时,求l的方程及ΔPOM的面积.设函数f (x )= a ln x+212a x --bx (a ≠1),曲线y =f (x )在点(1, f (1))处的切线斜率为0 (Ⅰ)求b ; (Ⅱ)若存在x 0≥1,使得f (x 0)<1aa -,求a 的取值范围.请考生从第22、23、24三题中任选一题作答.多答按所答的首题进行评分. 22.(本小题满分10分)选修4—1:几何证明选讲 如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB=CE (Ⅰ)证明:∠D=∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB=MC ,证明:△ADE 为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.24. (本小题满分10分)选修4—5:不等式选讲若0,0a b >>,且11ab a b+=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.2014年高考全国1卷文科数学参考答案1.解:取M , N 中共同的元素的集合是(-1,1),故选B2.解:tan α>0,α在一或三象限,所以sin α与cos α同号,故选C3.解:111,12222i i z i i z i -=+=+=+∴==+,故选B4.解:2c e a ====,解得a=1,故选D 5.解:设F (x )=f (x )|g (x )|,依题可得F (-x )=-F (x ),∴ F (x )为奇函数,故选C6.解:+EB FC EC CB FB BC +=++=111()222AC AB AB AC AD +=+=,故选A7.解:由cos y x =是偶函数可知①y=cos|2x|=cos2x ,最小正周期为π;②y=|cos x |的最小正周期也是π;③中函数最小正周期也是π;正确答案为①②③,故选A8.解:几何体是一个横放着的三棱柱. 故选B9.解:运行程序M,a,b,n 依次为33(,2,,2)22;838(,,,3)323;15815(,,,4)838;输出158M =.故选D.10.解:根据抛物线的定义可知|AF |=001544x x +=,解之得x 0=1. 故选A11.解:联立x+y=a 与x-y =-1解得交点M 11(,)22a a -+,z 取得最值11722a a a -++⨯=,解之得a =-5或a =3. 但a =-5时,z 取得最大值,舍去,所以a =3,故选B.12.解:依题a≠0,f '(x )=3ax 2-6x ,令f '(x )=0,解得x =0或x =2a,当a >0时,在(-∞, 0)与(2a ,+∞)上,f '(x )>0,f (x )是增函数.在(0,2a) 上,f '(x )<0,f (x )是减函数.且f (0)=1>0,f (x )有小于零的零点,不符合题意.当a <0时,在(-∞,2a )与(0,+∞)上,f '(x )<0,f (x )是减函数.在(2a,0)上,f '(x )>0,f (x )是增函数.要使f (x )有唯一的零点x 0,且x 0>0,只要2()0f a>,即a 2>4,所以a <-2.故选C另解:依题a≠0,f (x )存在唯一的正零点,等价于3113a x x=-有唯一的正零根,令1t x=,则问题又等价于a =-t 3+3t 有唯一的正零根,即y =a 与y =-t 3+3t 有唯一的交点且交点在在y 轴右侧,记g (t )=-t 3+3t ,g '(t )=-3t 2+3,由g '(t )=0,解得t =±1,在(-∞,-1)与(1,+∞)上,g '(t )<0,g (t )是减函数.在(-1,1)上,g '(t )>0,g (t )是增函数.要使a =-t 3+3t 有唯一的正零根,只要a <g (-1)=-2,故选C 二、填空题13.23 14.A 15.(-∞,8] 16.15013.解:设数学书为1,2,语文书为A ,则所有的排法有(1,2,A),(1,A,2),(2,1, A),(2, A,1),(A,1,2),(A,2,1)共6 种,其中2 本数学书相邻的情况有4 种情况,故所求概率为4263P ==.14.解:∵丙说:三人同去过同一个城市,甲说没去过B 城市,乙说:我没去过C 城市,∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B ,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.本题考查逻辑推理,反证法的思想.15.解:当x<1时,由e x -1≤2可得x ≤1+ln 2,故x<1;当x≥1时,由13x ≤2可得x ≤8,故1≤x ≤8,综上可得x ≤8.16.解:在RtΔABC 中,由条件可得AC =,在ΔMAC 中,∠MAC=45°;由正弦定理可得sin60sin 45AM AC =︒︒,故AM =在直角RtΔMAN 中,MN=AM sin60°=150.三、解答题17.解:(Ⅰ) 解x 2-5x +6=0得的两个根为2,3,依题a 2=2,a 4=3,…2分所以2d =1,故12d =,从而132a =, …4分所以通项公式为a n =a 2+(n -2)d 112n =+ …6分(Ⅱ) 由(Ⅰ)知1222n n n a n ++=,设{}2n na 的前n 项和为S n ,则 2313412...2222n n n n n S +++=++++,① 341213412 (22222)n n n n n S ++++=++++,② …8分①-②得3412131112...242222n n n n n S ++++=++++-123112(1)4422n n n -++=+--所以,1422n n n S ++=- …12分18.解:(Ⅰ)…4分(Ⅱ)质量指标值的样本平均数为 x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 所以平均数估计值为100,…6分 质量指标值的样本方差为 s 2=(-20)2×0.06+(-10)2×0.26+0×0.38+(10)2×0.22+(20)2×0.08=104. 方差的估计值为104. …8分(Ⅲ)依题0.38+0.22+0.08=0.68 < 80%, 所以该企业生产的这种产品不符合“质量指 标值不低于95的产品至少要占全部产品的 80%”的规定. …12分19.(Ⅰ)证明:连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ⊂平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ⊂平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD 3由于AC ⊥AB 1,∴11122OA B C ==,∴2274AD OD OA =+=,由 OH·AD=OD·OA ,可得OH=2114,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217,所以三棱柱ABC-A 1B 1C 1的高高为217. …12分另解(等体积法):∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得BO 3AC ⊥AB 1,∴111OA B C ==,∴AB =1,2,…9分则等腰三角形ABC 的面积为2212271()24-,设点B 1到平面ABC 的距离为d ,由V B 1-ABC =V A-BB 1C 73121,27d ==解得, 所以三棱柱ABC-A 1B 1C 1的高高为217. …12分20.解:(Ⅰ)圆C 可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. …2分 设M (x ,y ),则(,4)CM x y =-,(2,2)MP x y =--,由题知0CM MP =,…4分 故x (2-x )+(y -4)(2-y )=0,整理得(x -1)2+(y -3)2=2, 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2 …6分(Ⅱ)由(Ⅰ)可知M 的轨迹是以点N (1,3)2 为半径的圆.由于|OP |=|OM |22=O 在线段PM 的 垂直平分线上,又P 在圆N 上,从而ON ⊥PM . …8分因为ON 的斜率为3,所以l 的斜率为13-,直线l 的方程为:12(2)3y x -=--,即1833y x =-+, …10分 又|OP |=|OM |22=O 到l 410,410||PM =,所以ΔPOM 的面积为165. …12分另解:因为|OP |=|OM |22=P ,M 也在圆x 2+y 2=8上,点P ,M 也在圆(x -1)2+(y -3)2=2,…8分 两式相减可得公共弦方程2x +6y -16=0,即1833y x =-+,就是线l 的方程. …10分21.解:(Ⅰ) ()(1)af x a x b x'=+--(x >0),依题f '(1)=0,解得b =1, …3分(Ⅱ)由(Ⅰ)知f (x )= a ln x+212a x --x ,2(1)(1)[(1)]()a x x a x a x a f x x x--+---'==,因为a ≠1,所以f '(x )=0有两根:x =1或1ax a=-. …4分(1)若12a ≤,则11aa≤-,在(1,+∞)上,f '(x )>0,f (x )单调递增.所以存在x 0≥1,使得f (x 0)<1a a -,的充要条件为(1)1a f a ≤-,即1121a aa--<-, 解得2121a -<<. …6分(2)若112a <<,则11a a >-,在 (1,1a a -)上,f '(x ) <0 , f (x )单调递减, 在(,1aa+∞-)时,f '(x )>0,f (x )单调递增. 所以存在x 0≥1,使得f (x 0)<1a a -,的充要条件为()11a af a a≤--, 而()2()ln 112111a a a a a f a a a a a a=++>-----,所以不合题意. …9分(3) 若a >1,则11(1)1221a a af a ---=-=<-.存在x 0≥1,符合条件.…11分 综上,a 的取值范围为:(21,21)(1,)---⋃+∞. …12分22.证明:(Ⅰ)由题设得,A ,B ,C ,D 四点共圆,所以,D CBE ∠=∠又CB CE =,CBE E ∴∠=∠,所以D E ∠=∠ (Ⅱ)设BC 的中点为N ,连结MN ,如图所示,则 由MC MB =知BC MN ⊥,所以,O 在MN 上,又AD不是⊙O 的直径,M 为AD 的中点,故AD OM ⊥,即AD MN ⊥,所以BC AD //,故D A ∠=∠,由(Ⅰ)D E ∠=∠,所以△ADE 为等边三角形. 23.解:(Ⅰ)C:⎩⎨⎧==θθsin 3cos 2y x l :062=-+y x(Ⅱ)P 到直线l 的距离为|6sin 3cos 4|55-+=θθd |6sin 3cos 4|55230sin ||0-+==θθd PA ,从而||PA 的最大值为5522,最小值为552 24.解:(I )由112ab a b ab=+≥,得2ab ≥,且当2a b ==时取等号. 故33a b +33242a b ≥≥,且当2a b ==时取等号.所以33a b +的最小值为42. ……5分(II )由(I )知,232643a b ab +≥≥.由于436>,从而不存在,a b ,使得236a b +=.……10分N。
2014年南开大学自主招生选拔考试文科数学试题
2014年南开大学自主招生选拔考试文科数学试题一、填空题1. 已知5101024ab==,则11a b-的值为__________. 【答案】110-【解析】由5101024ab==得510l o g 1024l o g 1024a b ==,, 所以1024102411log 5log 10a b ==,, 所以10110241024102421111log 5log 10log log 2210a b --=-===-.2. 已知点A (1,0),点B 为圆222014x y +=上的任意一点,设AB 的中垂线l 与OB 的交点为C ,则点C 的轨迹方程为__________.【答案】221442120142013x y ⎛⎫- ⎪⎝⎭+=3. 已知可行域03434x x y x y ≥⎧⎪+≤⎨⎪+≥⎩,,,若直线43y kx =+将可行域所表示的图形的面积平分,则k 的值为__________. 【答案】734. 用24个点将一个圆24等分,任意选择其中的三点,则可以组成_______个不同的直角三角形. 【答案】264【解析】1222264⨯=(个). 5. 已知函数ππsin sin 2cos 66y x x x a ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭的最小值是1,则a 的值为__________.【答案】17+ 【解析】πππsin sin 2cos 2sin cos 2cos 666y x x x a x x a ⎛⎫⎛⎫=++-++=++ ⎪ ⎪⎝⎭⎝⎭ 223sin 2cos (3)2sin()7sin()x x a x a x a ϕϕ=++=+++=++,根据题意得71a -+=,解得17a =+.6. 002220142014201420142014C 2C 2C 2________.⋅+⋅+⋅⋅⋅+⋅= 【答案】2014312+【解析】由20140011223320132013201420142014201420142014(1+)=C C C C C +C x x x x x x x ⋅+⋅+⋅+⋅+⋅⋅⋅+⋅⋅, 令2x =,得2014011223320132013201420142014201420142014(1+2)=C 2C 2C 2C 2C 2+C 2⋅+⋅+⋅+⋅+⋅⋅⋅+⋅⋅, 令2x =-,得2014011223320132013201420142014201420142014(12)=C 2C 2C 2C 2C 2+C 2-⋅-⋅+⋅-⋅+⋅⋅⋅-⋅⋅, 以上两式相加得20140222014201420142014201431C 2C2C22+⋅+⋅+⋅⋅⋅+⋅=.7. 已知圆上A 、B 、C 、D 四点依次排列,AB=BC =3,CD =4,DA =8,则该圆的半径为________. 【答案】320510【解析】连接AC ,设180ADC ABC αα∠=∠=-,则,利用余弦定理得222222c o s (180)2c o sA C AB BC A B B CD C D A D C D A αα=+-⋅⋅-=+-⋅⋅ ,由此解得cos sin AC αα和,,再利用正弦定理解得圆的半径为32052sin 10AC α=.8. 若2313x x a a +--≤-对任意x ∈R 恒成立,则a 的取值范围是______________. 【答案】41a a ≥≤-或 二、解答题9. 已知四棱锥P ABCD -,,AB AD ⊥,CD AD ⊥,PA ABCD ⊥平面2P A A D C D A B ===,点M 为PC 的中点.(1)求证:BM PAD ∥平面;(2)在平面PAD 上找一点N ,使得MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦.解:(1)取PD 的中点E ,连接ME AE ,.因为点M 为PC 的中点,点E 为PD 的中点,所以1//2ME CD . 因为,AB AD ⊥,CD AD ⊥2CD AB =,所以1//2AB CD ,所以//AB ME , 所以四边形ABME 是平行四边形,所以//BM AE ,所以BM PAD ∥平面. (2)取AE 的中点N ,连接MN BE ,,MN BE 与交于点F . 设22PA AD CD AB ====.因为,PA ABCD ⊥平面所以PA AB ⊥.又因为,AB AD ⊥所以,AB PAD ⊥平面 所以,AB AE ⊥所以平行四边形ABME 是矩形. 在等腰直角三角形PAD 中,点E 为PD 的中点, 所以1=22AE PD AE PD ⊥=,且,又1ME =, 所以2ME EAEN AB==,又90MEN EAB ∠=∠= ,所以MEN EAB ∆∆ , 所以EMN AEB ∠=∠,又因为90EMN ENM ∠+∠= ,所以90AEB ENM ∠+∠=,所以90EFN ∠=,即MN EB ⊥.因为,AB PD AE PD ⊥⊥,所以PD ABE ⊥平面,所以PD MN ⊥, 所以MN PBD ⊥平面.(3)直线PC 与平面PBD 所成角即PM 与平面PBD 所成角,连接PF ,由MF PBD F ⊥平面于点,知MPF PM PBD ∠即为与平面所成角,易求得6=33PM MF =,,所以2sin 3MF MPF PM ∠==.10. 已知数列{}11211,1,12n n n na a a a n n +⎛⎫==++ ⎪+⎝⎭, 求证:(1)()22n a n ≥≥;(2)()2e 1n a n ≤≥. 证明:(1)由112111,12n n n a a a n n +⎛⎫==++ ⎪+⎝⎭,得212111=2112a a ⎛⎫=++ ⎪+⎝⎭. 易证0n a >,所以121102n n n na a a n n +-=+>+,即数列{}n a 单调递增, 所以()222n a a n ≥=≥.(2)利用不等式1e (0)x x x +<>进行证明: ①当212e n n a =≤,时,显然成立;②当3n ≥时,11(1)2111111111e(1)2(1)2nn n n n n n n a a n n a n n +-⨯---=++≤++<-⨯-⨯, 111(2)(1)122122111111e(2)(1)2(2)(1)2n n n n n n n n a a n n a n n -+-⨯------=++≤++<-⨯--⨯-, ……31132322322111111e232232a a a +⨯=++≤++<⨯⨯, 11212211111111e122122a a a +⨯=++=++<⨯⨯, 将以上各式相乘得311111111112223(2)(1)(1)222e n nn n n n n a -++++⋅⋅⋅++++⨯⨯-⨯--⨯<3131111111111111111111111223(2)(1)(1)222212232112222=e en n n n n n n n n n n n --++⋅⋅⋅+++++⋅⋅⋅++-+-+⋅⋅⋅+-+-+++⋅⋅⋅++⨯⨯-⨯--⨯---=331111111111111112222222224=ee ee n nn -⎛⎫++÷--+++⋅⋅⋅++++ ⎪⎝⎭<=<.综上得原不等式成立.。
2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.79.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.7【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【考点】JE:直线和圆的方程的应用.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+sinφcosx﹣2sinφcosx=sinxc osφ﹣sinφcosx=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)= 3.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.【考点】8H:数列递推式.【专题】11:计算题.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.=,a8=2,【解答】解:由题意得,a n+1令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【考点】HP:正弦定理;HR:余弦定理.【专题】56:三角函数的求值.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC 的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB 角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)
2014年全国高考新课标1卷文科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |—1<x <3},N ={x |—2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(—2,3) 2.若tan α>0,则( )A .sin α〉0B .cos α>0C .sin2α〉0D .cos2α〉03.设i iz ++=11,则|z |=( )A .21B .22C .23D .24.已知双曲线)0(13222>=-a y a x 的离心率为2,则a=( ) A .2 B .26 C .25D .15.设函数f (x ),g (x )的定义域为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数6. 设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+FC EB ( )A .ADB .AD 21C .BC 21D .BC7.在函数① y=cos |2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱9.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .811.设x,y满足约束条件,1,x y ax y+≥⎧⎨-≤-⎩且z=x+ay的最小值为7,则a=()A.—5 B.3 C.-5或3 D.5或—312.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞, —1)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14.甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________。
2014年高考文科数学天津卷
7i 3 4i
B. 1 i C.
13.已知菱形 ABCD 的边长为 2, BAD 120 ,点 E , F 分别在边 BC , DC 上, BC 3BE , . DC DF .若 AE AF 1 ,则 的值为 2 | x 5 x 4 |, x≤0, 14.已知函数 f ( x) 若函数 y f ( x) a | x | 恰有 4 个零点,则实数 a 的 x>0, 2 | x 2 |, 取值范围为 .
m3 .
.
上
--------------------
个焦点在直线 l 上,则双曲线的方程为 x2 y 2 x2 y 2 A. B. 1 1 20 5 5 20
11.阅读下边的框图,运行相应的程序,输出 S 的值为
7.如图, △ABC 是圆的内接三角形, BAC 的平分线交圆于点 D ,交
三、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分 13 分) 某校夏令营有 3 名男同学 A , B , C 和 3 名女同学 X , Y , Z ,其年级情况如下表:
一年级 男同学 女同学 A X 二年级 B Y 三年级 C Z
俯视图
2 4 2 4
卷
-------------------准考证号_____________
1 2
D.
1 2
正视图
侧视图
第Ⅰ卷
注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮 擦干净后,再选涂其他答案标号. 2.本卷共 8 小题,每小题 5 分,共 40 分. 参考公式:
无
--------------------
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南开大学
2014级大学文科数学统考试卷 (A 卷) 2015年1月19日
一、填空题(每小题3分,共36分)
1.23+5lim 4--x x x →= .
2.3+)3+(lim x x x
x ∞→= . 3.已知)1+ln(=x y ,则=|′′0=x y . 4.函数x x y -3=在区间]2,0[上的最小值为 .
5.已知曲线2+=2-x x y 在M 点处切线的斜率为3,则M 点坐标为 .
6.设⎰+=C x dx x f 2
)(, 则⎰=dx x x f )(2 . 7.= .
8.由5+4=2x x y -,x 轴,y 轴及x =1围成平面图形的面积= .
9.微分方程22
11=x
y dx dy --的通解为 . 10.设行列式333231
2322
21131211
1=a a a a a a a a a D ,3231333122212321121113112+2+2+2=a a a a a a a a a a a a D ,且m D =1,则=2D . 11. 已知0=412
111
12
x x ,则=x .
12. 设矩阵⎪⎪⎭⎫ ⎝⎛=1101A ,⎪⎪⎭
⎫ ⎝⎛=01-11B ,则=+-1)(A B A . 二、计算题:(每小题8分,共56分)
1.计算)sin 1)+1ln(1(lim 0x
x x -→. 2.设函数⎪⎪⎩⎪⎪⎨⎧>-=<+=0
sin 01
0)(x b x x a x x b e x f ax ,在0=x 点处的连续,求a , b 的值. 3. 求函数234x
x y +=的单调区间及极值.
4. 求不定积分xdx x arcsin 12⎰-.
5.计算.
6. 设,001013101⎪⎪⎪⎭⎫ ⎝⎛=A ,152130241⎪⎪⎪⎭
⎫ ⎝⎛--=B 求解矩阵方程B AX =.
7. 解齐次线性方程组:⎪⎩⎪⎨⎧=++-=++-=++-011178402463035424321
43214321x x x x x x x x x x x x .
三、解答题(每小题4分,共8分) 1. 求不定积分dx x
x ⎰sin cos . 用分部积分法⎰⎰⎰-⋅==x
xd x x x d x dx x x sin 1sin sin 1sin sin sin 1sin cos dx x x dx x
x x ⎰⎰+=--=sin cos 1)sin cos (sin 12 移项得到0=1. 运算的结果显然是错误的,简单分析产生错误的原因。
2. 设)(x f 在1=x 处连续,且21
)(lim 1=-→x x f x ,求)1(f '.。