高中物理奥赛复赛专项训练(全12套)每日两题
2024物理竞赛复赛试题
选择题一质点做简谐运动,下列说法中正确的是:A. 质点通过平衡位置时,速度最大B. 质点通过平衡位置时,加速度最大(正确答案)C. 质点离平衡位置越远,机械能越大D. 质点离平衡位置越远,振动频率越大关于光的本性,下列说法中正确的是:A. 光的波粒二象性是指光既具有波动性,又具有粒子性(正确答案)B. 光的波粒二象性是指光就是波和粒子的结合体C. 光的干涉和衍射现象说明光是横波D. 光电效应现象说明光是纵波在电磁感应现象中,下列说法正确的是:A. 感应电流的磁场总是阻碍原磁通量的变化B. 感应电流的磁场总是与原磁场方向相反C. 感应电动势的大小跟线圈的匝数成正比(正确答案)D. 感应电动势的大小跟穿过线圈的磁通量变化率无关在相对论中,下列说法正确的是:A. 高速运动的物体,其长度会沿运动方向收缩(正确答案)B. 高速运动的物体,其质量会随速度的增加而减小C. 时间的流逝是绝对的,与观察者的运动状态无关D. 光速在不同惯性参考系中是不同的关于热力学定律,下列说法正确的是:A. 热量不能自发地从低温物体传到高温物体B. 一定质量的理想气体,如果压强不变,体积增大,那么它一定从外界吸热(正确答案)C. 物体的内能与物体的速度有关D. 第二类永动机违反了能量守恒定律在量子物理中,下列说法正确的是:A. 电子的波动性是其固有的属性,与观察方式无关(正确答案)B. 电子的轨道半径是确定的,可以精确测量C. 氢原子的能级是连续的D. 光电效应中,光电子的最大初动能与入射光的频率无关关于电磁场和电磁波,下列说法正确的是:A. 变化的电场一定产生变化的磁场B. 均匀变化的电场产生恒定的磁场(正确答案)C. 电磁波在真空中不能传播D. 电磁波在介质中的传播速度比在真空中大在力学中,关于牛顿运动定律的应用,下列说法正确的是:A. 跳绳时,绳对人的拉力大于人对绳的拉力B. 物体所受的合外力不为零时,其速度一定不为零C. 物体所受的合外力方向改变,其加速度方向一定改变(正确答案)D. 物体所受的合外力大小不变,其加速度大小一定不变(忽略物体质量变化)。
2023年全国中学生物理竞赛复赛试题参考解答
全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。
所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。
以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。
同理可求得 max 62l R =(5)评分标准: 本题15分。
式(1)、(2)各4分, 式(4)2分, 式(5)5分。
二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。
设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。
高中物理奥林匹克竞赛试题
高中物理奥林匹克竞赛试题
一、单项选择题:
1. 下列运动中,满足符合力学第二定律“力等于质量乘以加速度”的是()
A. 抛体运动
B. 弹簧的压缩
C. 自由落体
D. 水平下抛体
2. 以下哪一种要素是正确的:()
A. T型锁里的L型插杆的长度
B. 计算机的处理速度
C. 钢棒的弹性模量
D. 小车的最大速度
3. 绝热过程中,容积V,温度T关系为()
A. V不变,T不变
B. V不变,T升高
C. V增大,T不变
D. V增大,T升高
4. 下列物理学术语中,错误的是()
A. 功率:功/时
B. 电流:电位变化/时
C. 劲度:力/时
D. 速度:距离/时
二、多项选择题:
1. 关于光电效应,以下说法哪些正确()
A. 光电效应可以产生电流
B. 光电效应是物体受到光照射后发生电磁波变化
C. 光电效应可用于探测物体的运动
D. 光电效应是原子核发射粒子时产生的现象
2. 有关烧结温度的制定,以下说法哪些正确()
A. 烧结温度是晶体结构稳定的最低温度
B. 烧结温度较高,则晶粒较大
C. 烧结温度较高,则相的凝固程度较高
D. 烧结温度较低,则晶粒较大
3. 关于电磁波的性质,以下哪些说法正确()
A. 电磁波的双稳态传播速度与光的传播速度相同
B. 电磁波可以反射和折射
C. 电磁波可以向物体传输能量
D. 电磁波不能靠固体传播。
物理竞赛复赛试题及答案
物理竞赛复赛试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是()A. 299,792,458 m/sB. 299,792,458 km/hC. 299,792,458 km/sD. 299,792,458 m/h2. 根据牛顿第三定律,作用力和反作用力的大小()A. 相等B. 不相等C. 相等但方向相反D. 相等且方向相同3. 一个物体的动能与其速度的关系是()A. 正比B. 反比C. 无关D. 正比且平方关系4. 电场中某点的电势与该点到参考点的电势差成正比()A. 正确B. 错误二、填空题(每题5分,共20分)1. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成______。
2. 一个物体从静止开始做匀加速直线运动,其加速度为a,经过时间t后,其速度为______。
3. 根据欧姆定律,电阻R、电流I和电压V之间的关系是V = ______。
4. 光的折射定律表明,入射角和折射角的正弦值之比等于两种介质的折射率之比,即sinθ1/sinθ2 = ______。
三、计算题(每题10分,共40分)1. 一辆汽车以20 m/s的速度行驶,突然刹车,刹车时的加速度为-5m/s²。
求汽车完全停止所需的时间。
2. 一个质量为2 kg的物体从10 m的高度自由落体,忽略空气阻力,求物体落地时的速度。
3. 一个电路中包含一个5 Ω的电阻和一个9 V的电池,求电路中的电流。
4. 一个光波的波长为600 nm,求其频率。
四、实验题(每题20分,共20分)1. 描述如何使用弹簧秤测量物体的重力,并解释实验原理。
答案:一、选择题1. A2. A3. D4. B二、填空题1. 反比2. at3. IR4. n1/n2三、计算题1. 4 s2. √(2gh) = √(2*9.8*10) m/s ≈ 14.1 m/s3. I = V/R = 9/5 A = 1.8 A4. f = c/λ = (299,792,458)/(600*10^-9) Hz ≈ 5*10^14 Hz四、实验题1. 将物体挂在弹簧秤的挂钩上,读取弹簧秤的示数即为物体的重力。
高中物理竞赛复赛试题
高中物理竞赛复赛试题高中物理竞赛复赛试题一、选择题1.以下哪个量是标量?A. 力B. 速度C. 位移D. 加速度2.在磁感强度相同的情况下,以下哪个铁块的磁化强度较大?A. 长铁棒B. 短铁棒C. 宽铁棒D. 薄铁片3.在电阻不变的情况下,以下哪种焦耳热损失最小?A. 电流强度最大的电路B. 电压最大的电路C. 电流最小的电路D. 电压最小的电路4.以下哪个物理量与表面积成反比?A. 电容量B. 当量C. 电荷数D. 电势差二、填空题1.物体在水中呈现浮力现象,是因为它比水的密度_________。
2.光的传播速度是_________,声音的传播速度是_________。
3._________定律描述了电导和电阻之间的关系。
4.如果两个电荷量正好相等但同性,则相互之间的作用力是_________。
5.当电路中的电器设备连接并工作时,带电粒子的移动方向是_________。
三、简答题1.什么是弹力?举例说明。
2.简述压强的概念,并列举三个常见的单位。
3.什么是电容?如何计算一个电容器的电容?4.简述电路中串联与并联的区别,并说明各自的优缺点。
5.谈谈对质能守恒定律的理解,并举例说明。
四、论述题有人说,“物质世界中没有原子和分子的概念,物理学将会失去意义。
”你认为这种说法正确吗?用你的观点和理由来支持你的回答。
以上是高中物理竞赛复赛的试题,希望参赛者能够认真思考并给出准确的答案。
物理学是一门研究物质和能量以及它们之间相互作用的科学,一直以来都是人类探索自然规律的重要学科。
通过参加竞赛,不仅可以提高对物理学的理论理解和实践能力,还可以培养思考问题、解决问题的能力。
祝愿大家在竞赛中取得好成绩!。
高中物理奥赛试题
高中物理奥赛试题第一题:多项选择题(每小题4分)1. 以下哪个物理现象是微观粒子(如电子、质子等)具有的?A. 干涉B. 折射C. 动量守恒定律D. 显微镜成像2. 下列哪个单位不属于能量的单位?A. 焦耳(J)B. 千瓦时(kWh)C. 电子伏特(eV)D. 牛顿·米(N·m)3. 将同种气体放在不同的容器中,两者的温度相同。
哪个容器中的气体分子的平均自由程更大?A. 直径较大的容器B. 直径较小的容器C. 相同4. 在一个平面镜前放置一束白光。
下列哪个现象不会发生?A. 反射B. 全反射C. 色散D. 折射5. 以下哪个式子是描述牛顿第二定律的?A. F = maB. W = FsC. P = FVD. v = u + at第二题:计算题(每小题10分)1. 一个物体从静止开始沿直线匀加速运动,经过10秒后的速度为20 m/s。
求此物体的加速度。
2. 一个可以自闭合电路由5欧姆的电阻、10V电源和一个电键构成。
按下电键后,电源会持续提供10V的电压。
求电流大小。
3. 一辆火车以20 m/s的速度匀速行驶,在行驶过程中突然刹车。
火车停下来所需的时间为5秒,求火车的加速度和刹车的距离。
4. 一束光在真空中的速度为3.0 × 10^8 m/s。
如果这束光在玻璃中的折射率为1.5,求光在玻璃中的速度。
5. 一个质量为5 kg的物体以10 m/s的速度沿直线运动,受到5 N的恒定力作用,求物体在2秒后的速度。
第三题:应用题(每小题15分)1. 一个高300米的建筑物上一共有5个大理石球装饰物,每个重量相同。
第一个球位于离地面100米的高度处,第二个球位于第一个球正上方的离地200米的高度处,以此类推。
已知地面上的大气压强为1.0 × 10^5 Pa,问第五个球所受的大气压强是多少?2. 甲乙两辆车从相距200米的起点同时出发,甲以20 m/s的速度匀速行驶,而乙以10 m/s的速度匀速行驶。
2024物理竞赛高中试题
2024物理竞赛高中试题2024年物理竞赛高中试题一、选择题1. 一个物体从静止开始自由下落,其下落距离与时间的关系为:- A. \( s = \frac{1}{2}gt^2 \)- B. \( s = gt \)- C. \( s = gt^2 \)- D. \( s = \frac{1}{2}gt \)2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
若物体的质量为\( m \),作用力为\( F \),则加速度\( a \)的表达式为:- A. \( a = \frac{F}{m} \)- B. \( a = mF \)- C. \( a = \frac{m}{F} \)- D. \( a = \frac{F^2}{m} \)3. 以下哪个是描述电磁波的方程?- A. \( E = mc^2 \)- B. \( F = ma \)- C. \( E = h\nu \)- D. \( U = qV \)二、填空题1. 根据能量守恒定律,一个物体从高度\( h \)自由落下,其势能转化为动能,落地时的动能为\( \frac{1}{2}mv^2 \),其中\( m \)是物体的质量,\( v \)是落地时的速度。
如果物体的质量为2千克,高度为10米,则落地时的速度为_________(结果保留一位小数)。
2. 理想气体状态方程为\( PV = nRT \),其中\( P \)代表压强,\( V \)代表体积,\( n \)代表物质的量,\( R \)是气体常数,\( T \)代表温度。
若将气体从状态1的\( P_1, V_1 \)变到状态2的\( P_2, V_2 \),且变化过程中气体经历等温过程,则\( \frac{V_2}{V_1} \)等于_________。
三、计算题1. 一个质量为0.5千克的物体,从静止开始沿斜面下滑,斜面与水平面的夹角为30度。
如果物体与斜面之间的摩擦系数为0.1,求物体下滑的加速度。
高中物理复赛竞赛试题及答案
全国中学生物理竞赛复赛试题一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y X t X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等. 1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b)八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .第30届全国中学生物理竞赛复赛解答与评分标准一参考解答:x以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v .(4)[(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
第全国高中物理竞赛复赛题试卷及参考解答
额份市来比阳光实验学校本卷共七题,总分值140分.一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一温度下,某种气体通过薄膜渗透时间,过的气体分子数dPSt k N ∆=,其中t 为渗透持续S 为薄膜的面积,d 为薄膜的厚度,P ∆为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测薄膜材料对空气的透气系数的一种装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固于图中C C '处,从而把渗透室分为上下两,上面的容积30cm 00.25=V ,下面连同U 形管左管水面以上的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.翻开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,翻开开关K 3,对渗透室上迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=∆H .过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.〔本中由于薄膜两侧的压强差在过程中不能保持恒,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ∆来代替公式中的P ∆.普适气体常量R = 1Jmol -1K -1,1.00atm = 1.013×105Pa 〕.二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测太空中某星体与地心在某时刻的距离.〔最后结果要求用测得量和地球半径R 表示〕 三、(15分)子在相对自身静止的惯性参考系中的平均寿命v =s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反产生一批子,以0.99c 的速度〔c 为真空中的光速〕向下运动并衰变.根据放射性衰变律,相对给惯性参考系,假设t = 0时刻的粒子数为N (0), t 时刻剩余的的粒子数为N (t ),那么有()()τt N t N -=e 0,式中为相对该惯性系粒子平均寿命.假设能到达地面的子数为原来的5%,试估算子产生处相对于地面的高度h .不考虑重力和地磁场对子运动的影响.四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和用.为了解决这个问题,需要根据具体用的要求,对光束进行必需的变换〔或称整形〕.如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其根本原理可通过如下所述的简化了的情况来说明.第21届生物理竞赛复赛题试卷K 3K 2P 1 V 1CC ΄P 0 V 0K 1如图,S 1、S 2、S 3 是距离〔h 〕地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为束.请使=arctan ()41的圆锥形光用三个完全相同的、焦距为f = 0h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能投射到这个组合透镜上,且经透镜折射后的光线能会聚于z 轴〔以S 2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线〕上距离S 2为 L = 12.0 h 处的P 点.〔加工时可对透镜进行外形的改变,但不能改变透镜焦距.〕 1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜如何加工和组装,并求出有关数据.五、(20分)如下图,接地的空心导体球壳内半径为R ,在空腔内一直径上的P 1和P 2处,放置电量分别为q 1和q 2的点电荷,q 1=q 2=q ,两点电荷到球心的距离均为a .由静电感与静电屏蔽可知:导体空腔内外表将出现感电荷分布,感电荷电量于-2q .空腔内部的电场是由q 1、q 2和两者在空腔内外表上的感电荷共同产生的.由于我们尚不知道这些感电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感电荷对腔内电场的奉献,可用假想的位于腔外的〔效〕点电荷来代替〔在此题中假想(效)点电荷为两个〕,只要假想的〔效〕点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,由q 1在原空腔内外表的感电荷的假想〔效〕点电荷1q '与q 1共同产生的电场在原空腔内外表所在位置处各点的电势皆为0;由q 2在原空腔内外表的感电荷的假想〔效〕点电荷2q '与q 2共同产生的电场在原空腔内外表所在位置处各点的电势皆为0.这样确的假想电荷叫做感电荷的效电荷,而且这样确的效电荷是唯一的.效电荷取代感电荷后,可用效电荷1q '、2q '和q 1、q 2来计算原来导体存在时空腔内部任意点的电势或场强.1.试根据上述条件,确假想效电荷1q '、2q '的位置及电量. 2.求空腔内部任意点A 的电势U A .A 点到球心O 的距离为r ,OA 与1OP 的夹角为.六、(20分)如下图,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上〔图中纸面〕,A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式〞的〔不能对小球产生垂直于杆方向的作用力〕.杆AB 与BC 的夹角为 ,</2.DE 为固在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.七、〔25分〕如下图,有二平行金属导轨,相距l ,位于同一水ABCπ-αDxO yv 0c a bydLS 1 3αα2 h h zrP 2P 1 θRaa平面内〔图中纸面〕,处在磁感强度为B 的匀强磁场中,磁场方向竖直向下〔垂直纸面向里〕.质量均为m 的两金属杆ab 和cd 放在导轨上,与导轨垂直.初始时刻, 金属杆ab 和cd 分别位于x = x 0和x = 0处.假设导轨及金属杆的电阻都为零,由两金属杆与导轨构成的回路的自感系数为L .今对金属杆ab 施以沿导轨向右的瞬时冲量,使它获得初速0v .设导轨足够长,0x 也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距0x ,因而可以认为在杆运动过程中由两金属杆与导轨构成的回路的自感系数L 是恒不变的.杆与导轨之间摩擦可不计.求任意时刻两杆的位置x ab 和x cd 以及由两杆和导轨构成的回路中的电流i 三者各自随时间t 的变化关系.第21届生物理竞赛复赛题参考解答一、开始时U 形管右管中空气的体积和压强分别为 V 2 = HA 〔1〕p 2= p 1经过2小时,U 形管右管中空气的体积和压强分别为A H H V )(2∆-='〔2〕2222V V p p '='〔3〕渗透室下部连同U 形管左管水面以上气体的总体积和压强分别为HAV V ∆+='11 〔4〕H g p p Δ221ρ+'=〔5〕式中为水的密度,g 为重力加速度.由理想气体状态方程nRT pV =可知,经过2小时,薄膜下部增加的空气的摩尔数RTV p RT V p n 1111-''=∆ 〔6〕在2个小时内,通过薄膜渗透过去的分子数 A nN N ∆=〔7〕式中N A 为阿伏伽德罗常量.渗透室上部空气的摩尔数减少,压强下降.下降了p0V ΔnRTp =∆ 〔8〕经过2小时渗透室上中空气的压强为p p p ∆-='00〔9〕测试过程的平均压强差[])(211010p p ()p p p '-'+-=∆ 〔10〕根据义,由以上各式和有关数据,可求得该薄膜材料在0℃时对空气的透气系数11111s m Pa 104.2---⨯=∆=tSp Nd k 〔11〕评分: 此题20分.(1)、(2)、(3)、(4)、(5)式各1分,(6)式3分,(7)、(8)、(9)、(10) 式各2分,(11) 式4分.二、如图,卫星绕地球运动的轨道为一椭圆,地心位于轨道椭圆的一个焦点O处,设待测量星体位于C 处.根据题意,当一个卫星运动到轨道的近地点A 时,另一个卫星恰好到达远地点B 处,只要位于A 点的卫星用角度测量仪测出AO和AC 的夹角1,位于B 点的卫星用角度测量仪测出BO 和BC 的夹角2,就可以计算出此时星体C 与地心的距离OC .因卫星椭圆轨道长轴的长度远近+r r AB =(1)式中r 近、与r 远分别表示轨道近地点和远地点到地心的距离.由角动量守恒远远近近=r m r v mv (2)式中m 为卫星的质量.由机械能守恒远远近近--r GMm m r GMm m 222121v v = (3) R r 2=近, RGM 43=近v得 R r 6=远(4) 所以R R R AB 862=+=(5)在△ABC 中用正弦理 ()ABBC 211πsin sin ααα--=(6) 所以()AB BC 211sin sin ααα+=(7)地心与星体之间的距离为OC ,在△BOC 中用余弦理2222cos 2αBC r BC r OC ⋅-+=远远(8)由式(4)、(5)、(7)得 ()()212121212sin cos sin 24sin sin 1692ααααααα+-++=R OC (9)评分:此题20分.(1)式2分,(2)、(3)式各3分,(6) 、(8)式各3分, (9) 式6分.三、因子在相对自身静止的惯性系中的平均寿命根据时间膨胀效,在地球上观测到的子平均寿命为,()21c v -=ττ (1)代入数据得= ×10-5s(2) 相对地面,假设子到达地面所需时间为t ,那么在t 时刻剩余的子数为()()τt N t N -=e 0(3)根据题意有()()%5e 0==-τt N t N(4)对上式号两边取e 为底的对数得1005lnτ-=t (5)代入数据得s 1019.45-⨯=t (6)根据题意,可以把子的运动看作匀速直线运动,有t h v =(7)代入数据得 m 1024.14⨯=h(8)评分:此题15分. (1)式或(2)式6分,(4)式或(5)式4分,(7) 式2分,(8) 式3分.四、1.考虑到使3个点光源的3束光分αLS 1 α2h h 1S ' S 3’O 1 O 2(S 2’) O 3M ’u别通过3个透镜都成实像于P 点的要求,组合透镜所在的平面垂直于z 轴,三个光心O 1、O 2、O 3的连线平行于3个光源的连线,O 2位于z 轴上,如图1所示.图中M M '表示组合透镜的平面,1S '、2S '、3S '为三个光束中心光线与该平面的交点. 22O S = u 就是物距.根据透镜成像公式 fu L u111=-+(1)可解得因为要保证经透镜折射后的光线都能会聚于P 点,来自各光源的光线在投射到透镜之前不能交叉,必须有2u tan ≤h 即u ≤2h .在上式中取“-〞号,代入f 和L 的值,算得 h u )236(-=≈57h (2) 此解满足上面的条件.分别作3个点光源与P 点的连线.为使3个点光源都能同时成像于P 点,3个透镜的光心O 1、O 2、O 3分别位于这3条连线上〔如图1〕.由几何关系知,有h h h L u L O O O O 854.0)24121(3221≈+=-==(3)即光心O 1的位置在1S '之下与1S '的距离为h O O h O S 146.02111=-=' (4) 同理,O 3的位置在3S '之上与3S '的距离为0.146h 处.由(3)式可知组合透镜中相邻薄透镜中心之间距离必须于0.854h ,才能使S 1、S 2、S 3都能成像于P 点. 2.现在讨论如何把三个透镜L 1、L 2、L 3加工组装成组合透镜.因为三个透镜的半径r = 0.75h ,将它们的光心分别放置到O 1、O 2、O 3处时,由于21O O =32O O =0.854h <2r ,透镜必然发生相互重叠,必须对透镜进行加工,各切去一,然后再将它们粘起来,才能满足(3)式的要求.由于对称关系,我们只需讨论上半的情况.图2画出了L 1、L 2放在M M '平面内时相互交叠的情况〔纸面为M M '平面〕.图中C 1、C 2表示L 1、L 2的边缘,1S '、2S '为光束中心光线与透镜的交点,W 1、W 2分别为C 1、C 2与O 1O 2的交点.1S '为圆心的圆1和以2S '〔与O 2重合〕为圆心的圆2分别是光源S 1和S 2投射到L 1和L 2时产生的光斑的边缘,其半径均为 h u 439.0tan ==αρ (5) 根据题意,圆1和圆2内的光线必须能进入透镜.首先,圆1的K 点〔见图2〕是否落在L 1上?由几何关系可知()h r h h S O K O 75.0585.0146.0439.0111=<=+='+=ρ (6) 故从S 1发出的光束能进入L 1.为了保证光束能进入透镜组合,对L 1和L 2进行加工时必须保存圆1和圆2内的透镜.下面举出一种对透镜进行加工、组装的方法.在O 1和O 2之间作垂直于O 1O 2且分别与圆1和圆2相切的切线Q Q '和N N '.假设沿位于Q Q '和N N '之间且与它们平行的任意直线T T '对透镜L 1和L 2进行切割,去掉两透镜的弓形,然后把它们沿此线粘合就得到符合所需组合透镜的上半部.同理,对L 2的下半部和L 3进行切割,然后将L 2的下半部和L 3粘合起来,就得到符合需要的整个组合透镜.这个组合透镜可以将S 1、S 2、S 3发出的光线都会聚到P 点.0.146h 0.854h 0.439h0.439h h S 1’O 2 (S 2’)O 1W 1W 2 Q Q ’ N N ’TT ’ C 1 C 2’圆1 圆2图2 xx K现在计算Q Q '和N N '的位置以及对各个透镜切去的大小符合的条件.设透镜L 1被切去沿O 1O 2方向的长度为x 1,透镜L 2被切去沿O 1O 2方向的长度为x 2,如图2所示,那么对任意一条切割线T T ', x 1、x 2之和为h O O r x x d 646.022121=-=+=〔7〕由于T T '必须在Q Q '和N N '之间,从图2可看出,沿Q Q '切割时,x 1达最大值(x 1M ),x 2达最小值(x 2m ),代入r ,和11O S '的值,得h x M 457.01=(8)代入(7)式,得h x d x M m 189.012=-=(9)由图2可看出,沿N N '切割时,x 2达最大值(x 2M ),x 1达最小值(x 1m ), 代入r 和的值,得h x M 311.02= (10)h x d x M m 335.021=-=〔11〕由对称性,对L 3的加工与对L 1相同,对L 2下半部的加工与对上半部的加工相同. 评分:此题20分.第1问10分,其中〔2〕式5分,〔3〕式5分,第2问10分,其中(5)式3分,(6)式3分,(7)式2分,(8)式、(9)式共1分,(10)式、(11)式共1分.如果学生解答中没有(7)—(11)式,但说了“将图2中三个圆锥光束照射到透镜保存,透镜其它可根据需要磨去〔或切割掉〕〞给3分,再说明将加工后的透镜组装成透镜组合时必须保证O 1O 2=O 1O 2=0.854h ,再给1分,即给(7)—(11)式的全分〔4分〕. 五、1.解法Ⅰ:如图1所示,S 为原空腔内外表所在位置,1q '的位置位于1OP 的线上的某点B 1处,2q '的位置位于2OP 的线上的某点B 2处.设A 1为S 面上的任意一点,根据题意有0111111='+B A q kP A q k(1)0212212='+B A q kP A q k (2)怎样才能使 (1) 式成立呢?下面分析图1中11A OP ∆与11B OA ∆的关系.假设效电荷1q '的位置B 1使下式成立,即211R OB OP =⋅ (3) 即 1111OB OA OA OP =(4)那么 1111B OA A OP ∽△△有RaOA OP B A P A ==111111 (5)由 (1)式和 (5)式便可求得效电荷1q '11q aRq -=' (6)由 (3) 式知,效电荷1q '的位置B 1到原球壳中心位置O 的距离aR OB 21=(7)同理,B 2的位置使2112B OA A OP ∽△△,用类似的方法可求得效电荷22q aRq -=' (8)B 2B 1P 2 P 1O Ra a θ图1SA 1效电荷2q '的位置B 2到原球壳中心O 位置的距离 aR OB 22=(9)解法Ⅱ:在图1中,设111r P A =,111r B A '=,d OB =1.根据题意,1q 和1q '两者在A 1点产生的电势和为零.有01111=''+r q k r q k 〔1'〕 式中1221)cos 2(θRa a R r -+= 〔2'〕1221)cos 2(θRd d R r -+=' 〔3'〕 由〔1'〕、〔2'〕、〔3'〕式得)cos 2()cos 2(22212221θθRa a R q Rd d R q -+'=-+ 〔4'〕 〔4'〕式是以θcos 为变量的一次多项式,要使〔4'〕式对任意θ均成立,号两边的相系数相,即)()(22212221a R q d R q +'=+ 〔5'〕a q d q 2121'=〔6'〕由〔5'〕、〔6'〕式得0)(2222=++-aR d R a ad 〔7'〕 解得aR a R a d 2)()(2222-±+=〔8'〕由于效电荷位于空腔外部,由〔8'〕式求得aR d 2=〔9'〕由〔6'〕、〔9'〕式有212221q aR q =' 〔10'〕考虑到〔1'〕式,有11q aRq -=' 〔11'〕 同理可求得aR OB 22=〔12'〕22q aR q -=' 〔13'〕2.A 点的位置如图2所示.A 的电势由q 1、1q '、q 2、2q '共同产生,即 ⎪⎪⎭⎫ ⎝⎛-+-=A B a R A P A B a R A P kq U A 22111111 (10)因22221cos 2⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=a R aR r r A B θ代入 (10) 式得图2⎪⎪⎭⎫++-+++422222cos 2cos 21R raR r a Ra ra r θθ (11)评分:此题20分.第1问18分,解法Ⅰ中(1)、(2)、(6)、(7)、(8)、(9) 式各3分.解法Ⅱ的评分可参考解法Ⅰ. 第2问2分,即(11)式2分.六、令I 表示题述极短时间t 内挡板对C 冲量的大小,因为挡板对C 无摩擦力作用,可知冲量的方向垂直于DE ,如下图;I '表示B 、C 间的杆对B 或C 冲量的大小,其方向沿杆方向,对B 和C 皆为推力;C v 表示t 末了时刻C 沿平行于DE方向速度的大小,B v 表示t 末了时刻B 沿平行于DE 方向速度的大小,⊥B v 表示t 末了时刻B 沿垂直于DE 方向速度的大小.由动量理, 对C 有Cm I v ='αsin (1) v m I I ='-αcos(2)对B 有B m I v ='αsin(3)对AB 有()⊥-='B m I v v 2cos α(4)因为B 、C 之间的杆不能伸、缩,因此B 、C 沿杆的方向的分速度必相.故有αααsin cos sin B B C v v v -=⊥(5)由以上五式,可解得v m I αα22sin 31sin 3++= (6)评分:此题20分. (1)、(2)、(3)、(4)式各2分. (5)式7分,(6)式5分. 七、解法Ⅰ:当金属杆ab 获得沿x 轴正方向的初速v 0时,因切割磁力线而产生感电动势,由两金属杆与导轨构成的回路中会出现感电流.由于回路具有自感系数,感电流的出现,又会在回路中产生自感电动势,自感电动势将阻碍电流的增大,所以,虽然回路的电阻为零,但回路的电流并不会趋向无限大,当回路中一旦有了电流,磁场作用于杆ab 的安培力将使ab 杆减速,作用于cd 杆的安培力使cd 杆运动.设在任意时刻t ,ab 杆和cd 杆的速度分别为v 1和v 2〔相对地面参考系S 〕,当v 1、v 2为正时,表示速度沿x 轴正方向;假设规逆时针方向为回路中电流和电动势的正方向,那么因两杆作切割磁力线的运动而产生的感电动势()21v v -=Bl E(1)当回路中的电流i 随时间的变化率为t i ∆∆时,回路中的自感电动势tiLL ∆∆-=E (2)根据欧姆律,注意到回路没有电阻,有0=+L E E(3)金属杆在导轨上运动过程中,两杆构成的系统受到的水平方向的合外力为零,系统的质心作匀速直线运动.设系统质心的速度为V C ,有 C mV m 20=v(4)得B ACπ-αD20v =C V (5)V C 方向与v 0相同,沿x 轴的正方向.现取一的参考系S ',它与质心固连在一起,并把质心作为坐标原点O ',取坐标轴x O ''与x 轴平行.设相对S '系,金属杆ab 的速度为u ,cd 杆的速度为u ',那么有 u V C +=1v (6)u V C '+=2v(7)因相对S '系,两杆的总动量为零,即有0='+u m mu(8) 由(1)、(2)、(3)、(5)、(6) 、(7) 、(8)各式,得ti LBlu ∆∆=2 (9)在S '系中,在t 时刻,金属杆ab 坐标为x ',在t +t 时刻,它的坐标为x x '∆+',那么由速度的义tx u ∆'∆=(10)代入 (9) 式得i L x Bl ∆='∆2(11)假设将x '视为i 的函数,由〔11〕式知i x ∆'∆为常数,所以x '与i 的关系可用一直线方程表示b i BlLx +='2 (12)式中b 为常数,其值待.现在t =时刻,金属杆ab 在S '系中的坐标x '=021x ,这时i = 0,故得0212x i Bl L x +=' (13)或⎪⎭⎫⎝⎛-'=0212x x L Bl i (14)021x 表示t =时刻金属杆ab 的位置.x '表示在任意时刻t ,杆ab 的位置,故⎪⎭⎫⎝⎛-'021x x 就是杆ab 在t 时刻相对初始位置的位移,用X 表示,021x x X -'= (15)当X >0时,ab 杆位于其初始位置的右侧;当X <0时,ab 杆位于其初始位置的左侧.代入(14)式,得X LBli 2= (16)这时作用于ab 杆的安培力XLl B iBl F 222-=-= (17)ab 杆在初始位置右侧时,安培力的方向指向左侧;ab 杆在初始位置左侧时,安培力的方向指向右侧,可知该安培力具有弹性力的性质.金属杆ab 的运动是简谐振动,振动的周期()Ll B m T 222π2= (18)在任意时刻t , ab 杆离开其初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(19)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得ab 杆的振动速度⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=ϕt TT A u π2sin π2(20)(19)、(20)式分别表示任意时刻ab 杆离开初始位置的位移和运动速度.现在t =0时刻,ab 杆位于初始位置,即X = 0速度故有解这两式,并注意到(18)式得2π3=ϕ(21)22400mLBlT A vv ==π (22)由此得ab 杆的位移t TmL Bl t TmL BlX π2sin 222π3π2cos 2200v v =⎪⎭⎫ ⎝⎛+=〔23〕由 (15) 式可求得ab 杆在S '系中的位置t TmL Blx x π2sin 222100abv +=' (24)因相对质心,任意时刻ab 杆和cd 杆都在质心两侧,到质心的距离相,故在S '系中,cd 杆的位置t TmL Blx x π2sin 222100cdv --='(25) 相对地面参考系S ,质心以021v =C V 的速度向右运动,并注意到〔18〕式,得ab杆在地面参考系中的位置t mL Bl mL Blt x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v (26)cd 杆在S 系中的位置t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔27〕回路中的电流由 (16) 式得t mL Bl L m t T mL BlL Bl i ⎪⎪⎭⎫ ⎝⎛==2sin 2π2sin 22200v v (28)解法Ⅱ:当金属杆在磁场中运动时,因切割磁力线而产生感电动势,回路中出现电流时,两金属杆都要受到安培力的作用,安培力使ab 杆的速度改变,使cd 杆运动.设任意时刻t ,两杆的速度分别为v 1和v 2〔相对地面参考系S 〕,假设规逆时针方向为回路电动势和电流的正方向,那么由两金属杆与导轨构成的回路中,因杆在磁场中运动而出现的感电动势为()21v v -=Bl E(1’)令u 表示ab 杆相对于cd 杆的速度,有Blu L =E(2’)当回路中的电流i 变化时,回路中有自感电动势E L ,其大小与电流的变化率成正比,即有tiLL ∆∆-=E (3’)根据欧姆律,注意到回路没有电阻,有由式(2’)、(3’)两式得tiLBlu ∆∆= (4’)设在t 时刻,金属杆ab 相对于cd 杆的距离为x ',在t +t 时刻,ab 相对于cd 杆的距离为x '+x '∆,那么由速度的义,有tx u ∆'∆=(5’)代入 4' 式得i L x Bl ∆='∆(6’)假设将x '视为i 的函数,由(6’)式可知,i x ∆'∆为常量,所以x '与i 的关系可以用一直线方程表示,即b i BlLx +=' (7’)式中b 为常数,其值待.现在t =时刻,金属杆ab 相对于cd 杆的距离为0x ,这时i = 0,故得 0x i Bl Lx +=' (8’) 或()0x x L Bli -'= (9’)0x 表示t =时刻金属杆ab 相对于cd 杆的位置.x '表示在任意时刻t 时ab杆相对于cd 杆的位置,故()0x x -'就是杆ab 在t 时刻相对于cd 杆的相对位置相对于它们在t =时刻的相对位置的位移,即从t =到t =t 时间内ab 杆相对于cd 杆的位移0x x X -'=(10')于是有X L Bli = (11’)任意时刻t ,ab 杆和cd 杆因受安培力作用而分别有加速度a ab 和a cd ,由牛顿律有 ab ma iBl =- (12’)cd ma iBl =(13’)两式相减并注意到9'式得()XLl B iBl a a m 22cd ab22-=-=- (14’)式中()cd ab a a -为金属杆ab 相对于cd 杆的加速度,而X 是ab 杆相对cd 杆相对位置的位移.Ll B 222是常数,说明这个相对运动是简谐振动,它的振动的周期()Ll B m T 222π2= (15’)在任意时刻t ,ab 杆相对cd 杆相对位置相对它们初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(16’)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得X 随时间的变化率即速度⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ϕT T A V π2sin π2(17’)现在t =0时刻,杆位于初始位置,即X = 0,速度0v =V 故有解这两式,并注意到(15’) 式得由此得t mL Bl mL Bl t TmL BlX ⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=2sin 22π3π2cos 200v v (18’)因t = 0时刻,cd 杆位于x = 0 处,ab 杆位于x = x 0 处,两者的相对位置由x 0表示;设t 时刻,cd 杆位于x = x cd 处,ab 杆位于x = x ab 处,两者的相对位置由x ab -x cd 表示,故两杆的相对位置的位移又可表示为X = x ab -x cd -x 0(19’)所以t mL Bl mL Blx x x ⎪⎪⎭⎫ ⎝⎛+=-2sin 200cd ab v (20’)(12’)和(13’)式相加, 得由此可知,两杆速度之和为一常数即v 0,所以两杆的位置x ab 和x cd 之和为x ab +x cd = x 0+v 0t (21’)由(20’)和(21’)式相加和相减,注意到(15’)式,得 t mL BlmL Bl t x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v 〔22’〕t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔23’〕由(11’)、〔19’〕(22’)、(23’)式得回路中电流t mL Bl L m i ⎪⎪⎭⎫ ⎝⎛=2sin 20v 〔24’〕评分:此题25分.解法Ⅰ 求得(16)式8分,(17)、(18)、(19)三式各2分. (23)式4分,(24)、(25)二式各2分,(26)、(27)、(28)三式各1分.解法Ⅱ的评分可参照解法Ⅰ评分中的相式子给分.。
2021全国高中物理竞赛复赛模拟试题(含详解)
失。
a.假设板平行于 xOy 平面,则驻波沿 z 方向,考虑到所有可能的模式后,计算极板间的总能量 ET 。
(此问仅需写出 ET 的求和表达式)
(10 分)
b.注意到金属在高频下并不是一个良导体,再进一步假设任何指数平滑的高频截止都能产生相同
n
的结果,因此采用指数调节 en e nc 不会造成任何影响。其中 nc 为截止模式数,使得对于与
d.算出稳定平衡下系统的振动角频率 (认为圆盘可光滑地越过 x 0 处,即不考虑碰撞以及速
度的不连续变化所导致的能量损失)(4 分) 2.我们为了获得一个圆盘中心位置不在 处的平衡态,可以考虑让抛物线旋转起来,形成一
个旋转抛物面,并令该抛物面以
a. 写出此时系统的势能V
绕 y 轴旋转
而在固体的内部产生声子。因此,声子从第一个界面传输到第二个界面。由于声子是热载体,当
卡西米尔力将声子通过真空间隙从一个界面(具有模量 声速 c )传输到另一个界面( ,c )
时,如果第二个界面保持在比第一个界面更低的温度,它们就会引起热传递。 在经典情形下的德拜模型中,占据某些区域的固体中的热载流子可以用与位移矢量场
动(可以认为是通过弹性弹簧相互连接)产生了声子振子 m a ,其中 为固体密度, a 为
第 3 页 共 12 页
等效声子振子距离。在这些声子的作用下,一个对象接近另一个对象时,由于与其表面的起伏相
互作用而受到时变的吸引力
F
的作用,由第一部分的两种极限,我们假设
F
C h3
,并有 C
为
某一常量, h 为两界面距离。则对应有真空中 h dF ,因此,第二个界面受到拉力作用,从 dh
与热传递有关的这些影响之一是卡西米尔力,这是由真空间隙隔开的两个中性原子彼此作用 的力。当量子涨落在这些原子中引起波动的电荷密度时,电荷密度然后通过它们的电场相互作用, 就会产生卡西米尔力。将壁虎的脚粘到墙上的力是卡西米尔力宏观体现的一个例子。它是由于在 所有情况下波动的电荷密度之间的相互作用共同产生的。 1.先考虑经典情形下的一个类似问题。(30 分)
高中物理奥林匹克竞赛习题集
高中物理奥林匹克竞赛习题集物理教研室2008年8月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1练习二电场强度(续) 电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习五静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习六静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9练习七电容静电场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习八静电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12练习九恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十磁感应强度毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十一毕奥—萨伐尔定律(续) 磁场的高斯定理┄┄┄┄┄┄┄┄┄┄┄18练习十二安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19练习十三安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十四洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十五磁场中的介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25练习十六静磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27练习十七电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习十八感生电动势自感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31练习十九自感(续)互感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33练习二十麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34练习二十一电磁感应习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36练习二十二狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄38练习二十三相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄40练习二十四热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄41练习二十五光电效应康普顿效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄42练习二十六德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄44练习二十七氢原子理论薛定谔方程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄45练习二十八近代物理习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄47部分物理常量1万有引力常量G=6.67×10-11N·m2·kg-2重力加速度g=9.8m/s2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1玻耳兹曼常量k=1.38×10-23J·K-1斯特藩-玻尔兹曼常量σ = 5.67×10-8 W·m-2·K-4 标准大气压1atm=1.013×105Pa真空中光速c=3.00×108m/s 基本电荷e=1.60×10-19C电子静质量m e=9.11×10-31kg质子静质量m n=1.67×10-27kg中子静质量m p=1.67×10-27kg真空介电常量ε0= 8.85×10-12 F/m真空磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J·s维恩常量b=2.897×10-3m·K*部分数学常量1n2=0.693 1n3=1.0991说明:字母为黑体者表示矢量练习一 库仑定律 电场强度一、选择题1.一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 的一个电量为σd S 的电荷元在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定.2.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? (A) 场强E 的大小与试探电荷q 0的大小成反比;(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0.3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为:(A )i a02πελ. (B) 0.(C)i a04πελ. (D))(40j +i aπελ.4.下列说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向. (B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C) 场强方向可由E = F /q 定出,其中q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确.5.如图1.2所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强的大小为:(A) x q 04πε. (B) 204x q πε. (C)302xqa πε (D)30xqaπε.图1.2+λ-λ∙ (0, a ) xy O图1.12二、填空题1.如图1.3所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离a= .2.如图1.4所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E = ,场强最大值的位置在y = .3.一电偶极子放在场强为E 的匀强电场中,电矩的方向与电场强度方向成角θ.已知作用在电偶极子上的力矩大小为M ,则此电偶极子的电矩大小为 .三、计算题1.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ.求球心处的电场强度.2.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正点荷Q , 试求圆心O 处的电场强度.练习二 电场强度(续) 电通量一、选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小; (B) 电荷电量小,受的电场力可能大;(C) 电场为零的点,任何点电荷在此受的电场力为零; (D) 电荷在某点受的电场力与该点电场方向一致.2. 边长为a 的正方形的四个顶点上放置如图2.1所示的点电荷,则中心O 处场强(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向. (D) 大小为()2022aq πε, 方向沿y 轴负向.3. 试验电荷q 0在电场中受力为f ,得电场强度的大小为E=f/q 0,则以下说法正确的是(A) E 正比于f ; (B) E 反比于q 0;(C) E 正比于f 反比于 q 0;(D) 电场强度E 是由产生电场的电荷所决定,与试验电荷q 0的大小及其受力f 无关.d图1.3图1.4 图2.134. 在电场强度为E 的匀强电场中,有一如图2.2所示的三棱柱,取表面的法线向外,设过面AA 'CO ,面B 'BOC ,面ABB 'A '的电通量为Φ1,Φ2,Φ3,则(A) Φ1=0, Φ2=Ebc , Φ3=-Ebc . (B) Φ1=-Eac , Φ2=0, Φ3=Eac .(C) Φ1=-Eac , Φ2=-Ec 22b a +, Φ3=-Ebc .(D) Φ1=Eac , Φ2=Ec 22b a +, Φ3=Ebc .5. 两个带电体Q 1,Q 2,其几何中心相距R , Q 1受Q 2的电场力F 应如下计算(A) 把Q 1分成无数个微小电荷元d q ,先用积分法得出Q 2在d q 处产生的电场强度E 的表达式,求出d q 受的电场力d F =E d q ,再把这无数个d q 受的电场力d F 进行矢量叠加从而得出Q 1受Q 2的电场力F =⎰1d Q q E(B) F =Q 1Q 2R /(4πε0R 3).(C) 先采用积分法算出Q 2在Q 1的几何中心处产生的电场强度E 0,则F =Q 1E 0.(D) 把Q 1分成无数微小电荷元d q ,电荷元d q 对Q 2几何中心引的矢径为r , 则Q 1受Q 2的电场力为F =()[]⎰13024d Q r q Q πεr二、填空题1. 电矩为P e 的电偶极子沿x 轴放置, 中心为坐标原点,如图2.3.则点A (x ,0), 点B (0,y )电场强度的矢量表达式为: E A = ,E B = .2. 如图2.4所示真空中有两根无限长带电直线, 每根无限长带电直线左半线密度为λ,右半线密度为-λ,λ为常数.在正负电荷交界处距两直线均为a 的O 点.的电场强度为E x = ;E y = .3. 设想将1克单原子氢中的所有电子放在地球的南极,所有质子放在地球的北极,则它们之间的库仑吸引力为 N .三、计算题1. 宽为a 的无限长带电薄平板,电荷线密度为λ,取中心线为z 轴, x 轴与带电薄平板在同一平面内, y 轴垂直带电薄平板. 如图2.5. 求y 轴上距带电薄平板为b 的一点P 的电场强度的大小和方向. 2. 一无限长带电直线,电荷线密度为λ,傍边有长为a , 宽为b 的一矩形平面, 矩形平面中心线与带电直线组成的平面垂直于矩形平面,带电直线与矩形平面的距离为c ,如图2.6. 求通过矩形平面电通量的大小.图2.3图2.4λ图2.6图2.5 图2.24练习三 高斯定理一、选择题1. 如图3.1所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E .(B) πR 2E /2 . (C) 2πR 2E . (D) 0 . 2. 关于高斯定理,以下说法正确的是:(A) 高斯定理是普遍适用的,但用它计算电场强度时要求电荷分布具有某种对称性; (B) 高斯定理对非对称性的电场是不正确的;(C) 高斯定理一定可以用于计算电荷分布具有对称性的电场的电场强度; (D) 高斯定理一定不可以用于计算非对称性电荷分布的电场的电场强度.3.有两个点电荷电量都是+q ,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面. 在球面上取两块相等的小面积S 1和S 2,其位置如图3.2所示. 设通过S 1和S 2的电场强度通量分别为Φ1和Φ2,通过整个球面的电场强度通量为Φ,则 (A) Φ1 >Φ2 , Φ = q /ε0 . (B) Φ1 <Φ2 , Φ = 2q /ε0 . (C) Φ1 = Φ2 , Φ = q /ε0 .(D) Φ1 <Φ2 , Φ = q /ε0 .4.图3.3所示为一球对称性静电场的E ~ r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小,r 表示离对称中心的距离) .(A) 点电荷.(B) 半径为R 的均匀带电球体. (C) 半径为R 的均匀带电球面.(D) 内外半径分别为r 和R 的同心均匀带球壳.5. 如图3.4所示,一个带电量为q 的点电荷位于一边长为l 的正方形abcd 的中心线上,q 距正方形l/2,则通过该正方形的电场强度通量大小等于:(A) 02εq . (B) 06εq . (C) 012εq . (D)24εq.图3.3图3.1图 3.2图3.45二、填空题1.如图3.5, 两块“无限大”的带电平行平板,其电荷面密度分别为-σ (σ > 0 )及2σ.试写出各区域的电场强度.Ⅰ区E 的大小 ,方向 . Ⅱ区E 的大小 ,方向 . Ⅲ区E 的大小 ,方向 .2.如图3.6所示, 真空中有两个点电荷, 带电量分别为Q 和-Q , 相距2R ..若以负电荷所在处O 点为中心, 以R 为半径作高斯球面S , 则通过该球面的电场强度通量Φ = ;若以r 0表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为 .3.电荷q 1、q 2、q 3和q 4在真空中的分布如图3.7所示, 其中q 2 是半径为R 的均匀带电球体, S 为闭合曲面,则通过闭合曲面S 的电通量⎰⋅SS E d = ,式中电场强度E 是电荷 产生的.是它们产生电场强度的矢量和还是标量和?答:是 .三、计算题1.真空中有一厚为2a 的无限大带电平板,取垂直平板为x 轴,x 轴与中心平面的交点为坐标原点,带电平板的体电荷分布为ρ=ρ0cos[πx /(2a )],求带电平板内外电场强度的大小和方向.2.半径为R 的无限长圆柱体内有一个半径为a(a<R)的球形空腔,球心到圆柱轴的距离为d (d >a ),该球形空腔无限长圆柱体内均匀分布着电荷体密度为ρ的正电荷,如图3.8所示. 求:(1) 在球形空腔内,球心O 处的电场强度E O .(2) 在柱体内与O 点对称的P 点处的电场强度E P .练习四 静电场的环路定理 电势一、选择题1. 如图4.1所示,半径为R 的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E = 0 , U = Q /4πε0R . (B) E = 0 , U = Q /4πε0r .(C) E = Q /4πε0r 2, U = Q /4πε0r . (D) E = Q /4πε0r 2 , U = Q /4πε0R .2. 如图4.2所示,两个同心的均匀带电球面,内球面半径为R 1,带电量Q 1,外球面半径为R 2,ⅠⅡⅢ-σ 2σ 图3.5图3.6∙ q 1∙ q 3∙ q 4S图3.7q2图3.8图4.16带电量为Q 2.设无穷远处为电势零点,则在两个球面之间,距中心为r 处的P 点的电势为:(A) r Q Q 0214πε+. (B) 20210144R Q R Q πεπε+.(C) 2020144R Q r Q πεπε+. (D)rQ R Q 0210144πεπε+.3. 如图4.3所示,在点电荷+q 的电场中,若取图中M 点为电势零点,则P 点的电势为(A) q / 4πε0a . (B) q / 8πε0a . (C) -q / 4πε0a . (D) -q /8πε0a .4. 一电量为q 的点电荷位于圆心O 处 ,A 是圆内一点,B 、C 、D 为同一圆周上的三点,如图4.4所示. 现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大. (B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大. (D) 从A 到各点,电场力作功相等.5. 如图4.5所示,CDEF 为一矩形,边长分别为l 和2l ,在DC 延长线上CA =l 处的A 点有点电荷+q ,在CF 的中点B 点有点电荷-q ,若使单位正电荷从C 点沿CDEF 路径运动到F点,则电场力所作的功等于:(A) 515420-⋅l q πε. (B) 55140-⋅l q πε. (C) 31340-⋅l q πε. (D) 51540-⋅l q πε.二、填空题1.电量分别为q 1, q 2, q 3的三个点电荷位于一圆的直径上, 两个在圆周上,一个在圆心.如图4.6所示. 设无穷远处为电势零点,圆半径为R ,则b 点处的电势U = .2.如图4.7所示,在场强为E 的均匀电场中,A 、B 两点q 3图4.2M +q 图4.3-q ll l l +q A BC DE F ∙ ∙ 图4.5B 图4.4图4.77图4.9间距离为d ,AB 连线方向与E 的夹角为α. 从A 点经任意路径 到B 点的场强线积分l E d ⎰⋅AB= .3.如图4.8所示, BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为-q 的点电荷,O 点有一电量为+q 的点 电荷. 线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道 BCD 移到D 点,则电场力所作的功为 .三、计算题1.如图4.9所示,一个均匀带电的球层,其电量为Q ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点(r <R 1)的电势.2.已知电荷线密度为λ的无限长均匀带电直线附近的电场强度为E=λ/(2πε0r ).(1)求在r 1、r 2两点间的电势差21r r U U -;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电直线附近的电势能否这样取?试说明之.练习五 静电场中的导体一、选择题1.在均匀电场中各点,下列诸物理量中:(1)电场强度;(2)电势;(3)电势梯度.相等的物理量是?(A) (1) (3); (B) (1) (2); (C) (2) (3); (D) (1) (2) (3).2. 一“无限大”带负电荷的平面,若设平面所在处为电势零点, 取x 轴垂直带电平面,原点在带电平面处,则其周围空间各点电势U 随坐标x 的关系曲线为(A)(B)(C)(D)图5.1R -q +q ABCDO ∙ ∙ 图4.88p图5.4B(A)(B)(C)(D)图5.3U U A BC 3.在如图5.2所示的圆周上,有N 个电量均为q 的点电荷,以两种方式分布,一种是无规则地分布,另一种是均匀分布,比较这两种情况下过圆心O 并垂直于圆平面的z 轴上一点的场强与电势,则有:(A) 场强相等,电势相等; (B) 场强不等,电势不等; (C) 场强分量E z 相等,电势相等; (D) 场强分量E z 相等,电势不等.4.一个带正电荷的质点,在电场力作用下从A 点出发,经C 点运动到B 点,其运动轨迹如图5.3所示,已知质点运动的速率是递减的,下面关于C 点场强方向的四个图示中正确的是:5.一个带有负电荷的均匀带电球体外,放置一电偶极子,其电矩的方向如图5.4所示.当电偶极子被释放后,该电偶极子将(A) 沿逆时针方向旋转至电矩p 指向球面而停止.(B) 沿逆时针方向旋转至p 指向球面,同时沿电力线方向向着球面移动.(C) 沿逆时针方向旋转至p 指向球面,同时逆电力线方向远离球面移动.(D) 沿顺时针方向旋转至p 沿径向朝外,同时沿电力线方向向着球面移动. 二、填空题1. 一平行板电容器,极板面积为S ,相距为d . 若B 板接地,且保持A 板的电势U A = U 0不变,如图5.5所示. 把一块面积相同的带电量为Q 的导体薄板C 平行地插入两板之间,则导体薄板C 的电势U C = .2. 任意带电体在导体体内(不是空腔导体的腔内) (填会或不会)产生电场,处于静电平衡下的导体,空间所有电荷(含感应电荷)在导体体内产生电场的 (填矢量和标量)叠加为零.3. 处于静电平衡下的导体 (填是或不是)等势体,导体表面 (填是或不是)等势面, 导体表面附近的电场线与导体表面相互 ,导体体内的电势 (填大于,等于或小于) 导体表面的电势.图5.29三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.2.如图5.6,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .练习六 静电场中的电介质一、选择题1. A 、B 是两块不带电的导体,放在一带正电导体的电场中,如图6.1所示.设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则:(A) U B > U A ≠ 0 . (B) U B < U A = 0 . (C) U B = U A . (D) U B < U A .2. 半径分别为R 和r 的两个金属球,相距很远. 用一根长导线将两球连接,并使它们带电.在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr 为:(A) R /r . (B) R 2/r 2. (C) r 2/R 2. (D) r /R .3. 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图6.2所示.已知A 上的电荷面密度为σ,则在导体板B 的两个表面1和2上的感应电荷面密度为:(A) σ1 = -σ , σ2 = +σ.(B) σ1 = -σ/2 , σ2 = +σ/2.(C) σ1 = -σ , σ2 = 0.(D) σ1 = -σ/2 , σ2 = -σ /2.4. 欲测带正电荷大导体附近P 点处的电场强度,将一带电量为q 0 (q 0 >0)的点电荷放在P 点,如图6.3所示. 测得它所受的电场力为F . 若电量不是足够小.则 (A) F /q 0比P 点处场强的数值小. (B) F /q 0比P 点处场强的数值大.(C) F /q 0与P 点处场强的数值相等.(D) F /q 0与P 点处场强的数值关系无法确定.A +σ 图6.2∙ P q 0-Q图5.610(1)(2)图6.55. 三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面两板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图6.4所示.则比值σ1/σ2为(A) d 1/d 2 . (B) 1. (C) d 2/d 1. (D) d 22/d 12.二、填空题1. 分子中正负电荷的中心重合的分子称 分子,正负电荷的中心不重合的分子称 分子.2. 在静电场中极性分子的极化是分子固有电矩受外电场力矩作用而沿外场方向 而产生的,称 极化.非极性分子极化是分子中电荷受外电场力使正负电荷中心发生 从而产生附加磁矩(感应磁矩),称 极化.3. 如图6.5,面积均为S 的两金属平板A ,B 平行对称放置,间距远小于金属平板的长和宽,今给A 板带电Q ,(1) B 板不接地时,B 板内侧的感应电荷的面密度为 ; (2) B 板接地时,B 板内侧的感应电荷的面密度为 .三、计算题1. 如图6.6所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1=3.54×10-9C, Q 2=1.77×10-9C.忽略边缘效应,求:(1) 两板共四个表面的面电荷密度 σ1, σ2, σ3, σ4;(2) 两板间的电势差V =U A -U B .四、证明题1. 如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.图6.4Q 图6.62σ 2 σ 4练习七电容静电场的能量一、选择题1. 一孤立金属球,带有电量1.2⨯10-8C,当电场强度的大小为3⨯106V/m时,空气将被击穿. 若要空气不被击穿,则金属球的半径至少大于(A) 3.6⨯10-2m .(B) 6.0⨯10-6m .(C) 3.6⨯10-5m .(D) 6.0⨯10-3m .2. 关于静电场中的电位移线,下列说法中,哪一种是正确的?(A) 起自正电荷,止于负电荷,不形成闭合线,不中断;(B) 任何两条电位移线互相平行;(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交;(D) 电位移线只出现在有电介质的空间.3. 一导体球外充满相对电容率为εr的均匀电介质,若测得导体表面附近场强为E,则导体球面上的自由电荷面密度σ为:(A) ε0E .(B) ε0εr E .(C) εr E .(D) (ε0εr-ε0)E .4. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则:(A) 空心球电容值大.(B) 实心球电容值大.(C) 两球电容值相等.(D) 大小关系无法确定.5. C1和C2两个电容器,其上分别标明200pF(电容量)、500V(耐压值)和300pF、900V . 把它们串联起来在两端加上1000V电压,则(A) 两者都被击穿.(B) 两者都不被击穿.(C) C2被击穿,C1不被击穿.(D) C1被击穿,C2不被击穿.二、填空题1. 一平行板电容器,充电后切断电源,然后使两极板间充满相对电容率为εr的各向同性均匀电介质,此时两极板间的电场强度是原来的倍;电场能量是原来的倍.2. 在相对电容率为εr= 4的各向同性均匀电介质中,与电能密度w e = 2⨯10-6J/cm3相应的电场强度的大小E = .3.一平行板电容器两极板间电压为U,其间充满相对电容率为εr的各向同性均匀电介质,电介质厚度为d . 则电介质中的电场能量密度w = .1112 三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为εr 的同心均匀介质球壳,其余全部空间为空气.如图7.1所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r 1<R 2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外表面的极化电荷.2.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功.练习八 静电场习题课一、选择题1. 如图8.1, 两个完全相同的电容器C 1和C 2,串联后与电源连接. 现将一各向同性均匀电介质板插入C 1中,则:(A) 电容器组总电容减小. (B) C 1上的电量大于C 2上的电量. (C) C 1上的电压高于C 2上的电压. (D) 电容器组贮存的总能量增大.2.一空气平行板电容器,接电源充电后电容器中储存的能量为W 0,在保持电源接通的条件下,在两极间充满相对电容率为εr 的各向同性均匀电介质,则该电容器中储存的能量W 为(A) W = W 0/εr . (B) W = εr W 0. (C) W = (1+εr )W 0. (D) W = W 0.3. 如图8.2所示,两个“无限长”的半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的带电量分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212πελλ+.(B) )(2)(2202101R r R r -+-πελπελ.(C) )(22021R r -+πελλ.(D)20210122R R πελπελ+.P图8.2图8.1图 7.113图8.54. 如图8.3,有一带电量为+q ,质量为m 的粒子,自极远处以初速度v 0射入点电荷+Q 的电场中, 点电荷+Q 固定在O 点不动.当带电粒子运动到与O 点相距R 的P 点时,则粒子速度和加速度的大小分别是(A) [v 02+Qq /(2πε0Rm )]1/2, Qq /(4πε0Rm ). (B) [v 02+Qq /(4πε0Rm )]1/2, Qq /(4πε0Rm ). (C) [v 02-Qq /(2πε0Rm )]1/2, Qq /(4πε0R 2m ). (D) [v 02-Qq /(4πε0Rm )]1/2, Qq /(4πε0R 2m ).5 空间有一非均匀电场,其电场线如图8.4所示.若在电场中取一半径为R 的球面,已知通过球面上∆S 面的电通量为∆Φe ,则通过其余部分球面的电通量为(A) -∆Φe(B) 4πR 2∆Φe /∆S , (C) (4πR 2-∆S ) ∆Φe /∆S , (D) 0二、填空题1. 一个平行板电容器的电容值C = 100pF, 面积S = 100cm 2, 两板间充以相对电容率为εr = 6的云母片. 当把它接到50V 的电源上时,云母片中电场强度的大小E = ,金属板上的自由电荷电量q = .2. 半径为R 的细圆环带电线(圆心是O ),其轴线上有两点A 和B ,且OA=AB=R ,如图8.5.若取无限远处为电势零点,设A 、B 两点的电势分别为U 1和U 2,则U 1/U 2为 .3. 真空中半径为R 1和R 2的两个导体球相距很远,则两球的电容之比C 1/C 2 = . 当用细长导线将两球相连后,电容C = . 今给其带电,平衡后球表面附近场强之比E 1 / E 2 = .三、计算题1. 一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极间距拉开到2d ,求:(1)电容器能量的改变;(2)在此过程中外力所作的功,并讨论此过程中的功能转换关系.2. 在带电量为+Q 半径为R 的均匀带电球体中沿半径开一细洞并嵌一绝缘细管,一质量为m 带电量为-q 的点电荷在管中运动(设带电球体固定不动,且忽略点电荷所受重力)如图8.6所示.t =0时,点电荷距球心O 为a (a <R ),运动速度v 0=0,试写出该点电荷的运动方程(即点电荷到球心的距离r 随时间的变化关系式).图8.3图8.4图8.614 练习九 恒定电流一、选择题1.室温下,铜导线内自由电子数密度n = 8.85⨯1028m -3,导线中电流密度j = 2⨯106A/m 2,则电子定向漂移速率为:(A) 1.4⨯10-4m/s. (B) 1.4⨯10-2m/s. (C) 5.4⨯102m/s. (D) 1.1⨯105m/s.2.在一个半径为R 1的导体球外面套一个与它共心的内半径为R 2的导体球壳,两导体的电导可以认为是无限大.在导体球与导体球壳之间充满电导率为γ的均匀导电物质,如图9.1所示.当在两导体间加一定电压时,测得两导体间电流为I , 则在两导体间距球心的距离为r 的P 点处的电场强度大小E 为:(A) I γ/(4πr 2) . (B) I /(4πγr 2) . (C) I /(4πγR 12) . (D) IR 22/(4πγR 12r 2) .3. 一平行板电容器极板间介质的介电常数为ε,电导率为γ,当极板上充电Q 时,则极板间的漏电流为(A) Q/(γε). (B) γε/Q . (C) εQ/γ. (D) γQ/ε .4.有一根电阻率为ρ、截面直径为d 、长度为L 的导线,若将电压U 加在该导线的两端,则单位时间内流过导线横截面的自由电子数为N ;若导线中自由电子数密度为n ,则电子平均漂移速度为v d . 下列哪个结论正确:(A) Lne U v Le U d N d ρρπ==,42. (B) Lne U v ed LUN d ρπρ==,42.(C) LUnev Le U d N d ρρπ==,82. (D) LUnev ed LUN d ρπρ==,42.图9.1155. 在氢放电管中充有气体,当放电管两极间加上足够高的电压时,气体电离. 如果氢放电管中每秒有4⨯1018个电子和1.5⨯1018个质子穿过放电管的某一截面向相反方向运动,则此氢放电管中的电流为(A) 0.40A . (B) 0.64A . (C) 0.88A . (D) 0.24A .二、 填空题1. 如图9.2所示为某复杂电路中的某节点,所设电流方向如图.则利用电流连续性列方程为 .2. 如图9.3所示为某复杂电路中的某回路,所设电流方向及回路中的电阻,电源如图.则利用基尔霍夫定律列方程为 .3. 有两个相同的电源和两个相同的电阻,按图9.4和图9.5所示两种方式连接. 在图9.3中I = ,U AB = ; 在图9.3中I = ,U AB = .三、计算题1. 把大地看作电阻率为ρ的均匀电介质,如图9.6.所示. 用一个半径为a 的球形电极与大地表面相接,半个球体埋在地面下,电极本身的电阻可忽略.求(1)电极的接地电阻;(2)当有电流流入大地时,距电极中心分别为r 1和r 2的两点A 、B 的电流密度j 1与j 2的比值.2. 一同轴电缆,长L = 1500m ,内导体外半径a = 1.0 mm ,外导体内半径b = 5.0 mm ,中间填充绝缘介质,由于电缆受潮,测得绝缘介质的电阻率降低到6.4⨯105Ω·m. 若信号源是电动势ε= 24V ,内阻r = 3.0 Ω的直流电源. 求在电缆末端负载电阻R 0=1.0 k Ω上的信号电压为多大.图9.2图9.3图9.4图9.5图9.616 练习十 磁感应强度 毕奥—萨伐尔定律一、选择题1. 如图10.1所示,边长为l 的正方形线圈中通有电流I ,则此线圈在A 点(如图)产生的磁感强度为:(A) l I πμ420. (B) lI πμ220. (C)lIπμ02(D) 以上均不对.2. 电流I 由长直导线1沿对角线AC 方向经A 点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图10.2所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O 点磁感强度的大小为:(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 .(B) B = 0. 因为虽然B 1 ≠ 0, B 2 ≠ 0, B 1+B 2 = 0, B 3=0 (C) B ≠ 0. 因为虽然B 3 = 0, 但 B 1+B 2 ≠ 0 (D) B ≠ 0. 因为虽然B 1+B 2 = 0, 但 B 3 ≠ 03. 如图10.3所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I ,这三条导线在正三角形中心O(A) B = 0 .(B)B =3μ0I /(πa ) . (C) B =3μ0I /(2πa ) . (D) B =3μ0I /(3πa ) . . 4. 如图10.4所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:(A) RIπμ20. (B) R I40μ.(C) )11(20πμ-R I . (D) )11(40πμ+RI.图10.1图10.2图10.3图10.4175. 一匝数为N 的正三角形线圈边长为a ,通有电流为I , 则中心处的磁感应强度为 (A) B = 33μ0N I /(πa ) . (B) B =3μ0NI /(πa ) . (C) B = 0 . (D) B = 9μ0NI /(πa ) . 二、填空题1.平面线圈的磁矩为p m =IS n ,其中S 是电流为I 的平面线圈 , n 是平面线圈的法向单位矢量,按右手螺旋法则,当四指的方向代表 方向时,大拇指的方向代表 方向.2 两个半径分别为R 1、R 2的同心半圆形导线,与沿直径的直导线连接同一回路,回路中电流为I .(1) 如果两个半圆共面,如图10.5.a 所示,圆心O 点的磁感强度B 0的大小为 ,方向为 .(2) 如果两个半圆面正交,如图10.5b 所示,则圆心O 点的磁感强度B 0的大小为 ,B 0的方向与y 轴的夹角为 .3. 如图10.6所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,∠aob =180︒.则圆心O 点处的磁感强度的大小B = .三、计算题1. 如图10.7所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO '上方距导体薄片为a 的磁感强度.2. 如图10.8所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.图10.5图10.6图10.8图10.7。
高中物理竞赛复赛模拟试题(有答案)
高中物理竞赛模拟试题〔复赛〕一、某一构件由两个菱形组成,AB 和DE 是两根硬杆,各焦点都用铰链连接,大菱形的边长是2l ,小菱形的边长是l ,现设法使顶点F 以加速度a 水平向右运动,求: 〔1〕C 点的加速度多大?〔2〕当两个菱形都是正方形,F 点的速度为ν时,A 点的加速度的大小和方向。
二、长为L 的杆AO 用铰链固定在O 点,以角速度ω围绕O 点转动,在O 点的正上方有一个定滑轮B ,一轻绳绕过B 滑轮的一端固定在杆的A 端,另一端悬挂一质量为M 的重物C ,O 、B 之间的距离为h ,求:〔1〕当AB 绳与竖直方向成θ角时,重物的运动速度; 〔2〕此时绳上的张力为多少?三、一对半径为r 的轻轮安装在一根细轴上它们共同以某一速度ν沿图示的平面向右滚动。
斜面与平面接触的顶角A 处足够粗糙〔即轮不会产生滑动〕,斜面与水平面成α角,要求轮从平面滚动到斜面时不要离开顶角,问ν的最大值为多少?四、一架大型民航飞机在降落到机场前撞上一只正在飞行的天鹅,试估算,天鹅转击飞机的力为多少〔只要数量级正确即可〕?五、有一汽缸,除底部外都是绝热的。
上面是一个不计重量的活塞,中间是固定的导热隔板,把汽缸分成相等的两局部A 和B ,上下各有1mol 氮气,现从底部将350J 的热量传送给气体,求:〔1〕A 、B 内的气体温度各改变了多少? 〔2〕它们各吸收了多少热量?假设是将中间的隔板变成一个导热的活塞其他条件不变,如此A 、B 的温度又是多少?〔不计一切摩擦〕A六、两个绝缘的相距较远的球形导体,半径分别为r 1、r 2,带电后电势分别为ν1和ν2,假设用细导线将两个球连接起来,求在导线上放出的电量。
七、一个正方形的导线框ABCD ,边长为l ,每边的电阻为R ,在它中点处内接一个小一些的正方形线框EFGH ,然后在各边中点在内接一个更小的正方形导线框 一直下去,直至无穷。
如果所有正方形导线框用的导线都是一样的,所有接触点接触良好。
【精品】高中物理竞赛选拔综合经典习题(Word版含详细答案)
高中物理竞赛复赛经典练习题1. (本题6分)一长度为l 的轻质细杆,两端各固结一个小球A 、B (见图),它们平放在光滑水平面上。
另有一小球D ,以垂直于杆身的初速度v 0与杆端的Α球作弹性碰撞.设三球质量同为m ,求:碰后(球Α和Β)以及D 球的运动情况.2. (本题6分)质量m =10 kg 、长l =40 cm 的链条,放在光滑的水平桌面上,其一端系一细绳,通过滑轮悬挂着质量为m 1 =10 kg 的物体,如图所示.t = 0时,系统从静止开始运动, 这时l 1 = l 2 =20 cm< l 3.设绳不伸长,轮、绳的质量和轮轴及桌沿的摩擦不计,求当链条刚刚全部滑到桌面上时,物体m 1速度和加速度的大小.3. (本题6分) 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度θ.4. (本题6分)质量和材料都相同的两个固态物体,其热容量为C .开始时两物体的温度分别为T 1和T 2(T 1 > T 2).今有一热机以这两个物体为高温和低温热源,经若干次循环后,两个物体达到相同的温度,求热机能输出的最大功A max .5. (本题6分)如图所示,123415641 为某种一定量的理想气体进行的一个循环过程,它是由一个卡诺正循环12341 和一个卡诺逆循环15641 组成.已知等温线温度比T 1 / T 2 = 4,卡诺正逆循环曲线所包围面积大小之比为S 1 / S 2 = 2.求循环123415641的效率η.6. (本题6分)将热机与热泵组合在一起的暖气设备称为动力暖气设备,其中带动热泵的动力由热机燃烧燃料对外界做功来提供.热泵从天然蓄水池或从地下水取出热量,向温度较高的暖气系统的水供热.同时,暖气系统的水又作为热机的冷却水.若燃烧1kg 燃料,锅炉能获得的热量为H ,锅炉、地下水、暖气系统的水的温度分别为210℃,15℃,60℃.设热机及热泵均是可逆卡诺机.试问每燃烧1kg 燃料,暖气系统所获得热量的理想数值(不考虑各种实际损失)是多少?7. (本题5分) 如图所示,原点O 是波源,振动方向垂直于纸面,波长是λ .AB 为波的反射平面,反射时无相位突变π.O 点位于A 点的正上方,h AO =.Ox 轴平行于AB .求Ox 轴上干涉加强点的坐标(限于x ≥ 0).8. (本题6分)一弦线的左端系于音叉的一臂的A 点上,右端固定在B 点,并用T = 7.20 N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图).这样,在弦线上产生了入射波和反射波,并形成了驻波.弦的线密度η = 2.0 g/m , 弦线上的质点离开其平衡位置的最大位移为4 cm .在t = 0时,O 点处的质点经过其平衡位置向下运动,O 、B 之间的距离为L = 2.1 m .试求:12T 1 6543 VpOT 2A(1) 入射波和反射波的表达式; (2) 驻波的表达式.9. (本题6分)用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR 在 0.63─0.76μm 范围内,蓝谱线波长λB 在0.43─0.49 μm 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现. (1) 在什么角度下红蓝两谱线还会同时出现?(2) 在什么角度下只有红谱线出现?10. (本题6分)如图所示,用波长为λ= 632.8 nm (1 nm = 10-9 m)的单色点光源S 照射厚度为e = 1.00×10-5 m 、折射率为n 2 = 1.50、半径为R = 10.0 cm 的圆形薄膜F ,点光源S 与薄膜F 的垂直距离为d = 10.0 cm ,薄膜放在空气(折射率n 1 = 1.00)中,观察透射光的等倾干涉条纹.问最多能看到几个亮纹?(注:亮斑和亮环都是亮纹).11. (本题6分)507⨯双筒望远镜的放大倍数为7,物镜直径为50mm .据瑞利判据,这种望远镜的角分辨率多大?设入射光波长为nm 550.已知眼睛瞳孔的最大直径为7.0mm .求出眼睛对上述入射光的分辨率.用得数除以7,和望远镜的角分辨率对比,然后判断用这种望远镜观察时实际起分辨作用的是眼睛还是望远镜.12. (本题6分)一种利用电容器控制绝缘油液面的装置示意如图. 平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连,当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作. 已知极板的高度为a ,油的相对电容率为εr ,试求此电容器等效相对电容率与液面高度h 的关系.13. (本题6分)在平面螺旋线中,流过一强度为I 的电流,求在螺旋线中点的磁感强度的大小.螺旋线被限制在半径为R 1和R 2的两圆之间,共n 圈.[提示:螺旋线的极坐标方程为b a r +=θ,其中a ,b 为待定系数]14. (本题6分)一边长为a 的正方形线圈,在t = 0 时正好从如图所示的均匀磁场的区域上方由静止开始下落,设磁场的磁感强度为B ϖ(如图),线圈的自感为L ,质量为m ,电阻可忽略.求线圈的上边进入磁场前,线圈的速度与时间的关系.15. (本题6分)如图所示,有一圆形平行板空气电容器,板间距为b ,极板间放一与板绝缘的矩形线圈.线圈高为h ,长为l ,线圈平面与极板垂直,一边与极板中心轴重合,另一边沿极板半径放置.若电容器极板电压为U 12 = U m cos ω t ,求线圈电压U 的大小.Bϖ16. (本题6分)在实验室中测得电子的速度是0.8c ,c 为真空中的光速.假设一观察者相对实验室以0.6c 的速率运动,其方向与电子运动方向相同,试求该观察者测出的电子的动能和动量是多少?(电子的静止质量m e =9.11×10-31kg )17. (本题6分)已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2.(1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4))18. (本题6分))已知氢原子的核外电子在1s 态时其定态波函数为 a r a /3100e π1-=ψ,式中 220em h a e π=ε .试求沿径向找到电子的概率为最大时的位置坐标值.( ε0 = 8.85×10-12 C 2·N -1·m -2 ,h = 6.626×10-34 J ·s , m e = 9.11×10-31 kg , e = 1.6 ×10-19 C )参考答案1. (本题6分)解:设碰后刚体质心的速度为v C ,刚体绕通过质心的轴的转动的角速度为ω,球D 碰后的速度为v ',设它们的方向如图所示.因水平无外力,系统动量守恒:C m m m v v v )2(0+'= 得:(1)20C v v v ='- 1分 弹性碰撞,没有能量损耗,系统动能不变;222220])2(2[21)2(212121ωl m m m m C ++'=v v v ,得 (2)22222220l C ω+='-v v v 2分 系统对任一定点的角动量守恒,选择与A 球位置重合的定点计算.A 和D 碰撞前后角动量均为零,B 球只有碰后有角动量,有])2([0C B l ml ml v v -==ω,得(3)2lC ω=v 2分(1)、(2)、(3)各式联立解出 lC 00;2;0vv v v ==='ω。
全国高中生物理竞赛复赛试题
全国中学生物理竞赛复赛试卷一、(23分)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
现用支架固定一照相机,用以拍摄小球在空间的位置。
每隔一相等的确定的时间间隔T 拍摄一张照片,照相机的曝光时间极短,可忽略不计。
从所拍到的照片发现,每张照片上小球都处于同一位置。
求小球开始下落处离玻璃管底部距离(用H 表示)的可能值以及与各H 值相应的照片中小球位置离玻璃管底部距离的可能值。
二、(25分)如图所示,一根质量可以忽略的细杆,长为2l ,两端和中心处分别固连着质量为m 的小球B 、D 和C ,开始时静止在光滑的水平桌面上。
桌面上另有一质量为M 的小球A ,以一给定速度0v 沿垂直于杆DB 的方间与右端小球B 作弹性碰撞。
求刚碰后小球A,B,C,D的速度,并详细讨论以后可能发生的运动情况。
三、(23分)有一带活塞的气缸,如图1所示。
缸内盛有一定质量的气体。
缸内还有一可随轴转动的叶片,转轴伸到气缸外,外界可使轴和叶片一起转动,叶片和轴以及气缸壁和活塞都是绝热的,它们的热容量都不计。
轴穿过气缸处不漏气。
如果叶片和轴不转动,而令活塞缓慢移动,则在这种过程中,由实验测得,气体的压强p 和体积V 遵从以下的过程方程式 图1k pV a =其中a ,k 均为常量, a >1(其值已知)。
可以由上式导出,在此过程中外界对气体做的功为⎥⎦⎤⎢⎣⎡--=--1112111a a V V a k W 式中2V 和1V ,分别表示末态和初态的体积。
如果保持活塞固定不动,而使叶片以角速度ω做匀角速转动,已知在这种过程中,气体的压强的改变量p ∆和经过的时间t ∆遵从以 图2 下的关系式ω⋅-=∆∆L Va t p 1 式中V 为气体的体积,L 表示气体对叶片阻力的力矩的大小。
上面并没有说气体是理想气体,现要求你不用理想气体的状态方程和理想气体的内能只与温度有关的知识,求出图2中气体原来所处的状态A 与另一已知状态B 之间的内能之差(结果要用状态A 、B 的压强A p 、B p 和体积A V 、B V 及常量a 表示)四、(25分)图1所示的电路具有把输人的交变电压变成直流电压并加以升压、输出的功能,称为整流倍压电路。
2023物理竞赛复赛试题
选择题:关于光的干涉现象,下列说法正确的是:A. 只有频率相同的光才能发生干涉现象。
B. 频率不同的光也能发生干涉现象,只是干涉条纹不明显。
C. 光的干涉现象是光波叠加的结果,与光的频率无关。
(正确答案)D. 光的干涉现象只发生在相干光源之间。
在双缝干涉实验中,若保持双缝间距不变,增大光源到双缝的距离,则干涉条纹的间距将:A. 变大。
B. 变小。
C. 不变。
(正确答案)D. 无法确定。
关于光的衍射现象,下列说法错误的是:A. 光的衍射现象是光波遇到障碍物时偏离直线传播的现象。
B. 光的衍射现象是光波叠加的结果。
C. 光的衍射现象只发生在光波遇到尺寸与其波长相当的障碍物时。
(正确答案)D. 光的衍射现象是光波动性的表现。
在杨氏双缝干涉实验中,若用白光作为光源,则屏上将出现:A. 彩色的干涉条纹。
(正确答案)B. 白色的干涉条纹。
C. 黑色的干涉条纹。
D. 无干涉条纹。
关于光的偏振现象,下列说法正确的是:A. 自然光就是偏振光。
B. 偏振光就是单色光。
C. 自然光通过偏振片后可以得到偏振光。
(正确答案)D. 偏振光通过偏振片后一定仍然是偏振光,但偏振方向可能改变。
在光的折射现象中,若入射光线与折射光线垂直,则入射角与折射角之和为:A. 45°。
B. 90°。
(正确答案)C. 135°。
D. 180°。
关于光的全反射现象,下列说法错误的是:A. 当光从光密介质射入光疏介质时,可能发生全反射现象。
B. 当光从光疏介质射入光密介质时,也可能发生全反射现象。
(正确答案)C. 发生全反射现象时,折射光线完全消失,反射光线增强。
D. 发生全反射现象的条件是入射角大于或等于临界角。
在光的色散现象中,不同波长的光在介质中的折射率:A. 相同。
B. 不同,且波长越长,折射率越大。
C. 不同,且波长越长,折射率越小。
(正确答案)D. 无法确定。
关于光的量子性,下列说法正确的是:A. 光的能量是连续分布的。
物理奥赛复赛试题及答案
物理奥赛复赛试题及答案一、选择题(每题5分,共30分)1. 以下哪项是牛顿第三定律的表述?A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力大小相等,方向相同C. 作用力和反作用力大小不等,方向相反D. 作用力和反作用力大小不等,方向相同答案:A2. 光在真空中的传播速度是:A. 299,792,458 m/sB. 299,792,458 km/sC. 299,792,458 km/hD. 299,792,458 m/h答案:A3. 根据热力学第二定律,以下哪项是正确的?A. 热量不能自发地从低温物体传递到高温物体B. 热量可以自发地从低温物体传递到高温物体C. 热量不能自发地从高温物体传递到低温物体D. 热量可以自发地从高温物体传递到低温物体答案:A4. 以下哪个选项描述的是电磁波?A. 可见光B. 无线电波C. 微波D. 所有以上选项答案:D5. 根据量子力学,以下哪项是正确的?A. 电子在原子核周围以确定的轨道运动B. 电子在原子核周围以概率云的形式出现C. 电子在原子核周围以波动的形式存在D. 电子在原子核周围以粒子的形式存在答案:B6. 以下哪个选项是描述电磁感应现象的?A. 电流通过导线产生磁场B. 磁场通过导线产生电流C. 电流通过导线产生电场D. 磁场通过导线产生电场答案:B二、填空题(每题5分,共20分)1. 根据库仑定律,两个点电荷之间的静电力与它们的电荷量乘积成正比,与它们之间的距离的平方成反比。
该定律的数学表达式为:\( F= k \frac{q_1 q_2}{r^2} \),其中 \( k \) 是库仑常数,\( q_1 \) 和 \( q_2 \) 是两个电荷的电荷量,\( r \) 是它们之间的距离。
库仑常数 \( k \) 的值约为 \( 8.9875 \times 10^9 \) ________N·m²/C²。
答案:N·m²/C²2. 根据欧姆定律,电阻 \( R \)、电流 \( I \) 和电压 \( V \) 之间的关系可以表示为 \( V = IR \)。
物理奥赛复赛模拟题(二).docx
物理奥赛复赛模拟题(二)题1:,如图1所示,公园的转椅以恒定的角速度3绕其竖直对称轴在水平面内做匀速转动。
转椅上的人以相对转椅V的速度平抛一个小球,为使小球能击中转椅架底部中心点0, 试求V的大小和方向。
已知:小球抛出点比0点高h,与竖直转轴的距离为R。
题2:在斯涅耳的档案中有一张光学图(见图2)。
由于墨水褪色只留下了三个点,一个薄透镜的焦点F (图2),光源S和透镜上的一点L。
此外,还留下一部分从光源S画到其像S '的直线a,从正文中知道S比S '点更靠近透镜,有可能完整恢复这张图纸吗?如果可能,把它画出来,并确定图中透镜的焦距。
分析与解答:如图2( 1)所示:图 2(1)题3:有两个处于基态的氢原子A、B, A静止,B以速度vo与之发生碰撞。
已知:碰撞后二者的速度VA和V B在一条直线上,碰撞过程中部分动能有被某一个氢原子吸收,从而该原子由基态跃迁到激发态,然后,此原子向低能态跃迁,并发出光子。
如欲碰撞后发出一个光子,试计算:速度Vo至少需要多大(以m/s表示)?已知电子电量为e=1.602X10』9c, 质子质量为nip=1.673 X lo'ikg,电子质量为m e=0.1911 X 10-31kgo氢原子的基态能量为 Ei=-13.58eVo题4:图4所示,有26块半径为r和26块半径为R (R>r)的薄金属板,它们被平行地放置,如图41-95 (a)所示。
任何两块邻近的平板之间的距离为d (d《r),用这种方式可形成一电容器,问应该如何把这些板连接成两组,使所得的电容成为最大?求出这个最大电容。
图4 题5:一般的日光灯两端的电压增大到ui=200伏时就能发光,发光后如电压降到也=114.2 伏就会熄灭。
如果日光灯接在电压为220伏的照明电路中,试计算日光灯每次发光的延续时间(日光灯的熄灭电压各异,本题只是一个假设情况)。
题6:如图6为两个圆筒底部面积SEOOcn?,左筒内气体的质量mi=4g,体积Vi=22.4L,压强pi=latm,温度为Ti=273K。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理竞赛真题专项(1) 静力学平衡1.〔26届复赛〕二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。
已知桌腿受力后将产生弹性微小形变。
现于桌面中心点O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令c OAOP,求桌面对桌腿1的压力F 1。
A设桌面对四条腿的作用力皆为压力,分别为1F 、2F 、3F 、4F .因轻质刚性的桌面处在平衡状态,可推得1234F F F F F +++= (1)由于对称性,24F F =. (2)考察对桌面对角线BD 的力矩,由力矩平衡条件可得13F cF F =+. (3)根据题意, 10≤≤c ,c =0对应于力F 的作用点在O 点,c =1对应于F 作用点在A 点.设桌腿的劲度系数为k , 在力F 的作用下,腿1的形变为1F k ,腿2和4的形变均为2F k ,腿3的形变为3F k .依题意,桌面上四个角在同一平面上,因此满足13212F F F k k k⎛⎫+=⎪⎝⎭, 即 1322F F F +=. (4)由(1)、(2)、(3)、(4)式,可得 1214c F F +=, (5) 3124cF F -=, (6) 当12c ≥时,03≤F .30F =,表示腿3无形变;30F <,表示腿3受到桌面的作用力为拉力,这是不可能的,故应视30F =.此时(2)式(3)式仍成立.由(3)式,可得1F cF = (7)综合以上讨论得F c F 4121+=, 102c ≤≤ . (8) cF F =1,121≤≤c . (9)评分标准:本题20分. (1)式1分,(2)式1分,(3)式2分,(4)式7分,得到由(8)式表示的结果得4分,得到由(9)式表示的结果得5分. 2.〔20届复赛〕五、(22分)有一半径为R 的圆柱A ,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A 相同,半径为r 的较细圆柱B ,用手扶着圆柱A ,将B 放在A 的上面,并使之与墙面相接触,如图所示,然后放手.己知圆柱A 与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B 与墙面间的静摩擦系数和圆柱B 的半径r 的值各应满足什么条件?五、参考解答放上圆柱B 后,圆柱B 有向下运动的倾向,对圆柱A 和墙面有压力。
圆柱A 倾向于向左运动,对墙面没有压力。
平衡是靠各接触点的摩擦力维持的。
现设系统处于平衡状态,取圆柱A 受地面的正压力为1N ,水平摩擦力为1F ;圆柱B 受墙面的正压力为2N ,竖直摩擦力为2F ,圆柱A 受圆柱B 的正压力为3N ,切向摩擦力为3F ;圆柱B 受圆柱A 的正压力为3N ',切向摩擦力为3F ',如图复解20-5所示。
各力以图示方向为正方向。
已知圆柱A 与地面的摩擦系数1μ=0.20,两圆柱间的摩擦系数3μ=0.30。
设圆柱B 与墙面的摩擦系数为2μ,过两圆柱中轴的平面与地面的交角为ϕ。
设两圆柱的质量均为M ,为了求出1N 、2N 、3N 以及为保持平衡所需的1F 、2F 、3F 之值,下面列出两圆柱所受力和力矩的平衡方程:圆柱A : 133(1)133 (2)13F R F R = (3) 圆柱B : 233sin cos 0Mg F N F ϕϕ''---=(4)233cos sin 0N N F ϕϕ''-+= (5)32F r F r '= (6)由于33F F '=,所以得1233F F F F F '==== (7)式中F 代表1F ,2F ,3F 和3F '的大小。
又因33N N '=,于是式(1)、(2)、(4)和(5)四式成为:13sin cos 0Mg N N F ϕϕ-++= (8)3cos sin 0F N F ϕϕ-+= (9)3sin cos 0Mg F N F ϕϕ-+-= (10)23cos sin 0N N F ϕϕ-+=(11)以上四式是1N ,2N ,3N 和F 的联立方程,解这联立方程可得2N F = (12)31sin 1cos sin N Mg ϕϕϕ+=++(13)2cos 1cos sin N F Mg ϕϕϕ==++(14)12cos 2sin 1cos sin N Mg ϕϕϕϕ++=++ (15)式(12)、(13)、(14)和(15)是平衡时所需要的力,1N ,2N ,3N 没有问题,但1F ,2F ,3F 三个力能不能达到所需要的数值F ,即式(12)、(14)要受那里的摩擦系数的制约。
三个力中只要有一个不能达到所需的F 值,在那一点就要发生滑动而不能保持平衡。
首先讨论圆柱B 与墙面的接触点。
接触点不发生滑动要求222FN μ≥由式(12),得221F N =所以21μ≥ (16) 再讨论圆柱A 与地面的接触点的情形。
按题设此处的摩擦系数为1μ=0.20,根据摩擦定律f N μ≤,若上面求得的接地点维持平衡所需的水平力1F 满足111F N μ≤,则圆柱在地面上不滑动;若111F N μ>,这一点将要发生滑动。
圆柱A 在地面上不发生滑动的条件是111cos 2cos 2sin FN ϕμϕϕ≥=++(17) 由图复解20-5可知cos R r R rϕ-=+ (18)sin ϕ= (19)由式(17)、(18)和式(19)以及1μ=0.20,可以求得 19r R ≥(20)即只有当19r R ≥时,圆柱A 在地面上才能不滑动。
最后讨论两圆柱的接触点。
接触点不发生滑动要求333cos 1sin F N ϕμϕ≥=+ (21)由式(18)、(19)以及3μ=0.30,可解得270.2913r R R ⎛⎫≥= ⎪⎝⎭(22)显然,在平衡时,r 的上限为R 。
总结式(20)和式(22),得到r 满足的条件为0.29R r R ≥≥ (23)评分标准:本题22分。
求得式(7)、(12)、(13)、(14)、(15)各2分,式(16)3分,求得式(23)9分。
物理竞赛真题专项(2) 天体运动1.〔20届复赛〕三、(20分)有人提出了一种不用火箭发射人造地球卫星的设想.其设想如下:沿地球的一条弦挖一通道,如图所示.在通道的两个出口处A 和B ,分别将质量为M 的物体和质量为m 的待发射卫星同时自由释放,只要M 比m 足够大,碰撞后,质量为m 的物体,即待发射的卫星就会从通道口B 冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B 时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小.这样待发卫星便有可能绕地心运动,成为一个人造卫星.若人造卫星正好沿地球表面绕地心做圆周运动,则地心到该通道的距离为多少?己知M =20m ,地球半径0R =6400 km .假定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的.三、参考解答位于通道内、质量为m 的物体距地心O 为r 时(见图复解20-3),它受到地球的引力可以表示为2GM mF r'=, (1)式中M '是以地心O 为球心、以r 为半径的球体所对应的那部分地球的质量,若以ρ表示地球的密度,此质量可以表示为343M r ρπ'=(2) 于是,质量为m 的物体所受地球的引力可以改写为43F G mr πρ= (3)sin f F θ= (4) sin xrθ= (5)θ为r 与通道的中垂线OC 间的夹角,x 为物体位置到通道中点C 的距离,力的方向指向通道的中点C 。
在地面上物体的重力可以表示为02GM mmg R = (6) 式中0M 是地球的质量。
由上式可以得到 043g G R πρ= (7)由以上各式可以求得 0mgf x R = (8)可见,f 与弹簧的弹力有同样的性质,相应的“劲度系数”为 0mgk R =(9) 物体将以C 为平衡位置作简谐振动,振动周期为2T =取0x =处为“弹性势能”的零点,设位于通道出口处的质量为m 的静止物体到达0x =处的速度为0v ,则根据能量守恒,有2220011()22mv k R h =- (10) 式中h 表示地心到通道的距离。
解以上有关各式,得 222000R h v g R -= (11)可见,到达通道中点C 的速度与物体的质量无关。
设想让质量为M 的物体静止于出口A 处,质量为m 的物体静止于出口B 处,现将它们同时释放,因为它们的振动周期相同,故它们将同时到达通道中点C 处,并发生弹性碰撞。
碰撞前,两物体速度的大小都是0v ,方向相反,刚碰撞后,质量为M 的物体的速度为V ,质量为m 的物体的速度为v ,若规定速度方向由A 向B 为正,则有00Mv mv MV mv -=+,(12)22220011112222Mv mv MV mv +=+ (13)解式(12)和式(13),得 03M mv v M m-=+ (14)质量为m 的物体是待发射的卫星,令它回到通道出口B 处时的速度为u ,则有22220111()222k R h mu mv -+= (15) 由式(14)、(15)、(16)和式(9)解得2220208()()R h M M m u g R M m --=+ (16) u 的方向沿着通道。
根据题意,卫星上的装置可使u 的方向改变成沿地球B 处的切线方向,如果u的大小恰能使小卫星绕地球作圆周运动,则有20200M m u G m R R = (17)由式(16)、(17)并注意到式(6),可以得到h = (18)已知20M =m ,则得00.9255920km h R == (19)评分标准:本题20分。
求得式(11)给7分,求得式(16)给6分,式(17)2分,式(18)3分,式(19)2分。
2.〔25届复赛〕二、(21分)嫦娥1号奔月卫星与长征3号火箭分离后,进入绕地运行的椭圆轨道,近地点离地面高22.0510n H km =⨯,远地点离地面高45.093010f H km =⨯,周期约为16小时,称为16小时轨道(如图中曲线1所示)。
随后,为了使卫星离地越来越远,星载发动机先在远地点点火,使卫星进入新轨道(如图中曲线2所示),以抬高近地点。
后来又连续三次在抬高以后的近地点点火,使卫星加速和变轨,抬高远地点,相继进入24小时轨道、48小时轨道和地月转移轨道(分别如图中曲线3、4、5所示)。
已知卫星质量32.35010m kg =⨯,地球半径36.37810R km =⨯,地面重力加速度29.81/g m s =,月球半径31.73810r km =⨯。