3.3函数的三种表示方法

合集下载

函数表示方法

函数表示方法

函数表示方法函数是数学中的一个重要概念,也是计算机科学中不可或缺的基本元素。

在数学中,函数是一种对应关系,它将一个或多个输入值映射到一个输出值。

在计算机科学中,函数是一段可重复使用的代码,用于实现特定的功能。

无论是在数学中还是在计算机科学中,函数的表示方法都是至关重要的。

在数学中,函数可以用多种方式来表示。

最常见的表示方法是用函数符号加上自变量和因变量的关系式来表示。

例如,函数f(x) = 2x + 1就表示了一个将自变量x映射到2x + 1的函数。

除了用函数符号表示外,函数还可以用图像、表格和公式等形式来表示。

图像表示可以直观地展现函数的变化趋势,表格表示可以清晰地列出函数的输入输出对应关系,公式表示则可以精确地描述函数的数学性质。

在计算机科学中,函数的表示方法主要是通过程序代码来实现的。

函数可以用各种编程语言来表示,比如C、Java、Python等。

不同的编程语言有不同的语法规则和表示方式,但它们都可以实现相同的功能,即将输入映射到输出。

在程序中,函数的表示方法除了包括函数名和参数外,还包括函数体和返回值。

函数体是实现函数功能的具体代码,返回值是函数执行后的输出结果。

通过合理地设计函数的表示方法,可以提高程序的可读性和可维护性,从而提高代码的质量和效率。

除了数学和计算机科学外,函数的表示方法还在其他领域有着广泛的应用。

在物理学中,函数可以表示物体的运动规律和变化规律;在经济学中,函数可以表示供需关系和市场变化;在生物学中,函数可以表示生物体的生长和变异。

无论在哪个领域,函数的表示方法都是研究和应用的基础,它为我们理解世界和改变世界提供了重要的工具和方法。

总之,函数表示方法是一个非常重要的话题,它涉及到数学、计算机科学以及其他各个领域。

通过深入理解函数的表示方法,我们可以更好地理解函数的本质和功能,从而更好地应用和拓展函数的理论和实践。

希望本文对读者有所帮助,谢谢阅读!。

函数的表示法知识点总结

函数的表示法知识点总结

(B)2 或 5 2
(D)2 或 2 或 5 2
习题 3.
已知
f
(
x)

2x(x x 1(x
0) 0)
,若
f (a)
f (1) 0 ,则实数 a 的值等于________.
3.求分段函数自变量的取值范围
在分段函数的前提下,求某条件下自变量的取值范围的方法是:先假设自变量的值在分段函
1 1
,

f 1 a f 1 a , 则 a 的 值 为
_________. 解:当1 a 1,即 a 0 时,1 a 1
∴ f 1 a 21 a a 2 a , f 1 a 1 a 2a 1 3a
几种常见的分段函数
1.取整函数 y x( x表示不大于 x 的最大整数).
其图象如图(1)所示.
y
3 2 1
–3 –2 –1 O –1
1 2 3x
–2
–3
值 值 1值 值 值 值 值 值 值 值
y
fx = x + 2
3
2
1
–5 –4 –3 –2 –1 O –1
12x
值 值 2值 值 值 值 值 值 值 值 值
数的各段上,然后求出在相应各段定义域上自变量的取值范围,再求它们的并集即可.
例 3.
已知函数
f
(
x)

3x 2 2x 2
2x(x 1) 3(x 1)
,求使
f (x) 2 成立的 x 的取值范围.
解:由题意可得:
x 1
x 1
3x 2

2x

或 2

3.3函数的三种表示方法

3.3函数的三种表示方法

议一议
一只钢笔3.6元,小明要买x只钢笔需要y元,y与 x之间的关系式。如果顾客要买20只以上可以打八折, 则y与x之间的关系式。
y=3.6x y=
x∈N
3.6x x≤20 x∈N 3.6*0.8x x>20,x∈N
函数的三种表示方法
观察思考
1.圆的面积S与其半径r有确定的依赖关系: S=πr2 r∈R+ 2.设A={0,1,2,3,4,5,6},D={1,2,4},B={0,1} 考虑A到B的一个对应法则f:
函数的三种表示方法
观察思考 y
图中表示 的关系是否 是一个映射? 是否是一个 函数?
f(a) f(b)
M(a,f(a))
N(b,f(b))
O
b
a
x
函数的三种表示方法
结论三※
用平面直角坐标系里的图形来表 示函数的方法称为图像法.
优点:函数的变化情况形象直观,一目了然.
函数的三种表示方法
试一试 填空:1 .圆的周长c是它的半径r的函数,其解析式
开 1
关 2
第28界奥运会前10名的国家与奖牌数一览表
国家
奖牌 数 德 国 14 法 国 11 意大 利 10 韩 国 9 英 国 9
上述对应是否为一个函数?
函数的三种表示方法
结论一 用一个表格来表示函数关系的方法叫 做列表法。
优点:定义域明显,不必计算就能知 道自变量取某些值时的函数值。
函数的三种表示方法
f ( x) 1, 当 x D 0,当 x D
以上两个对应是否为函数?
0 1 2 3 4 5 6
A
0
1
B
函数的三种表示方法
结论二
用一个或几个等式来表示函数的方法称为公式 法.这一个或几个等式叫做此函数的解析表达式, 简称解析式.

函数的表示方法

函数的表示方法

函数的表示方法★知识梳理一、函数的三种表示法:图象法、列表法、解析法1.图象法:就是用函数图象表示两个变量之间的关系; 2.列表法:就是列出表格来表示两个变量的函数关系; 3.解析法:就是把两个变量的函数关系,用等式来表示。

二、分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

★重、难点突破重点:掌握函数的三种表示法-----图象法、列表法、解析法,分段函数的概念 难点:分段函数的概念,求函数的解析式重难点:掌握求函数的解析式的一般常用方法: (1)若已知函数的类型(如一次函数、二次函数),则用待定系数法; (2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; 问题1.已知二次函数)(x f 满足564)12(2+-=+x x x f ,求)(x f 方法一:换元法令)(12R t t x ∈=+,则21-=t x ,从而)(955216)21(4)(22R t t t t t t f ∈+-=+-⋅--= 所以)(95)(2R x x x x f ∈+-= 方法二:配凑法因为9)12(5)12(410)12(564)12(222++-+=+-+==+-=+x x x x x x x f 所以)(95)(2R x x x x f ∈+-= 方法三:待定系数法因为)(x f 是二次函数,故可设c bx ax x f ++=2)(,从而由564)12(2+-=+x x x f 可求出951=-==c b a 、、,所以)(95)(2R x x x x f ∈+-=(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f 问题2:已知函数)(x f 满足x xf x f 3)1(2)(=+,求)(x f 因为 x xf x f 3)1(2)(=+① 以x 1代x 得 xx f x f 13)(2)1(⋅=+②由①②联立消去)1(x f 得)0(2)(≠-=x x xx f ★热点考点题型探析考点1:用图像法表示函数[例1] (09年广东南海中学)一水池有2个进水口, 1个出水口,一个口的进、出水的速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:进水量 出水量 蓄水量(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水不出水.则一定不正确...的论断是 (把你认为是符合题意的论断序号都填上) . [解题思路]根据题意和所给出的图象,对三个论断进行确认即可。

函数的三种表示方法

函数的三种表示方法

函数的三种表示方法
表示方法有列表法、图象法、解析式法。

用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。

用列表的方法来表示两个变量之间函数关系的方法叫做列表法。

用图像的方法来表示两个变量之间函数关系的方法叫做列表法。

扩展资料
1、解析式法
用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。

并不是所有函数都有解析式,对于类似气温随时间变化的函数是没有解析式的。

优点:能简明、准确、清楚地表示出函数与自变量之间的数量关系;
缺点:求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。

2、列表法
用列表的方法来表示两个变量之间函数关系的方法叫做列表法。

意义,第一,在已知函数部分性质的情况下,通过表中的数据比较函数的增减性;第二,通过数据进行函数的拟和或者求函数。

优点:通过表格中已知自变量的值,可以直接读出与之对应的函数值;
缺点:只能列出部分对应值,难以反映函数的'全貌。

3、图像法
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

这种表示函数关系的方法叫做图象法。

所有函数都有图像,但并不是所有图像都有函数,比如圆的方程,因为函数要满足一一对应性。

在解决线性问题的时候,准确的函数图像可能可以直接让你看出答案。

优点:通过函数图象可以直观、形象地把函数关系表示出来;缺点:从图象观察得到的数量关系是近似的。

上一篇:下一篇:
~。

函数的三种表示方法课件

函数的三种表示方法课件

03
表格法
通过表格列出函数在不同 自变量值下的对应函数值。
优点
能够直观地展示函数的变 化趋势和数值特征。
缺点
对于连续函数,需要大量 的数据点才能准确反映函 数关系。
图象法
图象法
通过绘制函数图象来表示 函数关系。
优点
直观、形象,能够清晰地 展示函数的形态和变化规 律。
缺点
对于复杂函数,可能难以 准确绘制其图象。
抛物线开口向下。
接这些点即可得到函数的图象。
高次函数图象法表示
01
高次函数图象是一个连续曲线,其一般形式为y=anx^n+a(n-1)x^(n1)+...+a1x+a0,其中an至a0为常数且an≠0。
02
根据n的奇偶性,高次函数的增减性不同:当n为奇数时,函数在x>0时单调递 增,在x<0时单调递减;当n为偶数时,函数在x>0时单调递减,在x<0时单调 递增。
通过实例分析,加深 对函数表示方法的理 解和应用。
能够根据实际需求选 择合适的函数表示方 法。
02
函数的数学表示方法
解析法
解析法
缺点
使用数学表达式来表示函数关系,如 $y = f(x)$。
对于复杂函数,可能难以找到准确的 数学表达式。
优点
精确、明了,能够准确表达函数的数 学关系。
表格法
01
02
03
解析法实例
一次函数解析法表示
一次函数解析法表示:$y = ax + b$,其中$a$和$b$是常数,$a neq 0$。 实例:$y = x + 1$,其中$a = 1$,$b = 1$。
图像:直线。

函数的表示方法

函数的表示方法
用描点法画图.
x … 10 20 30 40 50 60 …
y … 45 40 35 30 25 20 … 000000
x … 10 20 30 40 50 60 …
y … 45 40 35 30 25 20 … 000000
描点、连线.
10
描点、连线:
8
6
4
2
O 12 345x
3.甲车速度为20米/秒,乙车速度为25米/秒.现 甲车在乙车前面500米,设x秒后两车之间的距离为y 米.求y随x(0≤x≤100)变化的函数解析式,并画出函 数图象.
解:由题意可知:x秒后两车行驶路程分别是:甲车为20x
米,乙车为25x米,两车行驶路程差为:25x-20x=5x(米), 两车之间距离为(500-5x)米.所以y随x变化的函数关系式为: y=500-5x (0≤x≤100).
t/h 0 1 2 3 4 5 y/m 3 3.3 3.6 3.9 4.2 4.5
(1)在平面直角坐标系中描出表中数据对应的点,这些点
是否在一条直线上?由此你发现水位变化有什么规律吗? (2)水位高度y是否为时间t的函数? 如果是,试写出一个
符合表中数据的函数解析式,并画出这个函数的图象.这个函
数能表示水位变化的规律吗?
老张讲数学
函数的表示
函数的表示
表示函数有哪三种方法?
列表法、解析式法和图象法.
这三种表示的方法各有什么优点?
列表法比较直观、准确地表示出函数中两个变量之间的 关系;
解析式法比较准确、全面地表示出函数中两个变量之间的 关系;
图象法比较形象、直观地表示出函数中两个变量之间的关 系.
从全面性、直观性、准确性及形象性四个方面来总 结归纳函数三种表示方法的优缺点,填写下表:

函数的表示方法 ppt课件

函数的表示方法  ppt课件
2.1.2 函数的表示方法
ppt课件
1
3.你知道函数的表示方法通常有几种吗?
函数的表示方法通常有三种,它
们是列表法、图像法 和解析法。
ppt课件
2
函数的三种表示方法
1.解析法:就是把两个变量的函数关系,用一 个等式表示,这个等式叫做函数的解析表达式,
简称解析式.
解析法的优点:
(1)函数关系清楚;
合A中的任何一个元素,在集合B中都有 唯一的一个元素和它对应,那么这样的对
应(包括集合A、B以及A到B的对应法则)
叫做集合A到集合B的映射,记作f :: A B
A中的元素x称为原像,
B中的对应元素y称为x的像.
xx
ppt课件
20
说明:(1)这两个集合A、B,它们可以 是数集,也可以是点集或其它集合,这两 个集合有先后顺序,A到B的映射与B到A 的映射是截然不同的。其中f表示具体的对 应法则,可以用文字叙述;
学年六次数学测试的成绩及班级平均分表。
成绩
测试
序号 第1次 第2次 第3次 第4次 第5次 第6次
姓名
王伟
98 87 91 92 88 95
张成
90 76 88 75 86 80
赵磊
68 65 73 72 75 82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6
请你对这三位同学在高一学年度的数学学习情
(2)注意分段函数的表示方法 及其图像的画法.
ppt课件
17
日常生活中存在着丰富的对应关系.
(1)对于高一八班的每一位同学,都有一个学号 与之对应. (2)我国各省会,都有一个区号与之对应.
(3)我国各大中小城市,都有一个邮政编码 与之对应.

函数的表示法

函数的表示法
y 5 4 3 2 1 -3 -2 -1 0 1 2 3 x
类比二次函数y= 类比二次函数 =x2 及二次函数y=( - 及二次函数 =(x-2 )2+1你 =( 你 有何感想? 有何感想?
问题探究
2x+3, x<- <-1, <- x2, -1≤x<1, < 4. 已知函数 (x)= 已知函数f x-1, - x≥1 .
(1)求f{f[f(-2)]} ;(复合函数) 求 - (复合函数) (2) 当f (x)=-7时,求x ; - 时求
欲改造营口开发区世纪广场中 心的圆形喷水池, 心的圆形喷水池,已知原喷水池直径为 20m, 20m,喷水池的周边靠近水面的位置安装 一圈喷水头,喷出的水柱在离池中心4m 一圈喷水头,喷出的水柱在离池中心4m 处达到最高,高度为6m 6m, 处达到最高,高度为6m,现设想在喷水 池的中心设计一个装饰物, 池的中心设计一个装饰物,使各方面喷 来的水柱在此处汇合, 来的水柱在此处汇合,这个装饰物的高 度应当如何设计? 度应当如何设计?
函数的表示法
函数表示法有几种?
函数表示法 解析法 图像法 列表法
一、函数的三种表示方法: 函数的三种表示方法:
定义:是把两个变量的函数关系,用一个等式来表示, 定义:是把两个变量的函数关系,用一个等式来表示, 1、解析法 简称解析式。 简称解析式。 优点:函数关系清楚, 优点:函数关系清楚,容易从自变量的值求出其对应 的函数值,便于用解析式来研究函数的性质。 的函数值,便于用解析式来研究函数的性质。 2、列表法 定义:是列出表格来表示两个变量的函数关系。 定义:是列出表格来表示两个变量的函数关系。 优点: 优点:不必通过计算就知道当自变量取某些值时函 数的对应值。 数的对应值。 3、图象法 定义:是用函数图象来表示两个变量的函数关系。 定义:是用函数图象来表示两个变量的函数关系。 优点:能直观形象地表示出函数的变化情况。 优点:能直观形象地表示出函数的变化情况。

函数表示方法

函数表示方法

函数表示方法函数是数学中非常重要的概念,它在数学、物理、工程等领域都有着广泛的应用。

在数学中,函数是一种特殊的关系,它将一个集合中的元素对应到另一个集合中的唯一元素上。

函数的表示方法有很多种,下面我们将介绍几种常见的函数表示方法。

1. 公式表示法。

最常见的函数表示方法就是公式表示法。

在这种表示方法中,我们用一个数学表达式来表示函数。

例如,我们可以用f(x) = x^2来表示一个将自变量x映射到其平方的函数。

公式表示法简洁明了,能够清晰地表达函数的计算规则,因此在数学和物理问题中被广泛使用。

2. 图形表示法。

另一种常见的函数表示方法是图形表示法。

通过绘制函数的图像,我们可以直观地看出函数的性质。

例如,对于f(x) = x^2这个函数,我们可以绘制出抛物线的图像,从而直观地了解函数的增减性、极值点、凹凸性等信息。

图形表示法能够帮助我们直观地理解函数,因此在教学和科研中被广泛应用。

3. 表格表示法。

除了公式和图形表示法,我们还可以用表格表示法来表示函数。

通过列出自变量和函数值的对应关系,我们可以清晰地展现函数的取值情况。

表格表示法在实际问题中非常实用,特别是在计算机程序设计和数据分析中经常使用。

4. 文字描述法。

除了以上几种常见的表示方法外,有时候我们还可以用文字来描述函数。

通过文字的方式,我们可以对函数的性质、定义域、值域等进行详细的描述。

文字描述法能够帮助我们对函数进行深入的分析和理解。

5. 符号表示法。

在一些高级的数学理论中,为了简化表示和分析,人们还会使用符号表示法来表示函数。

例如,利用极限、导数、积分等符号来表示函数的性质和变化规律。

符号表示法通常用于高等数学、物理学等领域的专业研究中。

综上所述,函数的表示方法有很多种,每种表示方法都有其独特的优势和适用范围。

在实际问题中,我们可以根据具体的情况选择合适的表示方法来研究和应用函数,以便更好地理解和利用函数的性质和规律。

希望本文介绍的函数表示方法能够对您有所帮助。

函数的表示方法

函数的表示方法
通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。
例如:初中学习过的平方表、平方根表、三角函数表。我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的.
特别提醒:
列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。这种表格常常应用到实际生产和生活中。
函数的表示方法
1、能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数;
2、了解简单的分段函数,并能简单应用;
一、函数的常用表示方法简介:
1、解析法
如果函数 中, 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。
例如, =60 , = , , 等等都是用解析式表示函数关系的。
答案:D
3.函数 的图像是( )
(A) (B) (C) (D)
答案:C
4.已知函数 ,则( )
A、 B、 C、 D、不能确定大小
答案: A
5.如图,已知函数 的图象关于直线 对称,则满足不等式 的实数 的取值范围是。
答案: 或
6.根据函数 ,可以知道, , , (横线上填“>”或“<”符号)
答案:
7.设 ,求函数 的最大值。
列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。
3、图象法:
用函数图象表示两个变量之间的函数关系的方法,叫做图像法。
例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。
特别提醒:
图像法的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。

第三章 函数的概念和性质

第三章 函数的概念和性质

A 、 第三章 函数的概念和性质Ⅰ 教学要求(1)了解映射的概念.(2)理解函数的概念,了解函数的三种表示法,理解分段函数的定义及表示法.(3)理解函数的单调性和奇偶性.(4)了解反函数的概念,掌握简单函数的反函数的求法,了解函数)(x f y =的图像与它的反函数)(1x f y -=的图像之间的关系.(5)掌握一元二次函数的性质及其图像,掌握解一元二次不等式与一元二次函数之间的关系.(6)会用待定系数法求一次函数和二次函数的解析式.(7)了解函数的实际应用.Ⅱ 教材分析、教学建议和练习题解答现实世界中许多量之间有依赖关系,一个量变化时另一个量随着起变化,函数是研究各个量之间确定性依赖关系的数学模型,在工业革命时代,函数是数学中最基本的概念之一. 现在的世界已进入信息时代,计算机和互联网迅速普及,计算机科学和信息科学蓬勃发展. 由此促使了离散数学的地位日益上升,于是映射成了数学中最基本的概念之一.映射也是日常生活中许多现象的抽象.中学生学习映射的概念,至少有三方面的好处:作为现代社会的居民,能看懂信息时代的书报、电视;在日常生活中把事情做好;能更好理解函数的概念,反函数的概念.函数的图像是数形结合的基础,要让学生理解函数的图像的意义.本教材从函数的图像引出奇函数与偶函数的概念,既直观,同时又揭示了其本质. 本教材运用映射的观点阐述反函数的概念,给出反函数的求法,这与传统的方法不同.我们有创新,使得反函数概念的本质容易理解,使得反函数的求法严谨且易于掌握. 本章第三单元讲一元二次函数,这是在初中讲一元二次函数的基础上进一步讲清楚道理,运用第二单元函数的单调性和奇偶性的一般理论来具体地研究一元二次函数的性质和图像,既让学生学习如何运用理论研究具体函数的性质和图像,又使画函数图像的方法严谨、科学.待定系数法是数学中的一种重要方法,本章用一节介绍如何用待定系数法求一次函数和二次函数的解析式.总之,本章首先介绍映射和函数的概念,然后讨论函数的一般性质,最后运用函数的单调性和奇偶性的一般理论研究一元二次函数,并且介绍了一元二次不等式的解法. 本章的重点是:映射的概念,函数的概念,函数的图像,函数的单调性、奇偶性;一元二次函数的性质和图像,一元二次函数的最大值或最小值;解一元二次不等式的图像法;待定系数法.本章的难点是:映射的概念,点M在函数的图像上的充分必要条件,反函数的概念,函数的实际应用.学好本章的关键是:了解映射的概念,理解函数的图像的意义.本章教学时间约需15课时,具体分配如下:3.1 映射1课时3.2 函数的定义及记号1课时3.3 函数的三种表示法1课时3.4 分段函数1课时3.5 函数的单调性1课时3.6 函数的奇偶性2课时3.7 函数的图像2课时3.8 反函数1课时3.9 一元二次函数的性质及其图像1课时3.10 用待定系数法求函数的解析式1课时3.11 函数的实际应用1课时本章小结2课时3.1 映射1. 集合的概念与映射的概念是现代数学中最基本的两个概念. 在信息时代,映射的概念比函数的概念更基本. 理解了映射的概念,就能更深刻地理解函数的概念.2. 在讲映射的定义时,要着重指出:有两个集合和一个对应法则,并且这个对应法则使第一个集合的每一个元素,都有第二个集合中唯一确定的元素与它对应.3. 设f是集合A到集合B的一个映射,则把A叫做定义域,把B叫做值域.许多教材没有给第二个集合起名字,有的教材把第二集合叫做陪域.4. 一个映射f:BA→由定义域、值域和对应法则组成,它们称为映射的三要素,因此两个映射相等的定义应当是:定义域相等,值域相等,对应法则相同.3.1的练习答案1.(1)不是;(2)是.2.(1)是;(2)是;(3)不是;(4)不是;(5)不是.3.(1)不是;(2)是;(3)是;(4)不是;(5)不是.4. 是3.2 函数的定义及记号1. 在现实世界中有不少变量之间有确定性的依赖关系,函数就是研究这种关系的有力工具. 研究各种各样的函数的性质是数学的重要内容之一.2. 函数的概念包含三个要素:定义域,值域和对应法则. 从而两个函数相等当且仅当它们的定义域相等,并且对应法则相同.3. 例1(1)求函数值,例如求3xx=xf在处的函数值,实质上就是求-x,253)(=-=3,2=-=x x 处的函数值,实质上就是求3,2=-=x x 时,代数式35-x 的值,因此12335)3(,133)2(5)2(=-⨯=-=--⨯=-f f .由于在初中一年级已经学过代数式求值,因此给学生讲:求函数值实质上就是求代数式的值,学生便容易学会.在上述例子中,不要给学生说:“35)(-=x x f 的对应法则是‘乘5减3’,因此求处的函数值就是在2)(-x f -2乘5减3,即133)2(5)2(-=--⨯=-f .”这种讲法会使学生感到求函数值难学,因为要把一个函数的对应法则用语言叙述是很啰嗦的,再由对应法则来求函数值,显然是增加了难度.3.2的练习答案1.(1)是;(2)是;(3)不是;(4)不是.2. 是,定义域为{,,,,d c b a …,y ,z },值域为{0,1,2,…,24,25}.3. f (1)=-37, f (2)=-34. 4. (1)31)2(;13-=+=b a a b . 5.(1)是;(2)是.6. (1) f (1)=1,g (1)=-1;(2) 1)]1([,3)]1([-==f g g f ; (3) 5496)]([,1639)13(22--=--=-x x x g f x x x f . 3.3 函数的三种表示法1. 函数的概念包含三个要素:定义域、值域和对应法则.目前中职阶段,值域通常取为实数集,因此表示一个函数就要指明它的定义域和对应法则.当函数f 的定义域A 是有限集时,可以用一张表格来表示函数,第一行写出A 的各个元素,第二行写出相应的函数值,这种表示函数的方法叫做列表法.2. 当f 的定义域A 是无限集或有限集时,通常要寻找一个或几个式子来表示对应法则,即用一个或几个等式来表示函数,这种方法叫做公式法. 这一个或几个等式叫做这个函数的解析表达式,简称为解析式.教材中公式法下的第(2)个例子,设}1,0{B },6,5,4,3,2,1,0{A ==.考虑A 到B 的一个对应法则f :⎪⎩⎪⎨⎧∉∈=A,,0A,,1)(x x x f 当当 这是A 到B 的一个映射,从而是定义域为A 、值域为B 的一个函数这个例子来自组合设计与现代通信和密码的关系.本教材有意识地举一些信息时代的例子,目的是使中职数学不要囿于传统的教材中,而能透出信息时代的一些气息.在上面这个例子中,集合A 到集合B 的一个对应法则f 用了两个等式来表示;当A∈x时,0)(,A ;1)(=∉=x f x x f 时当.习惯上把这样的函数叫做分段函数. 其实不必用这个术语,因为不管用几个等式表示函数,都无非是给出了定义域到值域的一个对应法则,多一个术语,会使学生多一份负担,所以我们在教材中没有出现“分段函数”这个术语,希望教师不要补充这个术语.3. 在用公式法表示定义域为数集的函数时,如果没有标明定义域,那么我们约定:函数)(x f 的定义域是指所有使解析式有意义(即,在解析式给出的对应法则下有象)的实数x 组成的集合,不再每次声明. 此外要注意,在实际问题中,还必须结合问题的实际意义来确定自变量x 的取值范围.在上面一段话里,我们阐明了什么叫做“使解析式有意义”,即“在解析式给出的对应法则下有象”. 例如,求函数31)(-=x x f 的定义域,解法如下: 03)(≠-⇔x x f 的解析式有意义3≠⇔x .因此函数),3()3,()(+∞-∞ 的定义域是x f .在上面这个例子中,“)(x f 的解析式有意义”指的是“在解析式给出的对应法则下有象”. 由于x 在)(x f 的解析式给出的对应法则下没有象当且仅当03=-x ,因此)(x f 的解析式有意义当且仅当)3(03≠≠-x x 即. 这样讲是确切的,因为表达式31-x 是一个分式,它当然是有意义的;只是分式函数31)(-=x x f 当3=x 时没有象,此时称分式函数31)(-=x x f 的解析式当3=x 时没有象,此时称为分式函数31)(-=x x f 的解析式当3=x 时没有意义.在这里我们区分了“分式”与“分式函数”这两个不同的概念:分式..指的是表达式...),,),(),(()()(等等或y x g y x f x g x f 其中)()(x g x f 与是一元多项式,且)(x g 不是零多项式(或),(),(y x g y x f 与是二元多项式,且),(y x g 不是零多项式,等等),而分式函数....指的是由分式给出的映射..,这一段话是为教师写的,不要给学生讲. 在求函数的定义域时,我们采用等价术语来叙述,既严谨又简捷.4. 用平面直角坐标系里的圆形表示函数的方法称为图像法.用图像法表示函数的最大优点是直观,因为函数的图像是数形结合的基础. 为此首先要把什么是函数的图像搞清楚. 教材中给函数的图像下了一个定义:设)(x f 是定义域为A 的一个函数,任取A ∈a ,在平面直角坐标系Oxy 里,描出坐标为M a f a 的点))(,(.当a 取遍A 的所有元素时,坐标为))(,(a f a 的点组成的集合,称为函数)(x f 的图像.从这个定义应即得出:点)(A,)(),(a f b a x f b a M =∈⇔且的图像上在.即,点)(),(x f b a M 在的图像上当且仅当它的横坐标a 属于定义域,纵坐标b 等于a 处的函数值.这个结论十分重要,它是利用函数的图像研究函数性质的基础.3.3的练习答案1.(1)f (x )的解析式有意义⇔53035≠⇔≠-x x ,因此)(x f 定义域为),53()53,(+∞-∞ ; (2)f (x )的解析式有意义⇔x 37-≥0⇔x ≤37,因此)(x f 定义域为]37,(-∞; (3)f (x )的解析式有意义⇔162-x ≥0⇔x ≤-4或x ≥4, 因此)(x f 定义域为);,4[]4,(+∞--∞(4)f (x )的解析式有意义⇔216x -≥0⇔-4≤x =4,因此)(x f 定义域为]4,4[-;(5)f (x )的解析式有意义⇔1523-+x x ≥0⇔-32≤x <51,因此)(x f 定义域为)51,32[-; (6)f (x )的解析式有意义⇔x x 5123-+≥0⇔x ≤-32或x >51,因此)(x f 定义域为),51(]32,(+∞--∞ . 2.(1)532)2(;)1(4122+-+x x a . 3.图略4.点M 、Q 都不在函数)(x f 的图像上.5.(1)(a , f (a ));(2) (-a , f (-a )).6.(1));,31()31,0)[4(];3,2)[3(];23,0)[2();,21()21,0[+∞-+∞ (5)(-∞,-5) ]7,6)(6(]; 7,5-(.7. 图像略8. 证明:)0()(≠+=k b kx x f 的图像经过原点 ⇔ f (0)=0 ⇔ k ·0+b =0⇔ b =03.4 分段函数1. 自变量在不同变化范围中,对应法则用不同式子表示的函数,称为分段函数.2. 教材给出了分段函数f (x )=⎪⎩⎪⎨⎧+∞∈+∈),1(.1]1,0[,2x x x x .要求作出此函数的图像.3.4的练习答案1.1)0()}5({-==f f f .2.(1).8101)]3([,7)]5([,161)]3([-=--==f f f f f f (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧∈-<-=-R ,132·3.313,2.313 ≥,529)]([133x x x x x f f x x 3.(1))0 ≥()]([4x x x g f =;(2))0(1)]([>-=x xx f g . 4.图略 二、函数的性质3.5 函数的单调性1. 判断函数f (x )在区间上是增函数还是减函数,如果我们在画函数f (x )的图像时没有默让函数的单调性,那么用图像法判断f (x )的单调性,它具有直观易懂的优点,但是要注意:我们不能默认函数f (x )的单调性,去用一条光滑的曲线联结描出的各点,然后又让学生从这样画出的图像去判断f (x )的单调性,在画基本初等函数时在某个区间上的图像时,往往是要先用定义证明函数的单调性,然后才能用一条光滑曲线联结描出的各点,得到该函数在某个区间上的图像,之后利用对称性等画出该函数在另一个区间上的图像,这样对于该函数在另一个区间上的单调性就可以从图像来判断了.2. 对于任意的一次函数)0(≠+=k b kx y 的单调性,自然应当用定义法去判断. 教材的例1写出了求解过程,先统一写出)()(21x f x f -的表达式,然后分k >0和k <0两种情形判断)()(21x f x f -的正负.例2是讨论二次函数[)+∞--+=,13)1(21)(2在x x f 上的单调性. 必须先用定义法判断),1[3)1(21)(2+∞--+=在x x f 上是增函数,才能用一条光滑曲线联结描出的各点,得到),1[3)1(21)(2+∞--+=在x x f 上的一段图像.利用对称性.就能判定函数在]1,(--∞上是减函数,在),1[+∞-上是增函数.还有一种方法判定函数单调性,我们将在第三册中讲到. 定理:设函数f (x )在闭区间),(,],[b a b a 在开区间上连续内可导.(1)如果在内),(b a )('x f >0,那么],[)(b a x f 在上是增函数;(2)如果在内),(b a )('x f <0,那么],[)(b a x f 在上是减函数;(3)如果在内),(b a )('x f =0,那么],[)(b a x f 在上是常数.3.5的练习答案1. 任取121),,(,x x x 且+∞-∞∈<2x ,有-3x 1>-3x 2⇒-3x 1-2>-3x 2-2⇒)(1x f >)(2x f因此),(23)(+∞-∞--=在x x f 上是减函数.2. 任取),,0[,21+∞∈x x 且x 1<x 2,有212x <222x⇒212x +5<222x +5⇒)(1x f <)(2x f因此上在),0[52)(2+∞+=x x f 是增函数.3. 任取),0(,21+∞∈x x ,且x 1<x 2,有21122121)(555)()(x x x x x x x f x f -=-=-, 由于,x 2>x 1,x 1x 2>0,因此)(1x f -)(2x f >0从而 )(1x f >)(2x f 这表明()+∞=,05)(在xx f 上是减函数. 4. 任取),3[,21+∞x x ,且1x <2x ,有2x >1x ≥3⇒2x -3>1x -3≥0⇒(2x -3)2>(1x -3) 2≥0⇒-5)3(3122+-x <-5)3(3121+-x ⇒)(2x f <)(1x f所以),3[5)3(31)(2+∞+--=在x x f 上是减函数. 3.6 函数的奇偶性1. 本教材在阐述奇函数和偶函数的定义和性质上有创新.我们抓住了讨论函数奇偶性的实质是研究函数图像的对称性. 因此我们先复习图形关于直线对称的概念, 然后探索定义域为A 的函数)(x f 的图像在什么条件下关于原点对称?运用点P (a , b )在)(x f 的图像上的充分必要条件,我们推导出定义域为A 的函数)(x f 的图像E 关于原点对称 ⇔ E 上每一点))(,(a f a P 关于原点的对称点))(,(a f a M --仍在E 上⇔ A ),()(A,∈-=-∈-a a f a f a 对一切且.由此引出了奇函数的定义,并且上述推理也就证明了奇函数的图像关于原点对称,起了一箭双雕的作用.对于奇函数也是先复习圆形关于原点O 对称的概念,然后探索函数)(x f 的图像关于原点O 对称的充分必要条件:由此引出奇函数的定义,并且证明了奇函数的图像关于原点对称.我们这种讲法阐明了为什么要引进奇函数和偶函数的概念,而且简捷地证明了奇函数和偶函数的图像的对称性.2. 我们在教材中结合图形推导出“点),(b a P 关于y 轴的对称点Q 的坐标是),(b a -.关于原点的对称点M 的坐标是(b a --,)”这两个结论. 它们在探索)(x f 的图像的对称性时有用.3. 我们在例1中给出了判断一个函数)(x f 是不是奇函数的方法:求出)(x f 的定义域A.如果对于任意的)()(A,A,x f x f x x -=-∈-∈并且有都有,那么)(x f 是奇函数. 如果能找到一个)()(A,c f c f c -≠-∈使得,那么)(x f 不是奇函数.例2中给出了判断一个函数)(x f 是不是偶函数的方法:求出)(x f 的定义域A ,如果对于任意的A ∈x ,都有-A ∈x ,并且有)()(x f x f =-,那么)(x f 是偶函数.如果能找一个A ∈d ,使得)()(d f d f ≠-,那么)(x f 不是偶函数.例1和例2给出的方法是教学的基本要求,应让学生学会.3.6的练习答案1.(1)是;(2)是;(3)是;(4)不是.2.(1)是;(2)是;(3)不是;(4)不是.3. 证明:由于)(x f 、)(x g 都是定义域相同的偶函数,因此对于任意A ∈x ,有A ∈-x ,并且)F()()()()()F(x x g x f x g x f x =+=-+-=-.因此)(x F 是偶函数.4. )5(-f =-3.5.)3(f >)1(f .6. 证明:由于)(x f 、)(x g 都是定义域为A 的奇函数.因此对于任意A A,∈-∈x x 有,并且[])()()()()()()()(x h x g x f x g x f x g x f x h -=+-=--=-+-=-,)()()()]()][([)()()(x P x g x f x g x f x g x f x P ==--=--=-, 因此)(x h 是奇函数,)(x P 是偶函数.3.7 函数的图像1. 如果已经判断出)(x f 是奇函数,那么在画)(x f 的图像时,可以先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分. 这里的基本作图是,会作出点P 关于原点的对称点N ,这只要联结PO ,且延长至N ,使线段ON 的长度等于线段PO 的长度,则点N 就是点P 关于原点的对称点.2. 如果已经判断出)(x f 是偶函数,那么在画)(x f 的图像时,只要先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分,这里的基本作图法是,会作出点P 关于y 轴的对称轴Q ,这只要过点P 作y 轴垂线,设垂足为M ,把这垂线往左延长至点Q ,使线段MQ 的长度等于线段PM 的长度,则点Q 就是点P 关于y 轴的对称点.3.7的练习答案1. (1) (2)是偶函数,(3) (4) (5) (6)不是偶函数.2. (1)是;(2)是;(3)不是;(4)不是.3. 图略4.(1)2123)2(;3432--=+-=x x y x y . 5 ~7. 图略.3.8 反函数1. 我们在反函数的概念和求法上与传统的讲法不同,我们有创新. 传统的讲法大致是:给了函数的解析式,例如x y 3=.反解出y x 31=. 于是对于y 在R 中的任何一个值,通过式子y x 31=,x 在R 中都有唯一确定的值和它对应.因此也可以把y 作为自变量(∈y R ),x 作为y 的函数,我们一般用x 表示自变量,用y 表示函数,为此我们对调函数式y x 31=中的字母x 、y ,把它与成x y 31=.传统的讲法没有清晰地揭示反函数概念的本质,通过对调字母x 与y ,学生很难看清楚反函数与原来函数的关系.传统的讲法在反解出)(y g x =时,由于没有写出反解过程. 因此导致一些误会和差错. 传统的讲法对于用列表法表示的函数(不知道函数的解析式),没有给出反函数的概念. 而当今信息时代,由于计算机科学和信息科学的迅速发展,离散数学的地位加强,遇到的函数不一定能用公式表示,因此传统的讲法已不适应时代的要求.基本上述原因,我们对于反函数的概念和求法采取了新的讲法.2. 对于反函数的概念,我们给出这样的定义:如果函数)(x f y =有反函数,那么我们的讲法可以立即得出,严格单调函数一定有反函数. 3. 关于反函数的求法,我们给出了函数)(x f 的解析式,求它的反函数(仍用函数式表示). 对于用公式法表示的函数,我们给出的求反函数的方法是科学的. 以教材中例1的(3)为例:解b a x x y 对应到把2213-≠+-= )2(213-≠+-=⇔a a a b )2(13)2(-≠-=+⇔a a a b)3,2(12)3(≠-≠+=-⇔b a b a b)3,2(312≠-≠-+=⇔b a bb a a b xx y 对应到把3312≠-+=⇔ 因此函数213+-=x x y 的反函数是 ∈-+=x xx y (,313R 且3≠x ). 求213+-=x x y 的反函数,就是要寻找一个函数使得,对于原来函数的值域中的每一个b ,当原来的函数把a 对应到b 时,所求的函数把b 对应到a . 上述求解过程满足这一要求. 从反函数的定义知道,我们首先要知道原来的函数)(x f y =的值域;才能判断出所求出的函数是不是反函数(因为反函数必须是对于)(x f y =的值域中每一个元素b ,都有)(x f y =的定义域中唯一的一个元素a 与它对应).我们求反函数的方法是在求解过程中先求出了原来函数的值域,然后才求出了反函数. 这是符合反函数定义的要求的.我们是怎样求出原来函数的值域的呢?上述例子中,在第二步等价于b (a +2)=3a -1(a ≠-2),3.3=≠b b 因为假如从此式看出,则上式左边=3(a +2)=3a +6,而上式右边=3a -1.由此推出6=1-,矛盾,所以3≠b .即原来函数的值域是{b ∈R|(b ≠3)}. 于是对于原来函数值域中的每一个元素b ,在(3-b )a =2b +1而边除以(3-b )(此时3-b ≠0,因此可以用它作除数)得,b b a -+=312.从而求出了反函数为)3(312≠-+=x x x y .4. 有的教材在讲求反函数时是像下述那样讲的: “由213+-=x x y ,可得y y x -+=312,所以函数213+-=x x y 的反函数是xx y -+=312(∈x R 且3≠x ).”这种讲法没有详细写出反解的过程,在得出y y x -+=312时,没有讨论3≠y . 就把y -3当除数用了,这是不严谨的. 这种讲法没有事先求出原来函数的值域,因此所求出的函数xx y -+=312是否为反函数无从判断. 这种讲法容易引起误会以至产生差错,不少复习资料由此引出求原来函数值域的方法:“先求反函数,再从反函数的解析式求出定义域,它就是原来函数的值域.”这种方法是错误的,以213+-=x x y 为例,在反解时,如果不讨论3≠y ,就用)3(y -去除两边,得出y y x -+=312,然后又说从3312≠-+=x xx y 看出,因此得出反函数的定义域为{x ∈R |x ≠3},于是原来函数的值域为{y ∈R |y ≠3}. 这是先默认3≠y ,用(3-y )去除两边得到y y x -+=312,然后又说从x =yy -+312看出3≠y ,这在逻辑上是混乱的,这种思维方式是错误的. 由此看出,教数学不能只是教计算,而不管计算过程是否合理;教数学不能只是看答案对不对,而不管其思维方式是否正确. 这些都是直接关系到我们培养的学生的素质啊!定理1 如果函数)(x f y =有反函数,那么)(x f y =的图像与它的反函数)(1x f y -=的图像关于直线y =x 对称.学习数学一定要掌握基本理论,有了理论的指导,解题就会有思路,就能通过逻辑推理深入揭示事物之间的内在联系以及它们的本质.三、一元二次函数及其应用3.9 一元二次函数的性质及其图像1. 一元二次函数的图像在初中时已讲过,但是一些道理没有讲. 鉴于一元二次函数是非常重要的一类函数,有必要在中学阶段打下扎实的基础,因此我们在教材中用一节来讲一元二次函数的性质和图像, 这是在初中的基础上的提高.2. 我们在教材一开始就让学生动脑筋:如何正确..、简便..地画一元二次函数25212-+=x x y 的图像?然后分析:先把函数的表达式配方得,()31212-+=x y . 利用3.7节例3的结论,()31212-+=x y 的图像有对称轴1-=x . 因此只要先画出图像在直线1-=x 的右边的一半. 从而列表时只需要列出1-=x ,0,1,2,3,…时相应的函数值. 接着在平面直角坐标系Oxy 中描点. 描完点后,不是马上连线,而是先利用3.4节例3的结论:3)1(212-+=x y 在区间),1[+∞-上是增函数,这时才知道可以用一条光滑曲线把描出的各点联结起来. 最后利用对称性,画出图像在直线1-=x 的左边的部分.这样画函数的图像既简便又科学.传统的画函数图像的方法是:列表,描点,连线.前两步虽然正确,但是较麻烦(如果先讨论对称性,则可减少一半的工作量).第三步连线是不科学的. 在还没有讨论函数的单调性时,怎么知道如何联结描出的有限几个点?更不应该的是,事先不讨论单调性,但是却默认函数有单调性,“用一条光滑曲线联结各点”,然后又让学生从图像上看出函数是增函数或减函数. 这在逻辑上是混乱的,这种思维方式是不正确的.也许有人会说,让中学生讨论函数的单调性要求太高了,那么让我们来看一看,)(x f =),1[3)1(212+∞--+在x 上是单调性的讨论: 任取1x ,2x ),1[+∞-∈,且1x <2x ,有2x >1x ≥-1⇒12+x >11+x ≥0⇒(12+x )2>(11+x )2 ⇒()312122-+x >()312121-+x ⇒()2x f >()1x f , 因此),1[3)1(21)(2+∞--+=在区间x x f 上是增函数. 从上述讨论过程看到,用的都是不等式的性质,并不困难,而且正好是复习巩固不等式的性质. 我们又注意了分散难点,把这个讨论放在3.4节的例3,到3.8节时只是引用这个结论. 因此中学生是能够接受先讨论函数的单调性,再连线的.3. 在讲完()31212-+=x y 的图像后,我们给出顶点的概念,并且让学生观察顶点坐标)3,1(--与表达式有什么联系?观察顶点坐标与函数的最小值有什么联系?从函数的图像(我们已正确地画出了函数的图像)看出函数在顶点横坐标往左的区间上的单调性,以及图像的开口方向. 在观察的基础上,我们抽象出一般的一元二次函数()02≠++=a c bx ax y 的性质和图像. 由于其论证与()31212-+=x y 的性质和图像的论证类似,因此我们在教材中就不写出了.4. 在让学生画一个具体的一元二次函数的图像时,先配方,然后求出对称轴,接着先画图像在对称轴右边的一半(列表,描点,连线. 由于已经讲了一般的一元二次函数的单调性,因此在连线之前不用再讨论单调性了),最后利用对称性画出图像在对称轴左边的部分.5. 本节的练习除了画二次函数的图像以外,还有写出顶点坐标,求函数的最大值或最小值,求一元二次函数的最大(小)值的基本方法是将表达式配方. 这应让学生掌握. 这是因为配方在数学中是常用的一种技巧.至于直接利用顶点坐标来求最大 (小)值的方法,对于课时较充裕的学校也可以介绍. 我们在教材中把它作为思考题,让学生思考.3.9的练习答案1.(1)对称轴为5=x ,顶点坐标为)223,5(-,图略; (2)对称轴为41=x ,顶点坐标为)87,41(-,图略. 2.(1)当1-=x 时,y 达到最小值2;(2)当2-=x 时,y 达到最大值5;(3)当23=x 时,y 达到最小值41-; (4)当2=x 时,y 达到最大值1. 3.(1)顶点坐标)421,3(-,对称轴为x =3; (2)841)25(-=f ; (3))415()41(f f >-. 4.(1)对称轴为45=x ,顶点坐标为)825,45(-,函数最小值为825-,]45,(-∞为单调递减区间,),45[+∞为单调递增区间,函数图像开口向上; (2)对称轴为3=x ,顶点坐标为)27,3(,函数最大值为27,]3,(-∞为单调递增区间,),3[+∞为单调递减区间,函数图像开口向下.5.(1)顶点坐标为(3,-2).),63()63,(+∞+--∞∈ x 时,y >0;()63,63+-∈x 时,y <0.]3,(-∞∈x 时,函数为单调递减函数; ),3[+∞∈x 时,函数为单调递增函数. (2)顶点坐标为(-1,3). )261,261(+---∈x 时,y >0;),261()261,(+∞+----∞∈ x 时,y <0.]1,(--∞∈x 时,函数为单调递增函数;),,1[+∞-∈x 时,函数为单调递减函数.3.10 用待定系数法求函数的解析式1. 在许多数学问题或实际问题中,建立了函数的模型后,需要求其中的未知的系数,这可以通过列方程组并且解这个方程组求出,从而求出函数的解析式,这种方法叫做待定系数法.它是数学中重要的一种方法.本节主要是介绍如何用待定系数法求一元一次函数和一元二次函数的解析式,并且介绍了它们在实际问题中的应用.2. 一次函数的解析式)0(≠+=k b kx y 有2个系数k ,b ,因此需要列出两个彼此独立的方程来求未知系数k ,b ,于是需要已知两个条件来列两个方程.3. 一元二次函数)0(2≠++=a c bx ax y 的解析式有3个系数,因此用待定系数法求这3个系数时,需要列出3个彼此独立的方程,于是通常要给出这个函数当自变量取3个不同数时相应的函数值.4. 如果知道一元二次函数g (x )的图像的顶点坐标为(e , d ),则可以假设g (x )的解析式为d e x a x g +-=2)()(.这时只要再知道图像所经过的一个点的坐标,就可以求出系数a .5. 如果知道一元二次函数)(x g 的图像的对称轴是直线e x =,则可以假设)(x g 的解析式为d e x a x g +-=2)()(.这时只要再知道图像上两个点的坐标,就可以列出两个方程,从而求出待定系a 、d.6. 为了让学生了解待定系数法在日常生活中的应用,教材的例3求出了扔铅球时铅球在空中飞行轨道(抛物线的一段)的解析表达式.3.10的练习答案1. 设这个一次函数的解析式为b kx y +=,其中k ,b 待定.由于P (2,-5),Q (-1,7)在这个函数的图像上,因此有⎩⎨⎧=+--=+.7,52b k b k 解得 3,4=-=b k因此所求一次函数的解析式为34+-=x y .2. 设这个正比例函数的解析式为kx y =,其中k 待定,由于点(2,8)在这个函数的图像上,因此有8=2k ,解得 k =4.。

函数的几种表示方法

函数的几种表示方法

1.2.2 函数的表示方法第一课时函数的几种表示方法【教学目标】1.掌握函数的三种主要表示方法2.能选择恰当的方法表示具体问题中的函数关系3.会画简单函数的图像【教学重难点】教学重难点:图像法、列表法、解析法表示函数【教学过程】一、复习引入:1.函数的定义是什么?函数的图象的定义是什么?2.在中学数学中,画函数图象的基本方法是什么?3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征?二、讲解新课:函数的表示方法表示函数的方法,常用的有解析法、列表法和图象法三种.⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.例如,s=602t,A=π2r,S=2rlπ,y=a2x+bx+c(a≠0),y=2-x(x≥2)等等都是用解析式表示函数关系的.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.⑵列表法:就是列出表格来表示两个变量的函数关系.用列表法来表示函数关系的.公共汽车上的票价表优点:不需要计算就可以直接看出与自变量的值相对应的函数值.⑶图象法:就是用函数图象表示两个变量之间的关系.例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.三、例题讲解例1某种笔记本每个5元,买x∈{1,2,3,4}个笔记本的钱数记为y(元),试写出以x为自变量的函数y的解析式,并画出这个函数的图像解:这个函数的定义域集合是{1,2,3,4},函数的解析式为y=5x,x∈{1,2,3,4}.它的图象由4个孤立点A (1, 5) B (2, 10) C (3, 15) D (4, 20)组成,如图所示变式练习1 设,)(331--+=+x x x x f 221)(--+=+x x x x g 求f [g (x )]。

函数的三种表示方法-经典教学教辅文档

函数的三种表示方法-经典教学教辅文档

第2课时函数的三种表示方法教学目标一、基本目标1.总结函数三种表示方法,并总结三种表示方法的优缺点.2.会根据具体情况选择适当方法.3.积极参与活动,进步学习兴味.4.在数学活动过程中构成合作交流认识及独立考虑习气.二、重难点目标【教学重点】函数三种表示方法.【教学难点】会根据具体情况选择适当方法.教学过程环节1 自学提纲,生成成绩【5 min浏览】浏览教材P79~P81的内容,完成下方练习.【3 min反馈】1.函数的三种表示方法分别是解析式法、列表法、图象法.2.用含自变量x的式子表示函数的方法叫做解析式法.3.把一系列自变量x的值与对应的函数值y列成一个表来表示函数关系的方法叫做列表法.4.用图象来表示函数关系的方法叫做图象法.5.函数的三种表示方法的优缺点有哪些?活动1 小组讨论(师生互学)【例1】有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下方表格中的一些数据回答以下成绩:(1)(2)当所挂重物为x(克)时,用h(厘米)表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量.【互动探求】(引发先生考虑)能从表格中直接读出挂重物体的质量与对应的弹簧总长度的值吗?如何根据表格写出所挂物体的质量与弹簧的总长度之间的函数关系?【解答】(1)5÷0.5×1=10(克),即要想使弹簧伸长5厘米,应挂重物10克.(2)h=10+0.5x(0≤x≤50).(3)令10+0.5x=25,解得x=30,即当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.【互动总结】(先生总结,老师点评)列表法的优点是不需求计算就可以直接看出与自变量的值绝对应的函数值,简洁明了.列表法在实践消费和生活中也有广泛运用,如成绩表、银行的利率表等.【例2】如图描述了一辆汽车在某不断路上的行驶过程中,汽车离出发地的距离s (千米)和行驶工夫t (小时)之间的关系,请根据图象回答以下成绩:(1)汽车一共行驶的路程是多少?(2)汽车在行驶途中停留了多长工夫?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长工夫?【互动探求】(引发先生考虑)从函数图象中我们得到哪些信息?这些信息与所求成绩有何关系?【解答】(1)由纵坐标看出汽车最远行驶路程是120千米,往复共行驶的路程是120×2=240(千米).(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时.(3)①由纵坐标看出汽车到达B 点时的路程是80千米,由横坐标看出到达B 点所用的工夫是1.5小时,由此算出平均速度80÷1.5=1603(千米/时); ②由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;③由横坐标看出汽车从C到D用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);④由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时).(4)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.【互动总结】(先生总结,老师点评)图象法的优点是直观抽象地表示自变量与相应的函数值变化的趋势,有益于我们经过图象来研讨函数的性质.图象法在消费和生活中有许多运用,如企业消费图,股票指数走势图等.【例3】一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆车在半途不加油的情况下,最远能行驶多少千米?【互动探求】(引发先生考虑)剩余油量为y(升)与行驶路程为x(千米)之间满足甚么样的等量关系?根据自变量的取值怎样求函数值?由函数值怎样求出自变量的取值?【解答】(1)由题意,得y=-0.6x+48.(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升.当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0,即-0.6x+48=0,解得x=80,即这辆车在半途不加油的情况下,最远能行驶80 km.【互动总结】(先生总结,老师点评)解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以经过解析式求出任意一个自变量的值所对应的函数值.活动2 巩固练习(先生独学)1.下方说法中正确的是( C )A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的函数关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.某学习小组做了一个实验:从一幢100 m高的楼顶随手放下一个苹果,测得有关数据如下:则以下说法错误的是( B )A.苹果每秒着落的路程越来越长B.苹果每秒着落的路程不变C.苹果着落的速度越来越快D.可以揣测,苹果落到地面的工夫不超过5秒3.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一程度线上,等腰直角三角形沿程度线从左向右匀速穿过等边三角形时,设穿过工夫为t,两图形重合部分的面积为S,则S关于t的图象大致为( B )A BC D4.如图1,在△ABC中,AD是三角形的高,且AD=6 cm,E是一个动点,由B向C挪动,其速度与工夫的变化关系如图2.(1)求当E点在运动过程中△ABE的面积y与运动工夫x之间的关系式;(2)当点E挪动3.5秒后中止,且速度变化趋势与前2秒分歧,求此时△ABE的面积.图1 图2解:(1)由图2知,E点的运动速度没有发生变化,是3 cm/s,∴BE的长为3x cm,∴S△ABE=12BE·AD=12×3x·6=9x(cm2),即y=9x.(2)当x=3.5时,y=9×3.5=31.5 (cm2).活动3 拓展延伸(先生对学)【例4】如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A中止,设点P运动的路程为x,△ABP的面积为y,y关于x的函数图象如图2所示.(1)求矩形ABCD的面积;(2)求点M、点N的坐标;(3)如果△ABP的面积为矩形ABCD面积的15,求满足条件的x的值.图1图2【互动探求】(1)点P从点B运动到点C的过程中,运动路程为4时,面积发生了变化且面积达到最大,阐明BC的长为4;当点P在CD上运动时,△ABP的面积保持不变,就是矩形ABCD面积的一半,并且运动路程由4到9,阐明CD的长为5,从而求出矩形的面积;(2)利用(1)中所求,可得当点P运动到点C时,△ABP的面积为10,进而得出点M的坐标,利用AD,BC,CD的长得出点N的坐标;(3)当点P在BC、CD、AD上时,分别求出点P到AB的距离,然后根据三角形的面积公式列式即可求出y关于x的函数关系式,进而求出x即可.【解答】(1)结合图形可知,点P在BC上时,△ABP的面积y 不断增大.当4≤x≤9时,△ABP的面积不变,∴BC=4,CD=5,∴矩形ABCD的面积为4×5=20.(2)由(1)得当点P运动到点C时,△ABP的面积为10,即点M 的纵坐标为10,∴点M的坐标为(4,10).∵BC=AD=4,CD=5,∴NO=13,∴点N的坐标为(13,0).(3)当△ABP的面积为矩形ABCD面积的15,则△ABP的面积为20×15=4.①当点P在BC上时,0≤x≤4,点P到AB的距离为PB的长度x,y=12AB·PB=12×5x=5x2.令5x2=4,解得x=1.6.②当点P在CD上时,4≤x≤9,点P到AB的距离为BC的长度4,y=12AB·PB=12×5×4=10(不合题意,舍去).③当点P在AD上时,9≤x≤13时,点P到AB的距离为PA的长度(13-x),y=12AB·PA=12×5×(13-x)=52(13-x).令52(13-x)=4,解得x=11.4.综上所述,满足条件的x的值为1.6或11.4.【互动总结】(先生总结,老师点评)函数图象与图形面积是运用数形结合思想的典型成绩,图象运用信息广泛.经过看图获取信息,不仅可以解决生活中的实践成绩,还可以进步分析成绩、解决成绩的能力.用图象解决成绩时,要理清图象的含义.环节3 课堂小结,当堂达标(先生总结,老师点评)函数的三种表示方法⎩⎪⎨⎪⎧ 解析式法列表法图象法练习设计请完成本课时对应训练!。

函数的概念及表示方法

函数的概念及表示方法

【考点精讲】1. 函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。

如果当x =a 时y =b ,那么b 叫做自变量的值为a 时的函数值。

2.对函数概念的理解应注意以下几点:①变化过程中; ②两个变量;③一个变量随另一个变量的变化而变化; ④对于自变量x 的每一个确定的值,函数y 都有唯一的值与它对应(但有可能有多个不同的自变量数值对应一个函数值)。

3. 函数的表示方法:函数是从数量角度反映变化规律的数学模型。

解析式法、图象法和列表法是函数的三种常用表示方法。

①解析式法:用来表示函数关系的数学式子叫做函数解析式。

用解析式来表示函数关系的方法叫做解析式法。

②列表法:用表格来表示函数关系的方法叫做列表法。

③图象法:用图象来表示函数关系的方法叫做图象法。

【典例精析】例题1 下列关于x ,y 的关系式:① 5x -2y =1;② y =3|x|;③ x·y 2=2,其中表示y 是x 的函数的是( )A. ②B. ②③C. ①②D. ①②③思路导航:在x·y 2=2中,即22y x,当x =1时,y y x 对应着两个y 值,和函数的概念不相符,所以它不是函数。

答案:C点评:y 是x 的函数用函数关系式表示时,应用含有x 的式子表示y 。

因此,本题应首先对式子进行变形,用含有x 的式子表示y 。

例题2 下列曲线中不能表示y 是x 的函数的是( )思路导航:从图象可以看出每个图象中y 都随着x 的变化而变化,并且都存在两个变量,所以当x 是一个确定的值时,y 有唯一确定的值与之对应,就是函数,当不是唯一确定的值与之对应时,就不是函数。

答案:C点评:解决本类题的技巧是:过x 轴上的一点,作x 轴的垂线,这条直线与图象的交点为一个时,就是函数关系,当出现多个交点时,就不是函数关系。

函数的三种表示方法

函数的三种表示方法

2.用解析式与图象法表示等边三角形 周长L是边长a的函数.
解:因为等边三角形的周长L是边长a 的3倍.所以周长L与边长a•的函数关系 可表示为:
L=3a (a>0)
我们可以用描点法来画出函数L=3a 的图象.列表:
a…1 2 L…3 6
描点、连线:
3 4… 9 12 …
3.甲车速度为20米/秒,乙车速度 为25米/秒.现甲车在乙车前面500 米,设x秒后两车之间的距离为y 米.求y随x(0≤x≤100)变化的函 数解析式,并画出函数图象.
相比较而言,列表法不如解析式法全面, 也不如图象法形象;而解析式法却不如列表 法直观,不如图象法形象;图象法也不如列 表法直观准确,不如解析式法全面.
例题解析
一水库的水位在最近5小时内持续上 涨,下表记录了这5小时的水位高度.Biblioteka t/时 012
3
4
5

y/米 10 10.05 10.10 10.15 10.20 10.25 …
解:由题意可知:x秒后两车行驶路程分别是: 甲车为:20x 乙车为:25x 两车行驶路程差为:25x-20x=5x 两车之间距离为:500-5x 所以:y随x变化的函数关系式为: y=500-5x (0≤x≤100)
用描点法画图:
函数的三种表示方法
1、列表法:
X ┅ -3 -2 -1 0 1 2 3 ┅ y ┅ -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 ┅
2、解析式法:y=x+0.5
3、图象法:
函数的几种表示方法的优缺点:
列表法比较直观、准确地表示出函数 中两个变量的关系。解析式法则比较准确、 全面地表示出了函数中两个变量的关系。至 于图象法它则形象、直观地表示出函数中两 个变量的关系。

函数的表示方法有三种

函数的表示方法有三种

函数的表示方法有三种
首先,我们来谈谈显式函数。

显式函数是最为常见和直观的函数表示方法。

它通常采用y=f(x)的形式,其中y表示函数的输出,x表示函数的输入,f(x)表示输出和输入之间的关系。

以一元一次函数y=2x+3为例,这就是一个典型的显式函数表示方法。

在这种表示方法中,我们可以清晰地看到输入和输出之间的关系,因此能够方便地进行计算和分析。

其次,隐式函数是另一种常见的函数表示方法。

与显式函数不同的是,隐式函数通常不易直接解出y关于x的表达式。

例如,圆的方程x^2+y^2=1就是一个隐式函数的表示方法。

在这种情况下,我们无法直接从方程中解出y关于x的表达式,但仍然可以通过这个方程描述出圆的性质和特点。

在实际应用中,有些函数的关系并不容易用显式表达式来表示,这时候就需要用到隐式函数的表示方法。

最后,我们来介绍参数方程这种函数表示方法。

参数方程是一种使用参数来表示函数关系的方法。

通常采用x=f(t),y=g(t)的形式,其中x和y都是t的函数,t 是参数。

参数方程常常用于描述曲线或者曲面在平面或者空间中的轨迹。

例如,二维空间中的抛物线可以通过参数方程x=t,y=t^2来表示。

在这种表示方法中,我们可以通过参数t的取值来描述出抛物线上的各个点的位置,因此参数方程在描述曲线或者曲面的轨迹时具有很大的优势。

总之,函数的表示方法有三种,分别是显式函数、隐式函数和参数方程。

每种表示方法都有其适用的场景和特点,我们需要根据具体情况选择合适的表示方法。

希望本文的介绍能够帮助读者更好地理解和运用函数的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§3.3函数的三种表示方法
一、教学目标
知识目标:
理解函数的三种表示方法,了解初等函数定义域的几种形式,了解分段函数的意义,会求函数的定义域。

能力目标:
培养学生观察、分析、归纳、抽象、概括等逻辑思维能力,培养学生善于寻找数学规律的能力。

德育目标:
培养学生认真参与、积极交流的主体意识,培养学生学习数学的兴趣和勇于创新的精神。

使学生认识到知识的无止境,对客观世界的认识也是无止境的,树立终身学习的思想。

二、教学重点:
1.函数的表示方法—公式法
2函数定义域的求解
三、教学难点:函数定义域的求解
四、教学方法:“导读议讲练”与“小组学习法”相结合
五、教具:多媒体电脑。

六、教学过程:
㈠课前导读:
《函数的三种表示方法》预习提纲
1.设A、B是两个集合,如果对于A中的,按照某一个对应法则f,在B中
与之对应,那么叫做从A到B的一个映射。

记作。

2.如果在某一个变化过程中有两个变量x、y,对于x在某一个范围内的,按照某一个对应法则f,y都有与它对应,那么把x叫做自变量,把y叫做x 的函数,也称y是因变量。

设自变量x的取值范围记作A,设因变量y从集合B中取值,其中A、B都是,函数就是到的一个映射。

3.任意一个的映射就是函数。

4.函数的三要素是;陪域通常取为实数,因此表示一个函数就要指明其。

5.下列对应是映射吗?是函数吗?如是,请指出其定义域和对应法则。

①A={0,1,2,3,4},B={1,2,3,4,5},f :x →x+1 ②A={开,关},B={0,1},g :开→0,关→1 ③我国第10届全运会获前十名的省份与奖牌数
④一只钢笔的标价是3.6元,小明要买x 只钢笔需要y 元,y 与x 间的关系式。

如果顾客要买20只以上可打八折,则y 与x 间的关系式.
y=3.6x x ∈N ⎩
⎨⎧∙=x x y 8.06.36.3
⑤见右图
5.函数有哪三种表示方法?
6.你认为函数的三种表示法各有什么优点?
7.在表示一个函数时,我们通常用哪种方法比较好?
8.你认为这部分知识能解决什么重要题型?应该从哪几方面入手? (二)复习导入 1.定义回放:
①设A 、B 是两个集合,如果对于A 中的 每一个元素a ,按照某一个对应法则f ,在B 中 都有唯一确定的元素b 与之对应,那么f 叫做从A 到B 的一个映射。

记作 f :A →B 。

②如果在某一个变化过程中有两个变量x 、y ,对于x 在某一个范围内的每一个值x ,按照某一个对应法则f ,y 都有 唯一确定的值y 与它对应,那么把x 叫做自变量,把y 叫
x <20,x ∈N
x ≥20,x ∈N
做x的函数,也称y是因变量。

设自变量x的取值范围记作A,设因变量y从集合B中取值,其中A、B都是非空的数集,函数就是数集A 到数集 B 的一个映射。

③任意一个非空集合到数集的映射就是函数。

2.教师导入:
函数的三要素是定义域、陪域、对应法则;陪域通常取为实数集,因此表示一个函数就要指明其定义域、对应法则。

今天我们就来研究函数的表示方法—§3.3函数的三种表示方法。

(三)观察提出问题
1.观察
下列对应是映射吗?是函数吗?如是,请指出其定义域和对应法则。

①A={0,1,2,3,4},B={1,2,3,4,5},f:x→x+1
②A={开,关},B={0,1},g:开→0,关→1
③我国第10届全运会获前十名的省份与奖牌数
解答:①由学生讲解。

(是映射也是函数。

其定义域是A={0,1,2,3,4},值域是B={1,2,3,4,5},对应法则是加1。

在课件中出现的表格与此题不一样,见下:
②在老师引领下,由学生得出。

(是映射也是函数。

A={开,关},值域是B={0,1},对应法则是:开→0,关→1)
事实上,②也可以如下表示:
由②的分析可以很自然地得到③也是一个函数。

其定义域是表中各省份构成的集合。


此,函数可以由一个表格的形式表示,称之为列表法。

——学生读
2.议一议:④一只钢笔的标价是
3.6元,小明要买x 只钢笔需要y 元,y 与x 间的关系式。

如果顾客要买20只以上可打八折,y 与x 间的关系式.
y=3.6x x ∈N ⎩
⎨⎧⨯=x x y 8.06.36.3
是一个函数。

其定义域是N ,对应法则是3.6倍。

函数可以用x 、y 之间的一个等式或几个等式表示,称之为公式法。

——学生读
3.
此对应关系是用一个图像来表示的,称之为图像法。

由于时间关系,这种方法留在下节课具体讨论。

(四)探究引申思维:
函数的表示方法有三种方法—列表法、公式法、图像法。

其各自的优点:
1. 列表法:不必计算就可以知道自变量取某些值时的函数值。

2. 公式法:关系清楚,易求出函数值,便于研究函数的性质.
3. 图像法:函数的变化情况形象直观,一目了然. (五)分类归纳,探索规律 学生议论:
7.在表示一个函数时,我们通常用哪种方法比较好?
答:真正研究一个函数时,要三种方法并用,即具体问题具体分析。

8.你认为这部分知识能解决什么重要题型?应该从哪几方面入手? 答:求函数的定义域。

①找出规律:函数的定义域是指所有使解析式有意义的实数x 组成的集合。

②实际问题,要具体分析。

③求定义域的原则:(在给出例1、例2后得出) 分母不为零;开偶次方时,被开方数非负。

(六) 巩固归纳应用 1.试一试:
①.圆的周长C 是它的半径r 的函数,其解析式为 ,其定义域是 。

②正比例函数y=kx (k ≠0)的定义域是___________。

x <20,x ∈N x ≥20,x ∈N
③反比例函数)0(≠=
k x
k
y 的定义域是___________。

④一次函数y=kx+b (k ≠0)的定义域是___________。

⑤二次函数y=ax 2
+bx+c (a ≠0)的定义域是___________。

2.示范: 例1.求函数3
1
)(-=
x x f 的定义域 )
,(),因此的定义域是()的解析式有意义(解:∞+∞-≠⇔≠-⇔333
3 x x x f
注:分母不为零
小练1:x
x f -=25

( 例2.求函数12-=x x h )(的定义域

,)的定义域是(因此)的解析式有意义(解:∞+≥
⇔≥-⇔2
1
[2
10
12x g x x x g 注:开偶次方时,被开方数非负。

小练2:的定义域
求函数x x f -=1)( 例3.求函数1
2
)(-+=x x x h 的定义域 学生分析
)
,1(]2,()(2
11212010201020
101
2)(+∞--∞-≤⇔⎩⎨
⎧-≤⎩⎨⎧-≥⇔⎩⎨
⎧-≤+⎩⎨⎧-≥+⇔≠-≥-+⇔ 的定义域是因此或或或且的解析式有意义
解:x h x x x x x x x x x x x x x x h
注:求函数的定义域可以转化为解线性分式不等式、一次不等式组、一元二次不等式。

即必须保证使每一个式子都有意义。

3.归纳总结:
(1)求定义域的原则:(应该从哪几方面入手?) 分母不为零;
开偶次方时,被开方数非负。

实际问题,要具体分析。

(2)求定义域可以转化为解一次不等式组或线性分式不等式或一元二次不等式。

小练3.求函数31++-=x x x f )( 的定义域。

4.牛刀小试:
的定义域试求函数的定义域是函数的定义域是)(函数填空:x x h ③x
x g ②x x f ①㈠-=-=+=1)(21)(97.
(七)课堂小结:
1.函数的表示方法有:列表法、公式法、图像法。

它们各有各的优点,在具体研究一个函数时,需要三种方法并用。

2.用公式法给出函数时,同时应给出其定义域:即所有使解析式有意义的实数x 组成的集合。

2
9)(2
4
)(.x x ②g x x x f ①㈡-=++=求下列函数的定义域: 。

3.求函数的定义域原则:分母不为零;开偶次方时,被开方数非负。

实际问题,要具体分析。

4.求函数的定义域可以转化为解一次不等式组或线性分式不等式或一元二次不等式。

(八)课后作业:P96 A 1
七板书设计:。

相关文档
最新文档