拓展资源:数学中的对称美
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中的对称美
对称性是数学美的最重要的特征。几何中的轴对称、中心对称,代数中的许多运用都能给人以美感。发掘学生对数学的审美能力,这对引发学生的数学兴趣和学习上都有很大的帮助。
许多数学教师在教学中关注怎样利用数学中的对称美,提高学生学习数学的兴趣,提高解题的能力。我认为,数学教师在教学中,更要注意引导学生利用对称美提出问题,进行数学创新。这样做,有利于学生跳出题海,掌握学习的主动权。
一:代数中的对称美:
常出现在规律运算、数列运算、函数运算中
例如1:“回文数”是一种数字,也是一种对称数。如:98789,这个数字正读是98789,倒读也是98789,正读倒读一样,所以这个数字就是回文数。
计算×的值
解:我们最常见的一组算式:
1×1=111×11=121
11×111=123211111×1111=
从上述计算中得出对称规律可得:
×=
例如2、计算:1 + 2 + 3 +┅ + 100
引导学生利用数学对称美来解。
解:设x = 1 + 2 + 3 + ┅ + 100①
倒过来x = 100 + 99 + ┅ + 1②
① + ② 得2x = 101 × 100
∴ x = 5050
即:1 + 2 + 3 + ┅ + 100 = 5050
例如3、已知正比例函数与反比例函数的一个交点是(2,3),则另一个交点是(,).
分析:因为正比例函数与反比例函数都是关于原点中心对称图形,从而它们的交点也是关于原点中心对称。所以另一个交点是(-2,-3 ).
例如4、如图,请写出△ABC中各顶点的坐标.在同一坐标系中画出直线m:x=•-1,并作出△ABC关于直线m对称的△A′B′C′.若P(a,b)是△ABC中AC边上一点,•请表示其在△A′B′C′中对应点的坐标.
分析:直线m:x=-1表示直线m上任意一点的横坐标都等于-1,因此过点(-1,0)•作y轴的平行线即直线m.画出直线m后,再作点A、C关于直线m的对称点A′、C′,•而点B在直线m上,则其关于直线m对称的点B′就是点B本身.
解:(1)△ABC中各顶点的坐标分别是A(1,4)、B(-1,1)、C(2,-1)
(2)如右图,过点(-1,0)作y轴的平行线m,即直线x=-1.
(3)如右图,分别作点A、B、C关于直线m对称的点A′(-3,4)、B′(-1,1)、C′(-4,-1),并对顺次连接A′、B′、C′三点,则△A′B′C′即为所求.
(4)观察发现三组对称点的纵坐标没有变化.而横坐标都可以表示为2×(-1)•减去对应点的横坐标.所以点P的对应点的坐标为(-2-a,b)。
注意:2×(-1)中的-1即对称轴x=-1.若对称轴不是x=-1,而是y=2,相信聪明的你是一定能作出对称的三角形的,也一定能发现其中坐标变化的规律.
二、几何中的对称美:
“对称”在数学上的表现则是普遍的,几何上平面的情形有直线对称(轴对称)和点对称(中心对称),空间的情形除了直线和点对称外,还有平面对称。正偶边形既是中心对称图形又是轴对称,正奇边形不是中心对称图形但是轴对称。比如正方形既是轴对称图形(以过对边中点的直线为轴),以是中心对称图形(对角线的交点为对称中心),圆也是。
例如1:在锐角∠AOB内有一定点P,试在OA、OB上确定两点C、D,使△PCD的周长最短.
分析:△PCD的周长等于PC+CD+PD,要使△PCD的周长最短,•根据两点之间线段最短,只需使得PC+CD+PD的大小等于某两点之间的距离,于是考虑
作点P关于直线OA•和OB的对称点E、F,则△PCD的周长等于线段EF的长.
作法:如图.①作点P关于直线OA的对称点E;
②作点P关于直线OB的对称点F;
③连接EF分别交OA、OB于点C、D.则C、D就是所要求作的点.
证明:连接PC、PD,则PC=EC,PD=FD.
在OA上任取异于点C的一点H,连接HE、HP、HD,则HE=HP.
∵△PHD的周长
=HP+HD+PD=HE+HD+DF>ED+DF=EF
而△PCD的周长
=PC+CD+PD=EC+CD+DF=EF
∴△PCD的周长最短.
例如2:作图设计,村庄A、B位于不平行的两条小河的两侧,若要在两条小河上各架设一座与河岸垂直的桥,并要使A到B的路程最近,问桥应架在何处?
解:此题看来很复杂,但利用对称的原理来稍做改变,问题就可以迎刃而解了.设河岸为L1、L2、L3、L4,L1//L2,L3//L4,作AA1⊥L1,BB1⊥L3,使AA1的长为L1与L2之间的距离.连接A1B1交L2于A2,交L3于B2,则A2、B2就是加桥的地址,再从A2、B2出发作两座桥.
对称美在数学解题中有重要的应用,在解题过程中注意到对称性,则可以以简驭繁,化难为易,提高解题效率,达到事半功倍的效果.