第十九章:一次函数测试题(A卷)

合集下载

人教版数学八年级下册第十九章一次函数考试题含答案

人教版数学八年级下册第十九章一次函数考试题含答案

人教版数学八年级下册第十九章考试试题评卷人得分一、单选题1.在函数x的取值范围是()A.x≥﹣2且x≠1B.x≤2且x≠1C.x≠1D.x≤﹣22.已知y=(m﹣1)x+m+3的图象经过一二四象限,则m的范围()A.﹣3<m<1B.m>1C.m<﹣3D.m>﹣33.一次函数y=kx+b(k≠0)的图象经过一二四象限,则k和b的取值范围是()A.k>0,b>0B.k<0,b>0C.k>0,b<0D.k<0,b<0 4.小明在书上看到了一个实验:如图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象如图所示.小明选择的物体可能是()A.B.C.D.5.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的关系的图象如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米;②甲在中途停留了0.5小时;③乙比甲晚出发了0.5小时;④甲、乙两人同时到达目的地;⑤乙追上甲后甲的速度<乙的速度.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个6.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是()A.B.C.D.7.如图,函数y=ax+b和y=kx图象交于点P,则根据图象可知二元一次方程组y ax by kx=+⎧⎨=⎩的解是()A.23xy=-⎧⎨=-⎩B.32xy=-⎧⎨=-⎩C.3xy=⎧⎨=-⎩D.2xy=⎧⎨=-⎩8.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC 扫过的面积为()A.4B.8C.16D.829.某数学课外活动小组利用一个有进水管与出水管的容器模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出水,在随后的10分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的蓄水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则第12分钟容器内的蓄水量为()A.22B.25C.27D.2810.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.11.如图,直线AB:y=0.5x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是()A.(3,2.5)B.(8,5)C.(4,3)D.(0.5,1.25)12.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x 的图象上,从左向右依次记为A 1、A 2、A 3、…、A n ,已知第1个正方形中的一个顶点A 1的坐标为(1,1),则点A 2019的纵坐标为()A .2019B .2018C .22018D .22019评卷人得分二、填空题13.函数()0x y x 2x 3=---中,自变量x 的取值范围是.14.在一次函数y=(2﹣k )x+1中,y 随x 的增大而增大,则k 的取值范围为.15.已知点P(a,b)在一次函数y=2x-1的图像上,则2a-b+1=______.16.已知直线y=3x ﹣3向左平移4个单位后,则该直线解析式是______.17.如图,点Q 在直线y =-x 上运动,点A 的坐标为(1,0),当线段AQ 最短时,点Q 的坐标为__________________.18.如图,在平面直角坐标系中,直线l :y=3x+1交x 轴于点A ,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴的正半轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 6B 7A 7的周长是______.评卷人得分三、解答题19.已知动点P以每秒2cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6cm,试回答下列问题:(1)图(1)中的BC长是多少?(2)图(2)中的a是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b是多少?20.如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.21.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.22.某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?23.小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?24.如图1,在平面直角坐标系xOy 中,()A 3,0-,()B 2,0,C 为y 轴正半轴上一点,且BC 4=.()1求OBC ∠的度数;()2如图2,点P 从点A 出发,沿射线AB 方向运动,同时点Q 在边BC 上从点B 向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,是直角三角形,求t的值;已知PQB是等腰三角形时,求a与b满足的数量②若点P,Q的运动路程分别是a,b,已知PQB关系.参考答案1.A【解析】试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.由题意得,x+2≥0且x ﹣1≠0,解得x≥﹣2且x≠1.故选A .考点:函数自变量的取值范围.2.A【解析】【分析】根据一次函数的图像与性质列不等式组求解即可.【详解】由题意得1030m m -<⎧⎨+>⎩,解之得﹣3<m <1.故选A.【点睛】本题考查了一次函数图象与系数的关系:对于y =kx +b (k 为常数,k ≠0),当k >0,b >0,y =kx +b 的图象在一、二、三象限;当k >0,b <0,y =kx +b 的图象在一、三、四象限;当k <0,b >0,y =kx +b 的图象在一、二、四象限;当k <0,b <0,y =kx +b 的图象在二、三、四象限.3.B【解析】【分析】根据一次函数图象与系数的关系进行判断.【详解】解:∵一次函数y =kx +b (k ≠0)的图象经过一二四象限∴k<0,b>0故选:B【点睛】一次函数图象与系数的关系,解题的关键是由图形得出kb值的正负性.4.B【解析】【分析】根据图象可知,水面高度先不变,再下降,又不变,后以固定速度下降,可以确定问题的形状.【详解】由图象可知,水面高度先不变,再下降,又不变,后以固定速度下降,由开始和结尾可知A、C错误,由中间不变可知,D错误,故选B.5.C【解析】【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【详解】(1)两个图象纵坐标的最大值都是18,则他们都行驶18千米,正确;(2)甲在途中停留的时间是1-0.5=0.5(小时),正确;(3)乙比甲晚出发0.5小时,正确;(4)乙比甲早到0.5小时,错误;(5)乙追上甲后的速度是18÷(2−0.5)=12千米/时,相遇时,距离是12×0.5=6(千米),则甲的速度是(18−6)÷(2.5−1)=8(千米/时),故⑤正确.故选C.【点睛】此题考查了函数图象的认识,关键在于仔细读图,明白各部分表示的含义,从图中获取信息,解决问题.6.A【解析】函数→一次函数的图像及性质7.B【解析】∵函数y=ax+b和y=kx的图象交于点P(−3,−2),∴二元一次方程组y ax by kx=+⎧⎨=⎩的解是32xy=-⎧⎨=-⎩,故选B.8.C【解析】试题分析:∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3,BC=5,∵∠CAB=90°,∴AC=4,∴点C的坐标为(1,4),当点C落在直线y=2x﹣6上时,∴令y=4,得到4=2x ﹣6,解得x=5,∴平移的距离为5﹣1=4,∴线段BC扫过的面积为4×4=16,故选C.考点:1.一次函数综合题;2.一次函数图象上点的坐标特征;3.平行四边形的性质;4.平移的性质.9.C【解析】【分析】用待定系数法求出5≤x≤15对应的函数关系式,当x=12时,求出对应的值,即可解答.【详解】当5≤x≤15时,设y=kx+b,把(5,20),(15,30)代入得:5201530k b k b +=⎧⎨+=⎩,解之得115k b =⎧⎨=⎩,∴y =x +15,当x =12时,y =12+15=27,故选:C .【点睛】本题考查了一次函数的应用,解决本题的关键是用待定系数法求出函数解析式.10.D【解析】试题解析:动点P 运动过程中:①当0≤s≤时,动点P 在线段PD 上运动,此时y=2保持不变;②当<s≤时,动点P 在线段DC 上运动,此时y 由2到1逐渐减少;③当<s≤时,动点P 在线段CB 上运动,此时y=1保持不变;④当<s≤时,动点P 在线段BA 上运动,此时y 由1到2逐渐增大;⑤当<s≤4时,动点P 在线段AP 上运动,此时y=2保持不变.结合函数图象,只有D 选项符合要求.故选D .考点:动点问题的函数图象.11.B【解析】【分析】由直线y=0.5x+1分别与x轴、y轴交于点A、点B,即可求得点A与B的坐标,又由S△ABD=4,即可求得点D的坐标,由待定系数法即可求得直线CD的解析式,然后由直线AB与CD相交于点P,可得方程组:1123y xy x⎧=+⎪⎨⎪=-⎩,解此方程组即可求得答案.【详解】解:直线y=0.5x+1分别与x轴、y轴交于点A、点B,∴点A的坐标为(-2,0),点B的坐标为(0,1),∴OA=2,OB=1,∵S△ABD=4,∴1124 22BD OA BD⋅=⨯=,∴BD=4,∴OD=BD-OB=4-1=3,∴点D的坐标为(0,-3),∵点D在直线y=x+b上,∴b=-3,∴直线CD的解析式为:y=x-3,∵直线AB与CD相交于点P,联立可得:1123 y xy x⎧=+⎪⎨⎪=-⎩,解得:85 xy=⎧⎨=⎩,∴点P的坐标是:(8,5).故选B.【点睛】此题考查了待定系数法求一次函数的解析式、二元一次方程组的解与一次函数图像交点坐标的关系及三角形的面积问题.此题难度适中,注意掌握数形结合思想与方程思想的应用. 12.C【解析】【分析】根据直线解析式可知直线与x 轴的夹角为45°,从而得到直线、正方形的边与x 轴围成的三角形是等腰直角三角形,根据点A 1的坐标为(1,1),可依次求出正方形的边长,并得到点坐标的变化规律.【详解】由函数y =x 的图象的性质可得直线与x 轴的夹角为45°,∴直线、正方形的边与x 轴围成的三角形是等腰直角三角形,∵点A 1的坐标为(1,1),∴第一个正方形的边长为1,第二个正方形的边长为1+1=2,∴点A 2的坐标为(2,2),∵第二个正方形的边长为2,∴第三个正方形的边长为2+2=22,∴点A 3的坐标为(22,22),同理可求:点A 4的坐标为(23,23),…∴点A n 的坐标为(2n -1,2n -1),∴A 2019的坐标为(22018,22018),∴A 2019的纵坐标为22018.故选C.【点睛】本题考查了一次函数的图像与性质,正方形的性质,等腰直角三角形的判定及点坐标规律的探索.解题的关键是首先探索出个别点的坐标的变化规律,然后从特殊到一般去发现一般规律,进而利用规律去解决问题.13.x≥0且x≠2且x≠3【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数、分式分母不为0和0指数幂不为0的条件,要使()0x x 2x 3---在实数范围内有意义,必须x0x0{x30{x3x0x20x2≥≥-≠⇒≠⇒≥-≠≠且x≠2且x≠3.14.k<2。

《一次函数》综合测试题(A)

《一次函数》综合测试题(A)

, ,
, , , ,

45
伟 大 的 目标 造 就伟 大 的人 。— — 托 马斯 ・ 富勒
4 6
、 .、 一
I d e a l s a l e l i k e t h e s t a r s —w e n e v e l " r e a c h t h e m, b u t l i k e m a r i n e r s . w e c h a r t o u t c o u s r e b y t h e m .
A. Y=5 x2 0 C. Y= 5 x+2 0 B. Y=2 0 x+5 D. Y:2 0 x一 5
4 . 下列 函数 中 , 自变量 的取值 范 围有误 的是 (
A. Y=、 ( > )
) .
B . Y:( +1 ) ( 一3 ) 取任 意实数 )
第5 题图
、 、




G o a l s d e t e r mi n ew h a t y o u’ r eg o i n gt ob e .
— — — - — — — — — — ・ — — — — — — — — — — — — — — — ・ — — — — — — — — — — 。 。 — — ‘ 。 。 — ’ — ‘ ’ ’ — — — — ‘ — — — — ‘ ‘ ’ — — — — ‘ — 。 — — — — —
, ,『 『

= _ =

= _ =
一 二
…一 , , ,
4 7
为( ) .
A.
B.

C.
D.
3 . 某 工厂 , 2 0 0 9年 的产值 是 2 0万元 , 计划从 2 0 0 9年 开始 , 每年增 加 5万 元 则从 2 0 0 9年后 的 年 的年产值 y ( 万元 ) 与年数 的 函数 关系式 为 ( 、) .

八年级数学下册《第十九章-一次函数》单元测试卷-附答案(人教版)

八年级数学下册《第十九章-一次函数》单元测试卷-附答案(人教版)

八年级数学下册《第十九章一次函数》单元测试卷-附答案(人教版)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 在函数y=√ x−1x−2中,自变量x的取值范围是( )A. x≥1B. x>1C. x≥1且x≠2D. x>1且x≠22. 下列各曲线中表示y是x的函数的是( )A. B. C. D.3. 下列式子中,表示y是x的正比例函数的是( )A. y=x2B. y=2x C. y=x3D. y2=3x4. 若直线y=kx+k+1经过点(m,n+3)和(m+1,2n−1),且0<k<2,则n的值可以是( )A. 3B. 4C. 5D. 65. 如图,正比例函数y=−3x与一次函数y=kx+4的图象交于点P(a,3),则不等式kx+4>−3x的解集为( )A. x<−1B. x>−1C. x>−2D. x>06. 点P(a,b)在函数y=3x+2的图象上,则代数式6a−2b+1的值等于( )A. 5B. 3C. −3D. −17. 在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )A. 乙先出发的时间为0.5小时B. 甲的速度是80千米/小时C. 甲出发0.5小时后两车相遇D. 甲到B地比乙到A地早112小时8. 如图,一次函数y=x+√ 2的图象与x轴、y轴分别交于点A,B把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为( )A. √ 6+√ 2B. 3√ 2C. 2+√ 3D. √ 3+√ 29. 用绘图软件绘制出函数y=ax(x+b)2的图象.如图,则根据你学习函数图象的经验,下列对a、b大小的判断,正确的是( )A. a>0B. a>0C. a<0D. a<0,b<010. 如图,一次函数y=x+4的图象与x轴,y轴分别交于点A和B点C(−2,0)是x轴上一点,点E,F分别为直线y=x+4和y轴上的两个动点,当△CEF周长最小时,点E,F的坐标分别为( )A. E(−52,32) B. E(−2,2) C. E(−52,32) D. E(−2,2),F(0,23)二、填空题(本大题共10小题,共30.0分)11. 函数y =√ x +2中,自变量x 的取值范围是 . 12. 写出一个y 关于x 的函数,满足当x >0时,y <0: .13. 已知一次函数y =3x −1与y =kx(k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组{3x −y =1kx −y =0的解是 . 14. 一次函数y =ax −a +3(a ≠0)中,当x =1时,可以消去a ,求出y =3.结合一次函数图象可知,无论a 取何值,一次函数y =ax −a +3的图象一定过定点(1,3),则定义像这样的一次函数图象为“点旋转直线”.若一次函数y =(a −3)x +a +3(a ≠3)的图象为“点旋转直线”,那么它的图象一定经过点 _______________ .15. 函数y =−x 3+x 的部分图象如图所示,当y <0时,x 的取值范围是______.16. 甲、乙两人在一条直线跑道上同起点同终点同方向匀速跑步,先到终点的人原地休息,已知甲先出发3秒,从乙出发开始计时,所计时间设为t 秒.在跑步过程中,图1是乙跑步路程y(米)与时间t(秒)的图像,图2是甲、乙两人之间的距离s(米)与时间t 的图像,则b −a = .x+8与x轴、y轴分别交于点A、B,∠BAO的17. 如图,直线y=−43角平分线与x轴交于点M,则OM的长为______ .18. 如图,经过点B(−2,0)的直线y=kx+b与直线y=4x+2相交于点A(−1,−2),则不等式4x+2< kx+b<0的解集是.x+b上,则y1、y2的大小关系是.19. 若点(−3,y1),(1,y2)都在直线y=−12x+3与x轴,y轴分别交于点A,B,直线l2经过点A,与y轴负半轴交于点C,20. 如图,直线l1:y=34且∠BAC=45∘,则直线l2的函数表达式为.三、解答题(本大题共5小题,共40.0分。

《一次函数》综合测试题(A)

《一次函数》综合测试题(A)

『 ,
, ,
4 7
1 . 1 1 V'- o / : 7 ( ) 2 2 +1 x 3一
( )甲 3
( ) 48
() 2
一一2 -; V3
1. 吣 6(
= 5 6
42 ‘0一
9 0一 2

() 2 Y是 的 一 次 函 数 , Y 是 的 正 比 例 函数 . 但 不
( , ≠) 且 0
= 吉
B 乙比 甲快 . D 不一定 .
3 )
) .
5 如图射 线 l Z 别表示 甲、乙两名 运动 员在 自行 车 比赛 中所 走 的 . , 分 路 程 s 时间 t 与 的函数关 系 , 他们 比赛 时的速度 关系是 ( 则
第 5题 图
() 2 每户 每月 用水 量超 过 2 0立 方米 , 超过 的部分 每立 方米 水 费 2元 . 则 设 某 户 一个 月 所交 水 费 为 ) 元 ) 用 水 量 为 ( 方 米 ) 则 Y与 的 函数 关 系 式用 图像 表 示 , ( , 立 ,
为( ) .
A.
B.
《 欠 一; 函数》 台潮试题( 综 A)
温 馨提示 :. 1 考试 时 间 4 5分
2 本套测试 题共 三道大 题 , 分 1 0分 . 满 0
题 号 总 分




选择题 ( 每小 题 3分 , 3 共 O分 )
1 已知变量 P F和 s之 间存在关 系式 P= , . , 下列 说法 正确 的是 ( A P随 的增 大 而减少 . B 随 P的增大 而增大 .
) .
C 当 P一定 时 , . F随 . s的增 大而 增大 D. S一 定时 . 当 F随 P的增 大而减 小 2 某市 为 了鼓 励节 约用水 , 以下 规定 收取水 费 : . 按

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案

人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线y = 2x+5沿尤轴向左平移3个单位得到直线则直线&的解析式是()A. y=2x+2B. y=2x+8C. y=2x~lD. y=2x+ll 2.一次函数的图像经过点(1, 2)和(一3, -1),则它的表达式为()A 3 5 4 4A. y= —x — — B. y= —x ——J 4 4 ) 3 53 4C. y= —x+ — )4 53 5D. y= —x+ — '4 43.已知点(-2,叫),(-1见),(1,为)都在直线y=-5x+/?上,则/,力,为的大小关系是( )A. >3<>2<>1B. >1<>2<>34. D.为<乂<力C. >2<>1<>3如果函数y^~2x + m 的图象经过第二、三、四象限,那么农应满足的条件是()A. m>0B. m< 0C. m>0D. m<05.某快递公司每天上午8:00-9:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间工(分)之间的函数图象如图所示,那么当两仓库快递件C. 8:20D. 8:256.如图,直线y = -x + b 和"奴-3交于点尸,根据图象可知kx-3<-x+b 的解集为( )7.关于变量x, C. 0<x<l D. —y 有如下关系:①x-y=5;②y2=2x ; (3): y=|x|;④y=3x 4.其中y 是x 函数的是()A.①②③B.①②③④C.①③D.①③④8.已知两点M (4, 2), N (1, 1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为()A. (2, 0)B. (2.5, 0)C. (3, 0)D. (4, 0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()奇间时A. 这一天中最高气温是26°CB. 这一天中最高气温与最低气温的差为16°CC. 这一天中2时至14时之间的气温在逐渐升高D. 这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y = kx+b (k, 8为常数,5)的图象如图所示,下列说法正确的是( )C.尤 >0 时 yv —2024 B. '随工的增大而减小D.方程kx+b = 0的解是x = 2024二、填空题(共8小题,满分32分)11. 若y 是'的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式.12. 李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是y = mx + n,13.如图,直线y^mx+n 与直线y = kx+b 的交点为A,则关于工,了的方程组( z 7的解是[y = kx +b14.已知直线l i:y=-2x+a和/2:>='+人图象上部分点的横坐标和纵坐标如下表所示,则关于X的方程—2x+a=x+Z?的解是-1012y——2x+a852-1y-x+b012315.一个弹簧秤不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长了(单位:cm)与所挂重物质量尤(单位:kg)的函数解析式是.16.一次函数y--5x+b的图象经过和热(1况),则>1,%的大小关系是.2117.若直线AB:y=-x+4与工轴、V轴分别交于点8和点A,直线CD:y=-尹+2与工轴、了轴分别交于点。

人教版八年级数学下册《第十九章一次函数》检测卷-附带答案

人教版八年级数学下册《第十九章一次函数》检测卷-附带答案

人教版八年级数学下册《第十九章一次函数》检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一次函数的图象不经过...()A.第一象限B.第二象限C.第三象限D.第四象限2.函数图象向右平移个单位后,对应函数为()A.B.C.D.3.已知直线经过一、二、四象限,则直线的图象只能是()A.B.C.D.4.一次函数的函数值随的增大而减小,则的值为()A.2 B.3 C.4 D.55.一次函数的图象经过两个点和,则,的大小关系是()A. B. C.当时, D.当时,6.网语期印,李明同学在老家学习生活,为缓解线上学习疲劳,在某个周末和爸爸进行登山锻炼,登山过程中,两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示(甲为爸爸,乙为李明),李明提速后,李明的登山速度是原来速度的2倍,并先到达山顶.根据图象所提供的信息,下列说法情误的是()A.甲登山的速度是每分钟米B.乙在A地时距地面的高度b为米C.乙登山分钟时追上甲D.登山时间为5分钟、8分钟、分钟时,甲、乙两人距地面的高度差为米7.如图,直线分别与轴、轴交于点和点,直线分别与轴、轴交于点和点,点是内部(包括边上)的一点,则的最大值与最小值之差为()A.1 B.2 C.4 D.68.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题9.在函数y= 中,自变量x的取值范围是.10.若点在函数的图象上,则代数式的值为。

11.已知一次函数与(k是常数,)的图像的交点坐标是,则方程组的解是.12.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s(千米)与行驶时间t(小时)的函数关系及自变量的取值范围是13.如图,某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系.如果通讯费用为60元,那么A方案与B方案的通话时间相差分钟.三、解答题14.已知一次函数(,为常数,)的图象经过点和.(1)求该一次函数的解析式;(2)当时,求该一次函数的函数值的取值范围.15.如图,一次函数的图象与轴交于点B,与正比例函数的图象交于点.(1)求的面积;(2)利用函数图象直接写出当时,x的取值范围.16.油炸冰激凌是以面包、鸡蛋、冰激凌为材料制作的一种西式小吃,某油炸冰激凌专卖店每天固定制作甲、乙两个款型的油炸冰激凌共1000个,且所有产品当天全部售出,原料成本、销售单价及店员生产提成如表所示:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元(1)求出y与x之间的函数关系式;(2)若该店每天投入总成本不超过10750元,应怎样安排甲、乙两种款型的制作量,可使该店这一天所获得的利润最大?并求出最大利润(总成本=原料成本+生产提成,利润=销售收入﹣投入总成本)17.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求乙车出发多少时间,两车相距50千米?18.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A ,B 两种图书.经调查,购进A 种图书费用y 元与购进A 种图书本数x 之间的函数关系如图所示,B 种图书每本20元. (1)当和时,求y 与x 之间的函数关系式;(2)现学校准备购进300本图书,其中购进A 种图书x 本,设购进两种图书的总费用为w 元. ①当时,求出w 与x 间的函数表达式;②若购进A 种图书不少于60本,且不超过B 种图书本数的2倍,那么应该怎样分配购买A ,B 两种图书才能使总费用最少?最少总费用多少元?19.如图,直线124l y x =-+:分别与x 轴、y 轴交于A ,B 两点,直线2l 与1l 交于点()2P a ,,与x 轴交于点()30C -,,点M 在线段AB 上,直线ME x ⊥轴于点E ,与2l 交于点N . (1)求直线2l 的表达式; (2)设点M 的横坐标为m . ①当32m =时,求线段MN 的长; ②若点M ,N ,E 三点中,其中两点恰好关于第三点对称,直接写出此时m 的值参考答案:1.D2.D3.B4.A5.A6.C7.B8.B9.x≠﹣110.1111.12.13.3014.(1)解:∵点,在该一次函数的图象上∴解得∴该一次函数的解析式为.(2)解:∵∴该一次函数的函数值随的增大而减小.当时;当时.∴当时,该一次函数的函数值的取值范围是.15.(1)解:∵一次函数的图象过点∴∴∴一次函数的表达式为 .当时∴∴ .(2)当时,的取值范围为16.(1)解:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元可得:y=(20﹣10﹣2) x+(16﹣8﹣1.5) (1000﹣x)=1.5x+6500;(2)设安排甲型产品x件,则乙型产品(1000-x)件,根据题意得到不等式,解不等式即可得到结论.由题意,12x+9.5(1000﹣x)≤10750,解得x≤500∵y=1.5x+6500,1.5>0∴x=500时,y有最大值=1.5×500+6500=7250答:该店每天制作甲、乙款型的油炸冰激凌各500个,可使该店这一天所获得的利润最大,最大利润7250元.17.(1)解:由图象可知乙车比甲车晚出发1个小时(2)解:设甲的函数解析式为y=kx,把点(5,300)代入得到k=60,故y=60x设乙的函数解析式为y=k′x+b,把点(1,0)和点(4,300)代入得到解得故y=100x﹣100由得= =1.5所以乙车出发后1.5小时追上甲车.(3)解:由题意:60x﹣(100x﹣100)=50或100x﹣100﹣60x=50解得到x= 或因为﹣1= ,﹣1=所以求乙车出发或小时,两车相距50千米.18.(1)解:当时,设将代入解析式,得解得当时,设将、分别代入解析式得解得综上, (2)解:①当时;②此时随x 的增大而减小 当时,w 最小,最小值为: 故购买A 种200本,B 种100本时总费用最少,最少总费用为5800元19.18.(1)解:将点()2P a ,代入124l y x =-+:,得224a =-+ 解得1a = 设2l y kx b =+:∴203k bk b =+⎧⎨=-+⎩解得1232k b ⎧=⎪⎪⎨⎪=⎪⎩∴2l 的表达式为1322y x =+ (2)解:①根据题意3931242N M ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,∴95144MN =-=. ②m 的值为139 13。

新人教版八年级下第19章《一次函数》单元测试题及答案(1)

新人教版八年级下第19章《一次函数》单元测试题及答案(1)

新人教版八年级下第19章?一次函数?单元测试题及答案一.选择题〔每题3分,共30分〕1 .函数y=」—中,自变量X 的取值范围是〔〕 x 2A.x>2B.xv2C.xw22 .关于函数y=-2x+1,以下结论正确的选项是〔 〕 A.图形必经过点〔-2,1 〕 B. C.当 x>1时,y<0D.y2C. 、’6 或 4D.4或-v16A.-2 <y<0B. -47.一艘轮船在同一航线上往返于甲、乙两地 ,轮船在静水中的速度为 15 km/h,水流速度为5 km/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t 〔h 〕,航行的路程s 〔km 〕,那么s 与t 的函数图象大致是8.一次函数y=kx+b 的图象如下图,当x< 1时,y 的取值范围是〔<y<0 C. y v-2 D. yV -4D.xw-2图形经过第一、二、三象限 随x 的增大而增大3 .如图,一次函数 y=kx+b 〔k 丰 0〕 的图象经过A,B 两点,那么关于x 的不等式kx+b 〈0的解集 是〔〕 A.m> -1 B.mC.-1 <m< 1D.-14 .直线y=-2x+m 与直线y=2x-1的焦点在第四象限,那么 m 的取值范围是〔〕A.m> -1B.m < 1C.-1< m< 1D.-1<15 .假设一次函数 y=〔1-2m 〕x+m 的图象经过点 A 〔 * ,y 〕和点B 〔x 2,y 2〕,当 x 1V x 2时,是〔 〕 A.m> 0 B.m < 1C.02y 〔 v y 2 ,且与y 轴相交于正半轴,那么 1 < m< —2D. .m那么当函数值y=8时,自变量x 的值是〔B.46.假设函数 y= A. , 6m 的取值范围二.填空题〔每题3分,共24分〕11 .将直线y=-2x+3向下平移 2个单位得到的直线为 .12 .在一次函数y=〔2-k 〕x+1中,y 随x 的增大而增大,那么 可的取值范围是 .13 .从地面到高空11千米之间,气温随高度的升高而下降,每升高 1千米,气温下降 6C. 某处地面气温为 23C,设该处离地面 x 千米〔0vxv11〕从的温度为y C,那么y 与x 的函数关系式为. 14 .直线y=kx+b 与直线y=-2x+1平行,且经过点〔-2,3 〕,那么kb=. 15 .直线y=-x 与直线y=x+2与x 轴围成的三角形的面积为 .16 .一次函数y=4x+4分别交x 轴、y 轴于A,B 两点,在x 轴上取一点C,使△ ABC 为等腰三3角形,那么这样的点 C 最多有 个.17 .如图,OB,AB 分别表示甲乙两名同学运动的一次函数图象,图中 s 与t 分别表示运动路程和时间,甲的速度比乙快,以下说法: ①射线AB 表示甲的路程与时间的函数关系; ②甲的速度比乙快1.5米/秒; ③甲比乙先跑12米;④8秒钟后,甲超过了乙,其中正确的有.〔填写你认为所有正确的答案序号〕18.绍兴黄酒是中国名酒之一, 某黄酒厂的瓶酒车间先将散装黄酒灌 装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装,装箱生 产线共26条,每条灌装、装箱生产线的生产流量分别如图①、②所示.某日 该车间内的生产线全部投入生产, 图③表示该时段内未装箱的瓶装黄酒存量变化情况,那么灌9.将直线y=-2x 向右平移2个单位所得直线的解析式为〔 〕A.y=-2x+2B.y=-2〔x+2〕C.y=-2x-2D.y=-2〔x-2〕10.如图,小亮在操场上玩,一段时间内沿 MH A- B- M 的路径匀速散步,能近似刻画小亮到 出发点M 的距离y 与x 之间关系的函数图象是〔 〕 装生产线有 条. 8:00 〜11:00 ,三.解做题(共66分)19. (7分):一次函数y=(2a+4)x-(3-b), 当a,b为何值时:(1) y 随x的增大而增大;(2)图象经过第二、三象限;(3)图象与与y轴的交点在x轴上方.20. (8分)画出函数y=- 3x+3的图象,根据图象答复以下问题:2(1)求方程-3x+3=0的解;2(2)求不等式-3 x+3< 0的解集;2(3)当x取何值时,y>0.象答复以下问题:(1)出租车的起步价是多少元?当x(2)假设某程控有一次乘出租车的车费为>3时,求y关于x的函数关系式; 32元,求这位乘客乘车的里程.21.(8 分)某市出租车计费方法如下图, x( km)表示行驶里程,y (元)表示车费,请根据图22.〔10分〕一列长120米的火车匀速行驶,经过一条长为 口到车尾离开隧道出口共用 14秒,设车头在驶入隧道入口y 米.〔1〕求火车行驶的速度;〔2〕当0W xW14时,y 与x 的函数关系式;〔3〕在给出的平面直角坐标系中画出 y 与x 的函数图像.23. 〔10分〕某地为改善生态环境,积极开展植树造林,甲乙两人从近几年的统计数据中有 如下发现:该地公淡#■的面布 T f 万亩〕与年份齐〔箝3201叫1 1r1箫是关系式工[*心口」■/ 1陆护扑的面积Y 〔再缶〕与年俗?〔彘四成一次演数关系,且〔聋时.防^水■的而枳口为2印万亩,到11114411 达 4H 万亩 ।,乙:甲:(1) (2)求丫2与x 之间的函数关系式?假设上述关系不变,试计算哪一年该地公益林面积可达防护林面积的 益林的面积为多少万亩?2倍?这时该公160米的隧道,从车头驶入隧道入 x 秒时,火车在隧道内的长度为24. 〔11分〕某地区为了进一步缓解交通拥堵问题,决定修建一条长尾6千米的公路.如果平均每天的修建费y〔万元与修建天数x 〔天〕之间在30WXW120时,具有一次函数关系, 如下表所示:〔2〕后来在修建的过程中方案发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比方案晚了15天,求原方案每天的修建费.25. 〔12分〕如下图,直线y=x+3的图象与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,把△ AOB的面积分为2:1的两局部,求直线l的解析式.新人教版八年级数学第19章?一次函数?单元测试(1)参考答案二.填空题: 11 .y=-2x+1 12 .k<2 13 .y=-6x+23 14.215.116.417.②③④ 18.14 19.(1)a>-2 (2)a v-2 且 b<320 .解:图象略. (1)由图可知,x=2 (2)x >2 (3)x <221 .解:(1) 8 元,y=2x+2(2)当y=32时,2x+2=32,x=15, •.•这位乘客乘车的里程为15 km22 .解:(1)设火车行驶的速度为 v 米/秒,根据题意得14V=120+60,解得v=20(2)①当 0 w x w 6 时,y=20x;②当 6 < x < 8 时 y=120;③ 当 8 v x w 14 时, y=120-20(x-8)=-20+280 (3)图略 (2)y = 丫?,即 5x-1250=2(15x-2590),x=2026, .••到2026年该地公益林面积可达防护林面积的24 .解:⑴y=-0.2x+50(30<x< 120)(2)设原方案要 m 天完成,那么增加2 km 后,用了 ( m+15(天,由题意得 —=62,解这个 m m 15方程得m=45,..•原方案每天的修建费为: -0.2 X 45+50=41 (万元) 25 .解:二.直线y=x+3的图象与x 、y 轴交于A,B 两点,二.A 点的坐标为(-3,0 ), B 点坐标为(0,3) I OAI =3, I OBI =31 一 一 19•-S AOB =- 10Ax 1 OBI =1X3X3=723.解:(1)y2=15x-25950(x >2021)故y =5X 2026-1250=8880 ,2倍,公益林面积为 8880万亩.设直线l的解析式为y=kx(k w0),•••直线l把^AOB的面积分为2:1的两局部与线段AB交于点C ,分两种情况讨论:,一 一 一_9 又, S AOB SAOC +SBOC2y = 2,由图可知y =2 又...点C 在直线AB 上2=Xi +3X i=-1.• •.C 点坐标为〔-i,2 〕.把C 点坐标代入y=kx 中,得2=-i x k,•.k=-2,直线l 的解析式为y=-2x ②当SAOC: S BOC =1:2时,设C 点坐标为〔X 2 y 2〕= + =£ SAOB =SAOC +SBOC = 2••・ SAOC =q X !=[,即SAOC =; 1 0A X 2 3 22y 2 = ± i,由图可知 y 2 =i,又...点C 在直线AB 上 i= +3X2• 1-X 2=-2 ,把C 点坐标代入y=kX 中,,1=-2kk =1 k-—2,直线l 的解析式为y=- 1 X2综合①②得,直线l 的解析式为y=-1X 或y=-2x2D 当SAOC:S BOC =2:1时,设C 点坐标为Xi・•. S AOC="2* 2=3,即S 1 ,八,2yi=-X3X I2Vi' =3,1C , , 3=2X 3X。

一次函数测试(A卷)

一次函数测试(A卷)

() 一 x A Y 一3 () 一÷z BY
( y > y A) l z ( ) 2 y BY ≥ l
( ) 一3 一1 ( ) 一1 x C Y x D Y —3
) .
( y ≤ y D) l z ( y < y C) l z
1.若点( , 。 ( , z 都在直 线 Y— z+ 1 , 0 一5 Y ) 2 y ) 上 则(


三象限 :

6 4
6 .周长为 1 4的等腰三角形的腰长 Y与底
边 z的函数关系式是

— —
7 .如图 1 A、 A 分 别表 示 甲、 ,O B 乙两学
l 2
生匀速 跑步 时的路 程 S与时 间 t 间 的关 系 , 之 的 速 度 快 , 秒 快 O 每 由图 象 判 断
l.拖拉 机油箱 中有油 2 1 4升 , 若每小时耗 油 4升 , 么表示油箱 中剩余 油量 Y 那
( ) 升 与时间 z 时 ) 间关系的图象是< ( 之
— — 一
) .
次 函 数 测 试 ・ 卷 ・第 t页—— A
维普资讯

( A)
三 、解 答 题
1.( 4 本题 8分) 如图 , 周长为 2 4的凸 五边形 A C B DE被对 角线分 成等腰 三 角 形 A E ̄ B
数 的图象.
B D 且A —A C E, B E— b i d.设 AB的长为 z, D 的长为 Y, Y与 C 求
z之 间的函数关 系式 , 写出 自变量 z的取值范 围 , 并在所给 的坐标 系中画 出这个 函
— —
3 .已知 Y与 2 1成正比例 , 当 z一一 2时 , x一 并 Y一 1 , 0 则当 Y一 i , 一 f ,时 z

最新人教版八年级下册第十九章一次函数单元测试题AB卷-1.doc

最新人教版八年级下册第十九章一次函数单元测试题AB卷-1.doc

最新人教版八年级下第十九章一次函数单元测试题A卷考试时间:120分钟满分:120分第一卷选择题一、选择题(每小题3分,共30分)1.函数y=中,自变量x的取值范围是()A.x>﹣2且x≠1 B.x≥2且x≠1 C.x≥﹣2且x≠1D.x≠12.一次函数y=﹣x+2图象经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限3.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个4.如图,一次函数y=(m﹣1)x﹣3的图象分别与x轴、y轴的负半轴相交于A、B,则m的取值范围是()A.m>1 B.m<1 C.m<0 D.m>0 5.已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)7.若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,则m的取值范围是()A.m<0 B.m>0 C.m<2 D.m>2 8.已知直线l经过点A(1,0)且与直线y=x垂直,则直线l的解析式为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 9.关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D .10.如图,正方形的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()B第二卷非选择题二、填空题(每小题3分,共24分)11.已知一次函数y=kx+b的图象经过A(1,﹣1),B(﹣1,3)两点,则k0(填“>”或“<”)12.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于.13.如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b >﹣2的解集为.第13题第18题14.直线y=2x﹣1沿y轴平移3个单位,则平移后直线与y轴的交点坐标为.15.一次函数y=(2m﹣6)x+m中,y随x增大而减小,则m的取值范围是.16.函数y1=k1x的图象过点P(2,3),且与函数y2=k2x的图象关于y轴对称,那么他们的解析式y1=,y2=.17.如果函数y=x﹣2与y=﹣2x+4的图象的交点坐标是(2,0),那么二元一次方程组的解是.18.已知直线y1=x,y2=x+1,y3=﹣x+5的图象如图所示,若无论x取何值,y 总取y1,y2,y3中的最小值,则y的最大值为.三、解答题(共6小题,共66分)19.根据下列条件,确定函数关系式:(6分)(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(﹣2,1).20.已知,直线y=2x+3与直线y=﹣2x﹣1.(8分)(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.21.网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网).此外B种上网方式要加收通信费0.02元/分.(8分)(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式.(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱.22.如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A的坐标为(0,3).(10分)(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,△OPA的面积为,并说明理由.23.温度与我们的生活息息相关,你仔细观察过温度计吗?如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉),设摄氏温度为x(℃),华氏温度为y(℉),则y是x的一次函数.(10分)(1)仔细观察图中数据,试求出y与x之间的函数表达式;(2)当摄氏温度为零下15℃时,求华氏温度为多少?24.如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)(12分)(1)根据图象分别求出l1,l2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.25.某块试验田里的农作物每天的需水量y(千克)与生长时间x(天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(12分)(1)分别求出x≤40和x≥40时y与x之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时需要进行人工灌溉,那么应从第几天开始进行人工灌溉?最新人教版八年级下第十九章一次函数单元测试题A卷考试时间:120分钟满分:120分第一卷选择题一、选择题(每小题3分,共30分)1、解:根据题意得:解得:x≥﹣2且x≠1.故选B.4、解:∵函数图象经过二、四象限,∴m﹣1<0,解得m<1.故选B.5、解:将(2,﹣1)、(﹣3,4)代入一次函数y=kx+b中得:,①﹣②得:5k=﹣5,解得:k=﹣1,将k=﹣1代入①得:﹣2+b=﹣1,解得:b=1,∴,∴一次函数解析式为y=﹣x+1不经过第三象限.故选C6、解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故函数解析式是y=﹣x+1.故选A.9、解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选C.10、解:当点P由点A向点D运动时,y的值为0;当点p在DC上运动时,y随着x的增大而增大;当点p在CB上运动时,y不变;当点P在BA上运动时,y随x的增大而减小.故选B.第二卷非选择题不等式x>kx+b>﹣2即x>x﹣1>﹣2,可化为,解得:﹣1<x<2.14、解:直线y=2x﹣1沿y轴平移3个单位可得y=2x﹣1+3或y=2x﹣1﹣3,即y=2x+2或y=2x﹣4,则平移后直线与y轴的交点坐标为:(0,2)或(0,﹣4).故答案为:(0,2)或(0,﹣4).18、解:如图,分别求出y1,y2,y3交点的坐标A(,);B(,);C(,)当x<,y=y1;当≤x<,y=y2;当≤x<,y=y2;当x≥,y=y3.∵y总取y1,y2,y3中的最小值,∴y=.最大三、解答题(共6小题,共66分)19、解:(1)y与x的函数关系式为y=kx,∵当x=9时,y=16,解得;∴点C的坐标为(﹣1,1);(3)过点C作CD⊥AB交y轴于点D;∴CD=1;∵AB=3﹣(﹣1)=4;∴S=AB•CD=×4×1=2.△ABC(2)如图,过P作PH⊥OA于H,∵点P(x,x+6)是第二象限内的直线上的一个动点,∴PH=y,而点A的坐标为(0,3),∴S=×3×(﹣x)=﹣x(﹣8≤x<0);(3)当S=时,x=﹣,∴y=.∴P坐标为(﹣,).23、解:(1)设一次函数表达式为y=kx+b,由温度计的示数得x=0,y=32;x=20时,y=68.将其代入y=kx+b,得(任选其它两对对应值也可).解得.所以y=x+32;(2)若两种费用相等,即y1=y2,则0.03x+2=0.012x+20,解得x=1000,∴当x=1000时,两种灯的费用相等;(2)当y≥4000时,y与x之间的关系式是y=100x﹣500.解不等式100x﹣500≥4000.得x≥45.∴应从第45天开始进行人工灌溉.(8分)。

八年级数学(下)第十九章《一次函数》测试题含答案

八年级数学(下)第十九章《一次函数》测试题含答案

八年级数学(下)第十九章《一次函数》测试题(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .76.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对8.已知正比例函数y=kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x =D .12y x =-9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 二、填空题(共10小题,每题3分,共30分)11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是.12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 .15.已知点A(-3,a),B(1,b)都在一次函数y=kx+2的图象上,则a与b的数量关系为16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是(填序号)A.①②③ B.仅有① C.仅有①③ D.仅有②③20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB 的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T (℃) (填“是”或“不是”)时间t (时)的函数. (2)温差是 ℃.(3)10时的气温是 ℃. (4) 时气温是4℃.(5) 时间内,气温不断上升. (6) 时间内,气温持续不变.22.(6分)已知水池中有800立方米的水,每小时抽50立方米. (1)写出剩余水的体积Q 立方米与时间t (时)之间的函数关系式. (2)写出自变量t 的取值范围.(3)10小时后,池中还有多少水? (4)几小时后,池中还有100立方米的水?23.(8分)如图,直线y = 2x + 3与x 轴相交于点A ,与y 轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 00.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.答案(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 【答案】D . 【解析】考点:1.函数自变量的取值范围;2.分式有意义的条件;3.二次根式有意义的条件.2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )【答案】C. 【解析】试题分析:函数图像中图形表示了自变量和函数之间的对应关系,由题,因瓶子下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越缓,分析四个图象只有C 符合要求,故选C .考点:函数图像.3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 【答案】【解析】试题分析:在圆的周长公式2C r =π中,C 是r 的函数,C ,r 是变量,2π是常量,将C=2πr 写成2Cr =π,则可看作C 是自变量,r 是C 的函数,故说法错误的是A . 故选A .考点:函数的概念.4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )【答案】C . 【解析】考点:函数的图象.5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】试题分析:∵函数y=ax+b 经过(1,3),(0,﹣2),∴a b 3b 2+=⎧⎨=-⎩,解得a 5b 2=⎧⎨=-⎩.∴a ﹣b=5+2=7.故选D .考点:1.直线上点的坐标与方程的关系;2.求代数式的值.6.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限C.第三象限D.第四象限 【答案】A 【解析】考点:一次函数的性质.7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对 【答案】A . 【解析】试题分析:∵k=-2<0,∴y 随x 的增大而减小,∵1<2,∴a >b . 故选A .考点:一次函数图象上点的坐标特征.8.已知正比例函数y =kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x = D .12y x =- 【答案】B. 【解析】试题分析:∵正比例函数y=kx (k ≠0)的图象经过点(1,-2),∴1×k=-2,解得:k=-2.则此正比例函数的关系式为y=-2x. 故选B.考点:待定系数法求正比例函数解析式.9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.【答案】A . 【解析】考点:一次函数的图象及性质.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 【答案】A . 【解析】试题分析:将点A (m ,3)代入y=2x 得,2m=3,解得,m=32,∴点A 的坐标为(32,3),∴由图可知,不等式2x ≥ax+4的解集为x ≥32. 故选A .考点:一次函数与一元一次不等式.二、填空题(共10小题,每题3分,共30分) 11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是 .【答案】t 【解析】试题分析:根据函数的定义即可判断出自变量是t ,因变量是v. 考点:函数的定义12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为【答案】12. 【解析】 试题分析:因为x=32,所以1<x ≤2,所以y=-32+2=12. 考点:函数值.13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数. 【答案】-2. 【解析】试题分析:由正比例函数的定义可得:4-m 2=0,且m-2≠0,解得,m=-2. 考点:正比例函数的定义.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 . 【答案】y=-x+4. 【解析】试题分析:∵一次函数y=-x+m 的图象经过(﹣1,5),∴5=-(-1)+m ,解得:m=4.则该一次函数解析式为y=-x+4.考点:待定系数法求一次函数解析式.15.已知点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,则a 与b 的数量关系为 【答案】a=8-3b . 【解析】试题分析:∵点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,∴322a k b k =-+=+⎧⎨⎩①②,①+②×3得,a+3b=8,即a=8-3b . 考点:一次函数图象上点的坐标特征.16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.【答案】x<1【解析】考点:一次函数与一元一次不等式.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 【答案】m>1.【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:324y x my x=-++=+⎧⎨⎩,解得:132103mxmy-⎧=⎪⎪⎨+⎪=⎪⎩,即交点坐标为(13m-,2103m+),∵交点在第一象限,∴132103mm-⎧⎪⎪⎨+⎪⎪⎩>>,解得:m>1.学¥科网考点:一次函数图象与几何变换.18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.【答案】y=﹣21x+23 【解析】考点:1、翻折变换(折叠问题);2、勾股定理;3、待定系数法19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是 (填序号)A .①②③B .仅有①C .仅有①③D .仅有②③【答案】①②③. 【解析】考点:一次函数的图象分析.20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB ∆的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3【答案】(0,2). 【解析】试题分析:∵线段AB 的长度是确定的,∴△PAB 的周长最小就是PA+PB 的值最小,∵3>5,∴点P 在y 轴上,作点A 关于y 轴的对称点A ′,连接A ′B 交y 轴于点P ,∵A (1,1),∴A ′(-1,1),设直线A ′B 的解析式为y=kx+b (k ≠0),∴351k b k b +=-+=⎧⎨⎩,解得12k b =⎧⎨=⎩,∴直线A ′B 的解析式为y=x+2,当x=0时,y=2,∴P (0,2). 学科#网考点:1.轴对称-最短路线问题;2.坐标与图形性质.三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T(℃)(填“是”或“不是”)时间t(时)的函数.(2)温差是℃.(3)10时的气温是℃.(4)时气温是4℃.(5)时间内,气温不断上升.(6)时间内,气温持续不变.【答案】(1)是;(2)12;(3)5;(4)9时和22时;(5)2时至12时;(6)14时到16时.【解析】;(3)5;(4)9时和22时;(5)2时至12时及14时到16时.故答案为:(1)是;(2)16,2,10,2考点:函数的图象.22.(6分)已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q立方米与时间t(时)之间的函数关系式.(2)写出自变量t的取值范围.(3)10小时后,池中还有多少水?(4)几小时后,池中还有100立方米的水?【答案】(1)Q=800-50t;(2)0≤t≤16;(3)300立方米;(4)14小时后学#科网【解析】考点:函数的应用.23.(8分)如图,直线y = 2x + 3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.【答案】(1)A(-32,0) B(0,3);(2)274.【解析】考点:一次函数图象上点的坐标特征.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.【答案】x≥34.【解析】试题分析:首先将已知点的坐标代入到直线y=kx-2中求得k值,然后代入不等式即可求得x的取值范围.试题解析:∵将点A(-2,0)代入直线y=kx-2,得:-2k-2=0,即k=-1,∴-4x+3≤0,解得x≥34.考点:一次函数与一元一次不等式.学@科网25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.【答案】(1)S=24-3x,(0<x<8);(2)(4,4).【解析】试题分析:(1)根据题意画出图形,根据三角形的面积公式即可得出结论;(2)把S=12代入(1)中的关系式即可.试题解析:(1)如图所示:考点:一次函数图象上点的坐标特征.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【答案】(1)60千米/小时,96千米/小时,C(19806,);(2))4619(38496≤≤+-=xxy;(3)613.【解析】试题分析:(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/考点:一次函数的应用.27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;【答案】(1)y=6x﹣100;(2)120吨;(3)100吨.【解析】试题分析:(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可.考点:1.一次函数、一元二次方程和一元一次方程的应用;2.待定系数法;3.分类思想.28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 0 0.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;学@科网(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.【答案】(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩;(2)作图见解析;(3)方案二.【解析】试题分析:(1)根据月话费=月租费+通话费分别列式. (2)根据(1)的函数关系式作图.(3)分别求出两种方案的月话费作出比较即可.试题解析:(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩.(2)作图如下:(实线部分)考点:1.一次函数的应用;2.由实际问题列函数关系式;3.分类思想的应用.21。

人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)

一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm 3.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 4.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .5.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .8.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .9.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1810.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 11.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,0⎛⎫ ⎪ ⎪⎝⎭C .10,0⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 12.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 13.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个14.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.18.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.19.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.20.函数1y x =-中自变量x 的取值范围是________. 21.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.22.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.23.函数1y x=-的定义域是______. 24.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.25.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.如图直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)求OAC 的面积;(3)如果在y 轴上存在一点P ,使OAP △是等腰三角形,请直接写出P 点坐标;(4)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.28.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 29.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.30.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为________km ;快车的速度为________km/h ;慢车的速度为_________km/h ;(2)出发________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h 相距250km .。

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷含答案

八年级数学(下)第十九章《一次函数》测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2 2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.4.在关于的正比例函数中,随的增大而减小,则的取值范围是( ) A.B.C.D.5.已知两点M (4,2),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为( ) A. (2,0) B. (2.5,0) C. (3,0) D. (4,0)6.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx ﹣2的解集是( )A. 1<x <2B. 0<x <2C. 0<x <1D. 1<x7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 58.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C. D.10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y 1(km )和y 2(km )分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t (h )之间的关系,如图所示.下列说法:①折线段OAB 是表示小聪的函数图象y 1,线段OC 是表示小明的函数图象y 2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h ,其中不正确的个数为( )A. 0个B. 1个C. 2个D. 3个二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.12.如果点在直线上,则的值是__________.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.18.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B 端,且小明到达B 端后停止运动,小亮匀速跑步到达A 端后,立即按原速返回B 端(忽略调头时间),回到B 端后停止运动,已知两人相距的路程S (千米)与小亮出发时间t (秒)之间的关系如图所示,则当小明到达B 端后,经过_________秒,小亮回到B 端.19.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?22.(7分)已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=-1时,求y的值;(3)当y=0时,求x的值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分) 1.函数的自变量的取值范围是( )A. x ≥-2B. x <-2C. x >-2D. x ≤-2【答案】A【解析】二次根式有意义的条件是根号下被开方数非负,所以x +2≥0,即x ≥2, 故选A.2.在平面直角坐标系中,直线1y x =+经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 【答案】A故选A.3.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )A. B. C. D.【答案】A【解析】由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A . 4.在关于的正比例函数中,随的增大而减小,则的取值范围是( )A. B. C. D.【答案】A【解析】∵随的增大而减小,∴∴.故选A. 学科#网5.已知两点M(4,2),N(1,1),点P是x轴上一动点,若使PM+PN最短,则点P为()A. (2,0)B. (2.5,0)C. (3,0)D. (4,0)【答案】A6.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A. 1<x<2B. 0<x<2C. 0<x<1D. 1<x【答案】A【解析】由于直线y1=kx+b过点A(0,2),P(1,m),故选A .7.根据如图的程序,计算当输入x=3时,输出的结果y=( )A. 2B. 3C. 4D. 5 【答案】A【解析】∵x=3>1, ∴y=-x+5=-3+5=2. 故选A. 学!科网8.如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止,设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处 【答案】D【解析】观察图象可得:当R 在PN 上运动时,面积不断在增大,当点R 运动到PQ 上时,△MNR 的面积y 达到最大,且保持一段时间不变;到Q 点以后,面积y 开始减小;故当x=9时,点R 应运动到Q 处.故选D . 9.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M→→→运动,则APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A. B.C. D.【答案】A10.小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为()A. 0个B. 1个C. 2个D. 3个【答案】B【解析】①小聪离甲地的距离先增加至最大然后减小直至为0,小明离乙地的距离逐渐增大直至最大30千故选B.二、填空题(共10小题,每题3分,共30分)11.若一次函数的图象经过二、三、四象限,则__________,__________.【答案】<<【解析】∵经过二、三、四象限,∴且12.如果点在直线上,则的值是__________.【答案】-3【解析】∵点在直线上,∴,解得.故答案为:-3.13.如果一次函数与两坐标轴围成的三角形面积为,则__________.【答案】【解析】∵在中,当x=0时,y=4;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:.14.已知某一次函数与直线平行,且经过点,则这个一次函数解析式是__________.【答案】【解析】设一次函数解析式∵与平行,∴,∴.∵一次函数经过,∴,,∴.15.如图,已知y=ax+b和y=kx的图象交于点P,根据图象可得关于x、y的二元一次方程组0 {0 ax y bkx y-+=-=的解是_________________.【答案】4 {2 xy=-=-16.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.【答案】6.【解析】小红家与学校的距离为6km,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h,故答案为:6.17.若函数y=(n+2)x+(n2-4)是一次函数,则n_____;若函数y=(n+2)x+(n2-4)是正比例函数,则n____.【答案】≠-2 =218.小明和小亮分别从同一直线跑道A、B 两端同时相向匀速出发,小明和小亮第一次相遇后,小亮觉得自己速度太慢便提速至原速的53倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_________秒,小亮回到B端.【答案】45【解析】由题意得:设小明的速度为xm/s,小亮的速度为ym/s,则85 {{53103x yxyx y+==⇒= +=小明到达B端,所需时间为36072s 5=()小亮往返需要的总时间为7204531175-⨯=,则117-72=45(s)故答案:45.19.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).【答案】①③④⑤20.如图,点A 2,A 4…分别是x 轴上的点,点A 1,A 3,A 5,…分别是射线OA 2n-1上的点,△OA 1A 2,△OA 2A 3,△OA 3A 4,…分别是以OA 2,OA 3,OA 4 ,OA 5…为底边的等腰三角形,若OA 2n-1与x 轴正半轴的夹角为30°,OA 1=1,则可求得点A 2的坐标是________;A 2n-1的坐标_______.【答案】)3,0 11333,2n n --⎫⎪⎪⎝⎭【解析】根据等腰三角形的三线合一的性质和30°角直角三角形的性质可求得131,22A ⎛⎫⎪ ⎪⎝⎭,)23,0A ,再由等腰三角形的三线合一的性质和30°角直角三角形的性质可求得3333,22A ⎛⎫⎪ ⎪⎝⎭, 5939,22A ⎛⎫⎪ ⎪⎝⎭,由此可得A 2n-1的坐标11333,22n n --⎛⎫⋅ ⎪ ⎪⎝⎭.三、解答题(共60分)21.(6分)已知一次函数2(4)232y k x k =--+(1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,它的图象经过原点? 【答案】(1)k >4;(2)k=-4. 【解析】考点:一次函数图象与系数的关系.22.(7分)已知y+3与x+2成正比例,且当x =3时,y =7. (1)写出y 与x 之间的函数关系式; (2)当x =-1时,求y 的值; (3)当y =0时,求x 的值. 【答案】(1)y=2x+1;(2)-1;(3)12-. 【解析】试题分析:(1)已知y+3与x+2成正比例,所以,设y+3=k( x+2),把x =3,y =7代入求出k 的值,即可写出y 与x 之间的函数关系式,(2)把x =-1代入y 与x 之间的函数关系式,求出y 的值. (3)把y =0代入y 与x 之间的函数关系式,求出x 的值.试题解析:(1)设y+3=k( x+2),把x =3,y =7代入得:7+3=(3+2)k,解得k=2,∴y+3=2(x+2),∴y=2x+1; (2)当x=-1时,y=2x+1=2×(-1)+1=-1;(3)当y=0时,有0=2x+1,解得x=12 .考点:1.正比例函数关系式.2.函数值和自变量值.23.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.【答案】(1)m=2,一次函数解析式为y=2x﹣2;(2)S△AOB=2;(3)自变量x的取值范围是x>2.学科&网【解析】(3)自变量x的取值范围是x>2.考点:两条直线相交或平行问题24.(6分)如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式.【答案】见解析【解析】考点:1、一次函数性质的应用;2、分类思想.25.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【答案】(1)1000;(2)y=300x-5000;(3)40.【解析】试题分析::(1)由图可知第20天的总用水量为1000m3;(2)设y=kx+b.把已知坐标代入解析式可求解;(3)令y=7000代入方程可得.试题解析:(1)第20天的总用水量为1000米3(2)当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴100020400030k bk b+⎨⎩+⎧==,解得,3005000kb-⎧⎨⎩==,∴y与x之间的函数关系式为:y=300x-5000(3)当y=7000时,有7000=300x-5000,解得x=40;种植时间为40天时,总用水量达到7000米3考点:一次函数的应用.26.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B 出发后几小时,两人相遇?【答案】(1)1,10 km/h;(2)1.8.【解析】考点:1.一次函数的应用;2. 待定系数法的应用;3.直线上点的坐标与方程的关系.27.(7分)某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.【答案】当学生人数少于40时,选择远航旅行社更优惠,当学生人数等于40时,选择两家旅行社都一样,当学生人数大于40时,选择吉祥旅行社更优惠.【解析】考点:一次函数的应用.28.(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段C D所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.【答案】(1)900;(2)y=75x(6≤x≤12);(3)0.75,6.75.【解析】考点:1、待定系数法;2、一次函数的应用.21。

人教版数学八年级下册 第十九章 一次函数单元测试卷(含简单答案)

人教版数学八年级下册 第十九章 一次函数单元测试卷(含简单答案)

人教版数学八年级下册 第十九章 一次函数一、单选题1.下列函数中,是正比例函数的是( )A .y =7−xB .y =−4xC .y =2x−3D .y =2x 2+x−12.对于直线y =−12x−1的描述,正确的是( )A .y 随x 的增大而增大B .图象不经过第二象限C .经过点(−2,−2)D .与y 轴的交点是(0,−1)3.在平面直角坐标系中,将函数y =−2x +1的图象向下平移2个单位长度,所得函数图象的表达式是( )A .y =−2x +3B .y =−2x−3C .y =−2x +1D .y =−2x−14.如图,直线l 1:y =x +2与直线l 2:y =kx +b 相交于点P ,则方程组{y =x +2y =kx +b的解是( )A .{x =2y =0B .{x =1y =4C .{x =4y =2D .{x =2y =45.点A(2,y 1)和点B(−1,y 2)在直线y =−3x +b 上,则y 1,y 2的关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定6.一蓄水池中有50m 3的水,打开排水阀门开始放水后水池中的水量与放水时间有如下关系:放水时间/分1234…水池中的水量/m 348464442…下列说法不正确的是( )A .蓄水池每分钟放水2m 3B .放水18分钟后,水池中的水量为14m 3C .放水25分钟后,水池中的水量为0m 3D .放水12分钟后,水池中的水量为24m 37.如图,直线y =kx +b 与x 轴的交点的坐标是(﹣3,0),那么关于x 的不等式kx +b >0的解集是( )A .x >﹣3B .x <﹣3C .x >0D .x <08.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晩,乌龟还是先到达了终点.下图中与故事情节相吻合的是( )A .B .C .D .9.小丽和小明相约一起去体育公园锻炼身体.小丽从学校出发,小明从家里出发,学校、体育公园和小明家在同一直线步道上,两人同时出发,相向而行,同时到达体育公园,小明锻炼了半小时后,以原速度的23继续去学校,小丽锻炼了35分钟后,以原速度的56也返回学校,结果小明比小丽早7分钟到达学校.两人之间的距离s (m )与小丽出发的时间t (min )函数图象如图所示,则下列说法中错误的是( )A .小丽的原速度为60m/minB .小明的原速度是小丽的原速度的1.5倍C.点A的坐标是(52,0)D.当小明到达学校时,小丽距离小明家1150m 10.如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、…、A n B n C n C n−1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=x+1的图象上,点C1、C2、C3、…、C n均在x轴上,则点A2021的坐标为()A.(22021−1,22021)B.(22020−1,22020)C.(22021−1,22020)D.(22020−1,22021)二、填空题11.若函数y=(m−3)x|m−2|+3是一次函数,则m的值为.12.在平面直角坐标系xOy中,若正比例函数y=kx(k≠0)的图象经过A(1,3)和B(﹣1,m),则m的值为.13.若一次函数y=kx+b(k,b为常数,k≠0)的图像经过点A(−2,−1)和点B(1,2),则不等式kx+b≥2的解集为.14.已知点A(6,0)及在第一象限的动点P(x,y),且x+y=8.设△OPA的面积为S,则S关于x的函数解析式为.15.如图,在平面直角坐标系中,点P坐标(3,0),有一长度为2的线段AB在直线y=x+1的图象上滑动,则PA+PB的最小值为.16.如图1,已知长方形ABCD,动点P沿长方形ABCD的边以B→C→D的路径运动,记△ABP 的面积为y,动点P运动的路程为x,y与x的关系如图2所示,则图2中的m的值为.17.如图,在平面直角坐标系中,点A,B的坐标分别为(1,1),(1,4),直线y=2x+b与线段AB有公共点,则b的取值范围是.18.在某中学一次趣味运动会50米托盘乒乓球接力项目中(即乒乓球放入托盘内,参赛队员用手托住托盘运送乒乓球),初一(1)班和初一(2)班同台竞技,某时刻,1班的小敏和2班的小文分别位于50米赛道的起点A地和终点B地,他们同时出发,相向而行,分别以各自的速度匀速直线奔跑,过程中的某时刻,小敏不慎将乒乓球落在C地(A、B、C在同一直线上且乒乓球落在C地后不再移动),第6秒时小敏才发现并迅速掉头以原速去捡乒乓球,捡到球后,小敏将速度提升到小文速度的两倍迅速往B地匀速跑去,小敏掉头和捡球的时间忽略不计,如图是两人之间的距离y(米)与小敏出发的时间x(秒)之间的函数图象,则当小敏到达B地时,小文离A地还有米.三、解答题19.如图,在平面直角坐标系中,直线y=−x+8分别交x轴、y轴于A、B两点,点C(a,4)是直线上一点,点D在线段OA上,且AD=6.(1)求点D的坐标;(2)求CD所在直线的解析式;(3)在直线AB上是否存在一点P,使得S△ADP=18?若存在,求出点P的坐标;若不存在,请说明理由.20.如图,是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据函数图象,蓄电池剩余电量为35千瓦时汽车已经行驶的路程为____千米.当0≤x≤150时,消耗1千瓦时的电量,汽车能行驶的路程为_____千米.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶160千米时,蓄电池的剩余电量.21.上党腊驴肉是山西长治的传统名吃,其肉质肥而不腻、瘦而不柴,香味四溢、回味无穷.某特产专卖店购进一批袋装上党腊驴肉,进价为40元/袋.经市场调研发现,当销售单价为60元时,每天可售出300袋;销售单价每降低1元,每天可多售出20袋.设销售单价降低x元时,每天的销售量为y袋.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)该特产专卖店考虑房租、人工费等因素,计划销售这种腊驴肉的利润率不得低于40%,那么当销售单价定为多少元时,每天的销售量最大?最大销售量为多少袋?22.小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是米;小明在广场向行人讲解卫生防疫常识所用的时间是分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)23.描点画图是探究未知函数图象变化规律的一个重要方法,下面是通过描点画图感知函数y=−|x+2|+1图象的变化规律的过程:2(1)化简函数解析式,当x≥−2时,y=,x<−2时,y=;(2)根据表中的数据,完成如表,并画出该函数的图象:x…−301…y……(3)若另一个一次函数y=kx+b过点(−2,2),且与y=−|x+2|+1的图象有交点,则k的2范围是24.某公司为了计算游客游览,设置了观光接驳车,如图1所示,公园设计的其中一条观光路线上设有A,B,C,D四个站点,相邻两个站点的距离是相同的,游客只能在站点上下车,一两接驳车在A,D之间匀速往返行驶,某时刻这辆接驳车从点A站出发,当运行时间为t分钟时(游客上下车的时间忽略不计),这辆接驳车与A站的距离为y千米,y与t的函数图象如图2所示.综合上面信息,回答问题:(1)这辆接驳车的运行速度为千米/分钟,站点A,B之间的距离为千米;(2)当这辆接驳车运行到B站时,其对应的运行时间t为分钟;(3)小宇沿观光路线徒步游览,当他到达站点B,D之间的M处时,正好遇到开往D站的接驳车,此时他临时有事要赶回A站,于是他决定先返回走到B站,等待刚才那辆接驳车从D站开回,已知小宇步行的平均速度为0.1千米/分钟,若他能够不晚于这辆接驳车到达B 站,则M处离A站的最远距离为千米.参考答案1.B2.D3.D4.D5.B6.D7.A8.C9.C10.B11.112.-313.x ≥114.S =-3x +2415.3416.1217.−1≤b ≤218.1219.(1)点D 的坐标为(2,0)(2)y =2x−4(3)存在,点P 的坐标为(2,6)或(14,−6)20.(1)150,6;(2)y =−12x +110,3021.(1)y =300+20x (2)当销售单价定为4元时,每天的销售量最大,最大销售量为380袋22.(1)1280,6;(2)小华的速度为80米/分钟,小明从广场跑去学校的速度为120米/分钟;(3)7:51;(4)在保证不迟到的情况下,小明最多可以讲解1次23.(1)−x−32;x +52;(3)k <−1或k >1.24.(1)0.5;5;(2)10分钟和50分钟;(3)253。

人教版初中数学八年级下册第十九章《一次函数》单元检测题(含答案).docx

人教版初中数学八年级下册第十九章《一次函数》单元检测题(含答案).docx

第十九章《一次函数》检测题一、选择题(每小题只有一个正确答案)1. 下列关系式中,一定能称y 是x 的函数的是( )2 2 2A. 2x=yB. y —3x — 1C. y =— xD. y —3x —52. 已知正比例函数y=-2x,当x-1时,函数y 的值是( ) A. 2 B. -2 C. -0.5 D. 0.53. 函数y=」一+ Jx-l 自变量x 的取值范围是()x-3 A.xNl B.x^l 且 xH3 C.xH3 D.4. 小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时I'可到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一 段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的 图象是()5. 已知一次函数的图象过点(0, 3),且与两坐标轴所阖成的三角形面积为3,则其表 达式为()A. y = 1.5x + 3B. y = — 1.5x + 3C. y=1.5x + 3 或丫 = — 1.5x + 3D. y=1.5x —3 或丫 = — 1.5x —36. 已知一次函数尸(m+2) x+ (1-m ),若y 随x 的增大而减小,且此函数图像与y 轴 的交点在x 轴上方,则m 的取值范围是()A. m>-2B. m<lC. m<-2D. m>lD .7.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是(夕夕夕,,夕,夕^^夕夕夕夕夕夕夕夕1 1A. y=- — x+12B. y= - 2x+24C. y=2x - 24D. y= — x - 122 2&正比例函数y=2kx的图象如图所示,贝ij y=(k—2)x+l—k的图象大致是()9.如图,己知直线y x=k,x^m和直线y2=k2x + n交于点P(-l, 2),则关于兀的不等式-k2)x>-m + n的解是().A. X>2B. x>-\ c. -l<x<2 D. x<-\10.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50 元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5 元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A. 3种B. 4种C. 5种D. 6种二、填空题口.若93号汽油的售价为6.2元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,________ 是自变量,_____ 是____ 的函数,其解析式为______________ •12.已知点P(l, 2)在直线y=kx+3上,将直线y=kx+3的图象向上平移3个单位,所得的直线解析式为______ ・13.若函数y= (m+3) x2m+1+4x-5是关于x的一次函数,则m的值为 _________ .14.有甲、乙两个长方体的蓄水池,将甲池屮的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时问x(小时)之间的函数图彖如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为____ -15.如图,在平面直角坐标系中,直线/:y=x+2交x轴于点A,交y轴于点A】,点A2,角,…在直线/上,点B|,场,Bs,…在兀轴的正半轴上,若△AQ5,AA2B|B2, △念园场,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AEB”顶点B”的横坐标为 __________________ .三、解答题16.求下列函数中自变量的取值范围:(l)y = 2x2-3x + 5;(2)y= + 3丁6-2尤;(3)y= (x—1)°.17.已知直线y二kx+5交x轴于A,交y轴于B且A坐标为(5, 0),直线y=2x - 4与x 轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x・4>kx+5的解集;(3)求AADC的面积.18.某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80 元.新年来临之际,该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x (xN20)件.(1)分别写出优惠方案一购买费用y】(元)、优惠方案二购买费用丫2(元)与所买乙种商品x (件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式; 利用w与m之间的关系式说明怎样购买最实惠.19.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l±x轴负半轴于点C,点D是直线1上一点且位于x轴上方.已知CO=CD=4.(1)求经过A, D两点的直线的函数关系式和点B的坐标;(2)在直线1上是否存在点P使得ABDP为等腰三角形,若存在,直接写出P点坐标, 若不存在,请说明理由.参考答案1. B2. A3. B4. C5. C6. C7. A8. B9. BIO. D 11.加油数量x(升)付款金额y (元)加油数量x(升)y = 6. 2x12. y 二一x + 6 13. 0,・3,・0.5 314.二小时516.⑴ x 为一切实数.(2) 1W X W3. (3) xHl.17. (1) C(3, 2); (2) x>3;(3)3.解:(1)・・•直线y=kx+5经过点A (5, 0),・・・5k+5=0解得k = -lx = 3 解得:{ 宀,y = 2・••点 C (3, 2)(2) 观察函数图象可知:当x>3时,直线y 二2x-4在直线y=-x+5的上方, ・・・不等式2x-4>kx+5的解集为x>3.(3) 把 y 二0 代入 y=2x - 4 得 2x - 4二0. 解得x 二2・・・D (2, 0)VA (5, 0), C (3, 2)・・・AD=3S AADC — — x 3 x 2—3218. 解:(1))[ = 20x30()+ &)(% —20)得:y, =80x + 4400;y 2 = (20x300 + 80x)x0.8 得:y 2 =64x + 4800 ;(2) w = 300m + [300(20-tn) + 80(40-x0.&w = -4//2 + 7360,因为w 是m 的一次函数,k=-4<0,所以w 随的增加而减小,m 当m=20时,w 取得最小值.即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.19. (1)点〃的坐标为(一1, 0)直线初的函数表达式为y=--x+^ <2)存在,P :(-2 7 4, 9), P 2 (-4, 一4), A (-4, -1), P\ (一4, 一).8【解析】(1)用待定系数法即可求出直线的解析式;(2)根据等腰三角形的两边相等,分BD 、DP 、BP 分别为底即可得出答案.15. 2n+1 一 2. ・・・直线AB 的解析式为:y=-x+5;y 二一兀+5y = 2x-4解:(1)对于直线尸2x+2,当x=0时,尸2;当尸0时,x= — l・••点M 的坐标为(0, 2),点〃的坐标为(一1, 0) 又 \CO=CD=\, ・••点〃的坐标为(-4, 4)・•・直线〃的函数表达式为y=--x+2,2(2)存在.共有uq 个点满足要求.分别是丹(-4, 9), P 2 (-4, -4), A (-4, -1), P\设直线/〃的函数表达式为y=kx+b,则有{2 = b4 = -4R+b,解得{k =~2b = 2(一4, 4).。

人教版八年级下册数学试题-第十九章一次函数达标检测试卷(含答案)

人教版八年级下册数学试题-第十九章一次函数达标检测试卷(含答案)

第十九章达标检测卷一、选择题 (每题 3 分,共 30 分)1.以下图象中,不可以表示y 是 x 的函数的是 ()x 的取值范围是( )2.函数y=x-4中自变量A .x>4 B. x≥ 4 C.x≤4 D.x≠43.一次函数y=- 2x+ 1 的图象不经过( )A .第一象限B.第二象限C.第三象限D.第四象限4.已知在一次函数y=- 1.5x+3 的图象上,有三点 (- 3, y1),(-1,y2),(2,y3),则y1,y2, y3的大小关系为( )A .y1>y2> y3B. y1>y3>y2C.y2> y1>y3D.没法确立5.如图,正方形 ABCD 的边长为 4,点 P 为正方形 ABCD 边上一动点,沿A→ D→C→B→A 的路径匀速挪动,设点P 经过的路径长为 x,△ APD 的面积为 y,则以下图象中,能大概反应y 与 x 之间的函数关系的是 ()(第 5 题)6.已知一次函数 y=kx+ b,y 跟着 x 的增大而减小,且kb> 0,则这个函数的大致图象是 ()(第 7 题)7.如图,一次函数 y1=x+ b 与一次函数 y2=kx+4 的图象交于点 P(1,3),则关于 x 的不等式 x+ b> kx+4 的解集是 ()A .x>- 2B.x>0C.x>1D.x<18.把直线 y=- x+3 向上平移 m 个单位后,与直线 y=2x+ 4 的交点在第一象限,则 m 的取值范围是( )A .1<m<7 B. 3< m<4 C.m> 1 D.m<49.已知一次函数3y=2x+m 和1y=- 2x+ n 的图象都经过点A(- 2, 0),且与y轴分别交于点 B,C,那么△ ABC 的面积是 ()A .2B. 3C.4D.6(第 10 题 )10.小文、小亮从学校出发到青少年宫参加书法竞赛,小文步行一段时间后,小亮骑自行车沿同样路线前进,两人平均速前行.他们的行程差 s(m)与小文出发时间 t(min) 之间的函数关系如下图.以下说法:①小亮先抵达青少年宫;②小亮的速度是小文速度的 2.5 倍;③a=24;④b=480.此中正确的选项是 ()A .①②③B.①②④C.①③④D.①②③④二、填空题(每题3 分,共30 分)11. 2018 年是中国阴历狗年,一位艺术家的剪纸如下图,该剪纸能够近似看作圆形,若其半径为r,那么这个剪纸的面积S=πr,这个式子中2______________是自变量,______________是自变量的函数.当r=20 cm 时, S=________cm2 .(第 11 题 )(第 15 题 )(第 17 题 )12.函数 y= (m-2)x+m2-4 是正比率函数,则m=________.13.一次函数 y=2x-6 的图象与 x 轴的交点坐标为 ________.114.假如直线 y=2x+n 与直线 y=mx-1 的交点坐标为 (1,- 2),那么 m=________,n=________.15.如图,一次函数y=kx+ b 的图象与 x 轴的交点坐标为 (2, 0),则以下说法:①y随 x 的增大而减小;② b>0;③对于 x 的方程 kx+ b= 0 的解为 x= 2.此中说法正确的有 ________(把你以为说法正确的序号都填上 ).16.若一次函数 y= (2m-1)x+3-2m 的图象经过第一、二、四象限,则m 的取值范围是 __________.17.如图,直线 l1,l2交于点 A,察看图象,点 A 的坐标能够看作方程组 __________ 的解.18.如图,在平面直角坐标系中,点O 为坐标原点,直线y=kx+b 经过 A(-6,0),B(0,3)两点,点 C,D 在直线 AB 上, C 的纵坐标为 4,点 D 在第三象限,且△ OBC 与△ OAD 的面积相等,则点 D 的坐标为 __________.(第 18 )(第 19 )(第 20 )19.一列快从甲地往乙地,一列慢从乙地往甲地,两同出,两的距离 y(千米 )与慢行的x(小 )之的函数关系如所示,快抵达乙地慢离乙地距离__________.20.如,△ A1B1A2,△ A2 B2A3,△ A3B3A4,⋯,△ A n B n A n+1都是等腰直角三角形,此中点 A1,A2,⋯,A n在 x 上,点 B1,B2,⋯, B n在直 y=x 上,已知 OA2=1, OA2 018的 ________.三、解答 (21 6 分, 2610 分, 2712 分,其他每 8 分,共 60 分) 21.已知 y+ 1 与 x 成正比率,且当x= 2 , y=5.(1)写出 y 与 x 之的函数分析式;(2)算当 y=2 018 , x 的.22.已知一次函数的象与直y=- x+1 平行,且点 (8,2),求此一次函数的分析式.23.函数 y1=x+1 与 y2=ax+b(a≠0)的图象如下图,这两个函数图象的交点在y轴上,试求:(1)函数 y2=ax+ b 的分析式;(2)使 y1, y2的值都大于零的x 的取值范围.(第 23 题)y=ax+2,24.已知一次函数 y= ax+2 与 y= kx+b 的图象如图,且方程组的解y=kx+bx=2,为点 B 的坐标为 (0,- 1),请你确立这两个一次函数的分析式.y=1,(第 24 题)25.为了鼓舞李敏多念书,她的父亲母亲每个月依据她上个月的阅读时间赐予她物质奖励.若设李敏某月的阅读时间为x 小时,下月她可获取的总购书费为y 元,则 y 与 x 之间的函数图象如下图.(1)求出 y 与 x 之间的函数关系式;(2)若李敏希望 2017 年 12 月有 250 元的购书费,则她2017 年 11 月需阅读多长时间?(第 25 题)26.如图,A,B 分别是 x 轴上位于原点左、右双侧的点,点 P(2,p)在第一象限,直线 PA 交 y 轴于点 C(0,2),直线 PB 交 y 轴于点 D, S△AOP=6.(1)求△ COP 的面积;(2)求点 A 的坐标和 p 的值;(3)若 S△BOP= S△DOP,求直线 BD 对应的函数分析式.(第 26 题)27.甲、乙两车从 A 地出发沿同一路线驶向 B 地,甲车先出发匀速驶向 B 地,40 分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,因为满载货物,为了行驶安全,速度减少了50 千米 / 小时,结果与甲车同时抵达 B 地.甲、乙两车距 A 地的行程 y(千米 )与乙车行驶时间x(小时 )之间的函数图象如下图.请联合图象信息解答以下问题:(1)直接写出 a 的值,并求甲车的速度;(2)求图中线段 EF 所表示的 y 与 x 之间的函数分析式,并直接写出自变量x 的取值范围;(3)乙车出发多少小时与甲车相距15 千米?(第 27 题)答案一、1.B 点拨:依据函数的定义可知,对于自变量 x 的任何值, y 都有独一确立的值与之对应,只有 B 不知足这一条件.应选 B.2.B 3.C 4.A 5.B6.B 点拨:∵ y 随 x 的增大而减小,∴ k<0.又∵ kb>0,∴ b<0,应选 B.7.C 8.C 9.C10.B 点拨:由图象得出小文步行 720 m ,需要 9 min ,因此小文的速度为 720÷9=80(m/min) ,当第 15 min 时,小亮骑了 15-9=6(min) ,骑的行程为 15×80= 1 200(m),∴小亮的速度为 1 200 ÷6= 200(m/min),∴200÷80=2.5,故②正确;当第 19 min 此后两人之间距离愈来愈近, 说明小亮已经抵达终点, 则小亮先抵达青少年宫,故①正确; 此时小亮骑了 19-9=10(min) ,骑的总行程为 10×200=2 000(m),∴小文的步行时间为 2 000 ÷80= 25(min), 故 a 的值为 25,故③错误;∵小文 19 min 步行的行程为 19×80= 1 520(m),∴b =2 000-1 520=480,故④正确.∴正确的有①②④ .应选 B. 二、 11.r ;S ;400π 12.- 2513.(3,0) 14.- 1;- 2 15.①②③12m - 1< 0, 解不等式组即可. 16.m <2 点拨:依据题意可知:3-2m > 0,y =- x +2, 17.y =2x - 118.(- 8,- 1)19.450 千米20.22 016点拨:因为 OA 2=1,因此 OA 1=12,从而得出 OA 3 =2,OA 4= 4,OA 5= 8,由此得出 OA n = 2n - 2,因此 OA 2 018=22 016.三、 21.解: (1)设 y +1=kx ,由题意得, 5+ 1= 2k ,解得 k =3,∴ y +1=3x ,即 y =3x -1.(2)当 y =2 018 时,2 018=3x -1,解得 x =673.22.解:设一次函数的分析式为 y =kx +b ,∵一次函数的图象与直线 y =- x +1 平行,∴ k =- 1,∴一次函数的分析式为 y =- x +b ,∵一次函数的图象经过点 (8,2),∴2=- 8+b ,解得 b =10,∴一次函数的分析式为 y =- x +10.23.解: (1)对于函数 y 1=x +1,当 x =0 时, y =1.b =1,∴将点 (0,1),点 (2,0)的坐标分别代入y 2=ax + b 中,得解得2a + b = 0,1a =-2,∴ y 2=- 1x + 1.2(2)由 y 1>0,即 x +1>0,得 x>- 1,1由 y 2>0,即- 2x +1>0,得 x<2.故使 y 1>0,y 2>0 的 x 的取值范围为- 1<x < 2.y = ax +2,x = 2,.解:因为方程组的解为因此交点 A 的坐标为 (2,1),24y = 1,y = kx +b1因此 2a +2=1,解得 a =- 2.又因为函数 y =kx +b 的图象过交点 A(2,1)和点 B(0,- 1),2k +b =1, k = 1, 因此 解得b =- 1,b =- 1.1因此这两个一次函数的分析式分别为y=-2x+ 2, y= x-1.点拨:此类问题的解题规律是明确方程组的解就是两条直线的交点坐标,再利用待定系数法求解.此题中确立这两个函数的分析式的重点..是确立 a,k,b 的值.25.解: (1)当 0≤ x≤ 20 时,设 y 与 x 之间的函数关系式为y=ax+b,已知函数图象过点 (0,150)和(20,200),150=b,a=2.5,∴解得200=20a+b,b=150.∴y= 2.5x+150.当x≥20 时,同理可得 y=4x+120.∴y 与 x 之间的函数关系式为2.5x+ 150(0≤x≤20),y=4x+ 120(x>20).(2)令4x+120= 250,解得x= 32.5.∴李敏需阅读32.5 小时.点拨:含有图象的实质问题的常用解题方法:(1)依据图象上的特别点,利用待定系数法确立每段函数的关系式;(2)借助图象确立自变量的取值范围,而后将特别地点的自变量代入相应的关系式,确立其函数值;(3)利用方程与函数的关系,确立交点坐标.26.解: (1)过点 P 作∵点 P 的横坐标是又易知 OC=2,PF⊥ y 轴于点2,∴ PF= 2.F.1 1∴S△COP=2OC·PF=2×2×2=2.(2)∵S△AOC= S△AOP-S△COP= 6-2=4,1 1∴S△AOC=2OA·OC=4,即 2×OA×2=4,∴OA=4,∴点 A 的坐标是 (- 4, 0).- 4k +b =0, k =1,设直线 AP 对应的函数分析式是 y =kx +b ,则 解得2b =2,b =2.1∴直线 AP 对应的函数分析式是 y =2x +2. 当 x = 2 时, y =3,即 p = 3.(3)设直线 BD 对应的函数分析式为 y =ax +c ,c∴点 D 的坐标为 (0,c),点 B 的坐标为 - a , 0 .∵S △DOP =S △ BOP ,∴1 111 - c · 由题意知 c ≠0,∴ =- 3,∴直线 BD2OD ·2=2OB ·3,即 2c ·2= 2 a 3. a 2对应的函数分析式是 y =- 3 + 将 , 的坐标代入得 = ,∴直线2xc.P(2 3)c6BD对应的函数分析式是 y =- 32x +6.46027.解: (1)a =4.5,甲车的速度为 2= 60(千米 /小时 );3+ 7(2)设乙开始的速度为 v 千米 /小时,则 4v +(7-4.5) ×(v - 50)= 460,解得 v =90,4v = 360,则 D(4,360), E(4.5, 360),设直线 EF 对应的函数分析式为 y =kx +b ,把点 E(4.5,360),点 F(7,460)的坐标分别代入,得4.5k + b = 360, k =40,解得 因此线段 EF 所表示的 y 与 x 之间的函数分析7k + b = 460, b =180. 式为 y =40x +180(4.5≤ x ≤ 7);2 (3)60 ×=40(千米 ),则 C(0,40),设直线 CF 对应的函数分析式为y = mx +3n =40,n.把点 C(0, 40),点 F(7,460)的坐标分别代入,得解得7m +n =460,m =60,因此直线 CF 对应的函数分析式为 y =60x + 40,易得线段 OD 对n =40,5应的函数分析式为 y =90x(0≤x ≤4),当 60x +40-90x =15,解得 x =6;当112590x - (60x +40)=15,解得 x = 6 ;当 40x +180-(60x +40)=15,解得 x = 4.因此乙车出发 5小时或11小时或 25小时,与甲车相距 15 千米.6 6 4。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数测试题(A 卷)
班级----------姓名-----------
一、选择题(每小题5分,共30分)
1.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是( )
A.正方形的面积S 随着边长x 的变化而变化.
B.正方形的周长C 随着边长x 的变化而变化
C.水箱以0.5L/min 的流量往外放水,水箱中的剩水量V L 随着放水时间t min 的变化而变化
D.面积为20的三角形的一边a 随着这边上的高h 的变化而变化
2.如果某函数的图象如图所示,那么y 随x 的增大而( )
A.增大
B.减小
C.不变
D.有时增大有时减小
3.一次函数y=kx+b 中,y 随x 的正大而减小,b <0,
则这个函数的图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4.如果P (2,m ),A (1,1),B (4,0)三点在同一直线上,则m 的值为( )
A.2
B.3
2-
C.32
D.1 5.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了4
1.如果加满汽油后汽车行驶的路程为xkm ,油箱中的剩油量为yL ,则y 与x 之间的函数关系式和自变量取值范围分别是( )
A.x y 0625.0=,x >0
B.x y 0625.050-=,x >0
C. x y 0625.0=,8000≤≤x
D. x y 0625.050-=,8000≤≤x
6.食用油沸点的温度远高于水的沸点温度(1000C ).小明为了用刻度不超过1000C 的温度计测量出某种食用油沸点的温度,在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s 测量一次锅中油温,测量得到的数据如下表:
时间t/s 0 10 20 30 40 油温y/0c 10 30 50 70 90
24t/天
S/t 而且,小明发现,烧了110s 时,油沸腾了.你估计这种油沸点的温度是( )
A.2000C
B.2300C
C.2600C
D.2900C
二、填空题(每小题5分,共20分)
7. 某电梯从1层(地面)直达3层用了20s ,若电梯运行时匀速的,则乘坐该电梯从2层直达8层所需要的时间是___________________s
8. 直线62-=x y 与y 轴的交点坐标为__________,与x 轴的交点坐标是_____________
9. 函数kx y =与x y -=6的图象如图所示,则=k ________________
10. 春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数保持不变,这个门市部的化肥存量S (单位:t )与时间t (单位:天)之间的函数关系如图所示,则该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是_______________
三、解答题
11(10分). 一次函数图象经过(-2,1)和(1,3)两点.
(1)求这个一次函数的解析式;
(2)当x=3时,求y的值.
12(10分). 如图是小明散步过程中所走的路程S(单位:m)与步行时间t (单位:min)的函数图象.
(1)小明在散步过程中停留了多少时间?
(2)求小明散步过程步行的平均速度.
(3)在哪一时间段,小明是匀速步行的?在这一时间段,他步行的速度是多少?
13(14分). 直线a:和直线b:相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.
(1)求△ABC的面积;
(2)求四边形ADOC的面积
14(16分). 某景点的门票销售分两类:一类为散客门票,价格为40元/张;另一类为团体门票(一次性购买门票10张及以上),每张门票价格在散客门票价格的基础上打8折.某班部分同学要去该景点旅游,设参加旅游x人,购买门票需要y元.
(1)如果每人分别买门票,求y与x之间的函数关系式;
(2)如果买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;(3)请根据人数变化设计一种比较省钱的购票方案.。

相关文档
最新文档