刚体的定轴转动与转动定律

合集下载

刚体定轴转动转动定律

刚体定轴转动转动定律
dv c Fe m dt
c
c
c
8/11/2014 3:31:32 PM 4
4.1 刚体的定轴转动 研究作定轴转动的刚体时,只需选取刚体上任意 一点并确定它的运动状态。由于该点绕固定轴线在垂 直于转轴的平面内作圆周运动,取垂直于转轴的平面 为参考面,刚体的位置由确定。 作定轴转动的刚体 可用角位移、角速度、 角加速度描述。
1
4.1 刚体的定轴转动
一.基本概念 如果我们所研究的物体在运动过程中,它的大 小形状基本不变,我们将其抽象为物体在外力的作 用下,内部任意两点间的距离保持恒定,这种理想 化的物体我们称之为刚体。 刚体的运动可分为平 动和转动。若刚体在运动 过程中,所有点的轨迹完 全相等,或者任意两点的 连线总是平行于它的初始 位置。这种运动称作平动。
17
4.2 刚体的转动定律
例题 求通过匀质细棒中垂线和端点垂线的转动惯量。 解: 棒相对通过质心的转动惯量 J x 2dm l / 2 m dm dx dx l
m l/2 2 J x dx l l / 2 l/2 m x 3 l / 2 3l ml 2 J 12

d d , dt dt
8/11/2014 3:31:32 PM 5
4.1 刚体的定轴转动
平面上刚体的运动可看作是刚体的平动(可以 用质心运动表示)和刚体绕过质心转轴转动(刚体 定轴转动)的叠加。 手榴弹的运动
8/11/2014 3:31:32 PM 6
数理学院
大学物理教学中心
College of Mathematics & Physics
8/11/2014 3:31:32 PM
l/2
y
o
x
dx

刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。

2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。

(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。

3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。

练习:1角动量守恒的条件是 。

0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。

定轴转动刚体的转动定律度力矩角动量转动惯量

定轴转动刚体的转动定律度力矩角动量转动惯量

Iz Ix Iy
z
定理证明:
对于质量平面分布的刚体, 绕 x 轴的转动惯量为:
o
yy
Ix y2dm
x
dm
绕 y 轴的转动惯量为:
I y x2dm
x
绕 z 轴的转动惯量为:
19
z
Iz z2dm (x 2 y2 )dm
y2dm x 2dm I x I y 证毕
o
yy
x z dm
0
M
绕圆环质心轴的转动惯量为
dm
oR
I MR2
例2:在无质轻杆的 b 处 3b 处各系质量为 2m 和 m 的 质点,可绕 o 轴转动,求:质点系的转动惯量I。
解:由转动惯量的定义
I
2
mi ri 2
2mb 2
m
(3b)2
11mb 2
i 1
9
例3: 如图所示,一质量为m、长为l的均质空心圆柱
体(即圆筒圆筒)其内、外半径分别为R1和R2。试求
的质元受阻力矩大,
细杆的质量密度 m
l
质元质量 dm dx
o
xl dm m dx
x
质元受阻力矩:
dM 阻 dmgx
细杆受的阻力矩
m l
M阻
dM

0l
gxdx
1 2
gl 2
1 2
mgl
4
二、定轴转动刚体的角动量
1 .质点对点的角动量
L
r
P
r
mv
作圆周运动的质点的角动量L=rmv;
l
x2dm
L
x2dx
1 L3
0
1 mL2
0
3
A

刚体定轴转动定律

刚体定轴转动定律
角称为角坐标(或角位置)。 角坐标为标量。但可有正负。
o
P
x
2.角位移
描写刚体位置变化的物理量。
角坐标的增量:
称为刚体的角位移
y v2 p v1
P
3.角速度
R
x
描写刚体转动快慢和方向
的物理量。
角速度 lim d
t0 t dt 方向:满足右手定则,沿刚体转动方向右旋大拇指指向。
角速度是矢量,但对于刚体定轴 转动角速度的方向只有两个,在表 示角速度时只用角速度的正负数值 就可表示角速度的方向,不必用矢 量表示。
11mb 2
例4、半径为 R 质量为 M 的 圆环,绕垂直于圆环平面的 质心轴转动,求转动惯量J。
解: J R2dm MR 2
M o R dm
例5、半径为 R 质量为 M 的圆盘,绕垂直于圆盘 平面的质心轴转动,求转动惯量 J。
解:分割圆盘为圆环
dm
M
R2
2
rdr
J r2dm
M
dr
R
0
t 细杆绕一端的转动惯量
J 1 ml 2 3
摩擦阻力
t
例8、质量为 m1 和m2 两个物体, 跨在定滑轮上 m2 放在光滑的桌 面上,滑轮半径为 R,质量为 M,求:m1 下落的加速度,和 绳子的张力 T1、T2。
解:m1 g T1 m1a (1)
T2 m2a
b)作圆周运动的质点的角动量 L= r m v
c)角动量是描述转动状态的物理量;
P L
d)质点的角动量又称为动量矩。
or
dL
d (r mv)
dr
mv
r
d (mv)
r
F
dt

大学物理Ⅰ刚体定轴转动的转动定律

大学物理Ⅰ刚体定轴转动的转动定律
第五章 刚体的定轴转动
5.1刚体运动的描述
一.刚体
刚体:在外力作用下,形状和大小都不发生变 化的物体 . (任意两质点间距离保持不变的特殊质点 组)
(1)刚体的运动
刚体的运动形式:平动、转动 .
平动:若刚体中所有点 的运动轨迹都保持完全相同, 或者说刚体内任意两点间的 连线总是平行于它们的初始 位置间的连线 .
F F11 F
其中F11对转轴的力 矩为零,故 F 对转轴的力矩
M zk r F
z
k F11
F
O r
F
M z rF sin
2)合力矩等于各分 力矩的 矢量和 M M1 M2 M3
第五章 刚体的定轴转动
3) 刚体内作用力和反作用力的力矩互相抵消
M ij
O
rj
d ri
i
j
Fji Fij
M
rdf
l
grdr
0
1 gl 2
2
1 mgl
2
dm dl
dm ds
dm dV
其中、、分别
为质量的线密度、 面密度和体密度。
线分布
面分布
体分布
第五章 刚体的定轴转动
m 例1 一质量为 、长为 l 的均匀细长棒,求通过棒中
心并与棒垂直的轴的转动惯量 .
O
Or
l 2 O´ dr l 2
O´ dr l
r 解 设棒的线密度为 ,取一距离转轴 OO´ 为 处的质
fi
第五章 刚体的定轴转动
M i外 M i内 miri2
i
i
i
Mi内 0
i
M i外 ( miri2 )
i
i
z
O rj

刚体的定轴转动定律

刚体的定轴转动定律
物体2这边的张力为
T2、 T2’(T2’= T2)
T1
T2
T1
T2
am
a
1
a
m
m1
m1g 2
m2
m2g
因m2>m1,物体1向上运动,物体2向下运动,滑轮以
顺时针方向旋转,Mr的指向如图所示。可列出下列方

T1 G1 m1a
G2 T2 m2a
T2r T1r M J
式中是滑轮的角加速度,a是物体的加速度。滑轮
t 0
方向:
t dt
右手螺旋方向
z (t)
x
参考平面
参考轴
刚体定轴转动(一
维转动)的转动方向可
以用角速度的正负来表
示.
角加速度
d
dt
定轴转动的特点
z
>0
z
<0
1) 2)
每一质点均作圆周运动,圆面为转动平面;
任一质点运动
,
,
均相同,但
v,
a不同;
3) 运动描述仅需一个坐标 .
三、 匀变速转动公式
轴的力矩 Mzk
r
F
z
F
k
O rFz
F
M z rF sin
z
Байду номын сангаас
F
M
O
r P
d
五. 定轴转动刚体的转动定律:
Fit
Fi
fit

ri
fi
mi• fin
Fin
O

j
d
fij
fji
i
Fit ri (miri2 )
I miri2
i

刚体的定轴转动和转动定律

刚体的定轴转动和转动定律

受力: F Ft Fn
力矩:M r (Ft Fn )
r Ft rFt k
M F r ma r
z
M
Ft F
O r m
Fn
mr2
at r
即: M mr 2
3 – 2 力矩 转动定律 转动惯量
2、刚体转动定律
质元 m j 受力为:
右手螺旋定则
第三章 刚体的转动

3– 1 刚体的定轴转动
4、角加速度(矢量)
第三章 刚体的转动
大小: d
dt
方向: 若 2 > 1 则 与角速度同向, 若 2 < 1 则 与角速度反向。
3– 1 刚体的定轴转动
第三章 刚体的转动
二、匀变速转动公式
匀变速转动:转动的角加速度为恒量的运动。
J R 2π r3dr π R4 所以 J 1 mR2
0
2
2
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
例3 :质量为m、高为h、半径为r的均匀圆柱体,求其对 圆柱中心的转动轴的转动惯量?
解:dm dV 2 r h dr
其中:

m V
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
三 转动惯量 J mjrj2 , J r 2dm
1、物理意义:
j
描述刚体转动过程中转动惯性大小的物理量.( 转动
惯量的大小取决于刚体的质量、形状及转轴的位置 .)
2、转动惯量的计算方法:
1)质量离散分布刚体的转动惯量:
J mjrj2 m1r12 m2r22
对质量面分布的刚体: dm dS

刚体定轴转动的转动定律

刚体定轴转动的转动定律

R
M
h
Hale Waihona Puke 解法一 用牛顿第二运动 定律及转动定律求解.分 析受力如图所示. 对物体m用牛顿第二 运动定律得 mg T ma 对匀质圆盘形滑轮用 转动定律有 TR J 物体下降的加速度的 大小就是转动时滑轮边缘 上切向加速度,所以
o R M

T
h
a
G
a R 物体m 落下h 高度时的速率为
2
3.试求质量为m 、半径为R 的匀质圆环 对垂直于平面且过中心轴的转动惯量. 解 作示意图如右,由于质 量连续分布,所以由转动 惯量的定义得
J R 2dm
m
dm
o
R

2R 0
m R dl 2R
2
mR 2
4.试求质量为m 、半径为R 的匀质圆盘 对垂直于平面且过中心轴的转动惯量. dr 解 如图所示, 由于质 量连续分布,设圆盘的 R l o r 厚度为l,则圆盘的质量 密度为 m 2 R l
r近日 r远日
v近日
解 彗星受太阳引力的作用,而引力通过了 太阳,所以对太阳的力矩为零,故彗星在运 行的过程中角动量守恒. 于是有 r近日 v近日 r远日 v远日 因为 r近日 v近日 ,r远日 v远日
r近日v近日 所以 r远日 v远日
代入数据可, 得
J r 2dm
m

R 0
1 1 4 r 2r ldr R l mR 2 2 2
2
5. 如图所示,一质 量为M 、半径为R 的匀 质圆盘形滑轮,可绕一 无摩擦的水平轴转动. 圆盘上绕有质量可不计 绳子,绳子一端固定在 滑轮上,另一端悬挂一 质量为m 的物体,问物 体由静止落下h 高度时, 物体的速率为多少?

刚体定轴转动的转动定律力矩PPT

刚体定轴转动的转动定律力矩PPT

求 θ角及着陆滑行时的速度多大?
解 引力场(有心力)
v0
系统的机械能守恒
质点的动量矩守恒
m r0
v R
OM
m 1 2m v v 0 r 00 2s iGπ n r0 M) ( 1 2 m m m vv 2 R GRMm vv0r0R sin4v0sin
sin14123RGv0M 21/2
1/2
LZ Δmiviri Δmiri2 JZ
i
i
LZJZ(所有质元对 Z 轴的动量矩之和)
2. 刚体定轴转动的动量矩定理
对定轴转动刚体,Jz 为常量。
dLZ dt
JZ
d
dt
dLZ dt
Mz
M zd t d L z d J
动量矩定理 微分形式
t1 t2M zd t 1 2d JJ2 J1(动量矩定理积分形式)
0tm1m 1m 2m 21 2 gmtr
3.2.2 刚体定轴转动的动能定理
1. 刚体定轴转动的动能
Δ m 1 ,Δ m 2 ,,Δ m k ,,Δ m N r 1 ,r 2 ,,r k ,,r N v 1 , v 2 , , v k , , v N
Δmk 的动能为
Ek 12Δmkvk212Δmkrk22
F FF Fn
2)力对点的力矩
Mo
M O r F
F
大小 M OrF sin
O . r
指向由右螺旋法则确定 力对定轴力矩的矢量形式
z
F//
F
M Z r F
(力对轴的力矩只有两个指向)
r
A
FF
2. 刚体定轴转动的转动定律
第 k个质元 F k f k m k a k

第03章 刚体定轴转动01-转动定律

第03章 刚体定轴转动01-转动定律

作用于刚体内每一质元上的内力矩的矢量和为零,即
fr 0
i i i
14
F r
i i
i
为作用于刚体内每一质元上的外力矩的矢量和。
M Fi ri
i
定义:刚体的转动惯量J (moment of interia) 则有:
2 m r ii i
M J
即:
M J
刚体定轴转动的转动定律:刚体定轴转动的角加速度与它所 受的合外力矩成正比 ,与刚体的转动惯量成反比。 —— 刚体定轴转动的基本动力学规律。
dm 2 π r dr
P
3 2
圆环对轴的转动惯量
dJ r dm 2π r dr R 3 J 2π r dr π R 4 0 2 1 2 而 m π R 所以 J mR 2
圆盘对P 轴的转动惯量
R
R
O O
r dr
1 J P mR 2 mR 2 2
19
15
三、转动惯量
J mi ri
i
2
物理意义:刚体转动惯性的量度。 对于质量离散分布刚体的转动惯量
J mi ri 2 m1r12 m2r22
i
质量连续分布刚体的转动惯量
J lim
mi 0
2 2 m r r i i dm i
P1 y
P2
23
(3)如图所示,不计绳子的质量,滑轮的质量与半径分别为M
和R,滑轮与绳间只滚不滑,不计滑轮与轴间的摩擦力。 且 m1 m2 。 求重物释放后,物体的加速度和绳的张力。 A
m1 FN m1 FT1
O
C
取坐标如图
M

08 刚体定轴转动的动能定理和转动定律

08 刚体定轴转动的动能定理和转动定律

3-1 刚体定轴转动的动能定理和转动定律
n
定义转动惯量 J miri2 i1
对质量连续分布的刚体,任取质量元dm,其到轴的距离为 r,则转动惯量
J r2dm 单位:kg ·m2(千克·米2)
dm:质量元
dmdl :线密度 dmdS :面密度
dmdV :体密度
3-1 刚体定轴转动的动能定理和转动定律
刚体定轴转动的动能定理
W12M d1 2J2 21 2J12
合外力矩对绕定轴转动的刚体所作的功等于刚体转动动能 的增量.
注意
1. 如果刚体在运动过程中还有势能的变化,可用质点组的功能
原理和机械能转换与守恒定律讨论. 总之,刚体作为特殊的质
点组,它服从质点组的功能转换关系.
2. 刚体的定轴转动的动能应用 Ek
m1(2m2
1 2
m)g
m1
m2
1 2
m
,
FT 2
m2
(2m1
1 2
m)
g
m1
m2
1 2
m
决定刚体转动惯量的因素 ⑴与刚体的密度有关(即与m有关); ⑵与刚体的几何形状有关(即与m的分布有关); ⑶与刚体的转轴位置有关。
3-1 刚体定轴转动的动能定理和转动定律
求质量为m、长为l的均匀细长棒,对通过棒中心和过端点 并与棒垂直的两轴的转动惯量.
O
Or
l 2 O´ dr l 2
O´ dr l
M
1.力矩
动 点平P面刚, 且的体在交绕转点O动z,轴平力旋面F 转内作,,用Or 为在轴刚为与体由上转点
O 到力的作用点 P 的位矢.
O
M zr*
dP
F
F对转轴z的力矩 M Fsrin Fd

第三章刚体的定轴转动

第三章刚体的定轴转动

§3.1 刚体定轴转动的动能定理和转动定律
二、刚体定轴转动的动能定理 B、对于定轴转动刚体,所有内力的功总和在任何过程中均为零。(内力成对,大小相等方向相反,
一对内力矩的代数和为零;∴内力矩的功总和为零。另一角度,内力的功相对位移为零 .)
3、功率:
d A F 2d r
pdAMdM
dt dt
当 与 M 同方向, 和 为正 当 与 M 反方向, 和 为负
§3.1 刚体定轴转动的动能定理和转动定律
1 2 其中(:1 3M h 2 1 m l2l(12) ca 2o M s) 1( 3g )m h 2g(h 2 ) h 2 a (1 co )s(4 )
由(2)(3)(4)式求得:
2Mg(1lcos)/22mg(1acos)
M2l/3m a2
(Ml 2ma)g(1cos)
2
25
整理,得:
1 10 gh,
b7
vcb
10 gh 7
§3.2 定轴转动的动量矩定理和动量矩守恒定律
(2)小球到达A点不脱离轨道,要求小球在A点的速 度vA 和角速度A满足:
m v a A 2 m g v A 2 a,gA 2 v b A 2 2 a b 2 g (4 )
由机械能守恒:
b<<a
飞轮作变加速转动
§3.1 刚体定轴转动的动能定理和转动定律 例题3-1-2:一长为 l ,重为W的均匀梯子,靠墙放置,如图。墙光滑,地面粗糙, 当梯子与地面成角 时,处于平衡状态,求梯子与地面的摩擦力。
解:刚体平衡同时要满足两个条件:
Fi 0
Mi 0
列出分量方程:
O
水平方向:
f1N2 0
竖直方向:

刚体的定轴转动与转动定律

刚体的定轴转动与转动定律

p 0 Lh
1 2
gLh
2
y
dA
dy
代入数据,得
F 5 . 91 10
10
h y
N
x O
L
20
第四章 刚体的转动
4-2 转动定律
d F 对通过点Q的轴的力矩 d M y d F
d F [ p 0 g ( h y )] L d y
M

h
0
y [ p 0 g ( h y )] L d y
3
4
14
4-2 转动定律

力矩
z
M
用来描述力对刚体 的转动作用.
M Fr sin Fd
F 对转轴 z 的力矩 M rF
F
d : 力臂
O
r
*
d
P
F
F

i
Fi 0 ,

i
Mi 0
F
F
Fi 0 ,

i

i
Mi 0
2
2 a r e t rω e n
9
第四章 刚体的转动
4-1
刚体的定轴转动
例1 在高速旋转的微型电动机里,有一 圆柱形转子可绕垂直其横截面并通过中心的 转轴旋转.开始起动时,角速度为零.起动 后其转速随时间变化关系为: m (1 e t / ) 1 式中 m 540 r s , 2 . 0 s .求: (1)t=6 s时电动机的转速.(2)起动后,电动 机在 t=6 s时间内转过的圈数.(3)角加速度 随时间变化的规律.
dt
0

d c td t

大学物理力学第五章1刚体、转动定律

大学物理力学第五章1刚体、转动定律
3. 同一方程式中所有量都必须相对同一转轴。
(12)
例1、如图所示,A、B为两个相同的绕着轻绳的定滑
轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F=Mg.设A、B两滑轮的角加速度分别为βA和β B,
不计滑轮轴的摩擦,则有
(A) β A= β B. (B) β A> β B. (C) β A< β B. (D) 开始时β A= β B,以后β A< β B.
转动惯量的计算
1)定义 J miri2
J r 2dm
i
m
2) 对称的 简单的 查表
3) 平行轴定理
典型的几种刚体的转动惯量
m
m
l
细棒转轴通过中 心与棒垂直
J ml 2 12
l
细棒转轴通过端 点与棒垂直
J ml 2 3
M,R
M,R
o
圆环转轴通过环心与环面垂直
J MR2
薄圆盘转轴通过 中心与盘面垂直
以 m1 为研究对象 m1g T1 m1a 以 m 2 为研究对象 T2 m2a 以 M 为研究对象
(T1 T2 )R J J 1 MR 2 2
m 2 T2 M , R
(1) T1
T1
(2)
m1
m1
M ,R
m1g (3)
T2
m2
T2
T1
补充方程:
a R
(4)
联立方程(1)---(4)求解得
J 1 MR 2 2
m 2r
r l
球体转轴沿直径
J 2mr 2 5
圆柱体转轴沿几何轴
J 1 mr 2 2
转动定律应用举例 解题步骤: 1. 认刚体;
3. 分析力和力矩;

力矩 刚体定轴转动的转动定律

力矩 刚体定轴转动的转动定律

第3章 刚体力学基础
3–2 力矩 刚体定轴转动的转动定律
17
例3.4 转动着的飞轮的转动惯量为J,在t=0时角速 度为 0 .此后飞轮经历制动过程,阻力矩M的大小 与角速度ω的平方成正比,比例系数为k(k为大于零 1 的常数),当 时,飞轮的角加速度是多少? 0 3 从开始制动到现在经历的时间是多少?
O
r
F
M M1 M 2 M 3
第四章 刚体转动
4 – 2 力矩 转动定律 转动惯量
物理学教程 (第二版)
3)力在转动平面内的分量,又可分解为两个方向:切向Ft和 法向Fn。 因为法向分量Fn指向转轴,因而不提供力矩,对刚体的 定轴转动无影响。 我们只考虑力的切向分量Ft即可。
M Ft r
第四章 刚体转动
4 – 2 力矩 转动定律 转动惯量 4) 刚体内作用力和反作用力的力矩互相抵消
物理学教程 (第二版)
M ij
O
Mij M ji
rj
j
f ij
M ji
对转轴的合内力矩为零.
第四章 刚体转动
d
i ri
f ji
结论:刚体内各质点间的作用力
M Mij 0
且在转动平面内,
矢.
r
F作用在刚体上点 P ,
为由点O 到力的作用点 P 的径
M r F M Fr sin
方向遵循右手定则。
第3章 刚体力学基础
F 对转轴 Z 的力矩
M
M
O
z
r
F
* P
d
4 – 2 力矩 转动定律 转动惯量
物理学教程 (第二版)

4第四章 刚体的定轴转动

4第四章 刚体的定轴转动
七、能综合应用转动定律和牛顿运动定律及质点、刚体定轴转 动的运动学公式计算质点刚体系统的简单动力学问题. 八、能综合应用守恒定律求解质点刚体系统的简单动力学问题. 明确选择分析解决质点刚体系统力学问题规律时的优先考虑顺序.
第 1 讲 刚体的定轴转动
预习要点 1. 理解刚体的运动; 2. 掌握描述刚体定轴转动的运动学方法; 3. 理解力矩的概念及力矩的功;
式中 mi ri2 表示第i个质点对转轴的转动惯量;
对质量连续分布的刚体,任取质量元 dm ,其到轴的
距离为 r ,则转动惯量:
J r2dm 单位:kg ·m2
若系统由多个刚体组成,则系统对转轴的总转动惯量, 等于各部分对同一转轴的转动惯量之和
一个长为4L的轻杆,连有两个质量都是m的小球(大小可 忽略),此系统可绕垂直于杆的轴转动,求下列转动惯量;
在转动平面内,O为转动平面与转轴的焦点,r 为从O 点指向
M 力的作用点 A 的位矢,两矢量的夹角为 ;
力 F 对定轴 OZ 的力矩 :
(力臂:力的作用线到转轴的距离)
z
M Z Fd Fr sin
通常,从OZ轴正向俯视,有 逆时针转动(趋势)力矩为正, 反之为负;
单位:牛·米(N ·m)
F
Or
例:一轻绳跨过一轴承光滑的定滑轮,绳的两端分别悬
有质量为m1和m2的物体,滑轮可视为均质圆盘, 质量 为m,半径为r,绳子不可伸长而且与滑轮之间无相对 滑动.求物体加速度、滑轮转动的角加速度和绳子的张
力. 设 m2 m1
解: 受力分析如图:
FT1 m1g m1a m2g FT2 m2a
FT2R FT1R J a r
m2
)
gl
sin
α

刚体绕定轴转动的转动定律和转动惯量

刚体绕定轴转动的转动定律和转动惯量

0 R2
1 mR2 2
Z
m R2
R1
薄圆环
dm
ds
m (R22
R12
)
ds
ds 2 rdr
dJ r2dm
J R2 r 2
m
2 rdr
R1
(R22 R12 )
1 2
m(R22
R12 )
R
m
H
空心圆柱面
dm ds m ds 2 RH
ds 2 Rdh
dJ r2dm
J H R2 m 2 Rdh
0 2 RH
mR3
r
R
H m
实心圆柱
dm
dV
m
R2H
dV
dV 2 rHdr
dJ r2dm
J R r2 m 2 rHdr
0 R2H
R2 R1
H m
同轴空心圆柱
dm
dV
mg
H (R22
R12 )
dV
dV 2 rHdr
dJ r2dm
J R2 r2
mg
2 rHdr
R1 H (R22 R12 )
R
+
T1
+
T2
N
m
4m
2m + o
P1
P2
mg
4m
T1
T2
2m
分别对人、物、滑轮建立方程:
4mg-T1 4ma人地
(1 )
T2-2mg 2ma物地 2ma绳地 (2) R
T1R -T2 R
J
1 2
mR2
(3) m
人相对 绳匀加 速a0上爬,则
a人地 a人绳 a绳地
4m

3第三章_刚体的定轴转动

3第三章_刚体的定轴转动
d dt
d dt
J
,
刚体定轴转动定律:刚体作定轴转动时,合外力矩等 于刚体的转动惯量与角加速度的乘积.
例:一轻绳跨过一轴承光滑的定滑轮,绳的两端分别 悬有质量为m1 和m2 的物体,滑轮可视为均质圆盘, 质量为m,半径为r,绳子不可伸长而且与滑轮之间无 相对滑动.求物体加速度、滑轮转动的角加速度和绳 子的张力. o 解: 受力图如下, 设 m 2 >m 1 r

(m 2 m1 ) g (m1 m 2 1 2
1 2 1 2 m m)g
1 2
m
m )r
m)g T2
T1
m 2 (2 m1
m1 m 2
m1 m 2
3-2 定轴转动的动量矩定理和 动量矩守恒定律
预习要点 1. 认识质点对定点的动量矩的定义, 刚体对转轴的动 量矩如何计算? 2. 刚体定轴转动的动量矩定理的内容及数学表达式是
认识刚体
在研究物体的运动时,根据问题的性质和要求, 有时需要考虑物体的形状和大小,而忽略物体在力 的作用下引起的形变,即把物体看作是形状、大小 不会改变的物体—刚体:在外力作用下形状和大小 保持不变的物体(ideal model) 刚体特征: 构成刚体任意两质点间的距离,在运动过程中恒保 持不变。是一种“速冻”质点系。 研究任务: 刚体的运动,突出转动,将其上升为研究的主要问 题和对象。忽略了振动及其它变形运动。
J J

i
m i ri
2
2
m

r dm
例:如图质点系
J
m3 r3
r1 m 1
m2 r2

i3
m i ri
2
2
i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 150
第四章 刚体的转动
13
4-1 刚体的定轴转动
由 d π t 2
dt 150


d
π
t t 2dt
0
150 0
π t 3 rad
450
在 300 s 内转子转过的转数
N π (300)3 3104
2π 2π 450
第四章 刚体的转动
角加速度 d
dt
4-1 刚体的定轴转动

z
>0
z

<0
第四章 刚体的转动
6
4-1 刚体的定轴转动
定轴转动的特点
(1) 每一质点均作圆周运动,圆面为转动
平面;
(2)
任一质点运动
v, a 不同;
,,
均相同,但
(3) 运动描述仅需一个角坐标.
第四章 刚体的转动
4-1 刚体的定轴转动
刚体:在外力作用下,形状和大小都不 发生变化的物体.(任意两质点间距离保持 不变的特殊质点组.)
说明:⑴ 刚体是理想模型 ⑵ 刚体模型是为简化问题引进的.
刚体的运动形式:平动、转动.
第四章 刚体的转动
1
平动:刚体中所 有点的运动轨迹都保 持完全相同.
4-1 刚体的定轴转动
特点:各点运动
后其转速随时间变化关系为: m (1 et / ) 式中 m 540 r s1, 2.0 s .求:
(1)t=6 s时电动机的转速.(2)起动后,电动 机在 t=6 s时间内转过的圈数.(3)角加速度 随时间变化的规律.
第四章 刚体的转动
10
4-1 刚体的定轴转动
(3)刚体内作用力和反作用力的力矩 互相抵消.
M ij
rj
j

O
d ri
i Fji
Fij
j M ji
17
4-2 转动定律
例1 有一大型水坝高110 m、长1 000 m ,
水深100m,水面与大坝表面垂直,如图所
示. 求作用在大坝上的力,以及这个力对通
14
4-2 转动定律
一 力矩
用来描述力对刚体
的转动作用.
M Frsin Fd

d: 力臂
FM对 转r轴
z F
的力矩
F

Fi 0,
i
F

Mi 0
i
z
M
r
Od
F
P*
F
Fi 0,
i
F

Mi 0
i
第四章 刚体的转动
15
4-2 转动定律
过大坝基点 Q 且与 x 轴平行的力矩 .
y
y
x
h
O
Q
O
L
第四章 刚体的转动
x
18
4-2 转动定律
解 设水深h,坝长L,在坝面上取面积 元 dA Ldy ,作用在此面积元上的力
dF pdA pLdy
y
y
dA
x
dy
hy
x
O
Q
O
L
第四章 刚体的转动
19
4-2 转动定律
令大气压为 p0 ,则 p p0 g(h y)

2 (
0)
第四章 刚体的转动
8
4-1 刚体的定轴转动
三 角量与线量的关系
ω d
dt


dω dt

d 2
d2t
v

rωet

an
ra

evt
at
at r
an rω2
a

ret

rω2
en
第四章 刚体的转动
9
4-1 刚体的定轴转动
例1 在高速旋转的微型电动机里,有一 圆柱形转子可绕垂直其横截面并通过中心的 转轴旋转.开始起动时,角速度为零.起动
讨论
(1)若力
F
不在转动平面内,把力分
解为平行 和垂 直于 转轴方向的两个分量
F


Fz

F
其中 Fz对转 轴的
力矩为零,故 F 对转
轴的力矩 M zk

r

F
z


F
k
O rFz
F

M z rF sin
第四章 刚体的转动
16
4-2 转动定律
(2)合力矩等于各分力 矩的矢量和 M M1 M2 M3
dt

t
d c tdt
得 1 ct 2
0
0
2
第四章 刚体的转动
12
4-1 刚体的定轴转动
1 ct 2
2
当 t =300 s 时
18 000 r min 1 600 π rad s1
c

2
t2

2 600π 3002

π rads3 75
1 ct 2 π t 2
dF PdA [ p0 g(h y)]Ldy
7
4-1 刚体的定轴转动
二 匀变速转动公式
当刚体绕定轴转动的角加速度 =常量
时,刚体做匀变速转动.
质点匀变速直线运动 刚体绕定轴作匀变速转动
v v0 at
0 t
x

x0

v0t

1 2
at 2

0
0t

1 2
t
2
v2

v
2 0

2a(x

x0 )
2


2 0
第四章 刚体的转动
11
4-1 刚体的定轴转动
例2 在高速旋转圆柱形转子可绕垂直
其横截面通过中心的轴转动.开始时,它的
角速度 ω0 0 ,经300 s 后,其转速达到
18 000 r·min-1 .转子的角加速度与时间成正
比.问在这段时间内,转子转过多少转?
解 令 ct,即 d ct ,积分
状态一样,如:v、a
等都相同.
刚体平动 质点运动
第四章 刚体的转动
2
4-1 刚体的定轴转动
转动:分定轴转动和非定轴转动
刚体的平面运动
第四章 刚体的转动
3
4-1 刚体的定轴转动
刚体的一般运动可看作:
随质心的平动 + 绕质心的转动 的合成
第四章 刚体的转动
4
4-1 刚体的定轴转动
一 刚体转动的角速度和角加速度
解 (1) 将 t=6 s 代入ω m (1 et / )
ω 0.95ωm 513 r s1
(2) 电动机在6 s内转过的圈数为
N
6
ωdt
0
6 0
ωm
(1

e
t
/
)dt
2.21103 r
(3) 电动机转动的角加速度为
d m et / 540πet / 2 rad s2 dt
角坐标 (t)
z
ω
沿逆时针方向转动 > 0 沿顺时针方向转动 < 0
r P’(t+dt)
.. O d P(t)
x
角位移 (t t) (t)
角速度矢量 lim d
t t0 dt 方向: 右手螺旋方向
第四章 刚体的转动
5
刚体定轴转动 (一维转动)的转动 方向可以用角速度 的正、负来表示.
相关文档
最新文档