《勾股定理的证明》ppt人教版1

合集下载

人教版八年级数学下册《勾股定理》PPT精品教学课件

人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2

3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了

《勾股定理》PPT优质课件(第1课时)

《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。
很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!
人生,是一本太仓促的书,越认真越深刻;
越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。
3.(1)已知直角三角形的两直角边的长分别为3和4,则第三边
的长为___5____;
(2)已知直角三角形的两边的长分别为3和4,则第三边的长为
__________.
4.求图17-1-1中直角三角形中未知的长度:b=____1_2___, c=____3_0____.
知识清单
知识点1 勾股定理 勾股定理内容:直角三角形两直角边的平方和等于斜__边__的_平__方_. 勾股定理表示方法:如果直角三角形的两直角边分别为a,b ,斜边为c,那么a_2_+__b_2_=__c_2____. 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达 哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数 学家商高就提出了“勾三,股四,弦五”形式的勾股定理, 后来人们进一步发现并证明了直角三角形的三边关系为:两 直角边的平方和等于斜边的平方.
生活,只有将尘世况味种种尝遍,才能熬出头。
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
如图17-1-7,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为

人教版数学八年级下册17.1勾股定理课件(36张PPT) (1)

人教版数学八年级下册17.1勾股定理课件(36张PPT) (1)

图1
9
9 18
8
B 图1
C A
图2
A,B,C 面积关

44
SA+SB=SC
B 图2
(图中每个小方格代表一个单位面积)
直角三 角形三 边关系
两直角边的平方和 等于斜边的平方
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
探究二:在一般 的直角三角形中, SA+SB=SC 还成立吗?
A
B C
A
B C
用了“补”的方法
用了“割”的方法
如图,小方格的边长为1.
(1)你能求出正方形C的面积吗?
观察所得到的各组数据,你有什么发现?
A
SA+SB=SC
a
Bb c
C
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现?
SA+SB=SC
a
bc
a2+b2=c2
猜想两直角边a、b与斜边c 之间的关系?
我们也来观察右图的地面, 你能发现A、B、C面积之间 有什么数量关系吗?
AB C
SA+SB=SC
每块砖都是等腰直角三角形哦
二、探究新知
探究一:你能发现图1中正方形A、B、C的面积之间有 什么数量关系吗?
C A
B 图1
(图中每个小方格是1个单位面积)
(1)观察图1-1
正方形A中含有 9 个
C
小方格,即A的面积是
A
9 个单位面积。
正方形B的面积是
B
C
9 个单位面积。
图1-1
A
正方形C的面积是

人教版八年级下册17.1 勾股定理(共36张PPT)

人教版八年级下册17.1 勾股定理(共36张PPT)
探索勾股定理
畅所欲言:
1、你听说过勾股定理吗? 2、说说你所知道的勾股定理知识
……
勾股定理知识知多点…
读一读
勾股世界
我国是最早了解勾股定理的国家之一。早在三千多年
前,周朝数学家商高就提出,将一根直尺折成一个直角三 角形,如果勾等于三,股等于四,那么弦就等于五。即 “勾三、股四、弦五”。它被记载于我国古代著名的数学 著作《周髀算经》中。在这本书中的另一处,还记载了勾 股定理的一般形式。
c
那么
a2b2c2
b
即直角三角形两直角边的平方和等于 斜边的平方.
勾股定理的发现
相传2500年前,毕达哥拉斯有 一次在朋友家做客时,发现朋 友家用砖铺成的地面中反映了 直角三角形的某种数量关系。
SA+SB=SC
AB C
探索活动一:
C A
B 图甲
1对.观于察任图意甲的,等小腰方直格 的 角边三长角为形1都. 有这样 ⑵⑴ 的正性方质形吗A、?B自、己C的在 方面格积本有各探什为索么多…关少C 系??
风 廉 政 建 设 和廉洁 从政方 面的工 作述职 汇报如 下: 一 、 加 强 学 习,牢固 筑起拒 腐防变 的思想 道德防 线 一 年 来 ,我 根 据区委 、区纪 委制定 的党风 廉政建 设工作 规划,作 好学习 计划,努 力把 加 强 自 身 党 风廉政 建设与 其他业 务工作 紧密结 合,一起 落实,一 起促进。我不仅积极 参 加 区 政 府 办班子 的党纪 政纪学 习,而且 还挤出 时间自 学党风 廉政建 设责任 制的有 关 规定 ,特 别是结 合先进 性教育 活动 ,加 强学习 了《党 章》、 《建立 健全教 育、制 度、 监 督 并 重 的 惩治和 预防腐 败体系 实施纲 要》、 《“三个 代表” 重要思想反腐倡廉理 论 学 习 纲 要 》、《 党员权 利保障 条例》 、《国 共产党 纪律处 分条例 》、《 国共产 党 党 内 监 督 条例(试 行)》 、《国 共产党 领导干 部廉洁 从政若 干准则 (试行)》

17-1第1课时 勾股定理(共42张ppt)2022-2023学年八年级下学期数学人教版

17-1第1课时 勾股定理(共42张ppt)2022-2023学年八年级下学期数学人教版
C C. 49 D. 148
5.求斜边长17 cm、一条直角边长15 cm的直角三 角形的面积.
解:设另一条直角边长是x cm. 由勾股定理得152+ x2 =172, 即x2=172-152=289–225=64, ∴ x=±8(负值舍去), ∴另一直角边长为8 cm,
直角三角形的面积是
(cm2).
a
∴a2+b2+2ab=c2+2ab,
∴a2 +b2 =c2.
证法3 美国第二十任总统伽菲尔德的“总统证法”. 如图,图中的三个三角形都是直角三角形,求证: a2 + b2 = c2.
a
b
c
证明:
S梯形
1 (a 2
b)(a
b),
S梯形
1 2
ab
1 2
ab
1 2
c2,
c a
∴a2 + b2 = c2.
AC2+ 1
4
BC2.
∴阴影部分的面积为
1 2
AB2= 9 .
2
8.(创新题)如图17-10-12,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求 AD的长.
解:∵∠D=90°,
∴AD2=AB2-BD2=AC2-CD2.
∴172-(9+CD)2=102-CD2.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3

C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜

勾股定理的证明(比较全的证明方法)课件

勾股定理的证明(比较全的证明方法)课件
毕达哥拉斯证明法虽然不如欧几里得证明法那么简洁明了,但它也具有其独特的数 学美感和哲学思考。
总统证明法
美国总统加菲尔德在1876年独 立发现了勾股定理的一种新的 证明方法,后来被称为“总统 证明法”。
总统证明法利用了代数和三角 恒等式来证明勾股定理,这种 方法与前两种几何证明方法有 所不同。
总统证明法不仅证明了勾股定 理,而且也展示了数学中代数 和三角学的紧密联系。
05
勾股定理的推广
勾股定理的逆定理
勾股定理的逆定理
如果三角形三边满足勾股定理, 则这个三角形是直角三角形。
证明方法
利用勾股定理和三角形的性质, 通过反证法证明。假设三角形不 是直角三角形,则其三边不满足 勾股定理,与已知条件矛盾。
勾股定理的推广形式
勾股定理的推广
对于任意多边形,如果其内角和为 180度,则其边长满足勾股定理。
对未来研究的展望
深入研究和探索
勾股定理的证明方法有很多种,但还有很多 值得探索和研究的地方。例如,如何将不同 的证明方法进行比较和整合,如何进一步简 化证明过程等。这些问题的研究和探索,有 助于推动数学教育的发展和进步。
与其他学科的交叉研究
勾股定理不仅在数学中有应用,在其他学科 如物理学、工程学、经济学等也有广泛的应 用。如何将勾股定理与其他学科进行交叉研 究,发挥其在解决实际问题中的作用,也是 未来研究的一个重要方向。
03
勾股定理的代数证明方法
哈里奥特证明法
哈里奥特证明法是一种基于无穷小差分的代数证明方法。它 通过将直角三角形转化为等腰直角三角形,利用无穷小差分 的性质,推导出勾股定理。
哈里奥特证明法不仅证明了勾股定理,还为微积分学的发展 奠定了基础。
欧拉证明法

人教版八年级数学课件《勾股定理》

人教版八年级数学课件《勾股定理》
(1)分别以直角三角形的三边为直径向外作半圆,如图②所示,上述结论是否
仍成立?说明理由.
解: (1) 成立.理由如下:
1
2
1
2

8
1
2
1
2

8
1
2
1
2

8
S1= ×π( a)2= a2, S2= ×π( b)2= b2
S3= ×π( c)2= c2
∴a2+b2=c2,
∴S1+S2=S3
即(1)中的结论仍然成立.
纸片,把它们按图②放入一个边长为3的正方形中(纸片在结合部分不重叠无
4
缝隙),则图②中阴影部分面积为______.
达标检测
人教版数学八年级下册
11.设直角三角的两条直角边长分别为a和b,斜边长为c.
(1)已知a=5,c=10, 求b;
(2)已知a=8,b=15, 求c;
(3)已知c=2.5,b=1.5,求a.
2
2
2
a 2 b2 c2
知识精讲
人教版数学八年级下册
命题1.如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么
a2+b2=c2.两直角边的平方和等于斜边的平方.
这样我们就证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为
勾股定理.(我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,
24
△ABC的周长是_____.
达标检测
人教版数学八年级下册
8.如图(3),点E在正方形ABCD的边AB上.若EB=1, EC=2,则正方形
ABCD的面积为_____.
3
-4
9.点P(a,3)在第二象限,且到原点的距离是5,则a=____.

勾股定理的有关证明ppt 人教版

勾股定理的有关证明ppt 人教版
a
b
c c b
½(a + b)(b + a) = ½c2 + 2× ½ab
a2 + 2ab + b2 = c2 +2 ab
a2 + b2 = c2
a
证明八
证明八
证明八
证明八
证明八
证明九
a2
b2
证明九
证明九
证明九
证明九
a2 + b2 = c2 c2
证明九
证明九
证明九
拼 图 游 戏
试一试:
3、一个直角三角形的三边长为三个连续 偶数,则它的三边长分别为 ( B )
A 2、4、6 C 4、 6、 8
B 6、8、10
D 8、10、12
再 见

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤

课件《勾股定理的证明》PPT_完美课件_人教版1

课件《勾股定理的证明》PPT_完美课件_人教版1

146, ,0.
整数集合:(
)第二章 实数

第1课
) 个.

认) 识无理数
A

1. 下列实数中,为无理数的是( B ) A. -2 B. C. 2 D. 4
2. 在下面各数中,-3.14, ,0.101 001 000 1,
+1.99,A. 1个
,无理数的个数有( A )
B. 2个
C. 3个
D. 4个
( 整数集合:(
101 001 000 1…, 中,无理数有
负数集合:(

) 个.
101 001 000 1,+1.
) 101 001 000 1…, 中,无理数有
P1
B.
无理数集合:(
个. )
负数集合:( 99,- ,无理数的个数有( )
负数集合:(

下列实数中,为无理数的是( )
正数集合:(

P1
在10下1 0面0各1 0数00中1,…-3,. 中,无理数有
个.
正分数集合:(


有下理列数 实集数合中:,(为无理数的是( )
无 P2理或数P3集合:(C.

整数集合:( 正分数集合:(
1负0数1 0集0合1 0:00(1,+1.
) )

9)9,- ,无理数的个数有( )
分数集合:( 19091,0-01,00无0理1…数,的个中数,有无(理数有)
3. 下列各数:3.146, ,0.010 010 001,3-π,
. 其中,无理数有
1
个.
4. 在 ,3.14,0,0.101 001 000 1…,
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形是 直角 三角形.
《勾股定理的证明》ppt人教版1
《勾股定理的证明》ppt人教版1
B

6.已知在 Rt△ACB中,∠ACB=90°,AB-BC=2,AC=4,以 △ABC三边分别向外作三个正方形,连接DE,FG,HI, 得到六边形DEFGHI,则六边形DEFGHI的面积为 74 .
《勾股定理的证明》ppt人教版1
《勾股定理的证明》ppt人教版1
《勾股定理的证明》ppt人教版1
3. 有一个面积为1的正方形,经过一次“生长”后,在左、
右肩上生出两个小正方形,其中,三个正方形围成的
三角形是直角三角形,再经过一次“生长”后,变成
了下图. 如果继续“生长”下去,它将变得“枝繁叶
茂”,请你算出“生长”了2 020次后形成的图形中所
有的正方形的面积和是( )D
《勾股定理的证明》ppt人教版1
7. 有一架秋千,当它静止时,踏板离地的垂直高度DE= 1 m(如图),将它往前推送6 m(水平距离BC=6 m) 时,秋千的踏板离地的垂直高度BF=4 m,秋千的绳索 始终拉得很直,求绳索AD的长度. 解:设秋千的绳索长为x m, 则AC=(x-3) m. 在Rt△ACB中,AC2+BC2=AB2, 所以x2=62+(x-3)2, 解得x=7.5. 答:绳索AD的长度是7.5 m.
第一章 勾股定理
第2课 勾股定理的证明及简单应用(2)
A
Hale Waihona Puke 组1. 如图,一木杆在离地面5 m处折断,木杆顶端落在 木杆底端12 m处,则木杆折断前高为( A ) A. 18 m B. 13 m C. 17 m D. 12 m
2. 如图,在Rt△ABC中,∠ACB=90°,若AB=15,则正 方形ADEC和正方形BCFG的面积和为( C ) A. 150 B. 200 C. 225 D. 无法计算
A. 1
B. 2 019
C. 2 020
D. 2 021
《勾股定理的证明》ppt人教版1
《勾股定理的证明》ppt人教版1
4. 木工做一个长方形桌面,量得桌面的长为60 cm,宽 为32 cm,对角线为68 cm,则这个桌面____合__格_____
(填“合格”或“不合格”). 5. 已知|x-6|+|y+8|+(z-10)2=0,则以x,y,z为三边的
《勾股定理的证明》ppt人教版1
《勾股定理的证明》ppt人教版1
C

8. 《九章算术》是我国古代最重要的数学著作之一, 在“勾股”章中记载了一道“折竹抵地”问题:“ 今有竹高一丈,末折抵地,去本三尺,问折者高几 何?”翻译成数学问题是:如图所示,△ABC中, ∠ACB=90°,AC+AB=10,BC=3,求AC的长. 若设 AC=x,则可列方程为 x2+32=(10-x)2 .
相关文档
最新文档