大数定律及中心极限定理习题及答案

合集下载

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
显然需用到前一不等式,则只需算出 E(X + Y ) 与 D(X + Y ) 即可。
解:由于 E(X + Y ) = 0 ,
D( X + Y ) = DX + DY + 2Cov( X , Y ) = DX + DY + 2ρ XY DX DY = 1+ 4 + 2×1× 2× (−0.5) = 3 ,
( D )服从同一离散型分布。
分析:林德伯格-列维中心极限定理要求的条件是 X 1, X 2,", X n,"相互独
立、同分布、方差存在,这时,当 n 充分大时, Sn 才近似服从正态分布。 根据 条件分析选项即可。
解:显然选项 A 与 B 不能保证 X 1, X 2 , ", X n 同分布,可排除。 选项 C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布, 方差肯定存在,故满足定理条件。 选项 D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证 方差一定存在,因此也应排除。 故选 C 。 注:本例重在考察中心极限定理的条件。
P{ X
− EX
≥ ε}≤
E[g( X − EX )] 。 g(ε )
分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的 证明思想试试看。

概率论与数理统计第五章大数定律与中心极限定理习题解答

概率论与数理统计第五章大数定律与中心极限定理习题解答

1.[一] 据以往经验某种电器元件的寿命服从均值为100小时的指数分布,现在随机的抽取16只,设它们的寿命是相互独立的,求这16只元件寿命总和大于1920小时的概率。

解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002(l=1,2,…,16).依本章定理1知÷÷÷÷÷øöçççççèæ£-=÷÷÷÷÷øöçççççèæ´-£´-=£ååå===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=F =从而.2119.07881.01)1920(1)1920(161161=-=£-=>åå==i ii iXP XP3.[三] 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布,(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少? (2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.90 解:(1)设取整误差为X i (L ,2,1=i ,1500),它们都在(-0.5, 0.5)上服从均匀分布。

于是: 025.05.0)(=+-==p X E i 12112)]5.0(5.0[)(2=--=i X D18.111251211500)(,0)(==´==i i X nD X nE þýüîí죣--=ïþïýüïîïíì£-=ïþïýüïîïíì>ååå===1515115115150011500115000i i i i i i X P X P X P ïïþïïýüïïîïïí죣--=å=18.111518.1118.1115115001i i X P1802.0]9099.01[2)]34.1(1[2)]34.1()34.1([1=-´=F -=-F -F -=8.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8,医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言。

大数定律及中心极限定理习题及答案

大数定律及中心极限定理习题及答案

第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,, 21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i 218===ξμξ对于∑==ni in1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==, 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X 相互独立且同分布, 而且有1,1(1,2,9),i i EX DX i === 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,, 21为相互独立的随机变量序列,且),,( 21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=, 那么, 对于任一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指{}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。

(完整word版)五、大数定律与中心极限定理(答案)

(完整word版)五、大数定律与中心极限定理(答案)

概率论与数理统计练习题系 专业 班 姓名 学号第五章 大数定律与中心极限定理一、选择题:1.设n μ是n 次重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则对任意的0ε>均有lim {}n n P p n με→∞-≥ [ A ](A )0= (B )1= (C)0> (D )不存在2.设随机变量X ,若2() 1.1,()0.1E X D X ==,则一定有 [ B ](A){11}0.9P X -<<≥ (B ){02}0.9P X <<≥(C){|1|1}0.9P X +≥≤ (D){|}1}0.1P X ≥≤3.121000,,,X X X 是同分布相互独立的随机变量,~(1,)i X B p ,则下列不正确的是 [ D ](A )1000111000i i X p =≈∑ (B)10001{}i i P a X b =<<≈Φ-Φ∑ (C)10001~(1000,)i i X B p =∑ (D )10001{}()()i i P a X b b a =<<≈Φ-Φ∑二、填空题:1.对于随机变量X ,仅知其1()3,()25E X D X ==,则可知{|3|3}P X -<≥2.设随机变量X 和Y 的数学期望分别为2-和2,方差分别为1和4,而相关系数为5.0-,则根据契比雪夫不等式{}6P X Y +≥≤三、计算题:1.设各零件的重量是同分布相互独立的随机变量,其数学期望为0.5kg ,均方差为0.1kg,问5000只零件的总重量超过2510kg 的概率是多少?解:设第i 件零件的重量为随机变量i X ,根据题意得0.1.i EX ==5000500011()50000.52500,()50000.0150.i i i i E X DX ===⨯==⨯=∑∑5000500012500(2510)110.92070.0793.i i i X P X P =->=>≈-Φ≈-=∑∑2.计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差是独立的且在(0.5,0.5)-上服从均匀分布。

Geitel第五章 大数定律与中心极限定理习题解答

Geitel第五章 大数定律与中心极限定理习题解答
习题 5-2
即 lim P (
n
1. 设 X i (i =1, 2, ,50) 是相互独立的随机变量,且它们都服从参数为 0.03 的泊松分 布.记 X X 1 X 2 X 50 ,试用中心极限定理计算 P ( X 3) . 解 易知 E ( X k ) 0.03, D( X k ) 0.03( k 1, 2, ,50). 由中心极限定理可知,随机变量
习题 5-1 1. 设随机变量 X 1 , X 2 , , X n , 独立同分布, E ( X k ) , D( X k ) 8,k 1, 2, , 令X
1 n X k ,利用切比雪夫不等式估计 P(| X | 4) n k 1
_
解 E( X ) E(
1 1 6 (6 1) 7 (1 2 3 4 5 6) 6 6 2 2
P
1 6
1 6
1 6
1 6
1 6
1 6
1 E ( X i 2 ) (12 22 32 42 52 62 ) 6 1 6 (6 1)(6 2 1) 91 6 6 6
1 n 1 n X ) E( X k ) ; k n n k 1 k 1
D( X ) D(
_
1 n 1 n 8 ) X D( X k ) k 2 n k 1 n k 1 n
8 1 由切比雪夫不等式, P ( X 4) P ( X E ( X ) 4) 1 n2 1 4 2n
2 4
D( X k ) E ( X k ) E ( X k ) 2 E ( X k ) a 4
本节由定理 3 得

大数定律和中心极限定理历年真题

大数定律和中心极限定理历年真题

大数定律和中心极限定理历年真题数学一:1(01,3分)设随机变量X 的方差为2,则根据切比雪夫不等式有估计≤≥-}2|)({|X E X P。

数学三:1(88,6分) 某保险公司多年的统计资料表明,在索赔中被盗索赔户占20%。

以X 表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数。

(1) 写出X 的概率分布; (2)利用棣美佛-拉普拉斯定理,求被盗索赔户不少于14户且不多于30户的概率的近似值。

[附表]Φ(x )是标准正态分布函数。

999.0994.0977.0933.0841.0692.0500.0)(0.35.20.25.10.15.00x x Φ2(89,3分)设X 为随机变量且2,σμ==DX EX 。

则由切比雪夫不等式,有≤≥-}3|{|σμX P。

3(96,6分)设n X X X ,,,21 是来自总体X 的简单随机样本。

已知)4,3,2,1(==k a EXk k,证明当n 充分大时,随机变量∑==n i i n X n Z 121近似服从正态分布,并指出其分布参数。

4(99,3分) 在天平上重复称量一重为a 的物品。

假设各次称量结果相互独立且服从正态分布n X a N n 表示若以).2.0,(2次称量结果的算术平均值,则为使95.0}1.0|{|≥<-a X P nn 的最小值应小于自然数。

5(01,3分)设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6|{|Y X P.6(01,8分) 一生产线生产的产品成箱包装,每箱的重量是随机的。

假设每箱平均重50千克,标准差为5千克。

若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977。

(Φ(2)=0.977,其中Φ(x )是标准正态分布函数。

)数学四:1(01,3分) 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5,则根据切比雪夫不等式有P {|X-Y |≥6}≤ 。

第6章大数定律及中心极限定理习题解答

第6章大数定律及中心极限定理习题解答

⎧ 100 ⎫ P ⎨∑ X i > 1010 ⎬ = ___0.1587_________. ⎩ i =1 ⎭
12.设某种药物对某种病的治愈率为0.8,现有1000个这种病人服用此药,根据中心极限 定理确定至少有780人被治愈的概率为__0.9418____. 13 . 掷 一 均 匀 硬 币 10000 次 , X 表 示 出 现 正 面 的 次 数 , 试 用 中 心 极 限 定 理 计 算
⎧ 100
∑X ⎩
i =1
i
⎫ < 420 ⎬ = ____0.8413_____. ⎭
11.某保险公司每月收到保险费为 X i , E ( X i ) = 10 (万元), D ( X i ) = 1 ,用用中心极限 定 理 确 定 100 个 月 收 到 保 险 费 超 过 1010 万 元 的 概 率
B.
A.
1 . 2
2n − 1 . 2n
C.
1 . 2n
D.
1 . n
5.设 X 1 , X 2 , ⋅⋅⋅, X 9 服从同一分布,且 E ( X i ) = 1 , D ( X i ) = 1 ,则对于任意给定的正 数 ε > 0 有( A. P ⎨ D ).
⎧ ⎩
∑X
i =1 9
9
i
⎫ 1 −1 < ε ⎬ ≥ 1− 2 . ε ⎭
, 利 用 契 比 雪 夫 不 等 式 估 计 得
P{ X − µ < 4σ } ≥ ( B
A.
).
8 . 9
B.
15 . 16
C.
9 . 10
D.
1 . 10
).
3.设随机变量 X 满足等式 P{| X − E ( X ) |≥ 2} = 1 16 ,则必有( D A. D ( X ) =

第5章-大数定律与中心极限定理答案

第5章-大数定律与中心极限定理答案
A) B) C) D)
解|
由切贝谢夫不等式得
故选(C)
5.若随机变量 ,则 ().
A) B) C) D)
解|因为 ,
由切贝谢夫不等式得
故选(D)
二、填空题(每空2分,共10分)
1.已知离散型随机变量X服从参数为 的泊松分布,则利用切贝谢夫不等式估计概率
.
解因为
所以
由切贝谢夫不等式
2.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切贝谢夫不等式估计概率 .
解因为 ,
由切贝谢夫不等式
3.已知随机变量X的方差为4,则由切贝谢夫不等式估计概率 .
解由切贝谢夫不等式
4.若随机变量 ,则当 充分大时, 近似服从正态分布 (,)
解因为
三、计算或证明题题(每题10分,共80分)
1.如果随机变量X存在数学期望 和方差 ,则对于任意常数 ,都有切贝谢夫不等式: (证明当 为连续型随机变量时的情况)
第五章《中心极限定理》测验题
班级:姓名:学号:成绩:
一、单项选择题(每题2分,共10分)
1.如果离散型随机变量 相互独立且皆服从参数为 的泊松分布,则当n充分大时,离散型随机变量 ()近似服从标准正态分布.
A) B) C) D)
解:因为

由李雅普诺夫中心极限定理:
故选(D)
2.如果离散型随机变量 相互独立且皆服从0-1分布 ,则当n充分大时,离散型随机变量 近似服从()分布.
解设 表示10000个婴儿中男婴的个数,则 其中
由拉普拉斯中心极限定理,所求概率为
附表:
解设随机变量 表示一年内投保人中死亡人数,则 ,其中 ,
, 由

由拉普拉斯中心极限定理,所求概率为

第5章大数定律及中心极限定理习题及答案

第5章大数定律及中心极限定理习题及答案

第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,,Λ21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i Λ218===ξμξ对于∑==ni in 1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X L 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==L , 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X L 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i ===L 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,,Λ21为相互独立的随机变量序列,且),,(Λ21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=L , 那么, 对于任 一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X L 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指 {}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。

大数定律和中心极限定理例题与解析

大数定律和中心极限定理例题与解析

要点二
详细描述
中心极限定理是指无论随机变量的个体分布是什么,当样 本量足够大时,样本均值的分布近似正态分布。例如,从 一个总体中随机抽取的100个样本的均值应该接近总体的 均值,并且其分布近似正态分布。
主题总结与启示
• 总结词:大数定律和中心极限定理是概率论中的重要概念,它们揭示了随机现 象的规律性,对于理解和预测随机现象具有重要意义。
大数定律和中心极限定理例题与解 析
目 录
• 引言 • 大数定律例题 • 中心极限定理例题 • 解析与总结
01 引言
主题简介
主题概述
大数定律和中心极限定理是概率论中 的重要概念,它们在统计学、金融、 计算机科学等领域有着广泛的应用。
主题背景
大数定律和中心极限定理分别描述了 在大量数据和独立同分布的情况下, 随机变量的分布规律。
假设我们进行大量的抛硬币实验,每次实验的结果只有两种可能:正面朝上或反面 朝上。根据大数定律,当实验次数足够多时,正面朝上的频率趋近于50%,反面朝 上的频率也趋近于50%。
例题二:抽取彩票
总结词
在抽取大量彩票时,中奖概率趋近于预设的中奖率。
详细描述
假设一张彩票的中奖概率为1%,那么在抽取100张彩票时,根据大数定律,大 约有1张彩票中奖。随着抽取的彩票数量增加,中奖的彩票数量趋近于预设的中 奖率。
例题二:保险精算
总结词
保险精算是中心极限定理在保险业中的一个重要应用 ,用于计算保险费和赔偿金。
详细描述
保险精算是保险业中一项重要的工作,它涉及到如何 合理地计算保险费和赔偿金。在保险精算中,中心极 限定理常常被用来估计某个事件发生的概率。例如, 一个保险公司可能会根据中心极限定理来估计某个特 定人群在未来一年内发生特定事件的概率,从而制定 相应的保险费和赔偿金方案。通过中心极限定理,保 险公司可以更准确地预测风险,从而做出更合理的决 策。

SBGX习题5解答

SBGX习题5解答

习题五 大数定律和中心极限定理习题解答(A )一、大数定律5.1 设X 是任一非负(离散型或连续型)随机变量,已知X 的数学期望存在,而 0>ε是任意实数,证明(马尔科夫[A.A.Марков,A.A.Markov])不等式:{}E XP X εε≥≤.证明 (1) 设X 是离散型随机变量,其一切可能值为}{i x ,则11{}{}{}{}1{}i iiii i x x ii x i i x P X P X x P X x x P X x E Xx P X x εεεεεεε≥≥≥≥====≤=≤==∑∑∑∑.(2) 设X 是连续型随机变量,其概率密度为)(x f ,则1{}()d d 1()d P X f x x x x E Xx f x x εεεεεεε+∞+∞+∞≥=≤≤≤⎰⎰⎰.说明 马尔可夫不等式的一种变式为:随机变量X 的)0(>r r 阶绝对原点矩||r E X 存在,则||{||}rrE X P X εε>≤.5.2假设随机变量列12,,,,n X X X ……两两独立并且同分布,i EX μ=,2i DX σ=存在,证明12,,,n X X X …的算术平均值n X 依概率收敛于(各个变量共同的)数学期望μ:11lim ni n i P X n μ→∞=-=∑.证明 易见1122111111n nn i i i i n nn i i i i EX E X EX n n DX D X DX n n n μσ====⎛⎫=== ⎪⎝⎭⎛⎫=== ⎪⎝⎭∑∑∑∑,.由切比雪夫(切比雪夫)不等式可见,对于任意ε>0,有222{||}0 ()nn DX P X n n σμεεε-≥≤=→→∞.于是,12,,,n X X X …的算术平均值n X 依概率收敛于数学期望μ.5.3 设随机变量X 服从参数为λ的泊松分布,12,,,n X X X …是独立与X 同分布随机变量,证明2211lim n i n k P X n λλ→∞=-=+∑.证明 由1X ,2X ,…,n X 独立同泊松分布,可见22212,,,n X X X …独立同分布,而且数学期望存在:222()i i i EX DX EX λλ=+=+.因此,根据辛钦大数定律,有2211lim n k n k P X n λλ→∞=-=+∑.二、中心极限定理5.4 某生产线生产的产品成箱包装,每箱的质量是随机的,假设每箱平均质量为50 kg ,标准差为5 kg ,若用最大载重量为5 t 的汽车承运,试利用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977.解 以i X (1,2,,)i n =…表示装运的第i 箱产品的实际重量,n 为所求箱数.由条件可以认为随机变量1X ,2X ,…,n X 独立同分布,因而总重量12n T X X X =+++…是独立同分布随机变量之和.由条件,知50,5i i EX DX σ===.因而50,5T ET n DT n σ===( kg).由于随机变量1X ,2X ,…,n X 独立同分布且数学期望和方差都存在, 故根据中心极限定理,只要n 充分大,随机变量T 就近似服从正态分布2(50,[5])N n n .由题意知所求n 应满足条件:50500050{5000}0.97755T n n P T P n n --⎧⎫≤=≤≥⎨⎬⎩⎭.由于当n 充分大时随机变量近似地)1,0(~550N nn T U -=,可见{2}0.977P U ≤≥.从而,有.21010005505000≥-=-=nn n n a n经试算:对于05.397==n a n ,;对于02.298==n a n ,;对于01.199==n a n ,.于是,应取98=n ,即最多只能装98箱.5.5 计算机有120个终端,每个终端在一小时内平均3 min 使用一次打印机.假设各终端使用打印机与否相互独立,求至少有10个终端同时使用打印机的概率α.解 由题意知,计算机有120n =个终端,而每一终端在某一时刻使用打印机的概率3600.05p ==.以X 表示同时使用的打印机终端数,则X 服从参数为(120 , 0.05)的二项分布,6(1) 5.7EX np DX np p ===-=,,标准差 2.39σ=.根据棣莫弗-拉普拉斯定理,X 近似服从正态分布(6 , 5.7)N .因此,至少有10个终端同时使用打印机的概率6106{10} 2.39 2.391(1.67)10.95250.0475X P X P αΦ--⎧⎫=≥=≥⎨⎬⎩⎭≈-≈-≈.5.6 据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,假设它们的使用寿命相互独立,求这16只元件的寿命的总和大于1920 h 的概率.解 由条件知这种元件的寿命X 服从指数分布且100EX =(h).因此,可以认为“X 服从参数为11000.01λ==的指数分布”.设1216,,,X X X …是随机取16只元件的寿命,可以视为16个独立参数0.01λ=指数分布的随机变量.根据列维-林德伯格中心极限定理,这16只元件的寿命的总和1216++S X X X =+… 近似服从正态分布22(,16)(1600,16100)N N λλ=⨯16。

【高等数学】概率论与数理统计-大数定律和中心极限定理专项试卷及答案解析

【高等数学】概率论与数理统计-大数定律和中心极限定理专项试卷及答案解析

(1 ,第i次试验成功,
设Y, =斗
则X"
lO,第 i次试验失败,
=
)ι;Y, ,且Yi :-:-'i
,Yz, … ,Y" 独立同分布,数学期望存在.也
学显出养成笔记与京纺织档严这题
就是满足辛钦大数定律的条件.Y1 ,儿, …,Y n 也是两两不相关,且D(Y,) =ρ(1 一 ρ)ζC,也
满足切比雪夫大数定律的条件,因此词汇=于 1→ ρ
C[I)P{I
-- - AtT
设X
X

tl1飞J|f
1 4 un
「μ|第 注 . 3个 σ}部 ζ件' 第 个部件
一 (Dd一σX)τ2 完好
损坏
=一91 .
统正常工作的概率为
一- n n
uu
。好部件个数
Zm
X


X 卢mm 系
> > P { _6 X; 85} =P{ X 85}
pf > X-100×0.9
概率均为0.1 ,如果有85个以上的部件完好时系统才能正常工作,求系统正常工作的概率;
< II )如果上述系统由n个部件组成,需80%以上的部件完好时系统才能正常工作,问n
至少多大才能使系统正常工作的概率不小于0.95? 附表:φ(1. 667) = 0.9522,φ(1.645) = 0. 95.
(C)②或①都能推出①.
CD)哪一个也不能推出另一个 .
2.填空题 (1 )设随机变量X1,儿, … ,X”’ … 相互独立,均服从参数为2的指数分布,则当n → ∞
时,Y,, =土”工>:: x� 依概率收敛于
(2)设随机变量X和Y的数学期望分别为一 2和2,方差分别为1和9,而相关系数为一 1.

概率论与数理统计+第五章+大数定律及中心极限定理+练习题答案

概率论与数理统计+第五章+大数定律及中心极限定理+练习题答案

〖填空题〗例5.1(棣莫佛-拉普拉斯定理) 设某种电气元件不能承受超负荷试验的概率为0.05.现在对100个这样的元件进行超负荷试验,以X 表示不能承受试验而烧毁的元件数,则根据中心极限定理{}≈≤≤105X P.分析 不能承受试验而烧毁的元件数X ~),(p n B .根据棣莫佛-拉普拉斯定理,X 近似服从正态分布),(npq np N ,其中n =100,p =0.05,q =0.95.因此{}.4890.0)0()29.2(29.275.45075.451075.450105105=-≈⎭⎬⎫⎩⎨⎧≤-≤=⎭⎬⎫⎩⎨⎧-≤-≤=⎭⎬⎫⎩⎨⎧-≤-≤-=≤≤ΦΦX X npq np npq np X npq np X P P P P例5.2(棣莫佛-拉普拉斯定理)设试验成功的概率p =20%,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率Q ≈ .分析 以n ν表示100次独立重复试验成功的次数,则)20.0 100(~,B nν,且4)1(20=-===p np np n n ννD E ,.因此试验成功的次数介于16和32次之间的概率{}[][],84.08413.019987.0)1(1)3()1()3(42032420420163216=--=--=--≈⎭⎬⎫⎩⎨⎧-≤-≤-=≤≤=ΦΦΦΦννn n Q P P 其中)(u Φ是标准正态分布函数.例5.3(棣莫佛-拉普拉斯定理) 将一枚均匀对称的硬币接连掷10000次,则正面恰好出现5000次的概率≈α.分析 正面出现的次数ν)5.0 , 10000(~B ,2500,5000==ννD E .根据局部定理,有008.025012D 1}5000{≈=≈==ππνναP .例5.10(辛钦大数定律) 将一枚色子重复掷n 次,则当∞→n 时,n 次掷出点数的算术平均值n X 依概率收敛于 7/2 .分析 设n X X X ,,,21 是各次掷出的点数,它们显然独立同分布,每次掷出点数的数学期望等于7/2.因此,根据辛钦大数定律,n X 依概率收敛于7/2.5.2. (1)121;(2)90;(3)21;(4)))((λλ-Φx n〖选择题〗例5.11(中心极限定理) 设随机变量n X X X ,,,21 相互独立,n n X X X S +++= 21,则根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从正态分布,只要n X X X ,,,21(A) 有相同期望和方差. (B) 服从同一离散型分布.(C) 服从同一指数分布. (D) 服从同一连续型分布. [ C ]分析 应选(C ).列维-林德伯格中心极限定理的条件是:随机变量n X ,,X ,X 21相互独立同分布, 并且其数学期望和方差存在.由于有相同的数学期望未必有相同分布,可见(A)不满足定理条件.满足(B)和(D)的随机变量i X 的数学期望或方差未必存在,故(B)和(D)也不满足定理条件.于是,只有(C)成立(指数分布的数学期望和方差都存在).例5.14(大数定律)下列命题正确的是(A) 由辛钦大数定律可以得出切比雪夫大数定律. (B) 由切比雪夫大数定律可以得出辛钦大数定律. (C) 由切比雪夫大数定律可以得出伯努利大数定律.(D) 由伯努利大数定律可以得出切比雪夫大数定律. [ C ]分析 应选(C ).切比雪夫大数定律的条件是:随机变量 ,,,,21n X X X 两两独立,并且存在常数C ,使),,,2,1( n i C X i=≤D ;这样的常数C 对于选项(C )存在.伯努利大数定律可以表述为:假设随机变量 ,,,,21n X X X 独立同服从参数为p 的0-1分布,则p X n ni i n =-∑=∞→11lim P ;对于服从参数为p 的0-1分布随机变量 ,,,,21n X X X ,显然),,,2,1(41)1( n i p p X i =≤-=D .从而满足服从切比雪夫大数定律的条件.此外,(A ),(B )和(D )显然不成立.5.1. (1)A ;(2)C ;(3)C ;(4)A〖计算题〗例5.16(棣莫佛-拉普拉斯定理) 设n ν是n 次伯努利试验成功的次数,p (0<p <1)是每次试验成功的概率,n f n n ν=是n 次独立重复试验成功的频率,设n 次独立重复试验中,成功的频率f n 对概率p 的绝对偏差不小于Δ的概率{}α∆=≥-p f n P . (5.10)试利用中心极限定理,(1) 根据∆和n 求α的近似值; (2) 根据α和n 估计∆的近似值; (3) 根据α∆和估计n . 解 变量n ν服从参数为),(p n 的二项分布.记p q -=1,则由(5.7)知,当n 充分大时nν近似服从正态分布),(npq np N .因此,近似地有{}{},,~)1,0(~α∆ν∆ν∆να=≥≈⎭⎬⎫⎩⎨⎧≥-=⎭⎬⎫⎩⎨⎧≥-=≥--u U pq n npqnp p n p f N npqnpU n n n n n P P P P(5.11)其中U 是服从)1,0(N 的随机变量,而αu 是)1,0(N 水平α双侧分位数(附表2).故(5.12)(1) 已知n 和∆,求α.利用附表1,可以由(5.11)求出α的值(附表1).例如,若(5.12)式左侧等于1.96,则05.0≈α.亦可由下式求α的近似值.有. 12 1 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=⎭⎬⎫⎩⎨⎧<-≈⎭⎬⎫⎩⎨⎧≥-=pq n pq n U pq n npq np n ∆Φ∆∆ναP P (5.13) 进而由)1,0(N 分布函数)(x Φ的数值表(附表1)最后求出α的值.(2) 已知n 和α,求∆.由(*)和41≤pq ,可见nu n pqu 2αα∆≤≈; (5.14) (3) 已知α和∆,求n .由(5.12)和pq ≤1/4,可见2⎪⎭⎫⎝⎛≈∆αu pq n 或2241⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛≥∆∆ααu pq u n . (5.15)例5.17(棣莫佛-拉普拉斯定理) 假设某单位交换台有n 部分机,k 条外线,每部分机呼叫外线的概率为p .利用中心极限定理,解下列问题:(1) 设n =200,k =30,p =0.12,求每部分机呼叫外线时能及时得到满足的概率α的近似值. (2) 设n =200,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,至少需要设置多少条外线?(3) k =30,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,最多可以容纳多少部分机?解 设n ν——n 部分机中同时呼叫外线的分机数,k ——外线条数,则n ν服从参数为(n , p )的二项分布,=np24,npq =21.12.当n 充分大时,根据棣莫佛-拉普拉斯中心极限定理,近似地)1 ,0(~N npqnpU n n -=ν.(1) 设n =200,k =30,p =0.12,每部分机呼叫外线时能及时得到满足的概率{}(). 9049.031.112.21243012.21243030≈=⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=ΦΦνναnpqnp n n P P (2) 设n =200,p =0.12,k ——至少需要设置的外线条数,则{}.,; 31.562412.216449.1 1.644912.212495.012.212412.2124≈+⨯≥≥-≥⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=k k k k npq np k n n ΦνναP P即至少需要设置32外线.(3) 设k =30,p =0.12,且每部分机呼叫外线时能及时得到满足的概率≥α95%.由{}95.01056.012.0301056.012.03030≥⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=n n n n npq np n n ΦνναP P , 6449.11056.012.030≥-n n.09004857.70144.0 6449.11056.012.0302=+-≥-n n nn,,它有两个实根:3310431,7972.18821==n n ;经验证33104312=n 为增根,由此得n ≈188.797,即最多可以容纳188部分机.例5.20(列维-林德伯格定理) 设n X X X ,,,21 是独立同分布随机变量,n X 是其算术平均值.考虑概率{}α∆μ=≥-n X P , (5.16)其中μ=iX E ()n i .,2,1 =,()0>∆∆和α(0<α<1)是给定的实数.试利用中心极限定理,根据给定的,(1) ∆和n ,求α的近似值; (2) α和n ,求∆的近似值;(3)α∆和,估计n .解 式(5.16)中的三个数),,(α∆n 相互联系又相互制约:其中的任意两个可以完全决定第三个.不过,明显地表示出它们之间的关系一般并不容易.假如n 充分大,则利用(5.9)式可以(近似地)表示出α∆,,n 之间的关系.易见μ=nX E ,X n 2σ=D .(1) 已知∆和n ,求α-1的近似值:{}⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛≈⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-=-σ∆Φσ∆Φσ∆σμ∆μαn n n n X X n n P P 1. (2) 已知α和n ,求∆的近似值.由(5.17)式可得nu σ∆α ≈.(3) 已知α∆和,求n 的近似值.由(5.18)有2⎪⎭⎫⎝⎛≈∆σαu n .例5.21(列维-林德伯格定理) 某保险公司接受了10000电动自行车的保险,每辆每年的保费为12元.若车丢失,则车主得赔偿1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1) 亏损的概率α;(2) 一年获利润不少于40000元的概率β; (3) 一年获利润不少于60000元的概率γ.解 设X 为需要赔偿的车主人数,则需要赔偿的金额为X Y1.0=(万元);保费总收入C =12万元.易见,随机变量X 服从参数为(n ,p )的二项分布,其中 n =10000,p =0.006;60==np X E ,)1(p np X -=D =59.64.由棣莫佛-拉普拉斯定理知,随机变量X 近似服从正态分布)64.59,60(N ;随机变量Y 近似服从正态分布)5964.0,6(N .(1) 保险公司亏损的概率{}0)77.7(177.75964.065964.06125964.0612≈-=⎭⎬⎫⎩⎨⎧>-=⎭⎬⎫⎩⎨⎧->-=>=ΦαY Y Y P P P .(2) 保险公司一年获利润不少于4万元的概率{}{}.9952.0)59.2(5964.0685964.068412=≈⎭⎬⎫⎩⎨⎧-≤-=≤=≥-=ΦβY Y Y P P P (3) 保险公司一年获利润不少于6万元的概率{}{}.5.0)0(05964.066612=≈⎭⎬⎫⎩⎨⎧≤-=≤=≥-=ΦγY Y Y P P P例5.22(棣莫佛-拉普拉斯定理) 假设伯努利试验成功的概率为5%.利用中心极限定理估计,进行多少次试验才能以概率80%使成功的次数不少于5次.解 设n 是所需试验的次数,每次试验成功的概率p =0.05.以n ν表示n 次伯努利试验成功的次数,则),(~p n B nν,npq np n n ==ννD E ,,其中p q -=1;由棣莫佛-拉普拉斯定理,知对于充分大的n ,随机变量n ν近似服从正态分布),(npq np N .查)1,0(N 分位数表,可见()()8416.018416.080.0--==ΦΦ.因此{}().8416.01)1(51)1(5)1(5.080.0--=⎪⎪⎭⎫⎝⎛---≈⎭⎬⎫⎩⎨⎧--≥--=≥=ΦΦννp np np p np np p np np n n P P.,),(025)8416.010()1(8416.058416.0)1(522222≈++--≈--≈--n n p p np np p np np将05.0=p 代入上列方程,的关于n 的一元二次方程:0255354.00025.02≈+-n n ,其根为79.6837.14521==n n ,.经验证79.682=n 为增根,舍去2n ,取37.1451461=>=n n .于是,至少需要进行146次试验才能以概率80%保障成功的次数不少于5次.例5.26(列维-林德伯格定理) 生产线组装每件产品的时间服从指数分布.统计资料表明,每件产品的平均组装时间为10分钟.假设各件产品的组装时间互不影响.试利用中心极限定理,(1) 求组装100件产品需要15到20小时的概率Q ;(2) 求以概率0.95在16个小时内最多可以组装产品的件数. 解 以)100,,2,1( =iX i 表示第i 件产品的组装时间.由条件知)100,,2,1( =i X i 独立同服从指数分布.由指数分布的数字特征和条件“每件产品的平均组装时间为10分钟”,可见10=i X E ;由于i X 服从指数分布,可见()2210==i i X X E D .(1) 因为n =100充分大,故由列维-林德伯格定理,知100件产品组装的时间10021X X X T n +++= 近似服从()210100 10100⨯⨯,N ,因此{}.8156.0)8413.01(9973.0)1( )2( 21010010100112009002=--=--≈⎭⎬⎫⎩⎨⎧≤⨯⨯-≤-=≤≤=ΦΦT T Q n n P P(2) 16小时即960分钟.需要求满足{}95.0960=≤n T P 的n .由列维-林德伯格定理,知当n 充分大时,n nX X X T +++= 21近似服从()nn N 210 10,,故由{}, 101096010109601010960950⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=n n n n n n T T .n n ΦP P 可见95.0)645.1( ≈Φ.因此645.11010960≈-nn. (*)由此得关于n 的一元二次方程09606025.1947010022≈+-n n ,其解为53.11318.8121≈≈n n ,,其中53.1132≈n 不满足式(*),因此53.1132≈n 为增根,故应舍去.于是,以概率0.95在16个小时内最多可以组装81~82件产品.例5.27(列维-林德伯格定理) 将n 个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计,(1) 试当n =1500时求舍位误差之和的绝对值大于15的概率;(2) 估计数据个数n 满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n .解 设)1500,,2,1( =iX i 是第i 个数据的舍位误差;由条件可以认为)1500,,2,1( =i X i 独立且都在区间]5.0 5.0[,-上服从均匀分布,从而12/10==i i X X D E ,.记n n X X X S +++= 21为n 个数据的舍位误差之和,则12/0n S S n n==D E ,.根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从)12/0(n N ,.记)(x Φ为)1,0(N 分布函数.(1) 由于12n S n近似服从标准正态分布,可见{}.1802.02)]34.1(1[34.112/150012/15001512/150015150015001500=⨯-≈⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>=>ΦS S S P P P(2) 数据个数n 应满足条件:{}.90.012/1012/10=⎭⎬⎫⎩⎨⎧≤=≤n n S S n n P P 由于12n S n近似服从)1,0(N ,可见51.4436449.11210 6449.112/102≈⎪⎪⎭⎫ ⎝⎛≈,n . 于是,当n >443时,才能使误差之和的绝对值小于10的概率不小于90%. 〖证明题〗例5.35(棣莫佛-拉普拉斯定理) 利用列维-林德伯格定理,证明棣莫佛-拉普拉斯定理.证明 设随机变量n X X X ,,,21 相互独立,同服从0-1分布;,,,,,npq S np S X X X S n i pq X p X n n n n i i ==+++====D E D E 21),,2,1(其中p q-=1. n X X X ,,,21 满足列维-林德伯格定理的条件:n X X X ,,,21 独立同分布且数学期望和方差存在,当n 充分大时近似地n n X X X S +++= 21~),(npq np N .4.55(证明不等式) 设X 是任一非负(离散型或连续型)随机变量,已知X的数学期望存在,而0>ε是任意实数,证明不等式{}εεXX E P ≤≥.证明 (1) 设X 是离散型随机变量,其一切可能值为}{i x ,则{}.}{1}{}{}{11εεεεεεεXx X x x X x x Xx XX iiii x i i x i ix i x i E P P P P P ==≤=≤====≥∑∑∑∑≥≥≥(2) 设X 是连续型随机变量,其概率密度为)(x f ,则{}.d )(1d )(1d )(0εεεεεεXx x f x x x f x x x f X E P ≤≤≤=≥⎰⎰⎰∞∞∞例4.00(切比雪夫不等式) 设事件A 出现的概率为=p 0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A 出现的次数在450到550次之间的概率α. 解 设n ν是1000次独立重复试验中事件A 出现的次数,则.,),,2505.010005005.010005.0 1000(~2=⨯==⨯=X X B n D E ν由用切比雪夫不等式,知{}{}.9.050250150|550|5504502=-≥≤-=≤≤=n n νναP P 例5.3. 设随机变量X 的数学期望为μ,方差为2σ,(1)利用切比雪夫不等式估计:X 落在以μ为中心,σ3为半径的区间 内的概率不小于多少?(2)如果已知),(~2σμN X ,对上述概率,你是否可得到更好的估计?解:(1)()()()0.88899131)3()3(222=-=-≥<-=<-σσσσμσX D X P X E X P (2)()()⎪⎪⎭⎫⎝⎛<-=<-DX DX X E X P X E X P σσ3)3( ()0.99743322=≈⎪⎪⎭⎫⎝⎛<-=⎰∞--dt e DX X E X P t例5.4. 利用切比雪夫不等式来确定,当抛掷一枚均匀硬币时,需抛多少次,才能保证 正面出现的频率在0.4至0.6之间的概率不小于90%,并用正态逼近去估计同一问题。

习题五 大数定律及中心极限定理答案

习题五  大数定律及中心极限定理答案

⇒ n ≤ 443.455 故最多有 443 个数相加才能使得舍入误差总和的绝对值小于 10 的概率不小于 0.90.
5.8 设某车间有 200 台车床相互独立地工作着,若因换料、检修等原因,每台车 床的开工率各为 0.6 ,开工时耗电各为 1 千瓦,问供电所至少要供给这个车间多 少千瓦电,才能以 99.9% 的概率保证这个车间不会因供电不足而影响生产? 解 设第 i 台车床开工数(停车为 0,开车为 1) , X i ~ B(1, 0.6), 因此,200 台 车床开工数 Y = ∑ X i ~ B(200, 0.6) ,供电应为 C 千瓦的电能才能保证正常工作
所以 15 | Y − 0 | P{| Y |> 15} =− 1 P{| Y |≤ 15} =− 1 P ≤ 125 125 | Y − 0 | = 1− P ≤ 1.34 ≈ 1 − ( 2Φ(1.34) − 1) 125
= 2 − 2Φ(1.34) = 2 − 2 × 0.9099 = 0.1802
2 E= ( X i ) 2, D= ( X i ) 0.05 = 0.025.
设总长度为
Y = ∑ Xi , ⇒ = E (Y )
i =1 n 10
= E( X ) ∑
i =1 i
10
20
D(Y ) = 10 0.025 = 0.25 ∑ D( X i ) =×
i =1
规定总长度为 (20 ± 0.1)mm 时产品合格.即当 | Y − 20 |< 0.1 时产品合格,则合格率
(2) 设最多有 n 个数相加,则 Y = ∑ X i ,则得
i =1
n
P {| Y |< 10} ≥ 0.90
所以

第五章大数定律与中心极限定理

第五章大数定律与中心极限定理

第五章 大数定律与中心极限定理§5.1 大数定律 §5.2 中心极限定理一、填空题1.设2(),()E X D X μσ==,则由切比雪夫不等式有{||3}P X μσ-≥≤ 1/9 ;2.设随机变量12,,,n X X X 相互独立同分布,且()i E X μ=,()8i D X =,(1,2,,)i n = , 则由切比雪夫不等式有{}||P X με-≥≤28n ε .并有估计{}||4P X μ-<≥ 112n- ; 3.设随机变量n X X X ,,,21 相互独立且都服从参数为 λ 的泊松分布,则lim n i n X n P x λ→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑ ()x Φ ;4.设随机变量X 和Y 的数学期望分别为2-和3,方差分别为1和4,而相关系数为0.5-,则根据切比雪夫不等式,{||6}P X Y +≥≤;解:因为 ()()()22E X Y E X E Y +=+=-+=,cov(.)0.51X Y ρ==-=-, ()()()2cov(.)142(1)3D X Y D X D Y X Y +=++=++⨯-=,故由切比雪夫不等式,231{||6}{|()0|6}612P X Y P X Y +≥=+-≥≤=. 5.设随机变量12,,,n X X X 相互独立,都服从参数为2的指数分布,则n →∞时,211n n i i Y X n ==∑依概率收敛于 。

解:因为 11(),(),(1,2,,)24i i E X D X i n === , 所以 22111()()()442i i i E X D X E X =+=+=,故由辛钦大数定律,对0ε∀>,有{}2111lim ()lim 12n n n i n n i P Y E Y P X n εε→∞→∞=⎧⎫-<=-<=⎨⎬⎩⎭∑,即 211n n i i Y X n ==∑依概率收敛于21()2i E X =.二、选择题1.设随机变量129,,,X X X 相互独立同分布,且()1i E X =,()1i D X =,(1,2,,9)i = , 令991ii S X==∑,则对任意0ε>,从切比雪夫不等式直接可得(B )(A ){}921|1|1P S εε-<≥-; (B ){}929|9|1P S εε-<≥-;(C ){}921|9|1P S εε-<≥-; (D )921|1|19S P εε⎧⎫-<≥-⎨⎬⎩⎭.解:因为99911()()9i i i i E S E X E X ==⎛⎫=== ⎪⎝⎭∑∑,99911()()9i i i i D S D X D X ==⎛⎫=== ⎪⎝⎭∑∑,所以由切比雪夫不等式直接可得{}{}999922()9|()||9|11D S P S E S P S εεεε-<=-<≥-=-.故答案选B.2.设随机变量X 服从正态分布2(,)N μσ,则随σ的增大,概率{||}P X μσ-<是(C )(A )单调增大; (B )单调减少; (C )保持不变; (D )增减不定.解:由切比雪夫不等式:22{||}10P X σμσσ-<≥-=,与σ无关,故答案取C.3. 根据德莫弗–拉普拉斯定理可知(B )(A )二项分布是正态分布的极限分布; (B )正态分布是二项分布的极限分布; (C )二项分布是指数分布的极限分布; (D )二项分布与正态分布没有关系.4.设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1}P X P Y μμ-<>-<,则(A )(A )12σσ<; (B )12σσ>; (C )12μμ<; (D )12μμ>. 解:11221212||||11{||1}{||1}X Y P X P Y P P μμμμσσσσ⎧⎫⎧⎫--⎪⎪⎪⎪-<>-<⇒<><⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭1212121111σσσσσσ⎛⎫⎛⎫⇒>⇒>⇒<⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ΦΦ.5.设{}(1)n X n ≥为相互独立的随机变量序列,且都服从参数为λ的指数分布,则(A )(A)lim ()n i n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑Φ; (B)lim ()n i n X n P x x →∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑Φ; (C)lim ()n i n X P x x λ→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑Φ; (D)lim ()n i n X P x x λ→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑Φ.其中22()x xx dx -=⎰Φ是标准正态分布的分布函数. 解:由于{}(1)n X n ≥服从参数为λ的指数分布,所以211(),()n n E X D X λλ==,211(),()nni i i i nnE X D X λλ====∑∑,由中心极限定理,lim lim ()n n i i n n n X X n P x P x x λ→∞→∞⎧⎫⎧⎫--⎪⎪⎪⎪⎪⎪≤=≤=⎬⎬⎪⎪⎪⎪⎪⎩⎭⎭∑∑Φ,故答案取A. 三、计算题1. 设在每次实验中事件A 以概率5.0发生.是否可以用大于0.97的概率确信:在1000次实验中,事件A 出现的次数在400与600范围内?解: 设X 表示1000次试验中A 出现的次数,则 250)( ,500)( ),5.0 ,1000(~==X D X E B X ,由切比雪夫不等式有2250{400600}{|500|100}10.975100P X P X <<=-<≥-= 所以可以用大于0.97的概率确信:在1000次实验中,事件A 出现的次数在400与600范围内. 2. 将一颗骰子连续掷四次,其点数之和记为X ,估计概率{1018}P X <<。

第6章大数定律及中心极限定理习题解答

第6章大数定律及中心极限定理习题解答

P{ X − µ < 4σ } ≥ ( B
A.
).
8 . 9
B.
15 . 16
C.
9 . 10
D.
1 . 10
).
3.设随机变量 X 满足等式 P{| X − E ( X ) |≥ 2} = 1 16 ,则必有( D A. D ( X ) =
1 . 4 1 C. D ( X ) < . 4
B. D ( X ) >
⎧ ⎪10 − 6 X − E ( X ) 20 − 6 ⎫ ⎪ P {10 ≤ X ≤ 20} = P ⎨ ≤ ≤ ⎬ D( X ) 5.7 ⎭ ⎪ 5.7 ⎪ ⎩
≈ Φ (5.86) − Φ (1.67) ≈ 1 − 0.9525 = 0.0475
18.某批产品的次品率是 0.005,试用中心极限定理求任意抽取 10000 件产品中次品数 不多于 70 件的概率. 解:设 X i 表示抽出的第 i 件产品的次品数, X 表示抽出的 10000 件产品的次品数,则
P{5100 < X < 10000} =___0.0228________.
14.设每次射击击中目标的概率为0.001,如果射击5000次,试根据中心极限定理击中次 数不大于2的概率等于___0.0898 ______. 15.设 X 1 , X 2 , ⋅⋅⋅, X n 是独立同分布的随机变量序列,且 E ( X i ) = µ , D ( X i ) = σ 2 均存 在,令 X =
∑X
k =1
n
k

n 1 ,从而 E (Y ) = 0 , D (Y ) = . 12 12
由题意及由中心极限定理知
⎧ ⎛ 10 ⎞ 10 ⎫ ⎪ Y ⎪ < − 1 = 0.9 P{| Y |< 10} = P ⎨ ⎬ ≈ 2Φ ⎜ ⎜ n 12 ⎟ ⎟ n 12 ⎭ ⎪ n 12 ⎪ ⎝ ⎠ ⎩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,,Λ21是n个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i Λ218===ξμξ对于∑==ni in 1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X L 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==L , 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X L 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i ===L 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43 .6、设n ξξξ,,,Λ21为相互独立的随机变量序列,且),,(Λ21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1⎰∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=L , 那么, 对于任 一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X L 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指{}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。

10. 设供电站电网有100盏电灯, 夜晚每盏灯开灯的概率皆为. 假设每盏灯开关是相 互独立的, 若随机变量X 为100盏灯中开着的灯数, 则由切比雪夫不等式估计, X 落 在75至85之间的概率不小于 259 .解:()80,()16E X D X ==, 于是169(7585)(|80|5)1.2525P X P X <<=-<≥-=二.计算题:1、在每次试验中,事件A 发生的概率为,利用切比雪夫不等式估计,在1000次独立试验中,事件A 发生的次数在450至550次之间的概率.解:设X 表示1000次独立试验中事件A 发生的次数,则250)(,500)(==X D X E}50|500{|}550450{≤-=≤≤X P X P9.02500250150)(1}50|)({|2=-=-≥≤-=X D X E X P2、一通信系统拥有50台相互独立起作用的交换机. 在系统运行期间, 每台交换机能清晰接受信号的概率为. 系统正常工作时, 要求能清晰接受信号的交换机至少45台. 求该通信系统能正常工作的概率. 解:设X 表示系统运行期间能清晰接受信号的交换机台数, 则~(50,0.90).X B由此 P(通信系统能正常工作)(4550)P X =≤≤P =≤≤(2.36)(0)0.99090.50.4909.ΦΦ≈-=-=3、某微机系统有120个终端, 每个终端有5%的时间在使用, 若各终端使用与否是相互独立 的, 试求有不少于10个终端在使用的概率.解:某时刻所使用的终端数~(120,0.05),6, 5.b np npq ξ==7 由棣莫弗-拉普拉斯定理知{10}11(1.67)0.0475.P ξΦΦ≥=-≈-=4、某校共有4900个学生, 已知每天晚上每个学生到阅览室去学习的概率为, 问阅览室 要准备多少个座位, 才能以99%的概率保证每个去阅览室的学生都有座位.解:设去阅览室学习的人数为ξ, 要准备k 个座位.~(,),4900,0.1,49000.1b n p n p np ξ===⨯=21.==4900490{0}2121k P k ξΦΦΦΦ⎛⎫⎛⎫--⎛⎫⎛⎫≤≤≈-=- ⎪ ⎪⎝⎭⎝⎭490490(23.23)0.99.2121k k ΦΦΦ--⎛⎫⎛⎫=--≈= ⎪ ⎪⎝⎭⎝⎭查(0,1)N 分布表可得4902.3263,21 2.3263490538.852321k k -==⨯+=539.≈要准备539个座位,才能以99%的概率保证每个去阅览室学习的学生都有座位.5.随机地掷六颗骰子 ,试利用切比雪夫不等式估计:六颗骰子出现的点数总和不小于9且不超过33点的概率。

解:设 表 示 六 颗 骰 子 出 现 的 点 数 总 和。

i ,表 示 第 i 颗 骰 子 出 现 的 点 数 ,i = 1,2,…,61, 2, … ,6 相 互 独 立 , 显 然 ηξ==∑i i 16()()235211235449621612765432161222===-+++==+++++=ηηξξD E D E i i Λ {}{}12339≤-=≤≤ηηηE p p {}131>--=ηηE p()9.03383511691≈-=-≥ηD 6. 设随机变量n ξξξ,,,Λ21 相互独立,且均服从指数分布()0000>⎩⎨⎧≤>=-λλλx x e x f x )( 为 使 10095101111≥⎭⎬⎫⎩⎨⎧<-∑=λλξn k k n P , 问: n 的最小值应如何解: E D k k ξλξλ==112, ()21211111,11λξξλξn D n n D n E nk k n k k n k k ==⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∑∑∑===由 切 比 雪 夫 不 等 式 得⎪⎪⎭⎫ ⎝⎛<-∑=λλξ101111nk k n P ,1009510111101112211≥⎪⎭⎫ ⎝⎛-≥⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-=∑∑==λλλξξn n E n P nk k nk k 即 110095100-≥n n , 从 而 n 2000 , 故 n 的 最 小 值 是 20007.抽样检查产品质量时,如果发现次品多于10个,则拒绝接受这批产品,设某批产品次品率为10%,问至少应抽取多少个产品检查才能保证拒绝接受该产品的概率达到解:∴ 设n 为至少应取的产品数,X 是其中的次品数,则)1.0,(~n b X ,9.0}10{≥>X P ,而9.0}9.01.01.0109.01.01.0{≥⨯⨯⨯->⨯⨯⨯-n n n n X P所以1.0}09.01.0109.01.01.0{≤-≤⨯⨯⨯-nn n n X P由中心极限定理知,当n 充分大时, 有1.0)3.01.010(}09.01.0109.01.01.0{=-Φ≈-≤⨯⨯-n nn n n n X P ,∴ 由1.0)3.01.010(=-Φnn查表得28.13.01.010-=-nn147=∴n8.(1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为,又知为使系统正常运行,至少必需要有85个元件工作,求系统的可靠程度(即正常运行的概率);(2)上述系统假设有n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使系统正常运行,问n 至少为多大时才能保证系统的可靠程度为 解:(1)设X 表示正常工作的元件数,则)9.0,100(~b X ,9901009.01.01009.010099085{}85100{}85{-≤⨯⨯⨯-≤-=≥≥=≥X P X P X P}31039035{≤-≤-=X P由中心极限定理可知))35(1()310()35()310(}85{Φ--Φ=-Φ-Φ=≥X P 95.0)35(1)35()310(=Φ=-Φ+Φ=(2)设X 表示正常工作的元件数,则)9.0,(~n b Xnnn n X n n P n X n P n X P 3.02.01.09.09.03.01.0{)8.0()8.0(≤⨯⨯-≤-=≤≤=≥}3.09.03{}323.09.03{nnX n P n n n X n P -≤-=≤-≤-= 95.0)3()3(1=Φ=-Φ-=nn353=∴n 25=∴n9.一部件包括10部分,每部分的长度是一随机变量,相互独立且具有同一分布,其数学期望为2 mm ,均方差为 mm ,规定总长度为20 mm 时产品合格,试求产品合格的概率。

已 知 :Φ( ) = ;Φ( ) = 。

解:设 每 个 部 分 的 长 度 为 X i ( i = 1, 2, …, 10 ) E ( X i ) = 2 = , D( X i ) = 2= ( )2 ,依题意 ,得合格品的概率为⎭⎬⎫⎩⎨⎧≤-≤-∑=102010101..i i X P ⎭⎬⎫⎩⎨⎧≤⨯-⨯≤-=∑=6302100501831630101.)(...i i X P⎰⎰---==63.00263.063.022221221dte dte t t ππ4714.017357.02121263.022=-⨯=-⨯=⎰∞--dte t π10.计算机在进行加法计算时,把每个加数取为最接近它的整数来计算,设所有取整误差是相 互独立的随机变量,并且都在区间[- , ]上服从均匀分布,求1200个数相加时误 差总和的绝对值小于10的概率。

已知:Φ(1)=;Φ(2)=。

相关文档
最新文档