【中考试题】2016年广西梧州市中考数学试卷及答案
广西梧州市2016年初中毕业升学考试抽样调研测试(二)数学试题(
最大最全最精的教育资源网2016 年梧州市初中毕业升学考试抽样调研测试卷(二)数学参照答案及评分标准一、 (本大 共 12 小 ,每小3 分,共 36 分.)号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADCBDACCDBBA二、 填空 (本大 共6 小 ,每小 3 分,共 18 分.号1314 15 16 17 185 2(a 1)(a 1)y10 33①②④答案6x三、解答 (本大 共 8 小 , 分 66 分.)19.解 :原式= 221 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分 52= 7⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分. 明 : 接OC ,20∵ OC OB ∴ 3 B , ∵ OD // CB∴ 2 3,1B , ⋯⋯⋯⋯⋯⋯ 2分∴1 2∵OA OC ,ODOD∴ △ OAD ≌△ OCD⋯⋯⋯⋯⋯⋯ 4 分 ∴OCD A⋯⋯⋯⋯⋯⋯ 5 分∵ CD 是切 ∴ OCD 90∴ A 90∴ AD 是⊙ O 的切⋯⋯⋯⋯⋯⋯ 6 分21.解:( 1) 将条形 充完好35 32302825 2625⋯⋯⋯⋯⋯ 2 分201515男生15 女生101095A B C D( 2)被他 抽 的学生数是 160 位; ⋯⋯⋯⋯⋯⋯⋯⋯4 分 (3)9800 45 (人)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分16022.解: 机无 的均匀速度是x km / h , 速 y km / h ,依据 意是:⋯1 分12.5 ( x y) 9750⋯⋯⋯⋯⋯⋯⋯4 分13 (x y) 9750x 7657 分解之得:15⋯⋯⋯⋯⋯⋯⋯⋯⋯y答: 机无 的均匀速度是765 km / h , 速是 15 km / h .⋯⋯⋯⋯ 8 分. 解 C 点作 CD AB 于 D , CD xm⋯⋯⋯⋯⋯⋯⋯⋯2分23:∵ CAD 45 ∴ AD CD x∴ BD4 xC在 Rt BDC 中,xA地下tan 71 , ⋯⋯⋯⋯ 4分D B4 x∴ 2.9(4 x) xx 2.974 ⋯⋯⋯⋯⋯⋯ 6 分又∵ 2.974 3.2所以不可以 入 。
2016年广西梧州市中考数学试卷及答案
2016年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的倒数是()A.﹣ B.C.﹣6 D.62.(3分)下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是()A.B.C.D.3.(3分)若式子﹣3有意义,则m的取值范围是()A.m≥3 B.m≤3 C.m≥0 D.m≤04.(3分)一元一次方程3x﹣3=0的解是()A.x=1 B.x=﹣1 C.x= D.x=05.(3分)分解因式:2x2﹣2=()A.2(x2﹣1)B.2(x2+1)C.2(x﹣1)2D.2(x+1)(x﹣1)6.(3分)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定7.(3分)在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.118.(3分)下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0它们的逆命题一定成立的有()A.①②③④B.①④C.②④D.②9.(3分)三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()A.B.C.D.10.(3分)青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A.7200(1+x)=8450 B.7200(1+x)2=8450C.7200+x2=8450 D.8450(1﹣x)2=720011.(3分)在平面直角坐标系中,直线y=x+b与双曲线y=﹣只有一个公共点,则b的值是()A.1 B.±1 C.±2 D.212.(3分)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:3a﹣2a=.14.(3分)2016年1月,梧州市西江特大桥完成桥墩水下桩基础,累计完成投资53 000 000元,其中53 000 000用科学记数法表示为.15.(3分)点P(2,﹣3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是.16.(3分)若一个正多边形的一个外角等于18°,则这个正多边形的边数是.17.(3分)如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是.18.(3分)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,则A n的坐标是.三、解答题(本大题共8小题,满分66分)19.(6分)计算:|﹣3|﹣(﹣2016)0+(﹣2)×(﹣3)+tan45°.20.(6分)解不等式组,并在数轴上表示不等式组的解集.21.(6分)在“立德树人,志愿服务”活动月中,学校团委为了解本校学生一个月内参加志愿服务次数的情况,随机抽取了部分同学进行统计,并将统计结果分别分成A、B、C、D四类,根据统计结果绘制了如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)本次抽样调查了名学生,并请补全条形统计图;(2)被调查学生“一个月内参加志愿服务次数”的人数的众数落在类.22.(8分)如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.求证:(1)△ACO≌△BDO;(2)CE=DF.23.(8分)如图,四边形ABCD是一片水田,某村民小组需计算其面积,测得如下数据:∠A=90°,∠ABD=60°,∠CBD=54°,AB=200m,BC=300m.请你计算出这片水田的面积.(参考数据:sin54°≈0.809,cos54°≈0.588,tan54°≈1.376,≈1.732)24.(10分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.25.(10分)在矩形ABCD中,E为CD的中点,H为BE上的一点,,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:;(2)若∠CGF=90°,求的值.26.(12分)如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.2016年广西梧州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的倒数是()A.﹣ B.C.﹣6 D.6【解答】解:的倒数是6,故选:D.2.(3分)下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.3.(3分)若式子﹣3有意义,则m的取值范围是()A.m≥3 B.m≤3 C.m≥0 D.m≤0【解答】解:∵式子﹣3有意义,∴m≥0.故选C.4.(3分)一元一次方程3x﹣3=0的解是()A.x=1 B.x=﹣1 C.x= D.x=0【解答】解:3x﹣3=0,3x=3,x=1,故选:A.5.(3分)分解因式:2x2﹣2=()A.2(x2﹣1)B.2(x2+1)C.2(x﹣1)2D.2(x+1)(x﹣1)【解答】解:原式=2(x2﹣1)=2(x+1)(x﹣1),故选D6.(3分)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定【解答】解:半径r=5,圆心到直线的距离d=3,∵5>3,即r>d,∴直线和圆相交,故选C.7.(3分)在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.11【解答】解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.8.(3分)下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0它们的逆命题一定成立的有()A.①②③④B.①④C.②④D.②【解答】解:①对顶角相等的逆命题是相等的角是对顶角,错误;②同位角相等,两直线平行的逆命题是两直线平行,同位角相等,成立;③若a=b,则|a|=|b|的逆命题是如果|a|=|b,|则a=b,错误;④若x=0,则x2﹣2x=0的逆命题是如果x2﹣2x=0,则x=0或x=2,错误;故选D.9.(3分)三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()A.B.C.D.【解答】解:画树状图得:∵共有27种等可能的结果,构成等边三角形的有3种情况,∴以a、b、c为边长正好构成等边三角形的概率是:=.故选A.10.(3分)青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A.7200(1+x)=8450 B.7200(1+x)2=8450C.7200+x2=8450 D.8450(1﹣x)2=7200【解答】解:由题意可得,7200(1+x)2=8450,故选B.11.(3分)在平面直角坐标系中,直线y=x+b与双曲线y=﹣只有一个公共点,则b的值是()A.1 B.±1 C.±2 D.2【解答】解:根据题意,方程x+b=﹣只有一个解,即方程x2+bx+1=0只有一个实数根,∴b2﹣4=0,解得:b=±2,故选:C.12.(3分)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③【解答】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴当﹣2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=﹣3时,y<0,即y=9a﹣3b+c<0,④错误.综上可知:正确的结论为①②③.故选D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:3a﹣2a=a.【解答】解:3a﹣2a=(3﹣2)a=a.14.(3分)2016年1月,梧州市西江特大桥完成桥墩水下桩基础,累计完成投资53 000 000元,其中53 000 000用科学记数法表示为 5.3×107.【解答】解:将53 000 000用科学记数法表示为:5.3×107.故答案为:5.3×107.15.(3分)点P(2,﹣3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是(﹣2,﹣2).【解答】解:点(2,﹣3),向左平移4个单位,横坐标:2﹣4=﹣2,向上平移1个单位,纵坐标:﹣3+1=﹣2,∴点P'(﹣2,﹣2),故答案为:(﹣2,﹣2)16.(3分)若一个正多边形的一个外角等于18°,则这个正多边形的边数是20.【解答】解:正多边形的一个外角等于18°,且外角和为360°,∴这个正多边形的边数是:360°÷18°=20.故答案为:20.17.(3分)如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是.【解答】解:∵点B、C把分成三等分,ED是⊙O的切线,∠E=45°,∴∠ODE=90°,∠DOC=45°,∴∠BOA=∠BOC=∠COD=45°,∵OD=1,∴阴影部分的面积是:+=,故答案为:.18.(3分)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,则A n的坐标是(2×3n﹣1,0).【解答】解:∵点B1、B2、B3、…、B n在直线y=2x的图象上,∴A1B1=4,A2B2=2×(2+4)=12,A3B3=2×(2+4+12)=36,A4B4=2×(2+4+12+36)=108,…,∴A n B n=4×3n﹣1(n为正整数).∵OA n=A n B n,∴点A n的坐标为(2×3n﹣1,0).故答案为:(2×3n﹣1,0).三、解答题(本大题共8小题,满分66分)19.(6分)计算:|﹣3|﹣(﹣2016)0+(﹣2)×(﹣3)+tan45°.【解答】解:原式=3﹣1+6+1=9.20.(6分)解不等式组,并在数轴上表示不等式组的解集.【解答】解:解不等式①可得x<,解不等式②可得x≥﹣1,在数轴上表示出①②的解集如图,∴不等式组的解集为﹣1≤x<.21.(6分)在“立德树人,志愿服务”活动月中,学校团委为了解本校学生一个月内参加志愿服务次数的情况,随机抽取了部分同学进行统计,并将统计结果分别分成A、B、C、D四类,根据统计结果绘制了如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)本次抽样调查了400名学生,并请补全条形统计图;(2)被调查学生“一个月内参加志愿服务次数”的人数的众数落在B类.【解答】解:(1)根据题意得:160÷40%=400(名),C的人数为400﹣(160+160+60)=20(名),补全条形统计图,如图所示:故答案为:400;(2)被调查学生“一个月内参加志愿服务次数”的人数的众数落在B类,故答案为:B22.(8分)如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.求证:(1)△ACO≌△BDO;(2)CE=DF.【解答】证明:(1)∵过⊙O上的两点A、B分别作切线,∴∠CAO=∠DBO=90°,在△ACO和△BDO中∵,∴△ACO≌△BDO(ASA);(2)∵△ACO≌△BDO,∴CO=DO,∵OM⊥CD,∴MC=DM,EM=MF,∴CE=DF.23.(8分)如图,四边形ABCD是一片水田,某村民小组需计算其面积,测得如下数据:∠A=90°,∠ABD=60°,∠CBD=54°,AB=200m,BC=300m.请你计算出这片水田的面积.(参考数据:sin54°≈0.809,cos54°≈0.588,tan54°≈1.376,≈1.732)【解答】解:作CM⊥BD于M,如图所示:∵∠A=90°,∠ABD=60°,∴∠ADB=30°,∴BD=2AB=400m,∴AD=AB=200m,∴△ABD的面积=×200×200=20000(m2),∵∠CMB=90°,∠CBD=54°,∴CM=BC•sin54°=300×0.809=242.7m,∴△BCD的面积=×400×242.7=48540(m2),∴这片水田的面积=20000+48540≈83180(m2).24.(10分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.【解答】解:(1)35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算.(2)根据题意得:y普通=35x.当x≤12时,y白金卡=280;当x>12时,y白金卡=280+35(x﹣12)=35x﹣140.∴y白金卡=.(3)当x=18时,y普通=35×18=630;y白金卡=35×18﹣140=490;令y白金卡=560,即35x﹣140=560,解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算.25.(10分)在矩形ABCD中,E为CD的中点,H为BE上的一点,,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:;(2)若∠CGF=90°,求的值.【解答】(1)证明:∵四边形ABCD是矩形,∴CD∥AB,AD=BC,AB=CD,AD∥BC,∴△CEH∽△GBH,∴.(2)解:作EM⊥AB于M,如图所示:则EM=BC=AD,AM=DE,∵E为CD的中点,∴DE=CE,设DE=CE=3a,则AB=CD=6a,由(1)得:=3,∴BG=CE=a,∴AG=5a,∵∠EDF=90°=∠CGF,∠DEF=∠GEC,∴△DEF∽△GEC,∴,∴EG•EF=DE•EC,∵CD∥AB,∴=,∴,∴EF=EG,∴EG•EG=3a•3a,解得:EG=a,在Rt△EMG中,GM=2a,∴EM==a,∴BC=a,∴==3.26.(12分)如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,∴,∴,∴抛物线解析式为y=x2﹣3x﹣4,(2)如图1,作点B关于直线AC的对称点F,连接DF交AC于点E,由(1)得,抛物线解析式为y=x2﹣3x﹣4①,∴D(0,﹣4),∵点C是直线y=﹣x+4②与抛物线的交点,∴联立①②解得,(舍)或,∴C(﹣2,6),∵A(4,0),∴直线AC解析式为y=﹣x+4,∵直线BF⊥AC,且B(﹣1,0),∴直线BF解析式为y=x+1,设点F(m,m+1),∴G(,),∵点G在直线AC上,∴﹣,∴m=4,∴F(4,5),∵D(0,﹣4),∴直线DF解析式为y=x﹣4,∵直线AC解析式为y=﹣x+4,∴直线DF和直线AC的交点E(,),(3)∵BD=,由(2)有,点B到线段AC的距离为BG=BF=×5=<BD,∵B(﹣1,0),D(0,﹣4),∴直线BD解析式为y=﹣4x﹣4,∵△BDE为直角三角形,∴①∠DBE=90°,∴BE⊥BD交AC于E,∴直线BE解析式为y=x+,∵点E在直线AC:y=﹣x+4的图象上,∴E(3,1),②∠BDE=90°,∴DE⊥BD交抛物线于E,∴直线DE的解析式为y=x﹣4,∵点E在抛物线y=x2﹣3x﹣4上,∴直线DE与抛物线的交点为(0,﹣4)和(,﹣),∴E(,﹣),即:满足条件的点E的坐标为E(3,1)或(,﹣).。
广西2016年中考数学试卷
广西百色市2016年中考数学试题广西桂林市2016年中考数学卷2016年广西贺州市中考数学试卷一、选择(本大题共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.)1.的相反数是()A.﹣B.C.﹣2 D.22.如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()A.70° B.100° C.110° D.120°3.下列实数中,属于有理数的是()A.B.C.π D.4.一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体5.从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A.B.C.D.6.下列运算正确的是()A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=5a4D.b3•b3=2b37.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或208.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠49.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)10.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.11.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.812.n是整数,式子[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数D.可能是奇数也可能是偶数二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在答题卡对应的位置上,在试卷上作答无效.)13.要使代数式有意义,则x的取值范围是.14.有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是.15.据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为人.16.如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.17.将m3(x﹣2)+m(2﹣x)分解因式的结果是.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)三、解答题(本大题共8题,满分66分,解答应写出文字说明、证明过程或演算步骤,在试卷上作答无效.)19.计算:﹣(π﹣2016)0+|﹣2|+2sin60°.20.解方程:.21.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1300名学生,试估计全校选择“音乐舞蹈”社团的学生人数.22.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)23.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD 于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)24.某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据:=1.1,=1.2,=1.3,=1.4)25.如图,在△ABC中,E是AC边上的一点,且AE=A B,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.26.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD 折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.2016年广西南宁市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数是()A.﹣2 B.0 C.2 D.42.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.3.据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×1044.已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣35.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分6.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D 为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米7.下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y58.下列各曲线中表示y是x的函数的是()A.B.C.D.9.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°10.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=9011.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:912.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.若二次根式有意义,则x的取值范围是.14.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=.15.分解因式:a2﹣9=.16.如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(2016•南宁)如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为.18.观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.三、解答题(本大题共8小题,共66分)19.计算:|﹣2|+4cos30°﹣()﹣3+.20.解不等式组,并把解集在数轴上表示出来.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4)(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,并求出∠A2C2B2的正弦值.22.在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目(2016•南宁)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB 上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.24.在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?25.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC 相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.26.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.。
2016年广西中考数学真题卷含答案解析
2016年南宁市初中毕业升学考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是()A.-2B.0C.2D.42.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是()3.据《南国早报》报道:2016年广西高考报名人数约为332 000人,创历史新高.其中数据332 000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×1044.已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.13B.3 C.-13D.-35.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%.小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分6.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin 36°米B.5cos 36°米C.5tan 36°米D.10tan 36°米7.下列运算正确的是()A.a2-a=aB.ax+ay=axyC.m2·m4=m6D.(y3)2=y58.下列各曲线中表示y是x的函数的是()9.如图,点A,B,C,P在☉O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°10.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x-10=90B.0.08x-10=90C.90-0.8x=10D.x-0.8x-10=9011.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1∶S2等于()A.1∶√2B.1∶2C.2∶3D.4∶9x的图象如图所示,则方程12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=23)x+c=0(a≠0)的两根之和()ax2+(b-23A.大于0B.等于0C.小于0D.不能确定第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.若二次根式√x-1有意义,则x的取值范围是.14.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=°.15.分解因式:a2-9=.16.如图,在4×4正方形网格中,有3个小正方形已经被涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D,若矩17.如图所示,反比例函数y=kx形OABC的面积为8,则k的值为.18.观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24……在上述数字宝塔中,从上往下数,2 016在第层.三、解答题(本大题共8小题,共66分.解答应写出文字说明,证明过程或演算步骤))-1+√12.19.(本小题满分6分)计算:|-2|+4cos 30°-(1220.(本小题满分6分)解不等式组{3x -2≤x ,2x+15<x+12,并把解集在数轴上表示出来.21.(本小题满分8分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,-4).(1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.22.(本小题满分8分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:图1图2(1)请求出九(2)班全班人数;(2)请把折线统计图补充完整;(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.23.(本小题满分8分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是☉O的切线;(2)若OB=10,CD=8,求BE的长.24.(本小题满分10分)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150.天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的13(1)求乙队单独完成这项工程需要多少天;(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是1,甲队的工作a效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍.25.(本小题满分10分)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出....线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.26.(本小题满分10分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴,与抛物线交于点M,则是否存在以O,M,N 为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.答案全解全析:一、选择题1.C -2和2互为相反数.故选C.2.A 光线由上向下照射得到的正投影相当于俯视图,即一个正六边形,故选A.3.B 332 000=3.32×100 000=3.32×105,故选B.4.B 将x=1,y=m 代入y=3x,得m=3×1=3.故选B.5.D 根据加权平均数的计算公式,得小明这学期的数学成绩是80×40%+90×60%=86分,故选D.6.C ∵tan B=ADBD ,∴AD=BD ·tan B=5tan 36°米.故选C.7.C 选项A 中a 2与a 不是同类项,不能合并;选项B 的结果应是a(x+y);选项D 的结果应是y 6.故选C.8.D 根据函数的概念,对于任意自变量x,都有唯一的y 值与之对应,知选项D 符合题意.故选D.9.B ∵∠DCE=40°,CD ⊥OA,CE ⊥OB,∴∠DOE=180°-40°=140°. ∴∠P=12∠AOB=70°.故选B.10.A 每个书包原价是x 元,则第一次打八折后的价格是0.8x 元,第二次降价10元后的价格是(0.8x-10)元,则可得方程0.8x-10=90.故选A.11.D 如图所示,由题意可知AG=GE=EF,BH=HC=12BC.设DE=a,则AG 2=GE 2=EF 2=2a 2,则AE 2=4a 2,即AE=2a,∴AD=3a,HC=32a,∵S 1=12a 2,S 2=98a 2,∴S 1∶S 2=4∶9.12.A 根据题图可知a>0,b<0,b 2-4ac>0. 在方程ax 2+(b -23)x+c=0(a ≠0)中,Δ=(b -23)2-4ac=b 2-43b+49-4ac=b 2-4ac-43b+49>0,设此方程的两根分别为x 1,x 2,则x 1+x 2=-b -23a =-b a +23a >0,故选A. 二、填空题 13.答案 x ≥1解析 根据二次根式√x -1有意义,得x-1≥0,解得x ≥1. 14.答案 50解析 ∵AB ∥CD,∴∠A=∠1=50°. 15.答案 (a+3)(a-3)解析 a 2-9=a 2-32=(a+3)(a-3). 16.答案313解析 如图,若使新涂黑的小正方形与原来的三个黑色小正方形构成轴对称图形,则只能涂图中的1、2、3处的白色小正方形.故所求概率为313.17.答案 2解析 设D(x D ,y D ),x D >0,y D >0,过D 分别作DE ⊥OA,DF ⊥OC,则DF=x D ,DE=y D ,且DF ∥OA,DE ∥OC,∵点D 为AC 的中点,∴OA=2DF=2x D ,OC=2DE=2y D .∵矩形OABC 的面积等于8,∴OA ·OC=8,即2x D ·2y D =8,∴x D y D =2. 又点D 在反比例函数y=kx (k ≠0,x>0)的图象上, ∴k=x D y D =2.18.答案44解析因为每层的第一个数都是层数的平方,所以第44层的第一个数是442=1 936,第45层的第一个数是452=2 025,因为1 936<2 016<2 025,所以2 016在第44层.三、解答题19.解析原式=2+4×√32-2+2√3(4分)=2+2√3-2+2√3(5分)=4√3.(6分)20.解析{3x-2≤x,①2x+15<x+12.②解不等式①得2x≤2,即x≤1.(1分)解不等式②得4x+2<5x+5,(2分)即x>-3.(3分)∴不等式组的解集为-3<x≤1.(5分)把解集在数轴上表示出来,如下:(6分) 21.解析(1)△A1B1C1为所求作三角形.(3分,正确作出一个点给1分)(2)△A2B2C2为所求作三角形.(6分,正确作出一个点给1分)根据勾股定理得:A 2C 2=√12+32=√10, ∴sin ∠A 2C 2B 2=10=√1010.(8分) 22.解析 (1)全班人数:12÷25%=48(人).(2分) (2)国学诵读人数:48-6-12-6=24(人). 补全折线统计图如图所示:(4分)(3)列表如下:南南宁宁 书法国学诵读 演讲 征文 书法(书法,书法)(国学诵读,书法)(演讲,书法)(征文,书法)国学诵读 (书法,国学诵读) (国学诵读,国学诵读) (演讲,国学诵读) (征文,国学诵读) 演讲 (书法,演讲) (国学诵读,演讲) (演讲,演讲) (征文,演讲) 征文(书法,征文)(国学诵读,征文)(演讲,征文)(征文,征文)(6分)或画树状图如下:(6分)由表(或图)可知,所有可能出现的结果共有16种,并且它们出现的可能性相等,且“两人参加的比赛项目相同”的结果有4种,∴P(两人参加的比赛项目相同)=416=14.(8分) 23.解析 (1)证明:连接OD,(1分) ∵BD 平分∠ABC,∴∠OBD=∠CBD. ∵点B,D 在☉O 上,∴OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD ∥BC.(3分) ∴∠ODA=∠C=90°, ∴OD ⊥AC.(4分)又∵点D 在☉O 上,∴AC 是☉O 的切线.(5分)(2)过点O 作OF ⊥BC 于点F, ∴BF=EF,∠OFC=90°.(6分)又∵∠C=∠ODC=90°,∴四边形CDOF 是矩形. ∴OF=CD=8,(7分)在Rt △BOF 中,BF=√OB 2-OF 2=√102-82=6,∴BE=2BF=12.(8分)24.解析 (1)设乙队单独完成这项工程需要x 天,根据题意得: 1150×30+(1150+1x )×15=13,(2分) 整理得15+110+15x=13,两边同时乘30x 得6x+3x+450=10x, 解得x=450.(4分) 检验:当x=450时,30x ≠0, 故x=450是原分式方程的解.(5分)答:乙队单独完成这项工程需要450天.(6分) (2)根据题意得:(1a +ma )×40=23,(7分)∴a 关于m 的函数关系式为a=60m+60(1≤m ≤2).(8分) ∵k=60>0,∴a 随m 的增大而增大,∵1≤m ≤2, ∴当m=1时,a 取最小值,且最小值为120. 此时,乙队的最大工作效率是1a =1120.(9分) 1120÷1450=154. 答:乙队的最大工作效率是原来的154倍.(10分)25.解析 (1)AE,EF,AF 的数量关系式为AE=EF=AF.(2分) (2)证明:连接AC,(3分)∵四边形ABCD 是菱形,∠ABC=60°, ∴AB=BC=CD=AD,∠ABC=∠D=60°.∴△ABC,△ACD 是等边三角形. ∴AB=AC,∠ABC=∠BAC=∠ACD=60°.∵∠BAE+∠EAC=∠BAC=60°,∠CAF+∠EAC=∠EAF=60°, ∴∠BAE=∠CAF.(4分)在△ABE 与△ACF 中,{∠ABC =∠ACF ,AB =AC ,∠BAE =∠CAF ,∴△ABE ≌△ACF(ASA),(5分) ∴BE=CF.(6分)(3)解法一:过点F 作FG ⊥BC 于点G,过点A 作AK ⊥BC 于点K.∵∠ABC=60°,∠EAB=15°, ∴∠AEC=∠EAK=45°,∴∠BAK=∠EAK-∠EAB=30°,AK=EK.(7分) 在Rt △ABK 中,∵AB=4,∴BK=12AB=2. ∴根据勾股定理得:EK=AK=√42-22=2√3. ∴BE=EK-BK=2√3-2.(8分)∵∠EAB+∠BAF=∠EAF=60°,∠FAC+∠BAF=∠BAC=60°, ∴∠EAB=∠FAC.∵∠ABC=60°,∴∠ABE=120°.∵△ACD 是等边三角形,∴∠ACD=60°,∴∠ACF=120°. ∴∠ABE=∠ACF.在△ABE 与△ACF 中,{∠EAB =∠FAC ,AB =AC ,∠ABE =∠ACF ,∴△ABE ≌△ACF(ASA), ∴CF=BE=2√3-2.(9分)∵∠ACB=∠ACD=60°,∴∠ECF=60°. 在Rt △CFG 中,∵sin ∠FCG=sin 60°=FGCF , ∴FG=CF ·sin 60°=√32×(2√3-2)=3-√3.即点F 到BC 的距离是3-√3.(10分)解法二:过点A 作AK ⊥BC 于点K,过点F 作FG ⊥BC 于点G,延长FG 交AD 于点M.∴∠AKG=∠KGM=∠GMA=90°,∴四边形AKGM 是矩形. ∵∠ABC=60°,∠EAB=15°, ∴∠AEC=∠EAK=45°.∴∠BAK=∠EAK-∠EAB=30°,AK=EK.(7分) 在Rt △ABK 中,∵AB=4,∴BK=12AB=2.∴根据勾股定理得:EK=AK=√42-22=2√3. ∴BE=EK-BK=2√3-2.(8分)∵∠EAB+∠BAF=∠EAF=60°,∠FAC+∠BAF=∠BAC=60°. ∴∠EAB=∠FAC.∵∠ABC=60°,∴∠ABE=120°. ∵△ACD 是等边三角形, ∴∠ACD=60°,∴∠ACF=120°.∴∠ABE=∠ACF.在△ABE 与△ACF 中,{∠EAB =∠FAC ,AB =AC ,∠ABE =∠ACF ,∴△ABE ≌△ACF(ASA), ∴CF=BE=2√3-2.(9分) ∵四边形AKGM 是矩形, ∴GM=AK=2√3,AD ∥EC. ∴FG GM =CFCD ,即23=2√3-24.∴FG=3-√3,即点F 到BC 的距离是3-√3.(10分)26.解析 (1)设抛物线的解析式为y=a(x-1)2+1(a ≠0).(1分) 把(0,0)代入上式,得0=a(0-1)2+1,∴a=-1, ∴抛物线的解析式为y=-(x-1)2+1, 即y=-x 2+2x.(2分)联立得方程组{y =-x 2+2x ,y =x -2,解得{x 1=-1,y 1=-3或{x 2=2,y 2=0.∴点C 的坐标为(-1,-3).(3分)(2)证法一:过点C 作CF 垂直x 轴于点F,过点A 作AE 垂直x 轴于点E,已知点A(1,1),B(2,0),C(-1,-3),∴FC=FB=3,AE=BE=1,∴△CBF 和△ABE 是等腰直角三角形,∴∠CBF=∠ABE=45°. ∴∠ABC=∠CBF+∠ABE=90°. ∴△ABC 是直角三角形.(5分) 证法二:已知点A(1,1),B(2,0),C(-1,-3).根据勾股定理得:AB=√12+12=√2,BC=√32+32=3√2,AC=√22+42=2√5. 在△ABC 中,∵AB 2+BC 2=(√2)2+(3√2)2=20,AC 2=(2√5)2=20, ∴AB 2+BC 2=AC 2.∴根据勾股定理的逆定理得:△ABC 是直角三角形.(5分)(3)解法一:存在.如图,∵过点N 作MN ⊥x 轴于点N,与抛物线交于点M, ∴∠ABC=∠MNO=90°. 当AB BC =MN NO时,△ABC ∽△MNO,或当AB BC =ONNM 时,△ABC ∽△ONM. ∵AB=√2,BC=3√2,∴AB BC =13,∴NOMN 的值等于13或3.(6分)设点N 的坐标为(a,0),则点M 的坐标为(a,-a 2+2a),分三种情况讨论: ①当点M 在第一象限时,ON=a,MN=-a 2+2a, 当a-a 2+2a =13时,解得a 1=0(舍去),a 2=-1(舍去), 当a -a 2+2a =3时,解得a 3=0(舍去),a 4=53,∴N 1(53,0);②当点M 在第三象限时,ON=-a,MN=a 2-2a, 当-aa 2-2a =13时,解得a 5=0(舍去),a 6=-1,∴N 2(-1,0), 当-aa -2a =3时,解得a 7=0(舍去),a 8=53(舍去); ③当点M 在第四象限时,ON=a,MN=a 2-2a,当a a 2-2a =13时,解得a 9=0(舍去),a 10=5,∴N 3(5,0), 当aa 2-2a =3时,解得a 11=0(舍去),a 12=73,∴N 4(73,0).综上所述,存在N 1(53,0),N 2(-1,0),N 3(5,0),N 4(73,0)使得以点O,M,N 为顶点的三角形与△ABC 相似.(10分)解法二:存在.如图,∵过点N 作MN ⊥x 轴于点N,与抛物线交于点M, ∴∠ABC=∠MNO=90°. 当AB BC =MN NO时,△ABC ∽△MNO,或当AB BC =ONNM 时,△ABC ∽△ONM. ∵AB=√2,BC=3√2,∴AB BC =13.(6分)设点N 的坐标为(a,0),则点M 的坐标为(a,-a 2+2a),分四种情况讨论: ①当a-a 2+2a =3时,解得a 1=0(舍去),a 2=53,∴N 1(53,0); ②当a -a 2+2a =-3时,解得a 3=0(舍去),a 4=73,∴N 2(73,0);③当a -a 2+2a =13时,解得a 5=0(舍去),a 6=-1,∴N 3(-1,0); ④当a -a 2+2a=-13时,解得a 7=0(舍去),a 8=5,∴N 4(5,0).综上所述,存在N 1(53,0),N 2(73,0),N 3(-1,0),N 4(5,0)使得以点O,M,N 为顶点的三角形与△ABC 相似.(10分)。
广西梧州市中考数学试卷
广西梧州市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共13题;共26分)1. (2分) (2016七上·重庆期中) 的相反数为()A . 4B . ﹣4C .D . ﹣2. (2分)下列说法正确的是()A . ﹣4的立方是64B . 0.1的立方根是0.001C . 4的算术平方根是16D . 9的平方根是±33. (2分)有一条直的宽纸带折叠成如图所示,则∠1的度数为()A . 50°B . 65°C . 70°D . 75°4. (2分) (2017八上·梁子湖期末) 下列计划图形,不一定是轴对称图形的是()A . 角B . 等腰三角形C . 长方形D . 直角三角形5. (2分) 2011年11月17日19时32分,在太空翱翔了17天,行程11000000公里,圆满完成与天宫一号目标飞行器两次完美对接使命的神舟八号飞船,在内蒙古预定区域成功着陆,回到祖国的怀抱。
请将11000000公里用科学记数法表示为()A . 1.1×106公里B . 1.1×107公里C . 1.1×108公里D . 1.1×109公里6. (2分)(2017·思茅模拟) 如图是由3个完全相同的小正方体组成的立体图形,它的主视图是()A .B .C .D .7. (2分)如图,沿直线AD折叠,△ACD与△ABD重合,若BC=8,则BD=().A . 6B . 5C . 4D . 38. (2分)若一个正多边形的一个内角是144°,则这个多边形的边数为A . 12B . 11C . 10D . 99. (2分) (2017七下·阜阳期末) 下列调查中,适宜采用全面调查方式的是()A . 了解一批圆珠笔的使用寿命B . 了解全国九年级学生身高的现状C . 考查人们保护海洋的意识D . 检查一枚用于发射卫星的运载火箭的各零部件10. (2分)如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A . AB>CE>CDB . AB=CE>CDC . AB>CD>CED . AB=CD=CE11. (2分) (2017八下·新野期末) 如图,反比例函数y= 的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A . 2B . 4C . 5D . 812. (2分)某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件;现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6125元,设每件商品应降价x元,则可列方程为()A . (20+x)(300+20x)=6125B . (20﹣x)(300﹣20x)=6125C . (20﹣x)(300+20x)=6125D . (20+x)(300﹣20x)=612513. (2分) (2017九上·吴兴期中) 二次函数,自变量x与函数y的对应值如下表:x…-5-4-3-2-10…y…40-2-204…下列说法正确的是()A . 抛物线的开口向下B . 当x>-3时,y随x的增大而增大C . 二次函数的最小值是-2D . 抛物线的对称轴x=二、填空题 (共6题;共7分)14. (1分)(2017·深圳模拟) 因式分解:2x2﹣18=________.15. (1分)已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,若以P为圆心,PO为半径画圆,则可以画出________ 个半径不同的圆来.16. (2分)在Rt△ABC中,∠C=90°,D、E、F分别为AB、BC、AC边上的中点,AC=4cm,BC=6cm,那么四边形CEDF为________,它的边长分别为________.17. (1分)(2016·南岗模拟) 如图(1),扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中O′点在直线BA上,如图(2)所示,则O点旋转至O′点所经过的轨迹长度(弧长)为________.18. (1分)(2017·邢台模拟) 在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2017次后,顶点A在整个旋转过程中所经过的路程之和为________.19. (1分) (2017七下·无锡期中) 在下列代数式:①(x- y)(x+ y), ②(3a+bc)(-bc-3a),③(3-x+y)(3+x+y), ④(100+1)(100-1)中能用平方差公式计算的是________(填序号)三、解答题 (共7题;共73分)20. (10分)(2016·徐州) 计算:(1)(﹣1)2016+x0﹣ +(2)÷ .21. (15分) (2017七下·永城期末) 如图,在正方形网格中,每个小正方形的边长为1个单位长度,格点三角形ABC(顶点是网格线的交点的三角形)的顶点A,C的坐标分别为(﹣4,5),(0,3).(1)请在如图所示的网格内画出平面直角坐标系;(2)把三角形ABC先向右平移5个单位长度,再向下平移3个单位长度得到三角形A′B′C′,且点A,B,C的对应点分别为A′,B′,C′,请你在图中画出三角形A′B′C′,并写出点A′,B′,C′的坐标;(3)求三角形ABC的面积.22. (6分)(2017·渭滨模拟) 小明参加某网店的“翻牌抽奖”活动,如图,共有4张牌,分别对应5元,10元,15元,20元的现金优惠券,小明只能看到牌的背面.(1)如果随机翻一张牌,那么抽中20元现金优惠券的概率是________.(2)如果随机翻两张牌,且第一次翻的牌不参与下次翻牌,则所获现金优惠券的总值不低于30元的概率是多少?请画树状图或列表格说明问题.23. (10分) (2016九上·本溪期末) 如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).24. (10分)(2016·防城) 蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤)4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)25. (10分) (2016九下·长兴开学考) 已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,AC=6,求⊙O的半径.26. (12分)(2019·东城模拟) 如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm0123456(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;(3)结合函数图象,解决问题:①连接BE,则BE的长约为________cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为________cm.参考答案一、选择题 (共13题;共26分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、填空题 (共6题;共7分)14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共73分)20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
【最新题库】2016年广西南宁市中考数学试卷及参考答案
次降价每个又减 10 元,经两次降价后售价为 90 元,则得到方程(
)
A.0.8x﹣10=90 B.0.08x﹣ 10=90 C.90﹣ 0.8x=10 D.x﹣0.8x﹣ 10=90
【解答】 解:设某种书包原价每个 x 元,可得: 0.8x﹣10=90,
故选 A
11.( 3 分)有 3 个正方形如图所示放置,阴影部分的面积依次记为
.
18.( 3 分)观察下列等式:
在上述数字宝塔中,从上往下数, 2016 在第
层.
三、解答题(本大题共 8 小题,共 66 分) 19.( 6 分)计算: | ﹣2|+ 4cos30 °﹣( )﹣1+ .
20.( 6 分)解不等式组
,并把解集在数轴上表示出来.
21.( 8 分)如图,在平面直角坐标系中,已知△ ABC 三个顶点的坐标分别是 A
则中柱 AD(D 为底边中点)的长是(
)
A.5sin36 米° B.5cos36 °米 C. 5tan36 °米 D.10tan36 °米 【解答】 解:∵ AB=AC,AD⊥BC,BC=10米, ∴ DC=BD=5米, 在 Rt△ADC中,∠ B=36°, ∴ tan36 °= ,即 AD=BD?tan36°=5tan36(°米).
A.140°B.70°C.60°D.40°
10.(3 分)超市店庆促销,某种书包原价每个 x 元,第一次降价打 “八折 ”,第二
次降价每个又减 10 元,经两次降价后售价为 90 元,则得到方程(
)
A.0.8x﹣10=90 B.0.08x﹣ 10=90 C.90﹣ 0.8x=10 D.x﹣0.8x﹣ 10=90
则方程 ax2+(b﹣ ) x+c=0(a≠0)的两根之和(
2016年广西省梧州市中考试题数学
梧州市2016年初中毕业升学考试试题卷数学***• 1time 4页.期■卡2页)・満分120分・考试时阔120分馀2衿■胡・号.仪名、■位号耳注答■卡18定位*•*'骂在 .■卡韬曲的但・内.空试■♦上铮■无效一・fiWfl (^k« 12小a <d 典乂*扈■小总给出钓四个逸瑣 风有一1•是止■的.豊小•么才繹3分.么常・不連負,連均得.分)•-[的wh<A) -i (B)丄 卜W 止行人atf. ItttMe 为篇时■:图■的■ ® A <A> (R)(D ) 6■也*»•四个交通标左图中.®cn )5片式^v«-3w«义・■质的woiame(A) m >3(R) mC3(C) m 鼻0 (D) m <04 一元一次方0的解是(A) X«l(B) *・・|co JT ・!X (D) x«05.2,・2・J<A) 2(1 ・1)(B) 2(x + l)2<C> 2(*-M(D) 2(x^lXx^l)(A) <■)相切 (C )相交 (D )无法鏡定在MBC 中• •仙 ・3, BC •人AC ・2・D. E 、 尸分别为AB 、 BC 、AC中点.AMDA\FE ・割四边总DBEF 的*1长是A<A) 5 (B) 7kF(C) 9 (D) !!'广WE—c已如宇轻为5的IL KHONltt 的険寓悬3. ItHltt 和■的位■关蔡为 (D 时用角相②■位角相衿・須直域平行$7 ■图<3Xx>0t Bx 2 ・2* = 0・4(D)② g JU (C)・6 •止■机劝■■行•(C)5三张背面宪全相同的数字牌•它们的正面分别印布数字“宀“2 ■「八材; 背血朝上.洗匀后随机抽取一张.记录牌上的效字并把牌放Wb 河加朝这样的: 两次.得到三个数字a 、b. c.则以a 、h. c 为边长正好构成等边加形的概* :I I< 1(A)丄 (B)丄 (C) -«D> T9 27 9310.青山村斡的水稻2010年平均毎公顷产7200*x. 2012年平均饵公顷产S4SUAV ,. 求水稻毎公頃产量的年平均境长率.设水稻毎公坝产■的年平均增卜、平力「 所列方程正确的为(A) 7200(1+x) = 8450 (C) 7200+ x 2=8450(B) 7200(1+ X )2 = R450 (D) 8450(1 -x)2 = 7200】1・在平面貞角坐杯条中.ftQjj = x + /)与;《曲线y =-丄只有一个公共点•则“的 x值是(A) 1 (B) 土1 (C) ±2 (D) 212.如图所示,拋物线v = + c <a*0)与x 轴交于点/(一2, 0八〃山°) •直线x = -0.5与此拋物线交于点C.与X 轴交于点"・在宜线上取点Q ・使 MD « MC .违接 AC.① a_b = 0:③四边形ACBD 是菱形:你认为其中正确的是(A) (C)BC 、AD. BD ・某同供根据图徐吗出下列结论: ②当*2<x< 1 时.y>0:@9a -3/> + c > 0・ (B) (EX2X3) <D) ®@(3)(本大题共6小题.每小越3分.共用分・)3a-2a-二填空题13・计算:14・2016年I 月.梧州市西江转大桥完成桥堆水下桩墓础,累计完成投资53 000 000元・其中53 000 000 用科学记数法表示为」_・15. 点P(2. 3)先向左平移4个单位长度,円向上平移1个单位长度.得到点P'的坐标是★ •16. 若一个正多边形的一个外角等于18。
中考数学试题及解析 广西梧州
广西梧州市初中毕业升学考试试题卷一、选择题(本大题共12小题,每小题3分,共36分) 1.(广西梧州,1,3分)-5的相反数是(A )-5 (B )5 (C )15 (D )-15【答案】B2.(广西梧州,2,3分)在平面直角坐标系中,下面的点在第一象限的是(A )(1,2) (B )(-2,3) (C )(0,0) (D )(-3,-2) 【答案】A3.(广西梧州,3,3分)下列长度的三条线段能组成三角形的是(A )1,2,3 (B )3,4,5 (C )3,1,1 (D )3,4,7【答案】B4.(广西梧州,4,3分)若一个菱形的一条边长为4cm ,则这个菱形的周长为 (A )20cm (B )18cm (C )16cm (D )12cm 【答案】C5.(广西梧州,5,3分)一组数据为:1,2,5,8,9,则这组数据的中位数是 (A )2 (B )5 (C )8 (D )9 【答案】B6.(广西梧州,6,3分)因式分解x 2y -4y 的正确结果是(A )y (x +2)(x -2) (B )y (x +4)(x -4) (C )y (x 2-4) (D )y (x -2)2 【答案】A7.(广西梧州,7,3分)如图1,直线EO ⊥CD ,垂足为点O ,AB 平分∠EOD ,则∠BOD 的度数为 (A )120° (B )130° (C )135° (D )140°【答案】 CAECDO B 图1(A )x <2 (B )x <3 (C )x ≤3 (D )x ≤2 【答案】A9.(广西梧州,9,3分)图3是从一幅扑克牌中取出的两组牌,分别是黑桃1,2,3,4红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是 (A )14(B )18 (C )116 (D )132【答案】B10.(广西梧州,10,3分)如图4,在平面直角坐标系中,直线y =23x -23与矩形ABCD 的边OC 、BC 分别交于点E 、F ,已知OA =3,OC =4,则△CEF 的面积是 (A ) (B ) (C ) (D )【答案】B11.(广西梧州,11,3分)5月22日—29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y =-14x 2+b ,球落地点A 到O 点的距离是4m ,那么这条抛物线的解析式是 (A )y =-14x 2+34x +1(B )y =-14x 2+34x -1y yAB OE FC图4图30 2 3图2(C )y =-14x 2-34x +1 (D )y =-14x 2-34x -1【答案】A12.(广西梧州,12,3分)如图6,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是(A )△ACE ≌△BCD (B )△BGC ≌△AFC (C )△DCG ≌△ECF (D )△ADB ≌△CEA【答案】D二、填空题(本大题共6小题,每小题3分,共18分.)13.(广西梧州,13,3分)如图7,直线a 、b 相交,∠1=65°,则∠2的度数是_______.【答案】65°14.(广西梧州,14,3分)当a________时,a +2在实数范围内一有意义.【答案】≥-215.(广西梧州,15,3分)一元二次方程x 2+5x +6=0的根是________.【答案】x 1=-2,的圆两外切,切点分别为D 、E 、F ,则EF 的长为________cm .12 ab图7 图6图5【答案】317.(广西梧州,17,3分)图9是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm ),计算出这个立体图形的表面积是________mm 2.【答案】20018.(广西梧州,18,分)如下图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称或中心对称变换,若原来点A 坐标是(a ,b ),则经过第次变换后所得的A 点坐标是________.【答案】(a ,-b )三、解答题(本大题共6小题,每小题3分,共18分.) 19.(广西梧州,19,6分)计算: |-2|-8+(3-π)0. 【答案】解:原式=2-22+1=-2+1.20.(广西梧州,20,6分)已知B (2,n )是正比例函数y =2x 图象上的点. (1)求点B 的坐标;(2)若某个反比例函数图象经过点B ,求这个反比例函数的解析式.第1次 第2次 第3次 第4次 关于x 轴对称关于原点对称关于y 轴对称关于x 轴对称主视图 左视图 俯视图图9 图8【答案】解:(1)把B (2,n )代入y =2x 得:n =2×2=4 ∴B 点坐标为(2,4)(2)设过B 点的反比例函数解析式为y =k x ,把B (2,4)代入有4=k2,k =8.∴所求的反比例函数解析式为y =8x.21.(广西梧州,21,6分)在今年法国网球公开赛中,我国选手李娜在决赛中成功击败对手夺冠,称为获得法国网球公开赛冠军的亚洲第一人.某班体育委员就本班同学对该届法国网球公开赛的了解程度进行全面调查统计,收集数据后绘制了两幅不完整的统计图,如图(1)和图(2).根据图中的信息,解答下列问题:(1)该班共有________名学生;(2)在图(1)中,“很了解”所对应的圆心角的度数为_________; (3)把图(2)中的条形图形补充完整. 【答案】解:(1)40,(2)90°, (3)如下图.了解程度很了解了解很少不了解图(1)图(2)了解程度很了解了解很少不了解图(1)图(2)22.(广西梧州,22,8分)如图,在□ABCD 中,E 为BC 的中点,连接DE .延长DE 交AB 的延长线于点F .求证:AB=BF .【答案】解:由□ABCD 得AB ∥CD , ∴∠CDF =∠F ,∠CBF =∠C . 又∵E 为BC 的中点, ∴△DEC ≌△FEB . ∴DC =FB .由□ABCD 得AB =CD , ∵DC =FB ,AB =CD , ∴AB =BF .23(广西梧州,23,8分)如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m ,坡角到楼房的距离CB=8m.在D 点处观察【答案】解:过D 点作DF ⊥AB ,交AB 于点F . 在Rt △ECD 中,CD =6,∠ECD =30°, ∴DE =3=FB ,EC =33. ∴DF =EC +CB =8+33.DCFB A E在Rt △ADF 中,tan ∠ADF =AFDF ,∴AF =DF ×tan45°. ∴AF =(8+33)×1.38. ∴AF ≈18.20.∴AB =AF +FB =18.20+3=21.20≈21.2. ∴楼房AB 的高度约是21.2m .24(广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元. (1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值? 【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一:W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +1-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11, 解之得a =100 .所以当a =100时,(2)中所有方案获利相同.25(广西梧州,25,10分)如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为C .延长AB 交CD 于点E .连接AC ,作∠DAC =∠ACD ,作AF ⊥ED 于点F ,交⊙O 于点G . (1) 求证:AD 是⊙O 的切线;(2) 如果⊙O 的半径是6cm ,EC =8cm ,求GF 的长.∵CD 是⊙O 的切线, ∴∠OCD =90°. ∴∠OCA+∠ACD =90°. ∵OA =OC , ∴∠OCA =∠OAC . ∵∠DAC =∠ACD , ∴∠OAD =90°. ∴AD 是⊙O 的切线. (3) 连接BG ; ∵OC =6cm ,EC =8cm ,∴在Rt △CEO 中,OE =OC 2+EC 2=10. ∴AE =OE +OA =1. ∵AF ⊥ED ,∴∠AFE =∠OCE =90°,∠E =∠E . ∴Rt △AEF ∽Rt △OEC . ∴AF OC =AEOE. 即:AF 6=1610.∴AF =9.6.∵AB 是⊙O 的直径, ∴∠AGB =90°. ∴∠AGB =∠AFE . ∵∠BAG =∠EAF , ∴Rt △ABG ∽Rt △AEF . ∴AG AF =ABAE. 即:AG 9.6=1216.∴AG =7.2.∴GF =AF -AG =9.6-7.2=2.4(cm) .26(广西梧州,26,12分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =6cm ,AB =8cm ,BC =14cm.动点P 、Q 都从点C 出发,点P 沿C →B 方向做匀速运动,点Q 沿C →D →A 方向做匀速运动,当P 、Q 其中一点到达终点时,另一点也随之停止运动. (1)求CD 的长;(2)若点P 以1cm/s 速度运动,点Q 以22cm/s 的速度运动,连接BQ 、PQ ,设△BQP 面积为S (cm 2),点P 、Q 运动的时间为t (s ),求S 与t 的函数关系式,并写出t 的取值范围;(3)若点P 的速度仍是1cm/s ,点Q 的速度为a cm/s ,要使在运动过程中出现PQ ∥DC ,请你直接写出a 的取值范围.【答案】解:(1)过D 点作DH ⊥BC ,垂足为点H ,则有DH =AB =8cm ,BH =AD =6cm . ∴CH =BC -BH =14-6=8cm . 在Rt △DCH 中,CD =DH 2+CH 2=82cm .(2)当点P 、Q 运动的时间为t (s ), 则PC =t ,① 当Q 在CD 上时,过Q 点作QG ⊥BC , 又∵DH =HC ,DH ⊥BC , ∴∠C =45°.∴在Rt △QCG 中,QG =QC ·sin ∠C =22t ×sin 45°=2t . 又∵BP =BC -PC =14-t ,∴S △BPQ =12BP ×QG =12(14-t )×2t =14t -t 2.当Q 运动到D 点时所需要的时间t =CD 22=8222=4.∴S =14t -t 2(0<t ≤4).② 当Q 在DA 上时,过Q 点作QG ⊥BC , 则:QG =AB =8cm ,BP =BC -PC =14-t , ∴S △BP Q =12BP ×QG =12(14-t )×8=56-4t .当Q 运动到A 点时所需要的时间t =CD+AD 22=82+622=4+322.∴S =56-4t (4<t ≤4+322).综合上述:所求的函数关系式是: S =14t -t 2(0<t ≤4).S =56-4t (4<t ≤4+322)(4) 要使运动过程中出现PQ ∥DC ,a 的取值范围是a ≥1+432.ADCB QP H G ADCBP QG。
广西省梧州市中考《数学》试题及答案
一.选择题(每题2分,共50分)1、主要决定鱼在水中运动方向的鳍是()A.尾鳍B.背鳍C.腹鳍D.胸鳍2、下列具有体温调节能力,属于恒温动物的是()A.蛇B.鲸C.虾D.青蛙3、下列哪项不是两栖动物()A.鳄鱼B.青蛙C.蟾蜍D.新疆北鯢4、下列哪些选项不是动物的行为()A.母鸡下蛋孵卵B.猫头鹰捕食田鼠C.猎豹的肠胃蠕动D.两只羚羊5、家兔的消化管很长,有特别发的的(),适合于草食性生活。
A.小肠B.盲肠C.胃D.牙齿6.鱼在水中游泳时,即使在黑夜里也能躲过礁石,这是因为()A.嗅觉在起作用B.侧线在起作用.C.听觉在其作用D.视觉在其作用7.分布在新疆温泉县,在新疆师范大学生地楼一楼专用养殖馆培育着国家级珍稀两栖动物是()A.四爪陆龟B.新疆北鯢C.藏羚羊D.天鹅等珍禽8、目前人们认为一种很理想的生物反应器是()A.肝脏生物反应器B.乳房生物反应器C.胃生物反应器D.肌肉生物反应器9、馒头上长黑色的绒毛菌落是()A.霉菌B.细菌C.酵母菌D.以上都不是10、枯草杆菌可以是水果腐烂,酵母菌使腐烂的水果发出酒味,这些微生物都是靠吸收水果中的什么来维持生命的()A.有机物B.水分C.维生素D.无机物11.加入酵母菌和面,可使蒸出的馒头松软多孔,原因是()A.酵母菌分解葡萄糖产生较多的二氧化碳B.酵母菌通过呼吸作用产生二氧化碳C.酵母菌分解葡萄糖产生氧气D.酵母菌分解蛋白质,产生二氧化碳12、下列哪项可成为大鹏培养蘑菇的培养基()A.洗净的河沙B.棉籽壳C.栽培花卉的土壤D.琼脂13、蘑菇和霉菌的共同特征不包括()A.营养方式是异养B.都是多细胞个体C.都可以使用D.都产生孢子繁殖14.细胞结构最相似的一组生物是()A.变形虫、水绵香菇B.烟草、草履虫、大肠杆菌C.玉米、葡萄、马铃薯D.酵母菌、灵芝、豌豆15、被誉为“生物学之父“的是()A.巴斯德B.列文胡克C.爱因斯坦.D 孟德尔16.下列关于芽孢叙述错误的是( )A.芽孢可以度过不良环境B.芽孢是细菌的休眠体C.芽孢可以萌发出一个细菌D.芽孢是细菌用来繁殖的结构17.在青海湖鸟岛自然保护区主要是为了哪些鸟类及其生存的环境()A.斑头雁、红嘴鸥B.仙鹤、孔雀C.棕头鸥、斑头雁D.天鹅、朱鹮18.造成野生动物濒危和灭绝的主要原因是()A.自然灾害B.物种退化C.人类对野生动植物资源的开发和利用D.人类对野生动植物资源过度狩猎或采伐,对栖息地环境的污染和改变19.下列项目中,保护生物多样性的根本措施是()A.保护生物的数量B.保护生物的种类C.保护生物的栖息环境D.保护生物的栖息环境和生态系统的多样性20.为了保护新疆北鲵而建立的自然保护区是()A.新疆布尔津B.新疆阿尔金山C.新疆温泉县D.新疆伊犁地区21.在运动中相当于支点的是()A.骨B.骨骼C.关节D.骨骼肌22.青蛙的体色与周围环境的色彩一致是由于()A.光线的影响B.保护性适应C.水分太少D.阳气太少的缘故23.在生态系统中,能够制造有机物,为所用生物提供食物的是()A.生产者B.消费者C.分解者D.以上三项都是24家鸽飞行时呼吸的特点是()A.肺和气囊都能进行气体交换B.吸气时,肺内进行气体交换C.呼气时,肺内进行气体交换D.吸气呼气时,肺内都进行气体交换25.裸子植物最丰富的国家是()A.中国B.美国C.巴西D.哥伦比亚二、填空题(每空一分,共十分)1.有些细菌和真菌与动植物共同生活在一起,相互依赖,彼此有利,一旦分开,两者都不能独自生活,这种现象叫做(),如()2.生态系统中各种生物的数量和所占的比例,总是维持在相对稳定的状态的现象,叫做()3.在被子植物中(),果实和种子是作为分类的主要依据()4.分类单位越小,所包括的生物的共同个特征越( )5.脊椎动物中变态发育的是(),胎生哺乳的是()乌鲁木齐外国语学校第十二中学2010-2011学年第一学期初二年级期中考试生物试卷(试卷分值: 100分所需时间:40分钟) 命题人:6.随着人们对生物多样性认识的不断加深,生物多样性的内涵不断加深,生物多样性的内涵也更加丰富()()生态系统的多样性三个层次。
广西梧州市中考数学试卷(内含答案详析)
广西梧州市中考数学试卷数学(考试时间共100分钟,满分120分)准考证号:__________ 姓名:________ 座位号:___________ {请同学们保持良好的心态,认真审真,认真答题,切不可马虎应付}一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的4个选项中,只有一个选项是正确的,每小题选对得3分,选错、多选或不选均得零分.)1.(3分)(2015•梧州)|﹣|=()A.﹣ B. C. 5 D.﹣5考点:绝对值.所有分析:根据绝对值的定义,即可解答.解答:解:|﹣|=,故选:B.点评:本题考查了绝对值,解决本题的关键是熟记绝对值的定义.2.(3分)(2015•梧州)在下列图形中,是轴对称图形的是()A. B. C. D.考点:轴对称图形.所有专题:计算题.分析:利用轴对称图形的性质判断即可得到结果.解答:解:是轴对称图形,故选D点评:此题考查了轴对称图形,轴对称图形即为在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形.3.(3分)(2015•梧州)据《梧州日报》报道,梧州黄埔化工药业有限公司位于万秀区松脂产业园,总投资119000000元,数字119000000用科学记数法表示为()A. 119×106 B. 11.9×107 C. 1.19×108 D. 0.119×109考点:科学记数法—表示较大的数.所有分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将119000000用科学记数法表示为:1.19×108.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2015•梧州)一元一次方程4x+1=0的解是()A. B.﹣ C. 4 D.﹣4考点:解一元一次方程.所有专题:计算题.分析:先移项得到4x=﹣1,然后把x的系数化为1即可.解答:解:4x=﹣1,所以x=﹣.故选B.点评:本题考查了解一元一次方程:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.5.(3分)(2015•梧州)在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A. B. C. D. 1考点:概率公式.所有分析:统计出红球的个数,根据概率公式计算其概率即可得出结果.解答:解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C.点评:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0.6.(3分)(2015•梧州)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A. B. C. D.考点:几何体的展开图;简单几何体的三视图.所有分析:根据圆锥的特征:圆锥的侧面展开后是一个扇形和三视图,据此选择即可.解答:解:根据圆锥的特征可知:圆锥的侧面展开后是一个扇形,三视图分别为三角形和圆形,不可能是正方形,故选D点评:此题考查了圆锥的侧面展开图,是对圆锥基础知识的掌握情况的了解,应注意平时基础知识的积累.7.(3分)(2015•梧州)不等式x﹣2>1的解集是()A. x>1 B. x>2 C. x>3 D. x>4考点:解一元一次不等式.所有分析:移项、合并同类项得到x>3,根据不等式的性质即可得出答案.解答:解:x﹣2>1,移项得:x>2+1,合并同类项得:x>3,故选C.点评:本题主要考查对解一元一次不等式,不等式的性质,合并同类项等知识点的理解和掌握,能熟练地根据不等式的性质求不等式的解集是解此题的关键.8.(3分)(2015•梧州)如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A. 20° B. 30° C. 40° D. 70°考点:圆周角定理.所有分析:根据∠DOB=140°,求出∠AOD的度数,根据圆周角定理求出∠ACD的度数.解答:解:∵∠DOB=140°,∴∠AOD=40°,∴∠ACD=∠AOD=20°,故选:A.点评:本题考查的是圆周角定理,掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.9.(3分)(2015•梧州)为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A. 100人 B. 200人 C. 260人 D. 400人考点:扇形统计图.所有专题:计算题.分析:根据扇形统计图中乒乓球的人数除以占的百分比得到学生的总人数,进而求出喜欢羽毛球与喜欢篮球的人数,求出喜欢足球与网球的总人数,即可做出判断.解答:解:根据题意得:320÷32%=1000(人),喜欢羽毛球的人数为1000×15%=150(人),喜欢篮球的人数为1000×25%=250(人),∴喜欢足球、网球的总人数为1000﹣320﹣250﹣150=380(人),这批被抽样调查的学生最喜欢足球的人数不可能是400人.故选D.点评:此题考查了扇形统计图,熟练识别统计图中的数据是解本题的关键.10.(3分)(2015•梧州)今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500考点:由实际问题抽象出分式方程.所有分析:根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.解答:解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.点评:本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.11.(3分)(2015•梧州)如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF,则下列描述正确的是()A.四边形ACEF是平行四边形,它的周长是4B.四边形ACEF是矩形,它的周长是2+2C.四边形ACEF是平行四边形,它的周长是4D.四边形ACEF是矩形,它的周长是4+4考点:菱形的性质;平行四边形的判定与性质;矩形的判定与性质.所有分析:首先判断其是平行四边形,然后判定其是矩形,然后根据菱形的边长求得矩形的周长即可.解答:解:∵DE=AD,DF=CD,∴四边形ACEF是平行四边形,∵四边形ABCD为菱形,∴AD=CD,∴AE=CF,∴四边形ACEF是矩形,∵△ACD是等边三角形,∴AC=1,∴EF=AC=1,过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=,∴AF=CE=2AG=,∴四边形ACEF的周长为:AC+CE+EF+AF=1++1+=2+2,故选B.点评:本题考查了菱形的性质、平行四边形的判定与性质及矩形的判定与性质的知识,解题的关键是了解有关的判定定理,难度不大.12.(3分)(2015•梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E 为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A. 9 B. 18 C. 36 D. 72考点:扇形面积的计算;勾股定理.所有分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积,MN的半圆的直径,从而可知∠MDN=90°,在Rt△MDN中,由勾股定理可知:MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AOD中,OD===3,所以MN=6,然后利用三角形的面积公式求解即可.解答:解:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD===3∴阴影部分的面积=△DMN的面积==.故选:B.点评:本题主要考查的是求不规则图形的面积,将不规则图形的面积转化为规则图形的面积是解答此类问题的常用方法,发现阴影部分的面积=△DMN的面积是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015•梧州)计算:3﹣4= ﹣1 .考点:有理数的减法.所有分析:本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.解答:解:3﹣4=3+(﹣4)=﹣1.点评:有理数的减法法则:减去一个数等于加上这个数的相反数.14.(3分)(2015•梧州)因式分解:ax2﹣4a= a(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.所有分析:先提公因式,再运用平方差公式进行因式分解即可得到答案.解答:解:ax2﹣4a=a(x2﹣4)=a(x﹣2)(x+2).故答案为:a(x﹣2)(x+2).点评:本题考查的是因式分解的知识,掌握因式分解的方法:提公因式、乘法公式、十字相乘法和分组分解法是解题的关键.15.(3分)(2015•梧州)已知反比例函数y=经过点(1,5),则k= 5 .考点:反比例函数图象上点的坐标特征.所有分析:把点(1,5)代入反比例函数y=中,可直接求k的值.解答:解:依题意,得x=1时,y=5,所以,k=xy=5,故答案为:5点评:本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特点.关键是设函数关系式,根据已知条件求函数关系式.16.(3分)(2015•梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为145 度.考点:对顶角、邻补角;角平分线的定义.所有专题:计算题.分析:利用邻补角定义及角平分线定义求出所求角的度数即可.解答:解:∵∠BOC=110°,∴∠BOD=70°,∵ON为∠BOD平分线,∴∠BON=∠DON=35°,∵∠BOC=∠AOD=110°,∴∠AON=∠AOD+∠DON=145°,故答案为:145.点评:此题考查了对顶角、邻补角,以及角平分线定义,熟练掌握定义及性质是解本题的关键.17.(3分)(2015•梧州)如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′B′C,点A恰好落在AC上,连接CC′,则∠ACC′= 110°.考点:旋转的性质.所有分析:由∠A=70°,AC=BC,可知∠ACB=40°,根据旋转的性质,AB=BA′,BC=BC′,∠CBC′=∠α=40°,∠BCC′=70°,于是∠ACC′=∠ACB+∠BCC′=110°.解答:解:∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°﹣2×70°=40°,∵∠∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°;故答案为:110°.点评:本题主要考查了旋转的性质、等腰三角形的性质,熟练掌握旋转前后的图形对应边相等、旋转角相等是解决问题的关键.18.(3分)(2015•梧州)如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由51 个圆组成.考点:规律型:图形的变化类.所有分析:根据图形可得第n个图形一定有n排,最上边的一排有n个,下边的每排比上边的一排多1个,据此即可求解.解答:解:第⑥个图形中圆的个数是:6+7+8+9+10+11=51.故答案是:51.点评:本题考查了图形的变化规律,根据已知的图形得到排列规律是关键.三、解答题(本大题共8小题,共66分)19.(6分)(2015•梧州)先化简,再求值:2x+7+3x﹣2,其中x=2.考点:整式的加减—化简求值.所有分析:先将原式合并同类项,然后代入求值即可.解答:解:原式=5x+5,当x=2时,原式=5×2+5=15.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.20.(6分)(2015•梧州)已知AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,过B作BF∥CD,交AC的延长线于点F,求证:BF是⊙O的切线.考点:切线的判定.所有专题:证明题.分析:根据垂径定理得出AB⊥CD,再利用平行线的性质得出BF⊥AB即可证明.解答:证明:∵AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,∴AB⊥CD,∵BF∥CD,∴BF⊥AB,∴BF是⊙O的切线.点评:此题考查切线的判定,关键是根据垂径定理得出AB⊥CD,再利用平行线的性质得出BF⊥AB.21.(6分)(2015•梧州)某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考和总成绩的计算说明:笔试总成绩=(笔试总成绩+加分)÷2考和总成绩=笔试总成绩+面试总成绩现有甲、乙两名应聘者,他们的成绩情况如下:应聘者成绩笔试成绩加分面试成绩甲117 3 85.6乙121 0 85.1(1)甲、乙两人面试的平均成绩为85.35,;(2)甲应聘者的考核总成绩为145.6 ;(3)根据上表的数据,若只应聘1人,则应录取甲.考点:加权平均数;算术平均数.所有分析:(1)先求出甲、乙两人的面试总成绩,再求出其平均成绩即可;(2)根据笔试总成绩=(笔试总成绩+加分)÷2,考和总成绩=笔试总成绩+面试总成绩分别求出甲的考核总成绩即可;(3)求出乙的考核成绩与甲的考核成绩相比较即可得出结论.解答:解:(1)∵甲的面试成绩为85.6分,乙的面试成绩为85.1分,∴甲、乙两人面试的平均成绩==85.35(分).故答案为:85.35;(2)∵甲的笔试总成绩=(117+3)÷2=60分,面试成绩=85.6分,∴甲应聘者的考核总成绩=60+85.6=145.6(分).故答案为:145.6;(3)∵乙的笔试总成绩=121÷2=59.5分,面试成绩=85.1分,∴甲应聘者的考核总成绩=59.5+85.1=144.6(分)<145.6分∴应录取甲.故答案为:甲.点评:本题考查的是加权平均数,根据题意得出参赛者总成绩的计算方法是解答此题的关键.22.(8分)(2015•梧州)向阳村2010年的人均收入为12000元,的人均收入为14520元,求人均收入的年平均增长率.考点:一元二次方程的应用.所有专题:增长率问题.分析:设这两年的平均增长率为x,2010年的人均收入×(1+平均增长率)2=人均收入,把相关数值代入求得年平均增长率.解答:解:设这两年的平均增长率为x,由题意得:12000(1+x)2=14520,解得:x1=﹣2.1(不合题意舍去),x2=0.1=10%.答:这两年的平均增长率为10%.点评:本题考查了一元二次方程的运用,应明确增长的基数,增长的次数,根据公式增长后的人均收入=增长前的人均收入×(1+增长率).23.(8分)(2015•梧州)如图,某景区有一出索道游览山谷的旅游点,已知索道两端距离AB为1300米,在山脚C点测得BC的距离为500米,∠ACB=90°,在C点观测山峰顶点A的仰角∠ACD=23.5°,求山峰顶点A到C点的水平面高度AD.(参考数据:sin23.5°≈0.40,cos23.5°=0.92,tan23.5°=0.43)考点:解直角三角形的应用-仰角俯角问题.所有专题:计算题.分析:在直角三角形ABC中,由AB与BC的长,利用勾股定理求出AC的长,在直角三角形ACD中,利用锐角三角函数定义求出AD的长即可.解答:解:在Rt△ABC中,BC=500米,AB=1300米,根据勾股定理得:AC==1200米,在Rt△ADC中,sin∠ACD=,则AD=AC•sin∠ACD=1200×0.40=480(米).点评:此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握勾股定理及锐角三角函数定义是解本题的关键.24.(8分)(2015•梧州)梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包.(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式.(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?考点:一次函数的应用.所有分析:(1)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,则,据此求出小王购买A、B两种品牌龟苓膏粉分别为多少包即可.(2)根据题意,可得y=500+0.8×[20x+25(1000﹣x)],据此求出y与x之间的函数关系式即可.(3)首先求出小王购买A、B两种品牌龟苓膏粉分别为多少包,然后设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,所以125z+875(z+5)≥20000+8×1000,据此求出A品牌的龟苓膏粉每包定价不低于多少元时才不亏本即可.解答:解:(1)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,则解得∴小王购买A、B两种品牌龟苓膏粉分别为600包、400包.(2)y=500+0.8×[20x+25(1000﹣x)]=500+0.8×[25000﹣5x]=500+20000﹣4x=﹣4x+20500∴y与x之间的函数关系式是:y=﹣4x+20500.(3)由(2),可得20000=﹣4x+20500解得x=125,∴小王购买A、B两种品牌龟苓膏粉分别为125包、875包,设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,∴125z+875(z+5)≥20000+8×1000解得z≥23.625,∴A品牌的龟苓膏粉每包定价不低于24元时才不亏本.点评:此题主要考查了一次函数的应用,要熟练掌握,解答此类问题的关键是:(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键.25.(12分)(2015•梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.考点:正方形的性质;全等三角形的判定与性质;勾股定理.所有分析:(1)先根据EQ⊥BO,EH⊥AB得出∠EQN=∠BHM=90°.根据∠EMQ=∠BMH得出△EMQ∽△BMH,故∠QEM=∠HBM.由ASA定理得出△APB≌△HFE,故可得出结论;(2)由勾股定理求出BP的长,根据EF是BP的垂直平分线可知BQ=BP,再根据锐角三角函数的定义得出QF=BQ的长,由(1)知,△APB≌△HFE,故EF=BP=4,再根据EQ=EF﹣QF即可得出结论.解答:(1)证明:∵EQ⊥BO,EH⊥AB,∴∠EQN=∠BHM=90°.∵∠EMQ=∠BMH,∴△EMQ∽△BMH,∴∠QEM=∠HBM.在Rt△APB与Rt△HFE中,,∴△APB≌△HFE,∴HF=AP;(2)解:由勾股定理得,BP===4.∵EF是BP的垂直平分线,∴BQ=BP=2,∴QF=BQ•tan∠FBQ=BQ•tan∠ABP=2×=.由(1)知,△APB≌△HFE,∴EF=BP=4,∴EQ=EF﹣QF=4﹣=.点评:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.26.(12分)(2015•梧州)如图,抛物线y=ax2+bx+2与坐标轴交于A、B、C三点,其中B(4,0)、C(﹣2,0),连接AB、AC,在第一象限内的抛物线上有一动点D,过D 作DE⊥x轴,垂足为E,交AB于点F.(1)求此抛物线的解析式;(2)在DE上作点G,使G点与D点关于F点对称,以G为圆心,GD为半径作圆,当⊙G与其中一条坐标轴相切时,求G点的横坐标;(3)过D点作直线DH∥AC交AB于H,当△DHF的面积最大时,在抛物线和直线AB 上分别取M、N两点,并使D、H、M、N四点组成平行四边形,请你直接写出符合要求的M、N两点的横坐标.考点:二次函数综合题.所有分析:(1)根据B,C两点在抛物线y=ax2+bx+2上,代入抛物线得到方程组,求出a,b的值,即可解答;(2)先求出直线AB的解析式为y=﹣x+2,设F点的坐标为(x,x+2),则D点的坐标为(x,),根据G点与D点关于F点对称,所以G点的坐标为(x,),若以G为圆心,GD为半径作圆,使得⊙G与其中一条坐标轴相切,分两种情况解答:①若⊙G与x轴相切则必须由DG=GE;②若⊙G与y轴相切则必须由DG=OE;(3)M点的横坐标为2±2,N点的横坐标为±2.解答:解:(1)∵B,C两点在抛物线y=ax2+bx+2上,∴,解得:.∴所求的抛物线为:y=.(2)抛物线y=,则点A的坐标为(0,2),设直线AB的解析式为y=kx+b,∴,解得:.∴直线AB的解析式为y=﹣x+2,设F点的坐标为(x,x+2),则D点的坐标为(x,),∵G点与D点关于F点对称,∴G点的坐标为(x,),若以G为圆心,GD为半径作圆,使得⊙G与其中一条坐标轴相切,①若⊙G与x轴相切则必须由DG=GE,即+2,解得:x=,x=4(舍去);②若⊙G与y轴相切则必须由DG=OE,即解得:x=2,x=0(舍去).综上,以G为圆心,GD为半径作圆,当⊙G与其中一条坐标轴相切时,G点的横坐标为2或.(3)M点的横坐标为2±2,N点的横坐标为±2.点评:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数及二次函数的解析式,难度较大,注意分类讨论思想的应用.。
广西省梧州市中考数学试卷及答案(Word解析版)
梧州市中考数学试卷分析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均的零分) 1.(广西梧州,1, 3分)=6( )A.6B.7C.8D.10 【答案】A.【解析】本题考查了求实数的绝对值.∵6是一个正数,正数的绝对值等于它本身,∴6的绝对值是6. 故选A .2. (广西梧州,2, 3分)化简:a +a =( )A.2B.a 2C.2a 2D.2a 【答案】D.【解析】本题考查了合并同类项的法则.因为a 和a 是同类项,所以a+a=2a.故选D. 3. (广西梧州,3, 3分)sin 300=( )A.0B.1C.12D.14【答案】C.【解析】本题考查了三角函数的特殊值.由三角函数知sin30°=21.故选C. 4. (广西梧州,4, 3分)如图1,直线AB ∥CD ,AB 、CD 与直线BE 分别交与点B 、E ,∠B=70°,∠BED =( )A.1100B.500C.600D.700【答案】D.【解析】本题考查了平行线的性质.根据“两直线平行,内错角相等”知:∠BED =∠B =70°. 故选D.5. (广西梧州,5, 3分)如图2,⊿ABC 以点O 为旋转中心,旋转1800后得到⊿A’B’C’.ED 是⊿ABC 的中位线,经旋转后为线段E’D’.已知BC =4,则E’D’=( ) A.2 B. 3 C.4 D.1.5【答案】A【解析】本题考查了旋转图形的性质、三角形的中位线的性质,因为ED 是△ABC 的中位线,BC=4,所以ED=21BC=21×4=2,因为线段E’D’ 是ED 的旋转,根据“旋转前后的对应线段相等”所以E’D’ =ED =2,故选A.6. (广西梧州,6, 3分)如图3,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是( )【答案】D【解析】本题考查了组合体的三视图.掌握三视图的定义是解题的关键.A 是从正面看到的图形,B 是从上面看到的图形,C 是从左侧看到的图形,因此不能得到的平面图形是D.故选D.7. (广西梧州,7, 3分)如图4,在菱形ABCD 中,已知∠A =600,AB =5,则⊿ABD 的周长是( )A.10B.12C.15D.20 【答案】C.【解析】因为四边形ABCD 是菱形,所以AB=AD ,又因为∠A =60°,所以△ABD 是等边三角形,所以AB=AD=BD=5,所以△ABD 的周长=5+5+5=15.故选C.8. (广西梧州,8, 3分)以下列各组线段的长为边,能组成三角形的是( )A.2cm ,3cm ,4cmB. 2cm ,3cm ,5cmC. 2cm ,5cm ,10cmD. 8cm ,4cm ,4cm 【答案】A.【解析】本题考查了三角形的三边关系.只要满足两条较短线段的长度和大于第三条线段的长就能组成三角形.因为2cm <3cm <4cm ,且2+3>4,所以长为2cm ,3cm ,4cm 的线段能组成三角形. 因为2cm <3cm <5cm ,但2+3=5,不大于5,所以长为2cm ,3cm ,5cm 的线段不能组成三角形.因为2cm <5cm <10cm ,但2+5<10,不大于10,所以长为2cm ,5cm ,10cm 的线段不能组成三角形.因为4cm=4cm <8cm ,但4+4=8,不大于8,所以长为8cm ,4cm ,4cm 的线段不能组成三角形. 故选A.9. (广西梧州,9, 3分)如图5,把矩形ABCD 沿直线EF 折叠,若∠1=200,则∠2=( )A. 800B. 700C. 400D. 200【答案】B.【解析】如图5(1),延长A 1B 1交BC 于G ,在矩形ABCD 中,∠B=90°,∵∠A 1B 1 F 是∠B 的折叠, ∴∠A 1B 1 F =∠B=90°,∴∠F B 1 G =90°, 在△B 1FG 中,因为∠F B 1 G =90°,∠1=20°, ∴∠3=70°,在矩形ABCD 中,∵AD ∥BC ,∴∠2=∠3=70°. 故选B.10. (广西梧州,10, 3分)小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( )A.23 B.49 C. 12 D.19【答案】B.【解析】本题考查了一般等可能事件发生的概率计算公式. 9个人随机排成一列队伍,小李报数所有可能的结果共有9个,其中报到偶数的结果共有4个,所以小李报到偶数的概率是49.故选 B. 【方法归纳】一般地,在试验中,如果各种结果发生的可能性都相同,那么一个事件A 发生的概率计算公式为P (A )=所有等可能结果的总数可能发生的结果数事件A .因此分清事件A 发生所有可能的结果数与所有等可能结果的总数是正确计算的关键所在.11. (广西梧州,11, 3分)如图6,AB 是⊙O 的直径,AB 垂直于弦CD ,∠BOC =700,则∠ABD =( )A. 200B. 460C. 550D. 700 【答案】C.【解析】如图6(1)连接BC ,在△OBC 中,∵∠BOC =70°,OB=OC ,∴∠OBC =∠OCB =55°,∵AB 是⊙O 的直径,AB 垂直于弦CD ,∴⌒AC =⌒AD,∴∠ABD =∠ABC =55°.故选C. 12. (广西梧州,12, 3分)父子两人沿周长为a 的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v ,则父亲的速度为( ) A.1.1v B.1.2v C.1.3v D.1.4v 【答案】B.【解析】设父亲的速度为x ,设同向行驶相遇1次所用时间为t ,则反向行驶相遇1次所用时间为11t , 根据题意列方程组得:⎪⎩⎪⎨⎧=+=-a tv t x a vt xt 11·11·,解得x=1.2v ,故选B. 二、填空题(本大题共6小题,每小题3分,共18分)13. (广西梧州,13, 3分)计算:0-7= . 【答案】-7.【解析】本题考查有理数的加法法则. 根据“一个数同0相加,仍得这个数”知:0-7=-7.故填-7. 14. (广西梧州,14, 3分)若反比例函数ky x=的图象经过点(2,4),则k 的值为 . 【答案】8.【解析】本题考查待定系数法确定函数解析式.把(2,4)代入k y x =得4=2k,解得k=4×2=8.故填8.15. (广西梧州,15, 3分)若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的 倍. 【答案】5.【解析】本题考查相似三角形的判定及性质. 一个三角形的各边长扩大为原来的5倍,那么所得三角形与原三角形各对应边之比都等于5,所以所得三角形与原三角形相似,且相似比等于5;根据相似三角形周长的比等于相似比,可得此三角形的周长扩大为原来的5倍.16. (广西梧州,16, 3分)因式分解:ax 2-9a = . 【答案】a (x +3)(x -3)【解析】本题考查因式分解.先提公因式,再用公式进行分解.原式= a (x 2-9)= a (x +3)(x -3).17. (广西梧州,17, 3分)若一条直线经过点(-1,1)和点(1,5),则这条直线与x 轴的交点坐标为 .【答案】(-1.5,3)【解析】设这条直线的解析式为y=kx+b ,将(-1,1),(1,5)代入上式,得⎩⎨⎧=+=+-51b k b k 解得⎩⎨⎧==32b k 所以直线的解析式为y =2x +3当y =0时,0=2x +3,解得x =-1.5所以这条直线与x 轴的交点坐标为(-1.5,3).故填(-1.5,3).18. (广西梧州,18, 3分)如图7,AC ⊥BC ,AC =BC =4,以AC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作⌒AB.过点O 作BC 的平行线交两弧于点D 、E ,则阴影部分的面积是 .【答案】-π5233【解析】如图7(1),作出弓形EAF ,连接CE 、CF , ∵OE ∥BC ,AC ⊥BC ,∴OC ⊥OE. 在Rt △OCE 中,∵OC=2,OE=4,∴OC=21OE ,∴∠OEC=30°,∠OCE=60°, 易知△OCE ≌△OCF (HL ),∴∠ECF=2∠OCE =120°, 在Rt △OCE 中,根据勾股定理知,OE=322422=-, ∴EF=2OE=43.∴S 弓形EAF =S 扇形CEF -S △CEF =36041202π-21×43×2=π316-43,∴S 阴影=21 S 弓形EAF -S 扇形OAD =12×(π316-43)-3602902π=-π5233故填-π5233三、解答题(本大题共8分,满分66分.) 19. (广西梧州,19, 6分)解方程:x x x 15⎛⎫+2+1=8+ ⎪24⎝⎭. 【答案】解:x x x 15++2=8+22x x 3+2=8+ x 2=6 ∴ x =320. (广西梧州,20, 6分)如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE =DF .求证:四边形BECF 是平行四边形.【答案】证明:∵BE ⊥AD ,BE ⊥AD ,∴∠AEB =∠DFC =900, ∵AB ∥CD ,∴∠A =∠D ,又∵AE =DF ,∴⊿AEB ≌⊿DFC ,∴BE =CF . ∵BE ⊥AD ,BE ⊥AD ,∴BE ∥CF . ∴四边形BECF 是平行四边形.21. (广西梧州,21, 6分)某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人 将被录取. (2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.【答案】解:(1)甲;(2)甲的平均成绩为:(85×6+92×4)÷10=87.8(分) 乙的平均成绩为:(91×6+85×4)÷10=88.6(分) 丙的平均成绩为:(80×6+90×4)÷10=84(分) 显然,乙的平均分数最高,所以乙将被录取.22. (广西梧州,22, 8分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需的时间相同,现在每天生产多少台机器? 【答案】解:设现在每天生产x 台机器,则原计划每天生产(x -50)台机器.依题意,得:x x 600450=-50解之,得:x =200经检验:x =200是所列方程的解. 答:现在每天生产200台机器.23. (广西梧州,23, 8分)海上有一小岛,为了测量小岛两端A 、B 的距离,测量人员设计了一种测量方法,如图所示,已知B 点是CD 的中点,E 是BA 延长线上的一点,测得AE =8.3海里,DE=30海里,且DE⊥EC,cos∠D=3 5 .(1)求小岛两端A、B的距离;(2)过点C作CF⊥AB交AB的延长线于点F,求sin∠BCF的值. 【答案】解:(1)在Rt⊿CED中,∠CED=900,DE=30海里,∴cos∠D=DECD3=5,∴CE=40(海里),CD=50(海里).∵B点是CD的中点,∴BE=12CD=25(海里)∴AB=BE-AE=25-8.3=16.7(海里).答:小岛两端A、B的距离为16.7海里.(2)设BF=x海里.在Rt⊿CFB中,∠CFB=900,∴CF2=CB2-BF2=252-x2=625-x2.在Rt⊿CFE中,∠CFE=900,∴CF2+EF2=CE2,即625-x2+(25+x)2=1600.解之,得x=7. ∴sin∠BCF=BFBC7=25.24. (广西梧州,24, 10分)我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?(3)“五·一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?【答案】解:(1)y=(20-15)x+(45-35)(100-x)=-5x+1000(2)15x+35(100-x)≤3000,解之,得x≥25.对y=-5x+1000,∵k=-5<0,∴y随x的增大而减小.∴当x最小=25时,y最大=-5×25+1000=875(元)∴至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元.(3)设购买甲种商品m件,购买乙种商品n件.①当打折前一次性购物总金额不超过400时,购物总金额为324÷0.9=360(元). 则20m +45n =360,m n 9=18->04,∴n 0<<8.∵n 是4的倍数,∴n =4.∴m =9. 此时的利润为:324-(15×9+35×4)=49(元).②当打折前一次性购物总金额超过400时,购物总金额为324÷0.8=405(元). 则20m +45n =405,-nm 819=>04,∴n 0<<9.∵m 、n 均是正整数,∴m =9, n =5或m =18, n =1.当m =9, n =5的利润为:324-(9×15+5×35)= 14(元); 当m =18, n =1的利润为:324-(18×15+1×35)= 19(元).综上所述,商家可获得的最小利润是14元,最大利润各是49元.25. (广西梧州,25, 10分)已知,点C 在以AB 为直径的半圆上,∠CAB 的平分线AD 交BC 于点D ,⊙O 经过A 、D 两点,且圆心O 在AB 上. (1)求证:BD 是⊙O 的切线. (2)若AC AB 1=4,BC =5O 的面积. 【答案】解:(1)连接OD . ∵AB 为直径,∴∠ACB =900,∵OA =OD ,∴∠ODA =∠OAD ,∵AD 平分∠CAB ,∴∠OAD =∠CAD ,∴∠ODA =∠CAD ,∴OD ∥AC ,∴∠ODB =∠ACB =900,∴BD 是⊙O 的切线.(2)∵AC AB 1=4,∴AB =4AC , ∵BC 2=AB 2-AC 2,∴15AC 2=80,∴AC 163AB 163设⊙O 的半径为r ,∵OD ∥AC ,∴△BOD ∽△BAC ,∴ACODAB OB =∴31631644164r r=-,解得:r=15316 ∴πr 2=215316·)(π=π75256,∴⊙O 的面积为π75256.26. (广西梧州,26, 12分)如图,抛物线y =a (x -h )2+k 经过点A (0,1),且顶点坐标为B (1,2),它的对称轴与x 轴交于点C . (1)求此抛物线的解析式.(2)在第一象限内的抛物线上求点P ,使得⊿ACP 是以AC 为底的等腰三角形,请求出此时点P 的坐标.(3)上述点是否是第一象限内此抛物线上与AC 距离最远的点,若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC 距离最远的点的坐标.(1)由抛物线的顶点坐标是B (1,2)知:h=1,k=2,∴y=a(x-1)2+2,再把A 点坐标代入此解析式即可;(2)易知△OAC 是等腰直角三角形,可得AC 的垂直平分线是直线y=x ,根据“线段垂直平分线上的点到线段两个端点的距离相等”知直线y=x 与抛物线的交点即为点P ,解方程组即可求出P 点坐标;(3)先求出第一象限内此抛物线上与AC 距离最远的点的坐标,再与P 点的坐标比较进行判断.满足条件的点一定是与直线AC 平行且与抛物线有唯一交点的直线与抛物线相交产生的,易求出直线AC 的解析式,设出与AC 平行的直线的解析式,令它与抛物线的解析式组成的方程组有唯一解,求出交点坐标,通过判断它与点P 是否重合来判断点P 是否是第一象限内此抛物线上与AC 距离最远的点.【答案】解:(1)∵抛物线y =a (x -h )2+k 顶点坐标为B (1,2),∴y =a (x -1)2+2,∵抛物线经过点A (0,1),∴a (0-1)2+2=1,∴a =-1,∴y =- (x -1)2+2=-x 2+2x +1. (2)∵A (0,1),C 的坐标为(1,0) ∴OA=OC ,∴△OAC 是等腰直角三角形 过点O 作AC 的垂线l ,根据等腰三角形的“三线合一”知:l 是AC 的中垂线, ∴l 与抛物线的交点即为点P.如图,直线l 的解析式为y=x ,解方程组⎩⎨⎧++-==122x x y x y 得得x 15=2,=x 2152(舍) 当=x 152时,y 5=2.∴点P 的坐标为(52,52).(3)点P 不是第一象限内此抛物线上与AC 距离最远的点. 由(1)知,点C 的坐标为(1,0). 设直线AC 为y =kx +b ,则b k b =1⎧⎨+=0⎩,解之,得k b =-1⎧⎨=1⎩,∴直线AC 为y =-x +1.设与AC 平行的直线的解析式为y =-x +m . 解方程组⎩⎨⎧++-=+-=122x x y mx y 代入消元,得-x 2+2x +1=-x+m ,∵此点与AC 距离最远,∴直线y =-x +m 与抛物线有且只有一个交点,即方程-x 2+2x +1=-x+m 有两个相等的实数根.整理方程得:x 2-3x + m- 1=0 ⊿=9-4(m- 1)=0,解之得m =134. 则x 2-3x +134- 1=0,解之得x x 123==2,此时y=74. ∴第一象限内此抛物线上与AC 距离最远的点的坐标为(32,74).。
广西梧州市2016年初中毕业升学考试抽样调研测试(二)数学试题(
2016年梧州市初中毕业升学考试抽样调研测试卷(二)数学参考答案及评分标准一、选择题(本大题共12小题,每小题3分,共36分.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ADCBDACCDBBA二、填空题(本大题共6小题,每小题3分,共18分.三、解答题(本大题共8小题,满分66分.) 19.解:原式=152122-+⨯+………………………………………4分 = 7 ……………………………………………………6分20.证明: 连接OC ,∵OB OC =∴B ∠=∠3, ∵CB OD //∴B ∠=∠∠=∠1,32, ………………2分 ∴21∠=∠ ∵OC OA =,OD OD =∴△OAD ≌△OCD ………………4分 ∴ A OCD ∠=∠ ………………5分∵ CD 是切线 ∴︒=∠90OCD ∴︒=∠90A∴AD 是⊙O 的切线 ………………6分21.解:(1)请将条形统计图补充完整……………2分题号 13 14 15 16 17 18 答案 5)1)(1(2-+a a xy 10-=6 33+①②④B 05 10 15 20 2530 35 男生 女生A C D 28 3210 2615 15 259(2)被他们抽样调查的学生数是160位; ……………………4分(3)458001609=⨯(人)……………………………………6分 22.解:设飞机无风时的平均速度是h km x /,风速为h km y /,根据题意是:…1分⎩⎨⎧=-⨯=+⨯9750)(139750)(5.12y x y x …………………4分 解之得:⎩⎨⎧==15765y x ………………………7分答:飞机无风时的平均速度是h km /765,风速是h km /15.…………8分 23. 解:过C 点作AB CD ⊥于D ,设xm CD = ……………………2分∵︒=∠45CAD ∴x CD AD ==∴x BD -=4在BDC Rt ∆中,xx -=︒471tan , …………4分 ∴x x =-)4(9.2974.2≈x ………………6分又∵2.3974.2<所以不能进入车库。
广西梧州市初中毕业升学考试试题(数学)
梧州市初中毕业升学考试试题卷数 学说明:1.本试卷共8页(试题卷4页,答题卷4页),满分1考试时间1.2.答卷前,将准考证号、姓名写在答题卷密封线内,答案请写在答题卷相应的区域内,在试题卷上答题无效..........一、填空题(本大题共10小题,每小题3分,共30分.) 1.6的相反数是 ★ . 2.比较大小:-3 ★ -4.(用“>”“=”或“<”表示) 3.一组数据为1,2,3,4,5,6,则这组数据的中位数是 ★ .4.因式分解:1822-x = ★ .5.如图(1),△ABC 中,∠A =60°,∠C =40°,延长CB 到D ,则∠ABD = ★ 度. 6.将点A (1,-3)向右平移2个单位,再向下平移2个单位后得到点B (a ,b ),则ab = ★ . 7.某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知 AB =16m ,半径OA =10m ,则中间柱CD 的高度为 ★ m . 8.在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 ★ cm .9.一个扇形所在圆的半径为3c m ,扇形的圆心角为1则扇形的面积是 ★ cm 2. (结果保留π)10.图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = ★ . (用n 的代数式表示s )二、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.) 11.在函数21-=x y 中,自变量x 的取值范围是( ) A .2-≠x B .2≠x C .x ≤2 D .x ≥212.下列运算正确的是( )A .632a a a =⋅B .422a a a =+C .632)(a a -=- D .a a a =÷313.一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是( )A .43 B .41 C .32 D .31 14.不等式组2201x x +>⎧⎨--⎩≥的解集在数轴上表示为( )A .B .C .D .15.在下列对称图形中,对称轴的条数最少的图形是( )A .圆B .等边三角形C .正方形 (D )正六边形16.在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图(4),则这堆货箱共有( )A .6个B .5个C .4个D .3个 17.已知点A (11x y ,)、B (22x y ,)是反比例函数xky =(0>k )图象上的两点, 若210x x <<,则有( ) A .210y y <<B .120y y <<C .021<<y yD .012<<y y18.如图(5),正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则DOAO等于( ) A .352 B .31C .32D .21三、解答题(本大题共8小题,满分66分.)19.(本题满分6112sin 602-⎛⎫+- ⎪⎝⎭本题满分6分)解方程: 0)3(2)3(2=-+-x x x 21.(本题满分6分)为了解全市太阳能热水器的销售情况,某调查公司对人口为100万人的某县进行调查,对调查所得的数据整理后绘制成如图(6)所示的统计图.请据图解答下列问题:(1)该县销售中档..太阳能热水器 ★ 台. (2)若销售太阳能热水器的台数是的1.5倍,请补全图(6)-2的条形图.(3)若该县所在市的总人口约为500万人,估计全市销售多少台高档太阳能热水器.22.(本题满分8分)某工厂要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元.(1)设招聘甲种工种工人x 人,工厂付给甲、乙两种工种的工人工资共y 元,写出y (元)与x (人)的函数关系式;(2)现要求招聘的乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种 各招聘多少人时,可使得每月所付的工资最少? 23.(本题满分8分)如图(7),△ABC 中,AC 的垂直平分线MN 交AB 于 点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD . (1)求证:AD =CE ;(2)填空:四边形ADCE 的形状是 ★ . 24.(本题满分10分)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们0元报酬,若 按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元? 25.(本题满分10分)如图(8)所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD . (1)求证:DC =BC ;(2)若AB =5,AC =4,求tan∠DCE 的值. 26.(本题满分12分)如图(9)-1,抛物线23y ax ax b =-+经过A (1-,0),C (3,2-)两点,与y 轴交于点D ,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若直线)0(1≠+=k kx y 将四边形ABCD 面积二等分,求k 的值;(3)如图(9)-2,过点E (1,1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转180°得△MNQ (点M 、N 、Q 分别与点A 、E 、F 对应),使点M 、N 在抛物线上,作MG ⊥x 轴于点G ,若线段MG ︰AG =1︰2,求点M ,N 的坐标.梧州市初中毕业升学考试 数学参考答案及评分标准一、填空题(本大题共10小题,每小题3分,共30分.)二、选择题(本大题共8小题,每小题3分,共24分.)三、解答题(本大题共8小题,满分66分.) 19.解:原式=232232⨯-+ ······················ 3分 =3232-+ ······················· 4分题号 11 12 13 14 15 16 17 18 答案 B C A DBCAD题号 12 3 45 答案 6-> 3.5 2(x +3)(x -3)100 题号 67 8 910答案15-4103π2(1)n n +=23+ ··························· 6分:0)23)(3(=+--x x x ·························· 2分 0)33)(3(=--x x ························· 3分 03=-x 或033=-x ······················· 4分 即31=x 或12=x ························· 6分 21.解:(1) 600 ··························· 2分 (2)在右图上补全条形图如图. ······················ 4分(3)500÷100×1000×10%=500 ······················ 6分 22.解:(1))150(1000600x x y -+= ··················· 2分 150000400+-=x y ····················· 3分 (2)依题意得,1502x x -≥ ···················· 5分 50x ≤ ························· 6分 因为-400<0,由一次函数的性质知,当x =50时,y 有最小值 ······ 7分所以150-50=100答: 甲工种招聘50人,乙工种招聘100人时可使得每月所付的工资最少. (8分) 23.(1)证明:∵MN 是AC 的垂直平分线 ········ 1分∴OA =OC ∠AOD =∠EOC =90° ····· 3分∵CE ∥AB∴∠DAO =∠ECO ··········· 4分 ∴△ADO ≌△CEO ··········· 5分 ∴AD =CE ············· 6分(2)四边形ADCE 是菱形. ··········· 8分 (填写平行四边形给1分)24.解:(1)设甲队单独完成此项工程需x 天,由题意得 ············ 1分13266=+xx ··························· 3分 解之得15=x ···························· 4分经检验,15=x 是原方程的解. ··················· 5分所以甲队单独完成此项工程需15天, 乙队单独完成此项工程需15×32=10(天) ··············· 6分 (2)甲队所得报酬:8000615120000=⨯⨯(元) ············· 8分 乙队所得报酬:12000610120000=⨯⨯(元) ················ 10分 25.(1)证明:连接OC ··························· 1分 ∵OA =OC∴∠OAC =∠OCA∵CE 是⊙O 的切线 ∴∠OCE =90° ············· 2分 ∵AE ⊥CE∴∠AEC =∠OCE =90° ∴OC ∥AE ··············· 3分 ∴∠OCA =∠CAD∴∠CAD =∠BAC ············ 4分∴DC BC =∴DC =BC ······························ 5分 (2)∵AB 是⊙O 的直径 ∴∠ACB =90°∴3452222=-=-=AC AB BC ················ 6分 ∵∠CAE =∠BAC ∠AEC =∠ACB =90°∴△ACE ∽△ABC ·························· 7分∴AB ACBC EC =∴543=EC 512=EC······················· 8分 ∵DC =BC =3 ∴59)512(32222=-=-=CE DC ED ················ 9分 ∴4351259tan ===∠EC ED DCE ··················· 10分 26.(1)解:把A (1-,0),C (3,2-)代入抛物线 23y ax ax b =-+ 得⎩⎨⎧-=+-=+-⨯--2990)1(3)1(2b a a b a a ······················ 1分整理得⎩⎨⎧-==+204b b a ……………… 2分 解得⎪⎩⎪⎨⎧-==221b a ………………3分∴抛物线的解析式为 223212--=x x y ·················· 4分(2)令0223212=--x x 解得 1214x x =-=,∴ B 点坐标为(4,0)又∵D 点坐标为(0,2-) ∴AB ∥CD ∴四边形ABCD 是梯形. ∴S 梯形ABCD =82)35(21=⨯+ ········ 5分 设直线)0(1≠+=k kx y 与x 轴的交点为H ,与CD 的交点为T , 则H (k 1-,0), T (k3-,2-) ···· 6分 ∵直线)0(1≠+=k kx y 将四边形ABCD 面积二等分∴S 梯形AHTD =21S 梯形ABCD =4∴42)311(21=⨯-+-kk ········· 7分 ∴34-=k ················ 8分(3)∵MG ⊥x 轴于点G ,线段MG ︰AG =1︰2∴设M (m ,21+-m ), ··········· 9分∵点M 在抛物线上 ∴22321212--=+-m m m解得1231m m ==-,(舍去) ······· 10分∴M 点坐标为(3,2-) ······················· 11分根据中心对称图形性质知,MQ ∥AF ,MQ =AF ,NQ =EF ,∴N 点坐标为(1,3-) ······················· 12分。
2016年广西贺州市中考数学试卷
2016年广西贺州市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.1. 12的相反数是( )A.−12B.12C.−2D.2【答案】A【考点】相反数【解析】根据只有符号不同的两个数互为相反数解答.【解答】解:12的相反数是−12.故选A .2. 如图,已知∠1=60∘,如果CD // BE ,那么∠B 的度数为( )A.70∘B.100∘C.110∘D.120∘【答案】D【考点】平行线的判定与性质【解析】先根据补角的定义求出∠2的度数,再由平行线的性质即可得出结论.【解答】解:∵ ∠1=60∘,∴ ∠2=180∘−60∘=120∘.∵ CD // BE ,∴ ∠2=∠B =120∘.故选D .3. 下列实数中,属于有理数的是( )A.−√2B.√43C.πD.111D【考点】实数【解析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:A、−√2是无理数,故A错误;B、√43是无理数,故B错误;C、π是无理数,故C错误;D、111是有理数,故D正确;故选:D.4. 一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体【答案】B【考点】由三视图判断几何体【解析】根据三视图的知识,正视图为两个矩形,左视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱【解答】根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.5. 从分别标有数−3,−2,−1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A.1 7B.27C.37D.47【答案】D【考点】概率公式绝对值【解析】由标有数−3,−2,−1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵标有数−3,−2,−1,0,1,2,3的七张没有明显差别的卡片中,随机抽取所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:47.故选D.6. 下列运算正确的是()A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=5a4D.b3⋅b3=2b3【答案】A【考点】合并同类项同底数幂的乘法幂的乘方与积的乘方同底数幂的除法【解析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,合并同类项系数相加字母及指数不变,同底数幂的乘法底数不变指数相加,可得答案.【解答】A、幂的乘方底数不变指数相乘,故A正确;B、同底数幂的除法底数不变指数相减,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、同底数幂的乘法底数不变指数相加,故D错误;7. 一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或20【答案】C【考点】三角形三边关系等腰三角形的判定与性质【解析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8−4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.8. 若关于x的分式方程2x−ax−2=12的解为非负数,则a的取值范围是()A.a≥1B.a>1C.a≥1且a≠4D.a>1且a≠4C【考点】分式方程的解【解析】本题考查了分式方程的解.【解答】解:去分母得:2(2x−a)=x−2,解得:x=2a−23,由题意得:2a−23≥0且2a−23≠2,解得:a≥1且a≠4.故选C.9. 如图,将线段AB绕点O顺时针旋转90∘得到线段A′B′,那么A(−2, 5)的对应点A′的坐标是()A.(2, 5)B.(5, 2)C.(2, −5)D.(5, −2)【答案】B【考点】全等三角形的性质与判定坐标与图形变化-旋转【解析】由线段AB绕点O顺时针旋转90∘得到线段A′B′可以得出△ABO≅△A′B′O′,∠AOA′=90∘,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≅△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O顺时针旋转90∘得到线段A′B′,∴△ABO≅△A′B′O,∠AOA′=90∘,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,如图,∴∠ACO=∠A′C′O=90∘.∵∠COC′=90∘,∴∠AOA′−∠COA′=∠COC′−∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,{∠ACO=∠A′C′O,∠AOC=∠A′OC′, AO=A′O,∴△ACO≅△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(−2, 5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5, 2).故选B.10. 抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系内的图象大致为( )A. B.C. D.【答案】B【考点】二次函数的图象一次函数的图象反比例函数的图象【解析】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.【解答】解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=c的图象在第二、四象限.x故选B.11. 已知圆锥的母线长是12,它的侧面展开图的圆心角是120∘,则它的底面圆的直径为()A.2B.4C.6D.8【答案】D【考点】圆锥的计算【解析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【解答】设圆锥的底面半径为r.圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是120∘,∴弧长=120π×12=8π,180即圆锥底面的周长是8π,∴8π=2πr,解得,r=4,∴底面圆的直径为8.[1−(−1)n](n2−1)计算的结果()12. n是整数,式子18A.是0B.总是奇数C.总是偶数D.可能是奇数也可能是偶数【答案】C【考点】因式分解的应用【解析】[1−(−1)n](n2−1)计算的结果等根据题意,可以利用分类讨论的数学思想探索式子18于什么,从而可以得到哪个选项是正确的.【解答】解:当n是偶数时,1 8[1−(−1)n](n2−1)=18[1−1](n2−1)=0,当n是奇数时,1 8[1−(−1)n](n2−1)=18×(1+1)(n+1)(n−1)=(n+1)(n−1)4,设n=2k−1(k为整数),则(n+1)(n−1)4=(2k−1+1)(2k−1−1)4=k(k−1),∵0或k(k−1)(k为整数)都是偶数,故选C.二、填空题:本大题共6小题,每小题3分,共18分,请把答案填在答题卡对应的位置上,在试卷上作答无效.要使代数式√x+1x有意义,则x的取值范围是________.【答案】x≥−1且x≠0【考点】二次根式有意义的条件无意义分式的条件【解析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得{x+1≥0x≠0,解得x≥−1且x≠0.有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是________.【答案】6【考点】算术平均数中位数【解析】根据平均数为5,求出a的值,然后根据中位数的概念,求解即可.【解答】∵该组数据的平均数为5,∴2+a+4+6+75=5,∴a=6,将这组数据按照从小到大的顺序排列为:2,4,6,6,7,可得中位数为:6,据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为________人.【答案】9.4×106【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:940万人用科学记数法表示为9.4×106人,故答案为:9.4×106.如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为________.【答案】120∘【考点】全等三角形的性质等边三角形的判定方法【解析】先证明∴△DCB≅△ACE,再利用“8字型”证明∠AOH=∠DCH=60∘即可解决问题.【解答】解:如图:AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60∘,∴∠DCB=∠ACE,在△DCB和△ACE中,{CD=CA∠DCB=∠ACECB=CE,∴△DCB≅△ACE,∴∠CAE=∠CDB,∵∠DCH+∠CHD+∠BDC=180∘,∠AOH+∠AHO+∠CAE=180∘,∠DHC=∠OHA,∴∠AOH=∠DCH=60∘,∴∠AOB=180∘−∠AOH=120∘.故答案为120∘将m3(x−2)+m(2−x)分解因式的结果是________.【答案】m(x−2)(m−1)(m+1)【考点】提公因式法与公式法的综合运用【解析】先提公因式,再利用平方差公式进行因式分解即可.【解答】解:原式=m(x−2)(m2−1)=m(x−2)(m−1)(m+1).故答案为:m(x−2)(m−1)(m+1).如图,在矩形ABCD中,∠ABC的平分线BE与AD交于点E,∠BED的平分线EF与直线DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)【答案】6√2+3或18√2−9【考点】相似三角形的性质与判定平行线分线段成比例矩形的性质等腰直角三角形等腰三角形的判定与性质【解析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:①当点F在线段CD上时,如图,延长EF和BC,交于点G.∵ 矩形ABCD中,∠ABC的平分线BE与AD交于点E,∴ ∠ABE=∠CBE.∵ ∠AEB=∠CBE,∴ ∠ABE=∠AEB=45∘,∴ AB=AE=9,∴ BE=√92+92=9√2,又∵ ∠BED的平分线EF与DC交于点F,∴ ∠BEG=∠DEF.∵ AD // BC,∴ ∠G=∠DEF,∴ ∠BEG=∠G,∴ BG=BE=9√2.由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∼△GFC,∴CGDE =CFDF=CF2CF=12.设CG=x,DE=2x,则AD=9+2x=BC.∵ BG=BC+CG,∴ 9√2=9+2x+x,解得x=3√2−3,∴ BC=9+2x=9+2(3√2−3)=6√2+3;②当点F在DC的延长线上时,如图,作FH垂直AB的延长线于H,可得∠BEF=∠EFH,∵ BC//HF,∴ ∠BGE=∠EFH,∴ ∠BGE=∠BEG,∴ BG=BE=9√2.∵ GC//DE,易得△GFC∼△EFD,∴GCED =FCFD=12.设GC=x,则ED=2x,∴ AD=AE+ED=9+2x=BC,BG=BC−GC,∴ 9√2=9+2x−x,解得x=9√2−9,∴ BC=9+2(9√2−9)=18√2−9.故答案为:6√2+3或18√2−9.三、解答题:本大题共8题,满分66分,解答应写出文字说明、证明过程或演算步骤,在试卷上作答无效.计算:√4−(π−2016)0+|√3−2|+2sin60∘.【答案】原式=2−1+2−√3+2×√32=3−√3+√3=3.【考点】实数的运算零指数幂特殊角的三角函数值【解析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质分别化简求出答案.【解答】原式=2−1+2−√3+2×√32=3−√3+√3=3.解方程:x6−30−x4=5.【答案】去分母得:2x−3(30−x)=60,去括号得:2x−90+3x=60,移项合并得:5x=150,解得:x=30.【考点】解一元一次方程【解析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去分母得:2x−3(30−x)=60,去括号得:2x−90+3x=60,移项合并得:5x=150,解得:x=30.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1300名学生,试估计全校选择“音乐舞蹈”社团的学生人数.【答案】全校选择“音乐舞蹈”社团的学生人数是1300×35%=455人.【考点】条形统计图用样本估计总体【解析】(1)用书法的人数除以其所占的百分比即可求出抽样调查的学生总人数,用文学鉴赏、音乐舞蹈的人数除以总人数即可求出a、b的值;(2)用总人数乘以国际象棋的人数所占的百分比求出国际象棋的人数,再把条形统计图补充即可;(3)用该校总人数乘以全校选择“音乐舞蹈”社团的学生所占的百分比即可.【解答】解:(1)本次抽样调查的学生总人数是:20÷10%=200,×100%=30%,a=60200b=70×100%=35%,200(2)国际象棋的人数是:200×20%=40,条形统计图补充如下:(3)若该校共有1300名学生,则全校选择“音乐舞蹈”社团的学生人数是1300×35%=455(人),答:全校选择“音乐舞蹈”社团的学生人数是1300×35%=455人.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30∘,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:√2=1.414,√3=1.732)【答案】解:由题意得,AH=10米,BC=10米,在Rt△ABC中,∠CAB=45∘,∴AB=BC=10,在Rt△DBC中,∠CDB=30∘,∴DB=BC=10√3,tan∠CDB∴DH=AH−AD=AH−(DB−AB)=10−10√3+10=20−10√3≈2.7(米),∵ 2.7米<3米,∴该建筑物需要拆除.【考点】解直角三角形的应用-坡度坡角问题【解析】根据正切的定义分别求出AB、DB的长,结合图形求出DH,比较即可.【解答】解:由题意得,AH=10米,BC=10米,在Rt△ABC中,∠CAB=45∘,∴AB=BC=10,在Rt△DBC中,∠CDB=30∘,∴DB=BC=10√3,tan∠CDB∴DH=AH−AD=AH−(DB−AB)=10−10√3+10=20−10√3≈2.7(米),∵ 2.7米<3米,∴该建筑物需要拆除.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连结AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=√3,∠DCF=30∘,求四边形AECF的面积.(结果保留根号)【答案】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC.∵四边形ABCD是矩形,∴AD // BC,∴∠AFO=∠CEO.在△AOF和△COE中,{∠AFO=∠CEO,∠AOF=∠COE,OA=OC,∴△AOF≅△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=√3.在Rt△CDF中,∠DCF=30∘,∴DF=12CF,设DF=a,则CF=2a,由勾股定理可得:DF2+CD2=CF2,即a2+3=4a2,解得:a=1,∴CF=2∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF的面积为:EC⋅AB=2√3.【考点】菱形的面积矩形的性质菱形的判定勾股定理含30度角的直角三角形全等三角形的判定全等三角形的性质【解析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≅△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC.∵四边形ABCD是矩形,∴AD // BC,∴∠AFO=∠CEO.在△AOF和△COE中,{∠AFO=∠CEO,∠AOF=∠COE,OA=OC,∴△AOF≅△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=√3.在Rt△CDF中,∠DCF=30∘,∴DF=12CF,设DF=a,则CF=2a,由勾股定理可得:DF2+CD2=CF2,即a2+3=4a2,解得:a=1,∴CF=2∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF的面积为:EC⋅AB=2√3.某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据:√1.21=1.1,√1.44=1.2,√1.69=1.3,√1.96=1.4)【答案】这两年投入教育经费的平均增长率为10%按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费不能达到4250万元【考点】一元二次方程的应用【解析】(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2900(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求2018年该地区将投入教育经费.【解答】设增长率为x,根据题意2015年为2900(1+x)万元,2016年为2900(1+x)2万元.则2900(1+x)2=3509,解得x=0.1=10%,或x=−2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.2018年该地区投入的教育经费是3509×(1+10%)2=4245.89(万元).4245.89<4250,答:按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费不能达到4250万元.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.【答案】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=12(180∘−∠BAC=)=90∘−12∠BAC,∵∠BAC=2∠CBE,∴∠CBE=12∠BAC,∴∠ABC=∠ABE+∠CBE=(90∘−12∠BAC)+12∠BAC=90∘,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90∘,∵∠ABC=90∘,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴ADAB =ABAC,∵在Rt△ABC中,AB=8,BC=6,∴AC=√AB2+BC2=10,∴AD8=810,解得:AD=6.4,∵AE=AB=8,∴DE=AE−AD=8−6.4=1.6.【考点】切线的判定与性质【解析】(1)由AE=AB,可得∠ABE=90∘−12∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90∘,继而证得结论;(2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=12(180∘−∠BAC=)=90∘−12∠BAC,∵∠BAC=2∠CBE,∴∠CBE=12∠BAC,∴∠ABC=∠ABE+∠CBE=(90∘−12∠BAC)+12∠BAC=90∘,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90∘,∵∠ABC=90∘,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴ADAB =ABAC,∵在Rt△ABC中,AB=8,BC=6,∴AC=√AB2+BC2=10,∴AD8=810,解得:AD=6.4,∵AE=AB=8,∴DE=AE−AD=8−6.4=1.6.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10, 8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6, 8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.【答案】解:(1)∵四边形ABCD是矩形,B(10, 8),∴A(10, 0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得{100a+10b+c=036a+6b+c=8c=0,解得{a=−13b=103c=0,∴抛物线的解析式为y=−13x2+103x;(2)由题意可知:AD=DE,BE=10−6=4,AB=8,设AD=x,则ED=x,BD=AB−AD=8−x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8−x)2,解得x= 5,∴AD=5;(3)∵y=−13x2+103x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10, 5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=12,∴直线OD解析式为y=12x,令x=5,可得y=52,∴P点坐标为(5, 52).【考点】二次函数综合题【解析】(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x的方程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10, 8),∴A(10, 0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得{100a+10b+c=036a+6b+c=8c=0,解得{a=−13b=103c=0,∴抛物线的解析式为y=−13x2+103x;(2)由题意可知:AD=DE,BE=10−6=4,AB=8,设AD=x,则ED=x,BD=AB−AD=8−x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8−x)2,解得x= 5,∴AD=5;(3)∵y=−13x2+103x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10, 5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=12,∴直线OD解析式为y=12x,令x=5,可得y=52,∴P点坐标为(5, 52).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【中考试题】2016年广西梧州市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分)
1.的倒数是()
A.﹣ B.C.﹣6 D.6
2.下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是()
A.B.C.D.
3.若式子﹣3有意义,则m的取值范围是()
A.m≥3 B.m≤3 C.m≥0 D.m≤0
4.一元一次方程3x﹣3=0的解是()
A.x=1 B.x=﹣1 C.x= D.x=0
5.分解因式:2x2﹣2=()
A.2(x2﹣1)B.2(x2+1)C.2(x﹣1)2D.2(x+1)(x﹣1)
6.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()
A.相离 B.相切 C.相交 D.无法确定
7.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()
A.5 B.7 C.9 D.11
8.下列命题:
①对顶角相等;
②同位角相等,两直线平行;
③若a=b,则|a|=|b|;
④若x=0,则x2﹣2x=0
它们的逆命题一定成立的有()
A.①②③④B.①④C.②④D.②
9.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()
A.B.C.D.
10.青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A.7200(1+x)=8450 B.7200(1+x)2=8450
C.7200+x2=8450 D.8450(1﹣x)2=7200
11.在平面直角坐标系中,直线y=x+b与双曲线y=﹣只有一个公共点,则b的值是()A.1 B.±1 C.±2 D.2
12.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:
①a﹣b=0;
②当﹣2<x<1时,y>0;
③四边形ACBD是菱形;
④9a﹣3b+c>0
你认为其中正确的是()
A.②③④ B.①②④ C.①③④ D.①②③
二、填空题(本大题共6小题,每小题3分,共18分)
13.计算:3a﹣2a=.
14.2016年1月,梧州市西江特大桥完成桥墩水下桩基础,累计完成投资53 000 000元,其中53 000 000用科学记数法表示为.
15.点P(2,﹣3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是.16.若一个正多边形的一个外角等于18°,则这个正多边形的边数是.
17.如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是.
18.如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,则A n的坐标是.
三、解答题(本大题共8小题,满分66分)
19.计算:|﹣3|﹣(﹣2016)0+(﹣2)×(﹣3)+tan45°.
20.解不等式组,并在数轴上表示不等式组的解集.
21.在“立德树人,志愿服务”活动月中,学校团委为了解本校学生一个月内参加志愿服务次数的情况,随机抽取了部分同学进行统计,并将统计结果分别分成A、B、C、D四类,根据统计结果绘制了如图所示的两幅不完整的统计图.。