整系数多项的因式分解问题

合集下载

有理系数多项式可归结为整系

有理系数多项式可归结为整系

The Advanced Algebra
Dr. Zhi hui Li
证: 设整系数多项式 f ( x )有分解式 f ( x ) = g( x )h( x ) 其中 g ( x ), h( x ) ∈ Q[ x ], 且 ∂ ( g ( x ) ) , ∂ ( h( x ) ) < ∂ ( f ( x ) ) . 令 f ( x ) = a f1 ( x ), g ( x ) = r g1 ( x ), h( x ) = sh1 ( x ) 这里, 皆为本原多项式, 这里,f1 ( x ), g1 ( x ), h1 ( x ) 皆为本原多项式,a ∈ Z ,
是互素的, 其中 r , s 是互素的,则必有
s | a n , r | a0 .
The Advanced Algebra
Dr. Zhi hui Li
r 证: Q 是 f ( x ) 的有理根, 的有理根, s r 在有理数域上, ∴ 在有理数域上, ( x − ) | f ( x ) , s 从而 ( sx − r ) | f ( x ).
⇒ c = ± a,
即 c ∈ Z.
为整系数多项式. ∴ h( x ) = ch1 ( x ) 为整系数多项式.
The Advanced Algebra
Dr. Zhi hui Li
f ( x ) = an x n + an−1 x n−1 + L + a1 x + a0 定理12 定理12 设
r 是一个整系数多项式, 是它的一个有理根, 是一个整系数多项式,而 s 是它的一个有理根,
∴ an = bl cm , a0 = b0c0 . Q p | a0 , ∴ p | b0 或 p | c0 ,

第12讲 因式分解(四)

第12讲 因式分解(四)

随 堂


1.求方程 xy−2x−2y+7=0 的整数解。 解:xy−2x−2y+4=−3,得到(x−2)(y−2)=−3,其中 x−2、y−2 都是整数,
所以有
x − 2 =1 x − 2 = −1 x − 2 = 3 x − 2 = −3 或 或 或 , y − 2 = −3 y − 2 = 3 y − 2 = −1 y − 2 = 1
2 2 8 4 2 时,f( )= 3 + + − 2 =0,所以原式有因式为(3x−2), 3 3 27 9 3
3x3+x2+x−2=(3x3−2x2)+(3x2−2x)+(3x−2) =x2(3x−2)+3x(x−2)+(3x−2)=(3x−2)(x2+3x+1)。 例 2. (1)分解因式:8x4+6x3−19x2+3x+2。 (2)分解因式:x6+2x5+3x4+4x3+3x2+2x+1。 解: (1)当 x=1 时,f(1)=8+6−19+3+2=0,所以原式有因式(x−1), 8x4+6x3−19x2+3x+2=(8x4−8x3)+(14x3−14x2)−(5x2−5x)−(2x−2) =8x3(x−1)+14x2(x−1)−5x(x−1)−2(x−1)=(x−1)(8x3+14x2−5x−2) =(x−1)[(8x3−4x2)+(18x2−9x)+(4x−2)]=(x−1)(2x−1)(4x2+9x+2) =(x−1)(2x−1)(4x+1)(x+2)。 6 (2)x +2x5+3x4+4x3+3x2+2x+1=(x6+1)+(2x5+4x3+2x)+(3x4+3x2) =(x2+1)(x4−x2+1)+2x(x2+1)2+3x2(x2+1) =(x2+1)(x4+2x3+2x2+2x+1)=(x2+1)[(x4+2x2+1)+(2x3+2x)] =(x2+1)[(x2+1)2+2x(x2+1)]=(x2+1)4(x2+1+2x)=(x2+1)4(x+1)2。 例 3.阅读下列材料:已知二次三项式 2x2+5x+m 有一个因式是(x+3),求另一个因式以及 m 的值。 解:设另一个因式为(2x+n),得 2x2+5x+m=(x+3)(2x+n), 展开得 2x2+5x+m=2x2+(n+6)x+3n,

考点02 整式与因式分解【无答案】

考点02 整式与因式分解【无答案】

考点02 整式与因式分解中考数学中,整式这个考点一般会考学生对整式化简计算的应用,偶尔考察整式的基本概念,对整式的复习,重点是要理解并掌握整式的加减法则、乘除法则及幂的运算,难度一般不大。

因式分解作为整式乘法的逆运算,在数学中考中占比不大,但是依然属于必考题,常以简单选择、填空题的形式出现,而且一般只考察因式分解的前两步,拓展延伸部分基本不考,所以学生在复习这部分内容时,除了要扎实掌握好基础,更需要甄别好主次,合理安排复习方向。

考向一、整式的加减;考向二、幂的运算考向三、整式的乘除考向四、因式分解考向一:整式的加减1.整式的概念及注意事项:【易错警示】1.(2022秋•泉州期中)单项式﹣2πr3的系数和次数分别是()A.﹣2,4B.﹣2,3C.﹣2π,3D.2π,32.(2022秋•包河区期中)已知单项式2x3y m与单项式﹣9x n y2是同类项,则m﹣n的值为()A.﹣1B.7C.1D.113.(2022秋•陇县期中)下列说法中,错误的是()A.数字1也是单项式B.单项式﹣5x3y的系数是﹣5C.多项式﹣x3+2x﹣1的常数项是1D.3x2y2xy+2y3是四次三项式4.(2022秋•高邮市期中)已知代数式3a﹣b2的值为3,则8﹣6a+2b2的值为.5.(2022秋•鄂州期中)若多项式a(a﹣1)x2+(a﹣1)x+2是关于x的一次多项式,则a的值为()A.0B.1C.0或1D.不能确定2.整式的加减【易错警示】1.(2022秋•黄石期中)下列计算正确的是()A.6a﹣5a=1B.a+2a2=3aC.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b2.(2022秋•老河口市期中)一个长方形的周长为6a+8b,其中一边长为2a﹣b,则与其相邻的一边长为()A.a+5b B.a+b C.4a+9b D.a+3b3.(2022秋•江都区期中)如图,长方形ABCD是由四块小长方形拼成(四块小长方形放置时既不重叠,也没有空隙).其中②③两块小长方形的长均为a,宽均为b,若BC=2,则①④两块长方形的周长之和为()幂的运算A .8B .2a +2bC .2a +2b +4D .164.(2022秋•沈北新区期中)化简:6x 2﹣[4x 2﹣(x 2+5)]= .5.(2022秋•北碚区校级期中)若关于x 的多项式3ax +7x 3﹣bx 2+x 不含二次项和一次项,则a +b 等于( )A .﹣B .C .3D .﹣36.(2022秋•扬州期中)化简:(1)x 2﹣3x ﹣4x 2+5x ﹣6;(2)3(2x 2﹣xy )﹣(x 2+xy ﹣6).7.(2022秋•黔东南州期中)阅读材料:“如果代数式5a +3b 的值为﹣4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =﹣4两边同乘以2.得10a +6b =﹣8.仿照上面的解题方法,完成下面的问题:(1)已知a 2+a =0,求a 2+a +2022的值;(2)已知a ﹣b =﹣3.求3(a ﹣b )﹣a +b +5的值;(3)已知a 2+2ab =﹣2,ab ﹣b 2=﹣4,求2a 2+5ab ﹣b 2的值.考向二:幂的运算1.(2022秋•朝阳区校级期中)下列运算正确的是( )A .a 3+a 6=a 9B .a 6•a 2=a 12()()是正整数)且)>且都是正整数为正整数)都是正整数)都是正整数)p a a a a a n m n m a a a a n b a ab n m a a n m a a a p p n m n m n n n mn n m n m n m ,0(1)0(1,,,0((,(,(0≠=≠=≠=÷===•--+C.(a3)2=a5D.a4•a2+(a3)2=2a62.(2022秋•浦东新区校级期中)计算(﹣)2021•(﹣)2022的结果是()A.B.C.D.3.(2022秋•闵行区校级期中)已知a m=2,a2n=3,求a m+2n=.4.(2022秋•永春县期中)若a m=2,a n=3,a p=5,则a m+n﹣p=.5.(2022秋•朝阳区校级期中)(1)计算:(a4)3+a8•a4;(2)计算:[(x+y)m+n]2;(3)已知2x+3y﹣2=0,求9x•27y的值.6.(2022秋•浦东新区期中)阅读下列材料:一般地,n个相同的因数a相乘a•a…,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)写出(1)log24、log216、log264之间满足的关系式.(3)由(2)的结果,请你能归纳出一个一般性的结论:log a M+log a N=(a>0且a≠1,M>0,N>0).(4)设a n=N,a m=M,请根据幂的运算法则以及对数的定义说明上述结论的正确性.考向三:整式的乘除➢两个乘法公式可以从左到右应用,也可以从右到左应用;1.(2022春•南海区校级月考)下列各式中,计算正确的是()A.2a2•3a3=5a6B.﹣3a2(﹣2a)=﹣6a3C.2a3•5a2=10a5D.(﹣a)2•(﹣a)3=a52.(2022秋•阳信县期中)下列计算中,能用平方差公式计算的是()A.(x﹣2)(2﹣x)B.(﹣1﹣3x)(1+3x)C.(a2+b)(a2﹣b)D.(3x+2)(2x﹣3)3.(2022秋•铁西区校级月考)若(x+3)(2x﹣m)=2x2+nx﹣15,则()A.m=﹣5,n=1B.m=﹣5,n=﹣1C.m=5,n=1D.m=5,n=﹣14.(2022秋•思明区校级期中)设M=(x﹣1)(x﹣2),N=(2x﹣3)(x﹣2),则M与N的大小关系为()A.MN B.M≥N C.M=N D.M≤N5.(2022•雁塔区校级开学)如图,一块矩形土地的面积是x2+5xy+6y2(x>0,y>0),长为x+3y,则宽是()A.x﹣y B.x+y C.x﹣2y D.x+2y6.(2022秋•东城区校级期中)若(s﹣t)2=4,(s+t)2=16,则st=.7.(2022秋•阳信县期中)(1)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x=﹣2,y=﹣1.(2)利用乘法公式简算:20212﹣2020×2022.8.(2022秋•西湖区校级期中)如图,有三张正方形纸片A,B,C,它们的边长分别为a,b,c,将三张纸片按图1,图2两种不同方式放置于同一长方形中,记图1中阴影部分周长为l1,图2中阴影部分周长为l2.(1)若a=7,b=5,c=3,则长方形的周长为;(2)若b=7,c=4,①求l1﹣l2的值;②记图1中阴影部分面积为S1,图2中阴影部分面积为S2,求S2﹣S1的值.考向四:因式分解基本概念公因式多项式各项都含有的相同因式因式分解把一个多项式化成几个整式的积的形式,这种式子变形叫做把这个多项式因式分解一般步骤“一提”【即:提取公因式】“二套”【即:套用乘法公式】222222)())((babababababa+±=±-=-+完全平方公式:平方差公式:“三分组”【即:分组分解因式】基本不考,如果考,多项式项数一般在四个及以上“二次三项想十字”【即:十字相乘法】()()()qxpxqpxqpx++=•+++2➢由定义可知,因式分解与整式乘法互为逆运算;➢公因式是各项系数的最大公约数与相同字母的最低次幂的积;单独的公因数也是公因式;➢将多项式除以它的公因式从而得到多项式的另一个因式;➢乘法公式里的字母,可以是单独的数字,也可以是一个单项式或者多项式;➢分解因式必须分解彻底,即分解到每一个多项式都不能再分解为止;1.(2022春•三水区校级期中)若二次三项式x2+mx﹣8可分解为(x﹣4)(x+2),则m的值为()A.1B.﹣1C.﹣2D.22.(2022秋•张店区期中)将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,例如,由图1可得等式:x2+(p+q)x+pq=(x+p)(x+q).将图2所示的卡片若干张进行拼图,可以将二次三项式a2+3ab+2b2分解因式为()A.(a+b)(2a+b)B.(a+b)(3a+b)C.(a+b)(a+2b)D.(a+b)(a+3b)3.(2022秋•南安市期中)已知a=2020x+2020,b=2020x+2021,c=2020x+2022,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.34.(2022春•顺德区校级月考)三角形三边长分别是a,b,c,且满足a2﹣b2+ac﹣bc=0,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.形状不确定5.(2022秋•长宁区校级期中)因式分解:=.6.(2022秋•肇源县期中)因式分解:(1)15a3+10a2;(2)﹣3ax2﹣6axy+3ay2.7.(2022秋•巴南区校级期中)对于一个三位数,若其各个数位上的数字都不为0且互不相等,并满足十位数字最大,个位数字最小,且以各个数位上的数字为三边可以构成三角形,则称这样的三位数为“三角数”.将“三角数”m任意两个数位上的数字取出组成两位数,则一共可以得到6个两位数,其中十位数字大于个位数字的两位数叫“全数”,十位数字小于个位数字的两位数叫“善数”,将所有“全数”的和记为Q(m),所有“善数”的和记为S(m),例如:Q(562)=62+52+65=179,S(562)=26+25+56=107;(1)判断:342 (填“是”或“不是”)“三角数”,572 (填“是”或“不是”)“三角数”,若是,请分别求出其“全数”和“善数”之和.(2)若一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若“三角数”n满足Q(n)﹣S(n)和都是完全平方数,请求出所有满足条件的n.1.(2022•攀枝花)下列各式不是单项式的为()A.3B.a C.D.x2y2.(2022•巴中)下列运算正确的是()A.=﹣2B.()﹣1=﹣C.(a2)3=a6D.a8÷a4=a2(a≠0)3.(2022•淄博)计算(﹣2a3b)2﹣3a6b2的结果是()A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b24.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b25.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x6.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)27.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.128.(2022•广州)分解因式:3a2﹣21ab=.9.(2022•宜宾)分解因式:x3﹣4x=.10.(2022•巴中)因式分解:﹣a3+2a2﹣a=.11.(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.12.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.13.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.14.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.15.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.1.(2022•徐州)下列计算正确的是()A.a2•a6=a8B.a8÷a4=a2C.2a2+3a2=6a4D.(﹣3a)2=﹣9a2 2.(2022•黔西南州)计算(﹣3x)2•2x正确的是()A.6x3B.12x3C.18x3D.﹣12x33.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是()A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)4.(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣45.(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+16.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.37.(2022•绵阳)因式分解:3x3﹣12xy2=.8.(2022•丹东)因式分解:2a2+4a+2=.9.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=.10.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.11.(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.12.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣.(2)先化简,再求值:(x+3)2+(x+3)(x﹣3)﹣2x(x+1),其中x=.13.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.14.(2022•河北)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.15.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.1.(2022•肥东县校级模拟)下列各式中计算结果为x2的是()A.x2•x B.x+x C.x8÷x4D.(﹣x)22.(2022•雁塔区模拟)下列计算正确的是()A.(12a4﹣3a2)÷3a2=4a2B.(﹣3a+b)(b﹣a)=﹣2ab﹣3a2+b2C.(a﹣b)2=a2﹣b2D.(b+2a)(2a﹣b)=﹣b2+4a23.(2022•环江县模拟)如图,某底板外围呈正方形,其中央是边长为x米的空白小正方形,空白小正方形的四周铺上小块正方形花岗石(即阴影部分),恰好用了144块边长为0.8米的正方形花岗石,则边长x 的值是()A.3米B.3.2米C.4米D.4.2米4.(2022•路南区三模)在化简3(a2b+ab)﹣2(a2b+ab)◆2ab题中,◆表示+,﹣,×,÷四个运算符号中的某一个.当a=﹣2,b=1时,3(a2b+ab)﹣2(a2b+ab)◆2ab的值为22,则◆所表示的符号为()A.÷B.×C.+D.﹣5.(2022•蓬江区一模)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.a2﹣4b2C.a2﹣2ab+b2D.﹣a2﹣b26.(2022•峨眉山市模拟)若把多项式x2+mx﹣12分解因式后含有因式x﹣6,则m的值为()A.2B.﹣2C.4D.﹣47.(2022•五华区校级模拟)观察后面一组单项式:﹣4,7a,﹣10a2,13a3,…,根据你发现的规律,则第7个单项式是()A.﹣19a7B.19a7C.﹣22a6D.22a68.(2022•张店区二模)如图,在矩形ABCD中放入正方形AEFG,正方形MNRH,正方形CPQN,点E在AB上,点M、N在BC上,若AE=4,MN=3,CN=2,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.89.(2022•邯郸二模)若20222022﹣20222020=2023×2022n×2021,则n的值是()A.2020B.2021C.2022D.202310.(2022•碑林区模拟)计算:(2x+1)(2x﹣1)(4x2+1)=.11.(2022•玉树市校级一模)分解因式:a2﹣16=.12.(2022•五华区校级模拟)已知x+y=2,xy=﹣3,则x2y+xy2=.13.(2022•丽水二模)如图1,将一个边长为10的正方形纸片剪去两个全等小长方形,得到图2,再将剪下的两个小长方形拼成一个长方形(图3),若图3的长方形周长为30,则b的值为.14.(2022•潮安区模拟)一个长方形的面积为10,设长方形的边长为a和b,且a2+b2=29,则长方形的周长为.15.(2022•雁塔区校级模拟)化简:(x﹣3)2﹣(x+1)(x﹣4).16.(2022•南关区校级模拟)已知a2+2a﹣2=0,求代数式(a﹣1)(a+1)+2(a﹣3)的值.17.(2022•安徽模拟)某学习小组在研究两数的和与这两数的积相等的等式时,有下面一些有趣的发现:①由等式3+=3×发现:(3﹣1)×(﹣1)=1;②由等式+(﹣2)=×(﹣2)发现:(﹣1)×(﹣2﹣1)=1;③由等式﹣3+=﹣3×发现:(﹣3﹣1)×(﹣1)=1;…按照以上规律,解决下列问题:(1)由等式a+b=ab猜想:,并证明你的猜想;(2)若等式a+b=ab中,a,b都是整数,试求a,b的值.18.(2022•万州区校级一模)如果一个自然数M的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A与B的十位数字相同,个位数字之和为8,则称数M为“团圆数”,并把数M分解成M=A×B 的过程,称为“欢乐分解”.例如:∵572=22×26,22和26的十位数字相同,个位数字之和为8,∴572是“团圆数”.又如:∵334=18×13,18和13的十位数字相同,但个位数字之和不等于8,∴234不是“团圆数”.(1)判断195,621是否是“团圆数”?并说明理由.(2)把一个“团圆数”M进行“欢乐分解”,即M=A×B,A与B之和记为P(M),A与B差的绝对值记为Q(M),令G(M)=,当G(M)能被8整除时,求出所有满足条件的M的值.。

因式分解方法及其练习

因式分解方法及其练习

因式分解【知识要点】1 •因式分解概念:把一个多项式化成几个整式的乘积的形式,这就叫做把这个多项式因式分解,也可称为将这个多项式分解因式,它与整式乘法互为逆运算。

2因式分解的方法:①提公因式法;(1)多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

(2)公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母;③指数:相同字母的最低次幂。

②.公式法:(1)常用公式平方差:a2 _ b2 = (a b)(a _ b)完全平方:a2 _2ab b2 (a_b)23 3 2 2立方和:a +b =(a+b)(a -ab+b );立方差:a3-b3=(a-b)(a 2+ab+b2).下面再补充几个常用的公式:2 2 2 2⑸a +b +c +2ab+2bc+2ca=(a+b+c);3.3 3 2.2 2 (6) a +b +c -3abc=(a+b+c)(a +b +c - ab-bc-ca);(7) a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+,+ab n-2+b n-1)其中n为正整数;n n n-1 n-2 n-3 2(8) a -b =(a+b)(a -a b+a b -,+ab n-2-b n-1),其中n为偶数;n . n n-1 n-2 . n-3 .2(9) a +b =(a+b)(a -a b+a b -,-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1分解因式:5n-1 n 3n-1 n+2 n-1 n+4(1) -2x y +4x y -2x y ;(2) x 3-8y 3-z 3-6xyz ;2 2 2⑶a +b +c -2bc+2ca-2ab ;(4)a 7-a 5b2+a2b5-b7.解(1)原式=-2x n-1y n(x 4n-2x 2ny2+y4) =-2x n-1y n[(x 2n)2-2x 2ny2+(y2)2]=-2x n-1y n(x2n-y 2)2=-2x n-1y n(x n-y) 2(x n+y)2.⑵原式=x3+(-2y) 3+(-z) 3-3x(-2y)(-Z)2 2 2=(x-2y-z)(x +4y +z +2xy+xz-2yz).(3) 原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b) +2c(a-b)+c=(a-b+c)本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b) 2+c2+2(-b)c+2ca+2a(-b)=(a-b+c) 2(4) 原式=(a7-a5b2)+(a 2b5-b7)5 2 2 5 2 2、=a (a -b )+b (a -b )=(a 2-b 2)(a 5+b5) =(a+b)(a-b)(a+b)(a4-a 3b+a2b2-ab 3+b4)=(a+b) 2(a-b)(a 4-a 3b+a2b2- ab3+b4) 例2分解因式:a3+b3+c3-3abc .本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b) 3=a3+3a2b+3ab2+6的正确性,现将此公式变形为a3+b3=(a+b) 3-3ab(a+b).这也是一个常用的公式,本题就借助于它来推导.解原式=(a+b) 3-3ab(a+b)+c 3-3abc =[(a+b)3+c3] -3ab(a+b+c) =(a+b+c)[(a+b) 2-c(a+b)+c 2]-3ab(a+b+c) =(a+b+c)(a2+b2+c-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc =* Ca + b + e)(备鼻+2b*+2c,*2曲-=j (a + b + D)L Ca b) 3 + Cb-c) : - (c -B O2],显然,当a+b+c=0 时,则a3+b3+c3=3abc ;当a+b+c > 0 时,贝U a3+b3+c3- 3abc > 0,即a3+b3+c3> 3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3>0,y=b3>0,z=c3> 0,则有等号成立的充要条件是x=y=z .这也是一个常用的结论.例3 分解因式:x15+x14+x13+, +x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0, 由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x 15+x14+x13+,x2+x+1),所以原天二------------------------- H -------- TK -1間+1)聞+1)(『町血+ 1)虻1)= n・(K9+I)(X'+1)[22+1)(X +1).说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.(2)常见的两个二项式幂的变号规律:①(a-b)2n =(b-a)2n;②(a_b)2n° =~(b_a)22. (n 为正整数)【课前热身】1 •计算下列各式:(1)(m 4)(m - 4) = ___________(2)(y-3)2= _____________________(3)3x(x _ 1) = ____________(4)m(a b c) = ______________________2 •根据上题填空:(1)3X2_3X= ______________2(2)m -16= _______________(3)ma mb mc= ____________________2(4)y - 6y 9 = _____________【典型题】1把下列各式分解因式32(1)4q(1 - p) 2(p-1)(2) 3m(x_ y) _ n(y _ x)(3) m(5ax ay -1) - m(3ax- ay - 1)1 2 2 1 3(4)a (x - 2a) a(2a - x)2 42把下列各式分解因式(1)25_16x2_____________2 1 2(2)9a2__________ b2=42 2(3)9(m n) _(m_n) = __________(4)2x -8x= _____________3把下列各式分解因式(1)(m n)2 - 6(m n) 92 2(2)3ax 6axy 3ay2 23 3•观察下列各组式子,其中有公因式的是/八m n 2mn 4(4) n ()① 2y x 与x y ;9 3= ② 3a(m - n)与-m n ;4〒算③a—b与2(a b);1 x2x3 +3工6工9 +5xl0>d5+7xl4x21 ④ x? _y?与(y _x)21 3 5 3 9 15 5 15 25 7 21 35A.①③ B.②③ C.②④ D.③④ 4•多项式b2n -b n提公因式b n后,另一个因式是()n 2n』2n』nA. b -1B.b -1c. b D• b5•下列多项式中,在有理数范围内不能用平方差公式分解因式的是( )A. -x2 z2B . X2 -162 . x2(a b)2 2x(a2-b2) (a-b)2四、解答1 .求证:对于任意的正整数n,3「2 -2nJ 3n - 2n一定是10 的倍数。

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

知识回顾专题03整式的运算与因式分解2023年中考数学必考考点总结1.合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。

2.整式的加减的实质:合并同类项。

3.整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。

②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。

③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。

④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。

4.乘法公式:①平方差公式:()()22b a b a b a -=-+。

②完全平方公式:()2222b ab a b a +±=±。

5.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22完全平方公式:()2222b a b ab a ±=+±。

③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。

专题练习31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+b 2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21.【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时,原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值:(1)(x ﹣x 1)2;(2)x 4+41x .【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵,∴===﹣4x •=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。

因式分解的通用方法(目前最牛完整的课程教案)(4)

因式分解的通用方法(目前最牛完整的课程教案)(4)

因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2———a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3------a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

浅谈一元整系数多项式的因式分解方法

浅谈一元整系数多项式的因式分解方法

浅谈一元整系数多项式的因式分解方法作者:尹雯静来源:《速读·下旬》2018年第01期摘要:多项式的因式分解是数学学习中一项基本的技能。

在分式运算、解方程和各种恒等变换中都常用到因式分解。

但多项式因式分解的方法灵活多变,在分解时需要各种技巧。

本文对一元多项式的因式分解进行了初步探索,阐述了一元多项式分解的两种方法。

关键词:一元多项式;因式分解;分组分解;待定系数在实际学习的过程中,总会遇到多项式因式分解的问题,但由于多项式的因式分解没有刻板的程序可以依循,往往使人感觉难度较大,不好掌握。

本文主要是给出因式分解的两种比较容易和实用的方法。

1分组分解法分组分解法是因式分解中常用的一种方法,运用此类方法分解的多项式各项之间的联系比较明显,有些项之间存在公因式,因此可以进行提取公因式等步骤。

而此类解法常与拆项添项法合并使用,通过拆项或添项建立起各项之间的联系。

第一步:观察多项式的结构,可以适当利用拆项或添项的方法将多项式分成若干组;第二步:将分组情况进行适当的调整,使每组中各项可以提取公因式,且各组之间也有公因式存在;第三步:通过多次提取公因式,将多项式表示为几个部分的乘积,完成分解。

例题1:在有理数集内分解[x3+6x2+11x+6]的因式。

解:首先我们可以通过拆项将多项式分为有公因式的两组:原式[=x3+6x2+11x+6=x3+6x2+9x+(2x+6)][=xx2+6x+9+2x+3=x(x+3)2+2(x+3)][=(x+3)xx+3+2] (1)式有两项构成,但是方括号内的部分显然没有分解完成,而且项与项之间不含公因式,也不能直接利用公式和分组分解,故需打开括号重新组合。

为了方便说明我们将中括号中的多项式单独提出来进行分解。

[xx+3+2=x2+3x+2=x2+x+2x+2=xx+1+2x+1=(x+1)(x+2)]故[x3+6x2+11x+6=(x+1)(x+2)(x+3)]。

例题2:在有理数集内分解[x5+x-1]。

因式分解常用的六种方法详解

因式分解常用的六种方法详解

因式分解常用的六种方法详解因式分解常用的六种方法详解因式分解是代数式变形的基本形式之一,它被广泛地应用于初等数学中,并成为解决许多数学问题的有力工具。

因式分解方法灵活,技巧性强,研究这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。

本文将介绍因式分解的方法、技巧和应用。

1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) $a^2-b^2=(a+b)(a-b)$;2) $a^2±2ab+b^2=(a±b)^2$;3) $a^3+b^3=(a+b)(a^2-ab+b^2)$;4) $a^3-b^3=(a-b)(a^2+ab+b^2)$。

下面再补充几个常用的公式:5) $a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2$;6) $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$;7) $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+…+ab^{n-2}+b^{n-1})$,其中$n$为正整数;8) $a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…+ab^{n-2}-b^{n-1})$,其中$n$为偶数;9) $a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…-ab^{n-2}+b^{n-1})$,其中$n$为奇数。

在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。

例如,分解因式:1) $-2x^{5n-1}y^n+4x^{3n-1}y^n+2-2x^{n-1}y^n+4$原式=$-2x^{n-1}y^n(x^{4n-2}-2x^{2n}y^2+y^4)$2x^{n-1}y^n[(x^{2n})^2-2x^{2n}y^2+(y^2)^2]$2x^{n-1}y^n(x^{2n}-y^2)^2$2x^{n-1}y^n(x^n-y)^2(x^n+y)^2$。

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)

因式分解培优题(超全面、详细分类)因式分解专题培优将一个多项式变形成几个整式的积的形式,这个变形过程称为因式分解。

初中阶段常用的因式分解方法如下:1.基本方法:提公因式法、公式法、十字相乘法、分组分解法。

2.常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法。

3.考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法。

一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现在可以反向使用它们来进行因式分解,例如:1) a^2 - b^2 = (a + b) (a - b)2) a^2 ± 2ab + b^2 = (a ± b)^23) a^3 + b^3 = (a + b) (a^2 - ab + b^2)4) a^3 - b^3 = (a - b) (a^2 + ab + b^2)以下是几个常用的公式:5) a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^26) a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)7) an - bn = (a - b) (an-1 + an-2b + an-3b^2 + … + abn-2 + bn-1),其中n为正整数;8) an - bn = (a + b) (an-1 - an-2b + an-3b^2 - … + abn-2 - bn-1),其中n为偶数;9) an + bn = (a + b) (an-1 - an-2b + an-3b^2 - … - abn-2 + bn-1),其中n为奇数。

在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。

例如:例题1:分解因式:-2x^5n-1yn+4x^3n-1yn+2-2xn-1yn+4;例题2:分解因式:a^3 + b^3 + c^3 - 3abc。

《因式分解》知识梳理及经典例题

《因式分解》知识梳理及经典例题

《因式分解》知识梳理及经典例题【知识梳理】1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

例:13ax +13bx =13x(a +b)因式分解,应注意以下几点。

1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

{系数——取各项系数的最大公约数字母——取各项都含有的字母指数——取相同字母的最低次幂例:12a 3b 3c −8a 3b 2c 3+6a 4b 2c 2的公因式是 .解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分a 3b 3c,a 3b 2c 3,a 4b 2c 2都含有因式a 3b 2c ,故多项式的公因式是2a 3b 2c .②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。

多项式中第一项有负号的,要先提取符号。

(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

a.逆用平方差公式:a2−b2=(a+b)(a−b)b.逆用完全平方公式:a2±2ab+b2=(a±b)2c.逆用立方和公式:a3+b3=(a+b)(a2−ab+b2)(拓展)d.逆用立方差公式:a3−b3=(a−b)(a2+ab+b2)(拓展)注意:①公式中的字母可代表一个数、一个单项式或一个多项式。

中考《整式及因式分解》经典例题及解析

中考《整式及因式分解》经典例题及解析

整式及因式分解一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等. 二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.注:○1单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如2143a b -,这种表示就是错误的,应写成2133a b -;○2一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如325a b c -是6次单项式。

2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项. 3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项. 5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 6.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -.7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:m (a +b +c )=ma +mb +mc . (3)多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nb .8.乘法公式:(1)平方差公式:22()()a b a b a b +-=-. (2)完全平方公式:222()2a b a ab b ±=±+. 9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加. 三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 2.因式分解的基本方法:(1)提取公因式法:()ma mb mc m a b c ++=++.(2)公式法:运用平方差公式:²²()()a b a b a b -=+-.运用完全平方公式:22²2()a ab b a b ±+=±. 3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法:为两项时,考虑平方差公式;为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止. 以上步骤可以概括为“一提二套三检查”.经典例题 代数式及相关问题1.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费___________元. 【答案】()3015m n +【分析】根据单价×数量=总价,用代数式表示结果即可.【解析】解:根据单价×数量=总价得,共需花费()3015m n +元,故答案为:()3015m n +.【点睛】本题考查代数式表示数量关系,理解和掌握单价×数量=总价是解题的关键,注意当代数式是多项式且后面带单位时,代数式要加括号.2.若221m m +=,则2483m m +-的值是( ) A .4 B .3C .2D .1【答案】D【分析】把所求代数式2483m m +-变形为24(2)3m m +-,然后把条件整体代入求值即可. 【解析】∵221m m +=,∴2483m m +-=24(2)3m m +-=4×1-3=1.故选:D .【点睛】此题主要考查了代数式求值以及“整体代入”思想,解题的关键是把代数式2483m m +-变形为24(2)3m m +-.1.已知73a b =-,则代数式2269a ab b ++的值为_________. 【答案】49【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值.【解析】解:∵73a b =-,∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49.【点睛】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换. 2.点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A .5 B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【解析】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b , ∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A 同学拿出三张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学; 第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学, 请你确定,最终B 同学手中剩余的扑克牌的张数为___________________. 【答案】9【分析】把每个同学的扑克牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案. 【解析】设每个同学的扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +; 第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -); ∴B 同学手中剩余的扑克牌的数量是:33x ++-(3x -)9=.故答案为:9.【点睛】本题考查了列代数式以及整式的加减,解决此题的关键根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.经典例题 整式及其相关概念1.若多项式||22(2)1m n xyn x y -+-+是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【分析】直接利用多项式的次数确定方法得出答案. 【解析】解:Q 多项式||22(2)1m n xyn x y -+-+是关于x ,y 的三次多项式,20n ∴-=,1||3m n +-=,2n ∴=,||2m n -=,2m n ∴-=或2n m -=,4m ∴=或0m =,0mn \=或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.1.单项式3212a b 的次数是_____. 【答案】5.【分析】根据单项式次数的意义即可得到答案. 【解析】单项式3212a b 的次数是325+=.故答案为5. 【点睛】本题考查单项式次数的意义,解题的关键是熟练掌握单项式次数的意义. 2.下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y -【答案】C【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【解析】解:A.52x 与233x y 不是同类项,故本选项错误;B.3x 3y 2与233x y 不是同类项,故本选项错误;C.2312x y -与233x y 是同类项,故本选项正确;D.513y -与233x y 不是同类项,故本选项错误;故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.经典例题1.若单项式32m x y 与3m n xy +的值是_______________. 【答案】2【分析】先根据同类项的定义求出m 与n 的值,再代入计算算术平方根即可得.【解析】由同类项的定义得:13m m n =⎧⎨+=⎩解得12m n =⎧⎨=⎩2===故答案为:2.【点睛】本题考查了同类项的定义、算术平方根,熟记同类项的定义是解题关键.1.若单项式122m x y -与单项式2113n x y +是同类项,则m n +=___________. 【答案】4【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n 的值,再代入求解即可. 【解析】解:∵单项式122m x y -与单项式2113n x y +是同类项,∴m-1=2,n+1=2, 解得:m=3,n=1.∴m+n=3+1=4.故答案为:4.【点睛】本题考查了同类项的概念,正确理解同类项的定义是解题的关键. 2.若3m x y 与25n x y -是同类项,则m n +=___________. 【答案】3【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m 和n 的值,根据合并同类项法则合并同类项即可. 【解析】解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.经典例题 规律探索题1.观察下列一组数:﹣23,69,﹣1227,2081,﹣30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是_____. 【答案】(1)n-(1)3⨯+nn n 【分析】观察已知一组数,发现规律进而可得这一组数的第n 个数. 【解析】解:观察下列一组数:﹣23=﹣1123⨯,69=2233⨯,﹣1227=﹣3343⨯2081=4453⨯, ﹣30243=﹣5563⨯,…,它们是按一定规律排列的,那么这一组数的第n 个数是:(﹣1)n (1)3⨯+nn n , 故答案为:(1)n-(1)3⨯+nn n . 【点睛】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化寻找规律.1.按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是( ) A .()12n a --B .()2na -C .12n a -D .2n a【答案】A【分析】先分析前面所给出的单项式,从三方面(符号、系数的绝对值、指数)总结规律,发现规律进行概括即可得到答案.【解析】解:Q a ,2a -,4a ,8a -,16a ,32a -,…, 可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------∙∙∙∴ 第n 项为:()12.n a -- 故选A .【点睛】本题考查了单项式的知识,分别找出单项式的系数和次数的规律是解决此类问题的关键.2.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之个数记为2a ,第三个数记为3a ,……,【答案】20110【分析】根据所给数据可得到关系式【解析】由已知数据1,3,6,10,15,∴445102a ⨯==,2002002012a ⨯==【点睛】本题主要考查了数字规律题的知识经典例题1.如图,正方体的每条棱上放置相同数目则表达错误的是( )A .12(1)m -B .48(2)m m +【答案】A【分析】先根据规律求出小球的总个数【解析】解:由题可知求小球的总数的方法会衔接处的小球,则每条棱上剩下12(m-2)个小项B 中48(2)m m +-1216m =-,故B,C,【点睛】本题考查了图形的规律,合并同类行线之间的一列数:1,3,6,10,15,……,我们把,第n 个数记为n a ,则4200a a +=_________.()12n n n a +=,代入即可求值. ,……,可得()12n n n a +=, 20100,∴420020100+10=20110+=a a .的知识点,找出关系式是解题的关键. 同数目的小球,设每条棱上的小球数为m ,下列代数式- C .12(2)8m -+ D .1216m -,再将选项逐项化简求值即可解题.方法会按照不同的计数方法而规律不同,比如可以按照个小球,加上衔接处的8个小球,则小球的个数为12(B,C,D均正确,故本题选A. 并同类项,需要学生具有较强的逻辑抽象能力,能够不重我们把第一个数记为1a ,第二10.故答案为20110. 代数式表示正方体上小球总数,以按照一共有12条棱,去掉首尾2)81216m m -+=-,选够不重不漏的表示出小球的总数是解题关键.1. 把黑色三角形按如图所示的规律拼图案形,第③个图案中有6个黑色三角形A .10 B .15 【答案】B【分析】根据前三个图案中黑色三角形的个第⑤个图案中黑色三角形的个数.【解析】解:∵第①个图案中黑色三角形的第②个图案中黑色三角形的个数3=第③个图案中黑色三角形的个数6=∴第⑤个图案中黑色三角形的个数为1+2+【点睛】本题主要考查图形的变化规律,1+2+3+4+……+n .2.小明用大小和形状都完全一样的正方体方体上写“心”字,寓意“不忘初心”.其中案中有6个正方体,……按照此规律,从第体的概率是( )A .1100B .120【答案】D拼图案,其中第①个图案中有1个黑色三角形,第角形,…,按此规律排列下去,则第⑤个图案中黑色C .18D .21形的个数得出第n 个图案中黑色三角形的个数为1+2角形的个数为1, 1+2, 1+2+3,……1+2+3+4+5=15,故选:B .,解题的关键是根据已知图形得出规律:第n 个图正方体按照一定规律排放了一组图案(如图所示),每个其中第(1)个图案中有1个正方体,第(2)个图案中有从第(100)个图案所需正方体中随机抽取一个正方体C .1101D .2101第②个图案中有3个黑色三角中黑色三角形的个数为( )1+2+3+4+……+n ,据此可得个图案中黑色三角形的个数为每个图案中他只在最下面的正案中有3个正方体,第(3)个图正方体,抽到带“心”字正方【分析】根据图形规律可得第n 个图形共有1+2+3+4+...+n=()12n n +个正方体,最下面有n 个带“心”字正方体,从而得出第100个图形的情况,再利用概率公式计算即可.【解析】解:由图可知:第1个图形共有1个正方体,最下面有1个带“心”字正方体; 第2个图形共有1+2=3个正方体,最下面有2个带“心”字正方体; 第3个图形共有1+2+3=6个正方体,最下面有3个带“心”字正方体; 第4个图形共有1+2+3+4=10个正方体,最下面有4个带“心”字正方体;... 第n 个图形共有1+2+3+4+...+n=()12n n +个正方体,最下面有n 个带“心”字正方体;则:第100个图形共有1+2+3+4+ (100)()11001002+=5050个正方体,最下面有100个带“心”字正方体;∴从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是10025050101=, 故选:D .【点睛】本题考查了图形变化规律,概率的求法,解题的关键是总结规律,得到第100个图形中总正方体的个数以及带“心”字正方体个数.经典例题 幂的运算1.下列运算正确的是( ) A .236a a a ⋅= B .()325a a = C .22(2)2a a = D .32a a a ÷=【答案】D【分析】根据同底数幂的乘除法、幂的乘方、积的乘方逐项判断即可. 【解析】A 、23235a a a a +⋅==,此项错误;B 、()23236a a a ⨯==,此项错误C 、22(2)4a a =,此项错误;D 、3232a a a a -÷==,此项正确;故选:D .【点睛】本题考查了同底数幂的乘除法、幂的乘方、积的乘方,熟记整式的运算法则是解题关键.1.下列计算正确的是( ) A .a 3+a 3=a 6 B .(a 3)2=a 6C .a 6÷a 2=a 3D .(ab )3=ab3【答案】B【分析】根据合并同类项、同底数幂的乘除法、幂的乘方、积的乘方的计算法则进行计算即可. 【解析】解:3332a a a +=,因此选项A 不正确;32326()a a a ⨯==,因此选项B 正确;62624a a a a -÷==,因此选项C 不正确;333()ab a b =,因此选项D 不正确;故选:B .【点睛】本题考查合并同类项、同底数幂的乘除法、幂的乘方、积的乘方的计算方法,掌握相关运算方法是解题的关键.2.电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( ) A .302B B .308BC .10810B ⨯D .30210B ⨯【答案】A【分析】根据题意及幂的运算法则即可求解.【解析】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B ;故选A . 【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.经典例题 整式的运算1.先化简,再求值:22(2)(2)()2(2)(2)x y x y x x y x y x y +++-+-++,其中1,1x y =+=-.【答案】23y xy -;-.【分析】利用完全平方公式将原式化简,然后再代入计算即可.【解析】解:原式22[(2)(2)]x y x y x xy =+-+--22()x y x xy =---2222x xy y x xy =-+--23y xy =-当1,1x y =+=-时,原式21)1)=--+- 33=--=-。

【数学知识点】多项式的因式分解方法

【数学知识点】多项式的因式分解方法

【数学知识点】多项式的因式分解方法多项式的因式分解方法有提公因式法,公式法,十字相乘法,轮换对称法,分组分解法,拆添项法,配方法。

一、提公因式法如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

各项都含有的公共的因式叫做这个多项式各项的公因式。

公因式可以是单项式,也可以是多项式。

具体方法:在确定公因式前,应从系数和因式两个方面考虑。

当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。

当各项的系数有分数时,公因式系数为各分数的最大公约数。

如果多项式的第一项为负,要提出负号,使括号内的第一项的系数成为正数。

提出负号时,多项式的各项都要变号。

基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式;①找公因式可按照确定公因式的方法先确定系数再确定字母;②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。

二、公式法如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法。

三、十字相乘法十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

口诀:分二次项,分常数项,交叉相乘求和得一次项。

(拆两头,凑中间)(1)用十字相乘法分解二次项,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.(3)先以一个字母的一次系数分数常数项;(4)再按另一个字母的一次系数进行检验;(5)横向相加,纵向相乘。

因式分解难题举例

因式分解难题举例

因式分解难题举例一、巧用公式法1、分解因式:a3+b3+c3-3abc.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式a3+b3+c3-3ab=(a+b)3-3ab(a+b)+c3-3abc c是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式其变形为a3+b3+c3-3abc显然,当a+b+c=0时,那么a3+b3+c3=3abc;当a+b+c>0时,那么a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,那么有等号成立的充要条件是x=y=z.这也是一个常用的结论.2、分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开场,x 的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以二、拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进展因式分解.例4 分解因式:x3-9x+8.分析此题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.练习设置1. 假设a+b=3,a2b+ab2=-30,那么a3+b3的值是〔〕〔A〕117 〔B〕133 〔C〕-90 〔D〕1432. 1992,1994,1996=-==cba,那么)()()(baabaccacbbc+--++等于_____________3. 把代数式2)1()2)(2(-+-+-+xyyxxyyx分解成因式的乘积,应当是。

因式分解培优题型归纳总结完美

因式分解培优题型归纳总结完美

因式分解题型归纳总结知识梳理一、因式分解得定义:把一个多项式化成几个既约整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.二、因式分解常见形式:三、因式分解基本方法:“一提二代三分解”是因式分解的三种常见基本解法,“提”指的是提取公因式法,“代”指的是公式法(完全平方公式,平方差公式,立方差和立方和公式,三项完全平方公式),“分解”指的是分组分解的方法.①提取公因式法几个整式都含有的因式称为它们的公因式.例如:()2+4+6=2+2+3ma mb mc m a b c把每项的公因式,包括数和字母全部提出,当然有的时候把一个式子看成一个整体.②公式法因为因式分解和整式的乘法是互逆的,所以说常见的乘法公式要特别熟悉.平方差公式:()()a b a b a b 22+-=-完全平方公式:()a b a ab b 222+=+2+;()a b a ab b 222-=-2+ 立方差公式:()()a b a ab b a b 2233-++=- 立方和公式:()()a b a ab b a b 2233+-+=+三项完全平方公式:()a b c a b c ab ac bc 2222++=+++2+2+2完全立方公式:()a b a a b ab b 33223+=+3+3+ ;()a b a a b ab b 33223-=-3+3- 大立方公式:()()a b c abc a b c a b c ab ac bc 333222++-3=++++--- n 次方差公式:1221()()nnn n n n a b a b aa b ab b -----=-++++(n 为正整数) n 次方差差公式:1221()()nnn n n n a b a b a a b ab b ----+=+-+-+(n 为正奇数)③分组分解法一般地,分组分解大致分为三步:i .将原式的项适当分组;ii .对每一组进行处理(“提”或“代”); iii .将经过处理的每一组当作一项,再采用“提”或“代”进行分解. 四、十字相乘法五、双十字相乘法双十字相乘法的本质与十字相乘法是一致的,它一般适用于二元二次六项式或可视为于二元二次六项式的多项式的因式分解,双十字相乘法的步骤:对于形如Ax 2+Bxy +Cy 2+Dx +Ey +F 的多项式的因式分解,基本步骤是: (1)运用十字相乘法分解前三项组成的二次三项式;(2)在这个十字相乘图的右边再画一个十字,把常数项分解为两个因数,填在第二个十字的右端,使这两个因数与含y 的项的交叉之积的和等于原多项式中含y 的一次项Ey ,同时这两个因数与含x 的项的交叉之积的和等于原多项式中含x 的一次项Dx . 六、换元法如果在多项式中某个数或式子多次出现,那么可将这个数或式子用一个字母代替,这样做常常使多项式变得更为简单,结构更加清晰,从而易于发现因式. (1)整体换元(2)和积换元 七、主元法在对含有多个未知数的代数式进行因式分解时,可以选其中的某一个未知数为主元,把其他未知数看成是字母系数进行因式分解. 八、拆项和添项法1、拆项:把代数式中的某项拆成两项或几项的代数和,叫做拆项.2、添项:在代数式中添加两个相反项,叫做添项. 九、待定系数法将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式.然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法,其实质就是对于含有待定系数的恒等式,利用恒等概念和恒等定理,采用系数比较法或数值代入法. 如果两个多项式恒等,则左右两边同类项的系数相等.即,如果n n n n n n n n n n n n a x a x a x a x a b x b x b x b x b -1-21-1-21-1-210-1-210+++++=+++++恒成立,那么n n a b =,n n a b -1-1=,…,a b 11=,a b 00=.待定系数法的使用前提是知道所需要求的代数式的形式,根据代数式的形式把不确定的部分设为未知数,然后通过比较系数得到方程,进而求解. 十、余数定理与因式定理法1、余数定理:多项式f (x )除以x -c ,所得的余数为f (c ).2、因式定理:若多项式f (x )有一个因式x -c ,则f (c )=0;反之,若f (c )=0,则x-a 必为多项式f (x )的一个因式.3、整数系数多项式f (x )=a n x n +a n -1x n -1+…+a 1x +a 0的两个性质:性质1:设整数系数多项式f (x )的首项系数a n =1,且它有因式x -p (p 为整数),那么p 一定是常数项a 0的约数.例如x 2-2x -8的首项系数是1,它有因式x +2和x -1,-2和4都是常数项-8的约数. 性质2:设整数系数多项式f (x )的首项系数a n ≠1,且它有因式p x q -(pq为整数),那么q 一定是首项系数a n 的约数,p 一定是常数项a 0的约数. 例如,6x 3+x 2-1的首项系数a n =6不为1,它有因式12x -,不难看出分母2是a n =6的约数,分子1是常数项-1的约数.例如:分解因式:x x 3-3+2.观察可知,当x =1时,x x 3-3+2=0,则()x x x A 3-3+2=-1,其中A 为整式,即()x -1是多项式x x 3-3+2的一个因式.若要确定整式A ,则可用大除法.x x x x x x x x x x x x x x 2323222+-2-1+0⋅-3+2--3--2+2-2+2∴()()()()()()()x x x x x x x x x x 322-3+2=-1+-2=-1-1+2=-1+2.题型一 因式分解的定义例题1: 下列因式分解正确的是( ) A .()()()a b a b a b a b 2222-4+4=-4-4=-4+2-2 B .()m m m m 323-12=3-4C .()x y x y x y x y 422224-12+7=4-3+7D .()()m m m 24-9=2+32-3解析:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式因式分解。

本原多项式

本原多项式

bn , bn1,L , b1, b0 是互素的,
则称 g为( x本)原多项式.
§1.9 有理系数多项式
有关性质
1. f ( x) Q[x], r Q, 使 f ( x) rg( x), 其中 g为( x本)原多项式.
(除了相差一个正负号外,这种表示法是唯一的).
2.Gauss引理 定理10 两个本原多项式的积仍是本原多项式.
即 rs Z . f ( x) rsg1( x) h1( x). 得证.
§1.9 有理系数多项式
推论
设 f ( x), 是g(整x系)数多项式,且 是本原
g( x)
的,若 f ( x) g( x)h( x), 则h( x) Q[ x], h( x)
必为整系数多项式.
§1.9 有理系数多项式
(x r )| f (x) , s
又 r,互s素,
sx r 本原. 由上推论,有
f ( x) (sx r)(bn1xn1 L b1x b0 )
bi Z , i 0,1,L , n 1. 比较两端系数,得
an sbn1, a0 rb0 .
§1.9 有理系数多项式
所以, s | an , r | a.
2
( p 1)!
则 g(为x整) 系数多项式.
Q p | 1, p | p! , p! ,L , p! , 但 p2 | p! , ( p 1)! ( p 2)!
g( x) 在 Q上不可约,
§1.9 有理系数多项式
从而 f在( x)上不可Q约.
说明:
Q 对于许多 上的多项式来说,作适当线性代换后
b中j 第一b个0不,L能被, bm
p 整除的数,即
p | b0, p | b1,L , p | bj1, p | bj .

因式分解精选例题(附答案)

因式分解精选例题(附答案)

因式分解 例题讲解及练习【例题精选】:(1)3223220155y x y x y x ++ 评析:先查各项系数(其它字母暂时不看),确定5,15,20的最大公因数是5,确定系数是5 ,再查各项是否都有字母X ,各项都有时,再确定X 的最低次幂是几,至此确认提取X 2,同法确定提Y ,最后确定提公因式5X 2Y 。

提取公因式后,再算出括号内各项。

解:3223220155y x y x y x ++ =)431(522y xy y x -+ (2)23229123y x yz x y x -+-评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为3,且相同字母最低次的项是X 2Y解:23229123y x yz x y x -+- =)3129(2223y x yz x y x +-- =)43(32223y x yz x y x +--=)1423(32+--xy y x(3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中,y-x 和x-y 都可以做为公因式,但应避免负号过多的情况出现,所以应提取y-x解:原式=(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4) (4) 把343232x y x -分解因式评析:这个多项式有公因式2x 3,应先提取公因式,剩余的多项式16y 4-1具备平方差公式的形式解:343232x y x -=2)116(43-y x =2)14)(14(223+-y y x =)14)(12)(12(223++-y y y x(5) (5) 把827xy y x -分解因式评析:首先提取公因式xy 2,剩下的多项式x 6-y 6可以看作2323)()(y x -用平方差公式分解,最后再运用立方和立方差公式分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整系数多项式的因式分解问题摘要:多项式理论是高等代数与解析几何的重要内容,是进一步学习代数学及其他数学分支的必要基础。

多项式理论是整个高等代数与解析几何课程中一个相对独立而自成体系的部分,它不以高等代数与解析几何的其他章节的内容为基础,但却为高等代数与解析几何的其他部分提供理论依据。

本文主要讨论整系数多项式的基本概念与性质,多项式的根及其值,和在有理数域上的因式分解问题。

关键词:多项式;因式分解;Eisenstein 判断法;多项式的根;有理数域。

引言:在Q 上讨论多项式的因式分解问题,我们已经论证了在有理数域Q 上和在整数环Z 上其可约性是一致的,即在整数环Z 上若)()()(x h x g x f = (1)当然可以看成有理数域Q 上的多项式分解结果。

反过来,(1)式中)(x f 为整系数多项式,而)()(x h x g 、是有理数域Q 上的多项式,那么通过)()(x h x g 、的系数处理可以使其成为整系数多项式)()(11x h x g 、,满足)()()(11x h x g x f =,因此在Q 上讨论因式分解问题往往给出的只是整数环Z 上的多项式。

一.Eisenstein 判断法的研究此处介绍判断整系数多项式可约性的如下方法:定理1.1 设0111)(a x a x a x a x f n n n n ++⋅⋅⋅++=--是一个整系数多项式,若是能够找到一个素数p 。

使1)最高次项系数n a 不能被p 整除; 2)其余各项的系数都能被p 整除; 3)常数项0a 不能2p 整除, 那么多项式)(x f 在有理数域不可约。

这一方法叫做Eisenstein 判断法。

在判断一些多项式可约性及诸如无理数判断有其直接作用。

例1. 存在有理数域上的任意次不可约多项式。

事实上,下列整系数多项式2)(-=n x x f不论其n 取任意正整数,都存在素数p=2满足Eisenstein 判断法的条件。

例 2. 证明2是无理数。

(2)上述(2)中取n=2,若2是有理数,则2x 2-在Q 上可约,与Eisenstein 判断结果矛盾。

由此,我们可以判断以下数均为无理数⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,732,532,72,52,32,732,532,72,52,32,7,5,3,2,7,5,3,2,7,5,3,23333344443333一般地,n21t p p p ⋅⋅⋅(其中t p p p ,,,21⋅⋅⋅为互不相同的素数)均为无理数。

事实上t n p p p x x f ⋅⋅⋅-=21)(由Eisenstein 判断法可知不可约,若n 21t p p p ⋅⋅⋅为无理数,则多项式可约,矛盾。

Eisenstein 判别法为我们判断一个多项式是否不可约提供一种手段,但它并非是多项式不可约的必要条,事实上可以用Eisenstein 判断法判断其不可约的多项式并不是很多,经行适当研究可以进一步发挥Eisenstein 判断法的作用。

关于变换的问题例3. 设p 为一素数,多项式1)(21++⋅⋅⋅++=--x x x x f p p叫做分圆多项式,试证明)(x f 在有理数域上不可约。

直接用Eisenstein 判断法难以找到一个素数,而令1+=y x ,那么1)1()1()1()()1()(21+++⋅⋅⋅++++==+=--y y y y g y f x f p p由于1)()1(-=-p x x f x即y C y C y C y y y yg p p p p p p p p 122111)1()(---+⋅⋅⋅+++=-+=于是得到1211)(---+⋅⋅⋅++=p pp p p C y C y y g (3) 因为!)1()1(k k p p p C kp +-⋅⋅⋅-=,p k <≤1是一个整数,均能被p 整除,事实上,上式右端分子能被!k 整除,p k <,!k 与p 互素,因此1)k -(p 1)-(p |!+⋅⋅⋅k所以kp C 是p 的倍数。

这样,多项式(3)可以找到一个素数p ,p 不能整除(3)的最高次项的系数,可以整除(3)的其余系数,但常数项p C p p =-1不能被2p 整除,从而(3)在有理数域上不可约,那么)(x f 在有理数域上也不可约,因为如果在[]x Q 中存在)()(21x f x f 、使)()()(21x f x f x f = ,那么根据这个例子我们考虑以下两个问题:1))(x f 在有理数域上的可约性与)()(b y f y g +=或者)()(b ay f y g +=在有理数域上的可约性是否一致?2)当)(x f 无法用Eisenstein 判断法判断其可约性时是否一定可以通过某种变换后可以使用Eisenstein 判断法进行判断? 我们先来看如下问题。

定理1.2 在有理数域上多项式)(x f 与)()(b ay f y g +=可约性相同。

证明 设)(x f 在有理数域上不可约,但)(x g 在有理数域上可约,且设)()()()(21x g x g b ax f x g =+=其中 2,1,)()(0=∂<∂i x g x g i 令aby a x -=1,则 )1()1()1()(21aby a g a b y a g a b y a g y f --=-=, 说明)(x f 在有理数域上可约,矛盾。

反过来,)()(b ay f y g +=在有理数域上不可约,但)(x f 可约,且设)()()(21x f x f x f =其中2,1,)()(00=∂<∂i x f x f i ,那么)()()(21b ay f b ay f b ay f ++=+,即 )()()(21y f y f y g =, 与)(x g 不可约矛盾。

这个定理给我们采取变换后使用Eisenstein 判断法提供了理论保障,一些不能直接使用Eisenstein 判断法的多项式可采用适当的变换。

例4. 证明14+x 在有理数域上不可约。

证明: 令1+=y x ,则24641)1(123444++++=++=+y y y y y x取p=2,用Eisenstein 判断法即知2464)(234++++=y y y y y g不可约,从而14+x 也不可约。

二.多项式的根及其值与因式分解利用根研究多项式的因式分解在复数范围内是很常见的。

例5. 讨论1-n x 的因式分解。

解: 在复数范围内,1-n x 的n 个根是nk i n k k ππε2sin 2cos+=, 1,,1,0-⋅⋅⋅=n k ,所以 ∏-=-=-1)(1n k knx x ε在实数域上,当n 为奇数时,1-n x 只有一个实根10=ε,因此只有一个一次因式1-x ,其余的均为二次不可约因式,由相互共轭的非实根jε及)210(-≤<=-n j j n εε, 确定)210(12cos2))(())(()(2-≤<+-=--=--=-n j n j x x x x x x x j n j j j j πεεεεϕ, 所以∏-=+--=-2112)12cos2()1(1n j n nj x x x x π当n 为偶数时,1-n x 有两个实根:10=ε和12-=nε,因此只有两个一次因式1-x 和1+x ,其余的均为二次不可约因式,由相互共轭的非实根j ε及)20(nj j n j <<=-εε确定 12,,2,1,12cos2)(2-⋅⋅⋅=+-=nj n j x x x j πϕ, 所以∏-=+-+-=-1212)12cos2()1)(1(1nj n nj x x x x x π再有理数范围内的分解式根据的不同要具体分析,但有定理2.1 1|1--nd x x 的充要条件是n d |证明 充分性 设n d |,ε是一个d 次单位原根,即12,,,,1-⋅⋅⋅d εεε是1-d x 的所有根,由于1=dε,所以1=n ε,于是1,2,1,0,11)()(-⋅⋅⋅====d s s s n n s εε,说明1-dx 的根全是1-nx的根,故1|1--n d x x必要性 因为1|1--n dx x,设ε是1-d x 的一个原根di edi d πππε22sin 2cos =+=因此1|)(--dxx ε,从而1|)(--n x x ε,说明12sin 2cos)(22=+===dn i d n eedn indinππεππ, 即n d|,证毕。

例6. 设)()()()(x S x R x Q x P 、、、是整系数多项式,满足)()1()()()(2345255x S x x x x x R x x xQ x P ++++=++,即1-x 是)()()(x R x Q x P 、、的公因式。

解: 设ε是15-x 的原根,则432,,,εεεε是1234++++x x x x 的四个根,将32,,εεε带入本题所设的等式得)1()1()1(0)1()1()1(0)1()1()1(63422=++=++=++R Q P R Q P R Q P εεεεεε 这是关于)1()1()1(R Q P 、、的齐次线性方程组,其系数行列式 ∏≤≤≤≠-=31634220)(111j i j i εεεεεεεε ,从而只有零解,即0)1()1()1(===R Q P ,所以)(|1,)(|1,)(|1x R x x Q x x P x ---例7. 设)(x f 是整系数多项式,试证:如果)0(f 和)1(f 都是奇数,那么)(x f 不能有整数根。

证明: 若α是)(x f 的一个整数根,有)()()(1x f a x x f -=,)(1x f 是整系数多项式,于是)0()0(1f f α-=,)1()1()1(1f f α-=,因为α与α-1中有一个是偶数,所以)0(f 和)1(f 不可能都是奇数。

例8. 设d cx bx x x f +++=23)(是整系数多项式,如果cd bd +是奇数,则)(x f 在有理数域上不可约。

证明: 如果)(x f 在有理数域上可约,则在整数环上可约,于是存在整数r q p ,,,使d cx bx x r qx x p x x f +++=+++=232))(()(得到⎪⎩⎪⎨⎧==+=+d pr c r pq b q p 由cd bd +为奇数推出c b +和d 均为奇数,又由q p r p r pq q p c b )1(+++=+++=+为奇数推出q p )1(+为奇数,从而p +1为奇数,由此又得p 为偶数,矛盾!故)(x f 在有理数域上不可约。

相关文档
最新文档