人教中考数学平行四边形-经典压轴题及详细答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③同②的方法可证.
试题解析:(1)∵ AC,BD 是正方形的对角线,
∴ OA=OC=OB,∠ BAD=∠ ABC=90°,
∵ OE⊥AB,
∴ OE= 1 AB, 2
∴ AB=2OE, (2)①AF+BF=2OE 证明:如图 2,过点 B 作 BH⊥OE 于点 H
∴ ∠ BHE=∠ BHO=90° ∵ OE⊥MN,BF⊥MN ∴ ∠ BFE=∠ OEF=90° ∴ 四边形 EFBH 为矩形 ∴ BF=EH,EF=BH ∵ 四边形 ABCD 为正方形 ∴ OA=OB,∠ AOB=90° ∴ ∠ AOE+∠ HOB=∠ OBH+∠ HOB=90° ∴ ∠ AOE=∠ OBH ∴ △ AEO≌ △ OHB(AAS) ∴ AE=OH,OE=BH ∴ AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE. ②AF﹣BF=2OE 证明:如图 3,延长 OE,过点 B 作 BH⊥OE 于点 H
∵ 四边形 ABCD 是正方形,∴ ∠ DCF=90°.在 Rt△ FCD 中,∵ G 为 DF 的中点,∴ CG= 1 FD, 2
同理.在 Rt△ DEF 中,EG= 1 FD,∴ CG=EG. 2
(2)(1)中结论仍然成立,即 EG=CG. 证法一:连接 AG,过 G 点作 MN⊥AD 于 M,与 EF 的延长线交于 N 点. 在△ DAG 与△ DCG 中,∵ AD=CD,∠ ADG=∠ CDG,DG=DG,∴ △ DAG≌ △ DCG(SAS), ∴ AG=CG; 在△ DMG 与△ FNG 中,∵ ∠ DGM=∠ FGN,FG=DG,∠ MDG=∠ NFG,∴ △ DMG≌ △ FNG (ASA),∴ MG=NG. ∵ ∠ EAM=∠ AEN=∠ AMN=90°,∴ 四边形 AENM 是矩形,在矩形 AENM 中,AM=EN.在 △ AMG 与△ ENG 中,∵ AM=EN,∠ AMG=∠ ENG,MG=NG,∴ △ AMG≌ △ ENG(SAS), ∴ AG=EG,∴ EG=CG. 证法二:延长 CG 至 M,使 MG=CG,连接 MF,ME,EC.在△ DCG 与△ FMG 中, ∵ FG=DG,∠ MGF=∠ CGD,MG=CG,∴ △ DCG≌ △ FMG,∴ MF=CD,∠ FMG=∠ DCG, ∴ MF∥ CD∥ AB,∴ EF⊥MF. 在 Rt△ MFE 与 Rt△ CBE 中,∵ MF=CB,∠ MFE=∠ EBC=90°,EF=BE,∴ △ MFE≌ △ CBE ∴ ∠ MEF=∠ CEB,∴ ∠ MEC=∠ MEF+∠ FEC=∠ CEB+∠ CEF=90°,∴ △ MEC 为直角三角形.
3.已知:在菱形 ABCD 中,E,F 是 BD 上的两点,且 AE∥ CF. 求证:四边形 AECF 是菱形.
【答案】见解析 【解析】 【分析】 由菱形的性质可得 AB∥ CD,AB=CD,∠ ADF=∠ CDF,由“SAS”可证△ ADF≌ △ CDF,可得 AF=CF,由△ ABE≌ △ CDF,可得 AE=CF,由平行四边形的判定和菱形的判定可得四边形 AECF 是菱形. 【详解】 证明:∵ 四边形 ABCD 是菱形 ∴ AB∥ CD,AB=CD,∠ ADF=∠ CDF, ∵ AB=CD,∠ ADF=∠ CDF,DF=DF ∴ △ ADF≌ △ CDF(SAS) ∴ AF=CF, ∵ AB∥ CD,AE∥ CF ∴ ∠ ABE=∠ CDF,∠ AEF=∠ CFE ∴ ∠ AEB=∠ CFD,∠ ABE=∠ CDF,AB=CD ∴ △ ABE≌ △ CDF(AAS) ∴ AE=CF,且 AE∥ CF ∴ 四边形 AECF 是平行四边形 又∵ AF=CF, ∴ 四边形 AECF 是菱形 【点睛】 本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.
EF⊥x 轴交直线 AB 于点 F,以 EF 为一边向右作正方形 EFGH. (1)求边 EF 的长;
(2)将正方形 EFGH 沿射线 FB 的方向以每秒 10 个单位的速度匀速平移,得到正方形
E1F1G1H1,在平移过程中边 F1G1 始终与 y 轴垂直,设平移的时间为 t 秒(t>0). ①当点 F1 移动到点 B 时,求 t 的值; ②当 G1,H1 两点中有一点移动到直线 DE 上时,请直接写出此时正方形 E1F1G1H1 与△ APE 重叠部分的面积.
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图 1,正方形 ABCD 的一边 AB 在直尺一边所在直线 MN 上,点 O 是对角线 AC、BD
的交点,过点 O 作 OE⊥MN 于点 E.
(1)如图 1,线段 AB 与 OE 之间的数量关系为
.(请直接填结论)
(2)保证点 A 始终在直线 MN 上,正方形 ABCD 绕点 A 旋转 θ(0<θ<90°),过点 B 作
解得:xBaidu Nhomakorabea 13 , 3
∵ BD= AD2 AB2 =2 13 , ∴ OB= 1 BD= 13 ,
2
∵ BD⊥EF,
∴ EO= BE2 OB2 = 2 13 , 3
∴ EF=2EO= 4 13 . 3
点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质, 熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键
2.如图,矩形 ABCD 中,AB=6,BC=4,过对角线 BD 中点 O 的直线分别交 AB,CD 边于点 E,F. (1)求证:四边形 BEDF 是平行四边形; (2)当四边形 BEDF 是菱形时,求 EF 的长.
【答案】(1)证明见解析;(2) 4 13 . 3
【解析】 分析:(1)根据平行四边形 ABCD 的性质,判定△ BOE≌ △ DOF(ASA),得出四边形 BEDF 的对角线互相平分,进而得出结论; (2)在 Rt△ ADE 中,由勾股定理得出方程,解方程求出 BE,由勾股定理求出 BD,得出 OB,再由勾股定理求出 EO,即可得出 EF 的长. 详解:(1)证明:∵ 四边形 ABCD 是矩形,O 是 BD 的中点, ∴ ∠ A=90°,AD=BC=4,AB∥ DC,OB=OD, ∴ ∠ OBE=∠ ODF, 在△ BOE 和△ DOF 中,
BF⊥MN 于点 F.
①如图 2,当点 O、B 两点均在直线 MN 右侧时,试猜想线段 AF、BF 与 OE 之间存在怎样
的数量关系?请说明理由.
②如图 3,当点 O、B 两点 分别在直线 MN 两侧时,此时①中结论是否依然成立呢?若成
立,请直接写出结论;若不成立,请写出变化后的结论并证明.
③当正方形 ABCD 绕点 A 旋转到如图 4 的位置时,线段 AF、BF 与 OE 之间的数量关系
EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得 OA=OB,∠ AOB=90°,再根
据同角的余角相等求出∠ AOE=∠ OBH,然后利用“角角边”证明△ AOE 和△ OBH 全等,根据
全等三角形对应边相等可得 OH=AE,OE=BH,再根据 AF-EF=AE,整理即可得证;
②过点 B 作 BH⊥OE 交 OE 的延长线于 H,可得四边形 BHEF 是矩形,根据矩形的对边相等
∴ EF=GO,GF=EO,∠ GOE=90°, ∴ ∠ AOE+∠ AOG=90°. 在正方形 ABCD 中,OA=OB,∠ AOB=90°, ∴ ∠ AOG+∠ BOG=90°, ∴ ∠ AOE=∠ BOG. ∵ OG⊥BF,OE⊥AE, ∴ ∠ AEO=∠ BGO=90°. ∴ △ AOE≌ △ BOG(AAS), ∴ OE=OG,AE=BG, ∵ AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF, ∴ BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE, ∴ BF﹣AF=2OE.
的结论是否仍然成立?(请直接写出结果,不必写出理由)
【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)利用直角三角形斜边上的中线等于斜边的一半,可证出 CG=EG. (2)结论仍然成立,连接 AG,过 G 点作 MN⊥AD 于 M,与 EF 的延长线交于 N 点;再证 明△ DAG≌ △ DCG,得出 AG=CG;再证出△ DMG≌ △ FNG,得到 MG=NG;再证明 △ AMG≌ △ ENG,得出 AG=EG;最后证出 CG=EG. (3)结论依然成立. 【详解】 (1)CG=EG.理由如下:
∴ ∠ EHB=90° ∵ OE⊥MN,BF⊥MN
∴ ∠ AEO=∠ HEF=∠ BFE=90° ∴ 四边形 HBFE 为矩形 ∴ BF=HE,EF=BH ∵ 四边形 ABCD 是正方形 ∴ OA=OB,∠ AOB=90° ∴ ∠ AOE+∠ BOH=∠ OBH+∠ BOH ∴ ∠ AOE=∠ OBH ∴ △ AOE≌ △ OBH(AAS) ∴ AE=OH,OE=BH, ∴ AF﹣BF =AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE ③BF﹣AF=2OE, 如图 4,作 OG⊥BF 于 G,则四边形 EFGO 是矩形,
OBE ODF OB OD BOE DOF
∴ △ BOE≌ △ DOF(ASA), ∴ EO=FO, ∴ 四边形 BEDF 是平行四边形; (2)当四边形 BEDF 是菱形时,BD⊥EF, 设 BE=x,则 DE=x,AE=6-x, 在 Rt△ ADE 中,DE2=AD2+AE2, ∴ x2=42+(6-x)2,
【点睛】 本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答; (2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和 性质解答. 5.如图,在平面直角坐标系中,直线 DE 交 x 轴于点 E(30,0),交 y 轴于点 D(0,
40),直线 AB:y= 1 x+5 交 x 轴于点 A,交 y 轴于点 B,交直线 DE 于点 P,过点 E 作 3
∵ MG=CG,∴ EG= 1 MC,∴ EG=CG. 2
(3)(1)中的结论仍然成立.理由如下: 过 F 作 CD 的平行线并延长 CG 交于 M 点,连接 EM、EC,过 F 作 FN 垂直于 AB 于 N.
由于 G 为 FD 中点,易证△ CDG≌ △ MFG,得到 CD=FM,又因为 BE=EF,易证 ∠ EFM=∠ EBC,则△ EFM≌ △ EBC,∠ FEM=∠ BEC,EM=EC ∵ ∠ FEC+∠ BEC=90°,∴ ∠ FEC+∠ FEM=90°,即∠ MEC=90°,∴ △ MEC 是等腰直角三角形. ∵ G 为 CM 中点,∴ EG=CG,EG⊥CG

.(请直接填结论)
【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF
﹣AF=2OE,
【解析】
试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;
(2)①过点 B 作 BH⊥OE 于 H,可得四边形 BHEF 是矩形,根据矩形的对边相等可得
可得 EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得 OA=OB,∠ AOB=90°,
再根据同角的余角相等求出∠ AOE=∠ OBH,然后利用“角角边”证明△ AOE 和△ OBH 全等,
根据全等三角形对应边相等可得 OH=AE,OE=BH,再根据 AF-EF=AE,整理即可得证;
4.已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EF⊥BD 交 BC 于 F,连接 DF, G 为 DF 中点,连接 EG,CG. (1)请问 EG 与 CG 存在怎样的数量关系,并证明你的结论; (2)将图①中△ BEF 绕 B 点逆时针旋转 45°,如图②所示,取 DF 中点 G,连接 EG, CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△ BEF 绕 B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中
相关文档
最新文档