电路原理 江缉光 刘秀成 第十六章 课后 习题 解答 清华
电路原理江缉光答案
电路原理江缉光答案【篇一:清华大学电路原理备考经验谈】两本都看看),这二本书可以当作教材和参考书。
其实我数学复习的60%的时间都在研读这两本书。
全书(或指南)建议看三遍,每遍侧重不一样,看个人安排了。
这项工作最晚要在考前100天做完。
2.李永乐的四百题,建议做两遍,第一遍可以二天一套,一天模拟考(卡点做,把答案按考场上要求写在纸上),一天总结,结合全书上相关知识点复习。
这项工作最好一个月之内做完。
3、李永乐的冲刺1354、真题,可以不全做,做做有代表性的还有最近两年的就行。
资料就这么多,关健是要反复看,一定要勤总结。
还有一定要注意提高自己的应试能力(我主要是靠模考来提高的)。
专业课:资料:1、清华的三本参考书(官方网站上有)2、红皮书。
3、清华大学硕士研究生入学考试《电路原理试题选编》(绿皮书)小绿皮—历年试题汇编貌似是红皮的5、清华内部的讲义。
清华大学电路原理考研秘籍1. 考研基本情况初试考察电路原理这门专业课有两个系:自动化系与电动系,两系实力非常强大,纵向看,全国第一地位无人敢撼动,横向分析,两系在清华校内各专业中也是炙手可热的专业。
. 因此,每年两系竞争火热,2010年考研自动化系报名500余人,实录取17普通工学,3人强军计划工学,15名工程,电机系350余人,实录8个工学,15个工程。
2011年自动化系报名400余人,实录12工学,3人强军工学+10余名工程,电机系报名250人左右,实录8名工学,10余名工程。
2011年分数线方面,自动化复试线378,进复试48名,分4个大方向,分数分布如下:419、418、415、413、411、409、408、407、406、404、401、399、397、395、394、393、392??..自动化系电路最高分139,电机系复试线375,进复试35名左右。
高分如下:424、418、416、414、413、409、406、404、401???...电机系电路原理最高分是149分。
电路与电子技术基础第16章习题参考答案
uC (t) = uC (∞) + [uC (0+ ) − uC (∞)]e−t /τ = K(1 − e−t / RC ) + uC (0)e−t / RC (V)
16-2 电路如图 16-2 所示。输入为方波,UH=5V,UL=0V,频率 f=10kHz,根据信号
频率和电路时间常数τ的关系,定性画出下列三种情况下 Uo 的波形。
(3)为了保证 uo1 为低电平时 uA 在 UTH 以下,R 的阻值不能取的太大。
G1 RON
UDD G2 R1 R uA
C
UOL
UDD
R+RON
uA R’ON
D1
R C
G1
C
G2
放电等效回路
充电等效电路 图 16-5 单稳态触发器充、放电回路
(4) 在触发信号作用下,充、放电回路如图 16-5 所示。
uC (t) = uC (∞) + [uC (0+ ) − uC (∞)]e−t /τ = uC (0)e−t / RC (V)
(2) )已知 t=0 时电容电压为 0,且 E=K(常数),依据三要素法有 uC(0–)= uC(0+)=0,uC(∞)=K,τ=RC
则当开关合上后电容上的电压 uC(t)的函数表达式为
uo
tw
0
t
图 16-6 电路电压波形图
16-4 用 555 定时器接成的施密特触发器电路如图 16-7 所示,试问: (1)当 UCC=12V,没有外接控制电压时,UVT+、UVT-及ΔUVT 各为多少伏? (2)当 UCC=12V,控制电压 UCO=5V 时,UVT+、UVT-及ΔUVT 各为多少伏? 解:
清华电路原理复习规划指导!暴强!状元撰写版!.doc
清华电路原理复习规划指导(电机系,自动化系二、研究生录取情况:O O O硕士研究生中相当大的名额是给免试生的,硕士研究生招生冃录中的计划招生名额不包含免试生,也就是给参加全国研究生入学统一考试的名额。
近几年的计划招生名额都在20 名左右,有时会根据当年的情况适当的扩招。
如07年计划招生20名,实录25名(不包括民族计划2人和强军计划1名)。
参加复试比例是1:1.5,如,08年计划招生18名(包括9 名深圳研究院的名额),参加复试人数为27人+1名强军计划=28人。
复试分数线便是由高到低,按这27人屮的最低分数來划线(强军计划是例外),如06年386分,07年337分(若有谋可纠正),()8年375分。
所以分数线和当年的考卷难度和考生的考试情况相关,并不是固定的。
虽然每年报考淸华电机系的人很多,但招生名额很少,要想顺利考上,第一步就是尽量把初试分考高、挤进复试圈,可以说越高越好。
三、关于复试:复试内容为:资格审查+专业笔试+英语听说考试+而试。
录取办法是对通过资格审查的考生按总成绩排名,总成绩满分1000分,计算办法为:总成绩二初试总分(满分500)+S 试笔试成绩(满分100) *1.5+面试成绩(满分100) *3.0+外语听说成绩(满分100) *0.5.下面分别说说复试各项内容,让大家提前了解一下:1•资格审査:在复试的前一天进行,只是看看你的一些证件,是否有资格复试。
复试时必须携带以下材料:1)准考证(如果没有给你寄复试准考证的话就是要初试准考证,所以初试准考证千万不要扔了,在你拿到录取通知书之而最好都不要扔,初试、查成绩、复试的各个环节都要用的)。
2)有效身份证原件及一份复印件。
3)毕业证书(应届生带学生证,必须注册到你的当前学期,证明你是在读学生)原件及一份复印件。
4)一张1寸免冠照片(体检用)。
5)考生自述(包括政治表现、外语水平、业务和科研能力、研究计划)。
重点突出你的业务和科研能力,应届卞可以写你的实验课、课程设计、毕业设计、参与科研项目等,参加过工作的往届生还可以重点谈谈你的工作内容和收获等,尽量条理清晰,一目了然。
电路原理江缉光答案
电路原理江缉光答案电路原理是电子工程中的基础课程,它涉及了电子元器件的工作原理、电路的组成和分析、信号的处理和传输等内容。
而在电路原理中,江缉光则是一个重要的概念,它在电子设备和通信系统中有着广泛的应用。
本文将从电路原理的基本概念入手,深入探讨江缉光的相关知识,并给出一些答案和解析。
首先,我们需要了解电路原理的基本概念。
电路原理是研究电子元器件和电路行为的科学,它主要包括直流电路和交流电路两个部分。
在直流电路中,电流方向不变,而在交流电路中,电流的方向会周期性地变化。
电路原理的研究对象包括电阻、电容、电感等元器件,以及它们之间的连接方式和工作原理。
江缉光是指利用光的折射、反射、透射等特性进行信息的传输和处理。
在光纤通信中,江缉光是一种常用的传输方式,它能够实现高速、大容量的数据传输。
江缉光的原理是利用光的特性,在光纤中传输信号,通过调制和解调技术实现信息的发送和接收。
在电路原理中,江缉光的应用也是非常广泛的。
例如,在光纤通信系统中,江缉光可以实现长距离的信号传输,而且由于光的频率高、带宽宽,可以实现大容量的数据传输。
此外,在一些特殊的电子设备中,也会用到江缉光技术,比如光纤传感器、光学存储器等。
那么,对于电路原理中的江缉光问题,我们应该如何进行答案和解析呢?首先,我们需要了解江缉光的基本原理和特性,包括光的传播规律、光的调制和解调技术等内容。
其次,我们需要掌握江缉光在电路原理中的具体应用,比如光纤通信系统的工作原理、光纤传感器的设计原理等。
最后,我们还需要深入理解江缉光技术的发展趋势和未来应用方向,以便更好地应用到实际工程中。
总之,电路原理中的江缉光问题是一个重要的研究方向,它涉及了电子工程、通信工程等多个学科的知识。
通过深入学习和研究,我们可以更好地理解江缉光的原理和应用,为电子设备和通信系统的设计和优化提供技术支持。
希望本文能够对读者有所帮助,谢谢阅读!。
《电路原理导论》第十六章习题答案
16-1试求图16-1所示电路的输出电压表达式。
答:(a) ;(b)
16-2试求图16-2所示有源滤波器的正弦传递函数 。
答:(a)
解(a):
;
所以
16-3试求图16-3所示电路的正弦传递函数 。
答(a):
解(a):
∴
;
16-4用结点分析法求图16.1-4电路的系统函数 。
16-5图16-5所示RLC并联谐振电路,其中电感可以用回转器接上电容代之。如果已知电源频率f=1000Hz,C1=1μF,回转常数r=1KΩ,试求C2。
解(a):
INC的输入电阻
当
当
16-10如图13-10所示电路中,两个回转器相级联,求证其等效电路。若回转电阻分别为 , ,负载阻抗 。求输入阻抗 。答:
;
2比1理想变压器
16-11图16-11为负阻抗变换器一例,试求证入端阻抗 。
16-6回转器电路如图16-6所示,试求证其特性方程式。答:
16-7试求图16-7所示双口网路的T参数矩阵。答:
理想变压器
回转器
16-8画出图16-8所示电路的等效电路,并求输入阻抗 ,(ω=1000R器特性为 ,接成图16-9所示的电路,已知 ,试计算当电阻R分别等于1KΩ;1.5KΩ和2KΩ三种情况下的 和 。 答(a) ; ( )
《电工电子技术》整本书课后习题答案 毕淑娥主编 徐秀平副主编
解: I ( R1 + R2 ) + U S 1 = U1
= I
U1 − U S 1 12 − 4 = = 2A 4 R1 + R2
U 2 = IR2 + U S 1 − U S 2 = 2 × 2 + 4 − 6 = 2V
1-6 在题图 1-6 中,已知电位器 R= 6 K Ω 。试求:当电位器的滑动头 C 分别在 a 点、b 点和中 W 间位置时,输出电压 U o 。
U s1 U S 2 12 8 + + R1 R2 8 26 解: U ab = = 2 3 =6 + = V 1 1 1 1 1 1 3 3 + + + + R1 R2 R3 2 3 6 U s1 − U ab = I1 = R1 U S 2 − U ab = R2 26 12 − 3 5A = 2 3 8− 26 3 = −2A 3 9
题图 2-1 解: = b 3, = n 2 KCL 方程: I1 + I 2 = I3 KVL 方程: I1 R1 + I 3 R3 = U S1
I 2 R2 + I 3 R3 = US2
解得: I1 = − A, I 3 = A, I 2 = A 用支路电流法计算 I1 和 2-2 在题图 2-2 中, 已知 U S 1 = 10V , I S = 1A ,R1 = 2Ω , R2 = 3Ω ,
两个电压源作用时ababab211在题图211中已知usr1r3r2usr1r3i2uocr2req84156212已知电路如题图212所示用戴维南定理求i和电流源的功率3a9v3a9v1236213在题图213电路中已知214在题图214中已知215已知电路如题图215所示1用戴维南定理求i2电压源的功率oc1a16oc1616163434103778216在题216中已知如图示方向时电流i0当is反方向时i1a求含源一端口网络的戴维南等效电路
大学物理 十六章 课后答案
习题十六16-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳:K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--m bT λ16-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度. 解:炉壁小孔视为绝对黑体,其辐出度242m W 108.22cm W 8.22)(--⋅⨯=⋅=T M B按斯特藩-玻尔兹曼定律:=)(T M B 4T σ41844)1067.5108.22()(-⨯⨯==σT M T BK 1042.110)67.58.22(3341⨯=⨯=16-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21 eV 0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mv E eU a ==Θ ∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U (3)红限频率0υ,∴000,λυυcA h ==又∴截止波长1983401060.12.41031063.6--⨯⨯⨯⨯⨯==A hc λm 0.296m 1096.27μ=⨯=- 16-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J 1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcnnh E 功率 W1099.118-⨯==t E16-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量λυhch E ==1秒钟落到2m 1地面上的光子数为21198347m s 1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hc E n λ每秒进入人眼的光子数为11462192s 1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==d nN π16-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz 10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--h c m υο12A02.0m 104271.2=⨯==-υλc122831020122s m kg 1073.21031011.9s m kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m c c m c E p cpE hp 或λ16-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同?答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.16-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少?解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h c m mc E kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.110=υυ则52.0112.110==-=-υυυ16-9 波长οA 708.0=λ的X 射线在石腊上受到康普顿散射,求在2π和π方向上所散射的X射线波长各是多大? 解:在2πϕ=方向上:ο1283134200A 0243.0m 1043.24sin 1031011.91063.622sin 2Δ=⨯=⨯⨯⨯⨯⨯==-=---πϕλλλc m h散射波长ο0A 732.00248.0708.0Δ=+=+=λλλ在πϕ=方向上ο120200A0486.0m 1086.422sin 2Δ=⨯===-=-c m h c m h ϕλλλ散射波长 ο0A756.00486.0708.0Δ=+=+=λλλ16-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有000,ελλεhchc =∴=经散射后000020.1020.0λλλλ∆λλ=+=+=此时能量为 002.112.1ελλε===hc hc反冲电子能量MeV 10.060.0)2.111(0=⨯-=-=εεE16-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角.解:反冲电子的能量增量为202022020225.06.01c m c m c m c m mc E =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量,故有 20025.0c m hchc=-λλ散射光子波长ο1210831341034000A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin 0243.022sin 22200ϕϕλλλ∆⨯==-=c m h 可得 2675.00243.02030.0043.02sin 2=⨯-=ϕ散射角为7162'=οϕ16-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n或者)111(22n Rhc E -=∆ 75.12)11.(1362=-=n解出 4=n题16-12图 题16-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.16-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221n Rhc n Rhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A6563536,3653121~:23A121634,432111~:12A 1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n R R R n λυλυλυ从从从可以发出以上三条谱线.题16-14图16-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hc E E hc E E hch VE V E V E a mn m n βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态∴λυhcE E h =-=14 Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--h E E υ16-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解:eV 09.12]11[6.1321=-=-n E E n26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n ,19r r n =轨道半径增加到9倍.16-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.16-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压?解:oo A1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏16-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mv E k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==m E v k -15s m 100.7⋅⨯= 其德布罗意波长为:o 953134A10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mv h λ16-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少?解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV102.63⨯=cp而eV 100.51MeV 51.0620⨯==c m ∴cp c m >>20 ∴MeV51.0)()(202202==+=c m c m cp E16-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少?解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能m p KT E k 2232== 德布罗意波长 o A456.13===mkT hp h λ16-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值. 解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,x m hv x ∆≥∆这粒子最小动能应满足222222min22)(21)(21mL h x m h x m h m v m E x =∆=∆≥∆=16-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命.解:光子的能量λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为:λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c E h t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=16-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm30A 103103000o 962=⨯=====-λ∆λλ∆λ∆∆p h x16-24波函数在空间各点的振幅同时增大D 倍,则粒子在空间分布的概率会发生什么变化?解:不变.因为波函数是计算粒子t 时刻空间各点出现概率的数学量.概率是相对值.则21、点的概率比值为:22212221φφφφD D =∴ 概率分布不变.16-25 有一宽度为a 的一维无限深势阱,用测不准关系估算其中质量为m 的粒子的零点能. 解:位置不确定量为a x =∆,由测不准关系:h p x x ≥∆⋅∆,可得:x h P x ∆≥∆,x hP P x x ∆≥∆≥∴222222)(22ma h x m h m P E x x =∆≥=,即零点能为222ma h . 16-26 已知粒子在一维矩形无限深势阱中运动,其波函数为:a xax 23cos1)(πψ=︒ )(a x a ≤≤-那么,粒子在ax 65=处出现的概率密度为多少? 解:22*)23cos 1(a x a πψψψ==a a a a a a aa 21)21(14cos 1)4(cos 145cos 12653cos 122222===+===πππππ16-27 粒子在一维无限深势阱中运动,其波函数为:)sin(2)(a x n a x n πψ=)0(a x <<若粒子处于1=n 的状态,在0~a41区间发现粒子的概率是多少?解:xa x a x w d sin 2d d 22πψ==∴ 在4~0a 区间发现粒子的概率为: ⎰⎰⎰===40020244)(d sin 2d sin 2a a ax a a x a ax a x a dw p ππππ 091.0)(]2cos 1[2124/0=-=⎰x a d a x a πππ16-28 宽度为a 的一维无限深势阱中粒子的波函数为xa n A x πψsin )(=,求:(1)归一化系数A ;(2)在2=n 时何处发现粒子的概率最大?解:(1)归一化系数⎰⎰==+∞∞-ax x 0221d d ψψ即⎰⎰=aa x a n x a n A n a x x a n A 00222)(d sin d sin ππππ⎰-=a x a n x a n A n a 02)(d )2cos 1(2πππ12222===A a n A n a ππ∴ =A a 2粒子的波函数x a n a x πψsin 2)(=(2)当2=n 时,x a a πψ2sin 22=几率密度]4cos 1[12sin 2222x a a x a a w ππψ-===令0d d =x w ,即04sin 4=x a a ππ,即,04sin =x a π,Λ,2,1,0,4==k k x a ππ∴4a kx = 又因a x <<0,4<k ,∴当4a x =和ax 43=时w 有极大值, 当2a x =时,0=w . ∴极大值的地方为4a ,a 43处16-29 原子内电子的量子态由s l m m l n ,,,四个量子数表征.当l m l n ,,一定时,不同的量子态数目是多少?当l n ,一定时,不同的量子态数目是多少?当n 一定时,不同的量子态数目是多少?解:(1)2)21(±=s m Θ (2))12(2+l ,每个l 有12+l 个l m ,每个l m 可容纳21±=s m 的2个量子态.(3)22n16-30求出能够占据一个d 分壳层的最大电子数,并写出这些电子的s l m m ,值.解:d 分壳层的量子数2=l ,可容纳最大电子数为10)122(2)12(2=+⨯=+=l Z l 个,这些电子的:0=l m ,1±,2±,21±=s m16-31 试描绘:原子中4=l 时,电子角动量L 在磁场中空间量子化的示意图,并写出L 在磁场方向分量z L 的各种可能的值. 解:ηηη20)14(4)1(=+=+=l l L题16-31图磁场为Z 方向,ηl Z m L =,0=l m ,1±,2±,3±,4±.∴ )4,3,2,1,0,1,2,3,4(----=Z L η16-32写出以下各电子态的角动量的大小:(1)s 1态;(2)p 2态;(3)d 3态;(4)f 4态.解: (1)0=L (2)1=l , ηη2)11(1=+=L (3)2=l ηη6)12(2=+=L(4)3=l ηη12)13(3=+=L 16-33 在元素周期表中为什么n 较小的壳层尚未填满而n 较大的壳层上就开始有电子填入?对这个问题我国科学工作者总结出怎样的规律?按照这个规律说明s 4态应比d 3态先填入电子.解:由于原子能级不仅与n 有关,还与l 有关,所以有些情况虽n 较大,但l 较小的壳层能级较低,所以先填入电子.我国科学工作者总结的规律:对于原子的外层电子,能级高低以)7.0(l n +确定,数值大的能级较高.s 4(即0,4==l n ),代入4)07.04()7.0(=⨯+=+l n)2,3(3==l n d ,代入4.4)27.03(=⨯+s 4低于d 3能级,所以先填入s 4壳层.。
高频电子线路[第三版][廖惜春]习题详细讲解
此习题答案由AP09057班廖汉杰(22号),梁裕成(21号),梁明浩(20号)梁恩铨(19号)李树明(18号)陈燕媚(5号)刘嘉荣(24号)同学及AP0905810坤鹏同学携手完成,由于编写时间有限,编者才学疏浅,难免有许多错漏之处,恳请各位同学原谅,如发现有错误及疑问的地方请致电客服中心。
最后,祝各位学习愉快,逢考必过!O(∩_∩)o...第一章1-21-5首先,我们要知道一个定理:串联谐振时,电感线圈和电容器两端电压幅值得大小等于外加电压幅值的Q 倍,Q 是品质因数(参见课本P11 电压谐振) 首先A-B 短路时,100==smcO U U QH C f CL μππω25310100)102(1)2(1112262020=⨯⨯⨯===-A-B 接阻抗X Z 时,有Ω=-===⨯==+==<-=-⨯⨯⨯=-=⇒=+-9.15112501.05.22p 2001,05.12625310200)102(111)(020200''0012262000CQ CQ R Q Q F C C C C C C C L C R Z X H L CX C X L L X L X XXX X C C C ωωωωμμπωωω,故故解得其中则应有串联)与电容器为(电阻器表明1-6未接负载时,RP Lg Q ω1=接负载后消耗功率的并联总电导LS R R R G 111++=则此时)1()1(1)1()111(11L S LS R P L S P LS PP L R R R R QR RR R Lg R RR R L RR R R L LG Q ++=++=++=++==ωωωω1-7(1)解:Ω=⇒--=++=====k 2.611121111122,,7.07.007.00LP S L L P S PP R R R C BW R R R R G CBW G f BW f Q G CQ πππωω)中的结果有结合(导电路中消耗功率的总电综上既有:又已知1-9 解(1)将各回路电阻电容等效到电感L1中接入系数:n1=41,n2=41 图中Is Is 41'= S SC C 161'= S S G G 161'= L L C C 161'= L L G G 161'=则''1L S C C C C ++=总C f L p 2)2(1π=代入数据得: L= (有时间这里自己算下了)(2)''L S G G G G ++=总 ·①L G Q p 11ω总=·②17.0Q f BW p =·③ 综上三式可解得:=7.0BW (答案还是自己有空算下)1-10解:其等效电路如下:7210.125''';'25.0205211,2121222121=======+=+=N N p R R p R R p R R C C C p N N N p L S L L S S ,所以解得依题意1-12 解:Ω≈⨯⨯⨯⨯⨯=====≈====-k 104105110514.323.3321212,3.3388.19,)2(111267.07.07.022C Q R R R Q BW C R Q Q f BW BW fQ uH L C f C L P P L L L LPP L p ωωπω所以变为原来的,既是则需变为原来的倍,变为原来的所以要使代入数据得:1-17 解:第二章2-1解:画出该电路交流Y 参数等效电路如下由等效电路可知谐振时放大系数L p oe fe uo g g g G GY A ++=-=,带负载时有:7.021BW f LG f p p =π由以上两式子可以⇒HL μ864.3=不带负载时6021==pp p Lg f Q π 可以=⇒p g (自己算下)既有: Ω=⇒--=k R g g G g L p oe L53.8谐振时又有:p oe f C C Lπωωω2),(1=+= 即可pF C 6.61=⇒2-2(1)画出电路Y 参数等效电路如下其中LQ g n n P P p ω1,41,4121===(2)谐振时有:pFC F C F C H L C n C n C Lie ie oe 8.53p 18,p 7,4)(11oe 22211====++=代入上式解得将μωω (3)由图可知:3.1611085.2267.13,p 5222121==⨯=-=++=-=-GLQ S G A g n g n g G GY n n A L uo ieoe p feuo ω,代入数据得 MHz Q f BW LP656.07.0==∴ (4)要使实际7.0'7.06.75BW MHz BW ==∴ 需使Ω=⨯⨯==⇒=+=-6631085.226.616.616.75'G R G g G G L L 应该并联电阻实际实际2-3(1)解:由公式可知最大谐振功率增益179515.0415584222max≈⨯⨯+==ie oe fepo g g Y A(2)有公式得失配系数:5.41012.0105.06.032322221=⨯⨯⨯⨯==--ie oe g n g n q 失配系数:22)5.41(5.44)1(4+⨯=+=q q s ρ2-5本题答案参考:课本P58~P59 (1)中和法 (2)失配法 2-61,减少负载对回路的影响 2,极间交直流隔开 3,阻抗匹配2-7(1)单极放大系数zk 333125.255467.136533.1611085.2267.13317.037.03337.05uo 221212121H BW BW A A kHz Q f BW GLQ S G A g n g n g Y n n GY n n A uo uo LPP L ieoe p fefeuo =-======∴==⨯=-=++-=-=-)()()()则(,代入数据得ω(2)保持总同频带为单级同频带,则单级通频带需变成MHz BW BW 306.112317.07.0=-=总单因为增益带宽之积保持不变,所以当总频带为单级频带时,总放大系数也应该变为单级放大系数,即是67.13)('3=uo A2-8解:衰减量为20db 对应的通频带为1.0BW 又kHz BW BW 5001107.021.0=-=kHz kHz BW 25.5011050021.0=-=∴21325.507.107.0===kHzMHzBW f Q p L所以,每个回路的有载品质因数为213 2-12根据公式有:68.2121513.31513.28.111)(2131213~1=⨯-+-+=-+-+=pm pm f pm f f f A A N A N N N本题公式参考课本P70页 2-13 (1)203.311)(165.111)(12131213~12131213~1=-+-+==-+-+=pm pm f pm f f f pm pm f pm f f f A A N A N N N A A N A N N N 噪声系数:系统噪声系数:系统(2)系统一指标分配更合理,因为多级放大器总噪声系数主要取决与一,二级,后面各级的噪声系数对总噪声系数的影响较小,所以要使第一级噪声系数尽量小,额定功率尽可能高第三章3-1 (略)3-2(略) 3-7 解:因为E O C P P =η ⇒W P P C O E 3.86.05===η 又因为W P P P P P O C C O O C 31032==⇒+=η又A U P I I U P CC E CO CO CC E 346.0243.8===⇒= 同理,当0080=c η时 可得 w P P COE 25.68.05===η W P P O C 31032==3-8 解:A I I R I U mA mA I i i I i U P P CO c CO O m 3.1727026.395253.0100)70()70(702101cmax c1m c1m cm 0cmax 0max 1cmax cm ======⇒==)(而及:)(由公式:。
电路原理课后习题答案
(d)(e)(f)
题1-4图
解(a)电阻元件,u、i为关联参考方向。
由欧姆定律u=Ri=104i
(b)电阻元件,u、i为非关联参考方向
由欧姆定律u=-Ri=-10i
(c)理想电压源与外部电路无关,故u=10V
(d)理想电压源与外部电路无关,故u=-5V
(e)理想电流源与外部电路无关,故i=10×10-3A=10-2A
题4-5图
4-9求题4-9图所示电路的戴维宁或诺顿等效电路。
(a)
(b)
题4-9图
解:(b)题电路为梯形电路,根据齐性定理,应用“倒退法”求开路电压 。设 ,各支路电流如图示,计算得
故当 时,开路电压 为
将电路中的电压源短路,应用电阻串并联等效,求得等效内阻 为
4-17题4-17图所示电路的负载电阻 可变,试问 等于何值时可吸收最大功率?求此功率。
第五章“含有运算放大器的电阻电路”练习题
5-2题5-2图所示电路起减法作用,求输出电压 和输入电压 、 之间的关系。
题5-2图
解:根据“虚断”,有:
得:
故:
而:
根据“虚短”有:
代入(1)式后得:
5-6试证明题5-6图所示电路若满足 ,则电流 仅决定于 而与负载电阻 无关。
题5-6图
证明:采用结点电压法分析。独立结点 和 的选取如图所示,列出结点电压方程,并注意到规则1,可得
,
因此, 时,电路的初始条件为
t>0后,电路的方程为
设 的解为
式中 为方程的特解,满足
根据特征方程的根
可知,电路处于衰减震荡过程,ห้องสมุดไป่ตู้因此,对应齐次方程的通解为
式中 。由初始条件可得
新人教版九年级物理第十六章课后习题答案
第十六章第一节电压》1.在图16.1-7中,请用笔画线表示导线来连接实物图,使小灯泡能够发光并且电压表能够测出灯泡两端的电压(估计在2~3 V之间)。
2.在烧杯中加入盐水,将铜片和锌片放在盐水中,这就是一个电池。
试着用电压表测量这个自制电池的电压,其现象如图16.1-8所示。
这个电池的电压是多少?哪3.图16.1-9中,三个电压表的示数各是多少?4.图16.1-10是一位同学所连的电路,他要测量小灯泡L2两端的电压。
图中有一根导线接错了。
(1)请你找出这根接错的导线,在这根导线上打“X”表示不要),并用笔重新画一个金属片是电池的正极?国】• 1-7■―・—■ ■ ■” fl^ws.u 环金耀片是曲池匸概勺三牛电用崔的用数齐建笋少"罔血1-10纠正擠谋的连接根正确连接的导线。
(2) 画出正确接线的电路图第十六章第一节〈电压》课后习题答案1.如图所示2•这个电池的电压约为 0.5V ,铜片是正极 解析:用试触法可以判断电流表或电压表的正 负极。
试触时能使电表指针顺时针偏转的时候 ,与正接线柱相连的那端为电池正极。
图中的电压表指针顺时针偏转时铜片与正接线柱相连 ,所以铜片是电池正极3•甲:2V 4.国 lf> 1-7乙 : 12.5V丙:1V|?1 16.1-10纠止错泯的连接同之处第十六章第二节《串、并联电路中电压的规律》1. 一个用电器工作时,要求电源电压是6 V 。
如果用干电池做电源,需要几节 串 联起来?如果用铅蓄电池做电源,需要几个串联起来2. 在图16.2-4甲所示的电路中,闭合开关后电压表3. 如图16.2-5,在探究 并联电路电压的关系”时,小明想把两个灯泡并联起 来,用电压表测量并联电路的总电压,请你用笔帮他画出连接的电路。
4•请自行设计一个表格,对比电流表和电压表在使用方面有哪些相同之处和不 V1的示数为2.5 V ,V2的示数应为V V 的示数应为V 在图 16.2-4 乙所示的测量电路中,闭 合开关后电压表V1的示数为2.5 V ,V2的示数为3.8 V ,V 的示数应图 lb.2-5第二节串并联电路中电压的规律课后习题答案1.4节干电池串联,3个铅蓄电池串联2. 2.5 2.5 6.3第十六章第三节电阻》1.有两段导线A和B,在相同的电压下,通过导线A的电流较大,通过导线B的电流较小,哪段导线的电阻大?2.24 000 Q = ______ k Q = ______ M Q。
廖惜春-高频电子线路课后答案
第2章 小信号选频放大器2.1 已知并联谐振回路的1μH,20pF,100,L C Q ===求该并联回路的谐振频率0f 、谐振电阻p R 及通频带0.7BW 。
[解] 90-6120.035610Hz 35.6MHz 2π2π102010f LCH F-===⨯=⨯⨯6312640.71010022.4k 22.361022.36k 201035.610Hz35.610Hz 356kH z100p HR Q Ff BW Q ρρ--===Ω=⨯Ω=Ω⨯⨯===⨯=2.2 并联谐振回路如图P2.2所示,已知:300pF,390μH,100,C L Q ===信号源内阻s 100k ,R =Ω负载电阻L 200k ,R =Ω求该回路的谐振频率、谐振电阻、通频带。
[解] 0465kHz 2π2π390μH 300PFf LC≈==⨯0.70390μH100114k Ω300PF////100k Ω//114.k Ω//200k Ω=42k Ω42k Ω371.14k Ω390μH/300 PF /465kHz/37=12.6kHzp e s p Le e e R Q R R R R R Q BWf Q ρρ=========== 2.3 已知并联谐振回路的00.710MHz,C=50pF,150kHz,f BW ==求回路的L 和Q 以及600kHz f ∆=时电压衰减倍数。
如将通频带加宽为300 kHz ,应在回路两端并接一个多大的电阻? [解] 6262120115105μH (2π)(2π1010)5010L H f C --===⨯=⨯⨯⨯⨯ 6030.7101066.715010f Q BW ⨯===⨯2236022*********.78.11010p oU f Q f U ••⎛⎫⎛⎫∆⨯⨯=+=+= ⎪ ⎪⨯⎝⎭⎝⎭ 当0.7300kHz BW =时6030.746120101033.33001033.31.061010.6k 2π2π10105010e e e ef Q BW Q R Q f C ρ-⨯===⨯====⨯Ω=Ω⨯⨯⨯⨯而471266.72.131021.2k 2π105010p R Q ρ-===⨯Ω=Ω⨯⨯⨯由于,p e pRR R R R=+所以可得10.6k 21.2k 21.2k 21.2k 10.6k e p p eR R R R R Ω⨯Ω===Ω-Ω-Ω2.4 并联回路如图P2.4所示,已知:360pF,C =1280μH,L ==100,Q 250μH,L = 12=/10,n N N =L 1k R =Ω。
电路十六章复习题答案
电路十六章复习题答案1. 什么是基尔霍夫电压定律(KVL)?答:基尔霍夫电压定律(KVL)指出,任何闭合回路中,电压的代数和等于零。
这意味着在一个闭合回路中,所有元件上的电压降之和必须等于电源提供的总电压。
2. 基尔霍夫电流定律(KCL)的基本原理是什么?答:基尔霍夫电流定律(KCL)表明,进入一个节点的电流之和等于离开该节点的电流之和。
换句话说,任何节点处流入的电流总量必须等于流出的电流总量。
3. 如何使用节点电压法求解电路?答:节点电压法是一种通过选择电路中的节点并为每个节点分配一个电压,然后根据基尔霍夫电流定律列出方程组来求解电路的方法。
首先选择一个参考节点(通常接地),然后为其他节点分配电压变量。
接着,对于每个非参考节点,列出电流方程,包括通过连接到该节点的每个分支的电流。
最后,解这些方程以找到节点电压。
4. 什么是叠加定理?答:叠加定理指出,一个线性电路中的任意节点电压或分支电流可以看作是由每个独立电源单独作用时产生的电压或电流的代数和。
这意味着可以分别计算每个独立电源对电路的影响,然后将这些影响相加得到总的电压或电流。
5. 戴维宁定理的内容是什么?答:戴维宁定理指出,任何线性双端网络都可以用一个单一电压源(戴维宁电压)和一个单一电阻(戴维宁电阻)来等效替代,而不会改变网络对外部负载的影响。
戴维宁电压是开路电压,戴维宁电阻是当所有独立电源被短路后,从网络两端看到的等效电阻。
6. 什么是最大功率传输定理?答:最大功率传输定理指出,当负载电阻等于源电阻的共轭复数时,负载将接收到最大功率。
对于纯电阻电路,这意味着负载电阻应等于源电阻。
这个定理在设计匹配负载以最大化功率传输时非常有用。
7. 什么是诺顿定理?答:诺顿定理是戴维宁定理的等效形式,它指出任何线性双端网络都可以用一个单一电流源(诺顿电流)和一个单一电阻(诺顿电阻)来等效替代。
诺顿电流是当网络两端开路时通过端口的电流,诺顿电阻是当所有独立电源被短路后,从网络两端看到的等效电阻。
电路原理江缉光答案
电路原理江缉光答案
电路原理是电子工程中的重要基础知识,而江缉光答案则是电路原理中的一个重要概念。
在学习电路原理时,理解江缉光答案的概念对于掌握电路原理有着重要的意义。
接下来,我们将详细介绍电路原理中的江缉光答案,并探讨其在实际应用中的重要性。
江缉光答案是指在电路中,当电流通过导体时,会产生一定的磁场。
而当磁场发生变化时,会产生感应电动势。
这种现象就是江缉光答案。
江缉光答案是电磁感应现象的重要表现,它揭示了电流与磁场之间的密切关系,为电磁学的发展提供了重要的实验依据。
在实际应用中,江缉光答案有着广泛的应用。
例如在变压器中,江缉光答案的原理被用来实现电压的升降。
此外,在发电机、电动机等电气设备中,江缉光答案的原理也被充分利用,实现了能量的转换和传输。
因此,深入理解江缉光答案对于电气工程师来说至关重要。
在学习电路原理时,我们需要深入理解江缉光答案的原理,并掌握其在实际中的应用。
只有通过理论知识的学习和实践经验的积累,我们才能够更好地应用江缉光答案的原理,解决实际工程中的问题。
总之,江缉光答案是电路原理中的重要概念,它揭示了电流与磁场之间的密切关系,为我们理解电磁学提供了重要的实验依据。
在实际应用中,江缉光答案的原理被广泛应用于电气设备中,实现了能量的转换和传输。
因此,深入理解江缉光答案对于我们掌握电路原理,提高电气工程技术水平具有重要意义。
希望本文能够帮助大家更好地理解江缉光答案的概念,为电路原理的学习和应用提供帮助。
大学物理16章物理答案3
16.20 两个共轴的螺线管A 和B 完全耦合,A 管的自感系数L 1 = 4.0×10-3H ,通有电流I 1 = 2A ,B 管的自感L 2 = 9×10-3H ,通有电流I 2 = 4A .求两线圈内储存的总磁能.[解答]A 管储存的自能为211112m W L I = 32314102810(J)2--=⨯⨯⨯=⨯,B 管储存的自能为222212m W L I = 323191047210(J)2--=⨯⨯⨯=⨯;由于两线圈完全耦合,互感系数为M =3610(H)-==⨯,A 管和B 管储存的相互作用能为W m 12 = MI 1I 2 = 6×10-3×2×4 = 48×10-3(J),两线圈储存的总能量为W m = W m 1 + W m 2 + W m 12 = 0.128(J).16.21 一螺绕环中心轴线的周长L = 500mm ,横截面为正方形,其边长为 b = 15mm ,由N = 2500匝的绝缘导线均匀密绕面成,铁芯的相对磁导率μr = 1000,当导线中通有电流I = 2.0A 时,求:图16.21(1)环内中心轴线上处的磁能密度;(2)螺绕环的总磁能.[解答](1)设螺绕环单位长度上的线圈匝数为 n = N/L , 中心的磁感应强度为B = μnI ,其中μ = μr μ0.磁场强度为H = B/μ = nI ,因此中心轴线上能量密度为2111()222w BH nI μ=⋅==B H72125001000410(2)20.5π-=⨯⨯⨯⨯ = 2π×104(J·m -3).(2)螺绕环的总体积约为V = b 2L ,将磁场当作匀强磁场,总磁能为W = wV= 2π×104×(0.015)2×0.5=2.25π = 7.07(J).16.22试证:平行板电容器中的位移电流可写成d d d UI C t =的形式,式中C 是电容器的电容,U 是两板间的电势差.对于其他的电容器上式可以应用吗?[证明]根据麦克斯韦理论:通过电场任意截面的位移电流强度等于通过该截面电位移通量的时间变化率,即I d = d ΦD /d t .在平行板电容器中,由于ΦD= DS,而电位移D等于电容器的面电荷密度,即D = σ.因为电容器带电量为q = σS = DS = ΦD,所以I d= d q/d t,即:位移电流等于极板上电量的时间变化率.根据电容的定义 C = q/U,可得I d= C d U/d t.其他电容器可以看作由很多平等板电容器并联而成,总电容等于各电容之和,所以此式对于其他电容器也可以应用.16.23 如果要在一个1.0PF的电容器中产生1.0A的位移电流,加上电容器上的电压变化率为多少?[解答]因为I d= C d U/d t,所以电压变化率为d U/d t = I d/C = 1/10-12 = 1012(V·s-1).16.24在圆形极板的平行板电容器上,加上频率为50Hz,峰值为2×105V的交变电压,电容器电容C = 2PF,求极板间位移电流的最大值为多少?[解答]交变电压为U = U m cos2πνt,位移电流为I d= C d U/d t = -CU m2πνsin2πνt,电流最大值为I m = CU m 2πν= 2×10-12×2×105×2π×50 = 4π×10-5(A).16.25一平行板电容器的两极板面积为S 的圆形金属板,接在交流电源上,板上电荷随时间变化,q = q m sin ωt .求:(1)电容器中的位移电流密度;(2)两极板间磁感应强度的分布.[解答](1)平行板电容器的面电荷密度为σ = q/S ,位移电流密度为 d d cos d d m d q q t t S t S ωσδω===.(2)在安培-麦克斯韦环路定律中dL I I +=⋅⎰l H d ,两极板间没有传导电流,即I = 0.由于轴对称,在两板之间以轴为圆心作一个半径为r 的圆,其周长为 C = 2πr ,使磁场的方向与环路的方向相同,左边为rHl H L π2d d L =⋅=⋅⎰⎰l H .环路所包围的面积为S` = πr 2,右边的位移电流为2`(cos )m d d q I S t r S ωδωπ==.因此,两极板间磁场强度的分布为cos 2m q r H t S ωω=,磁感应强度的分布为00cos 2m q rB H t S μωμω==.16.26 如图所示,电荷+q 以速度v 向O 点运动(电荷到O 点的距离以x 表示).以O 点O 圆心作一半径为a 的圆,圆面与v 垂直.试计算通过此圆面的位移电流. [解答]在圆面上取一半径为R 的环,其面积为d S = 2πR d R , 环上任一面元的法线方向与场强方向之间的夹角为φ,场强大小为 E = q /4πε0r 2,其中r = (x 2 + R 2)1/2,通过环的电通量为d Φe = E ·d S = E d S cos φ,其中cos φ = x/r ,所以得3223/200d d d 22()e qxR R qx R R r x R Φεε==+,积分得电通量为22223/200d()22()a e qx x R x R Φε+=+⎰0(12q ε=.由于电位移强度D 和电场强度E 的关系为 D = ε0E ,图16.26a所以电位移通量和电通量之间的关系为Φd = ε0Φe ,因此点电荷在圆面上通过的电位移通量为(12d q Φ=.当电荷q 以速度v 向O 运动时,可认为圆面以d x /d t = -v 向电荷运动,因此,通过此圆面的位移电流为d d dd I t Φ=2q -=2223/22()q a v x a =+.16.27在真空中,一平面电磁波的电场为70.3cos[210()]y x E t c π=⨯-(V·m -1).求:(1)电磁波的波长和频率;(2)传播方向;(3)磁场的大小和方向. [解答](1)电磁波的角频率为ω = 2π×107(rad·s -1),频率为 ν = ω/2π = 107(Hz).波长为 λ = cT = c/ν = 3×108/107 = 30(m).(2)电磁波的传播方向为x 方向.(3)磁场的方向在z 方向,由于y z =,所以磁场强度为001z y y yH E E c μ===871310410y E π-=⨯⨯⨯71cos[210()]400xt c ππ=⨯-.磁感应强度为01z z y B H E c μ==9710cos[210()]xt c π-=⨯-.71cos[210()]400xt c ππ=⨯-.磁感应强度为01z z y B H E c μ==9710cos[210()]xt c π-=⨯-.16.28 一个长直螺线管,每单位长度有n 匝线圈,载有电流i ,设i随时间增加,d i /d t >0,设螺线管横截面为圆形,求:(1)在螺线管内距轴线为r 处某点的涡旋电场;(2)在该点处坡印廷矢量的大小和方向.[解答](1)长直螺线管通有电流i 时,在轴线上产生的磁感应强度为μ0ni , B = 磁场是均匀的,也是轴对称的.以轴线上某点为圆心,以r 为半径作一环路,环路的周长为 C = 2πr ,面积为 S=πr 2,根据电场的环路定理S B l Εd d d d ⋅-=⋅⎰⎰S L k t ,可得 2πrE = -πr 2d B /d t ,因此涡旋电场为0d 2d nr iE t μ=-,负号表示涡旋电场的方向与环路的环绕方向相反.(2)管中磁场强度为H = B/μ0 = ni .坡印廷矢量为S = E ×H ,其大小为20d 2d n r iS EH i t μ==.当d i /d t > 0时,S 的方向沿径向指向轴线;当d i /d t < 0时,S 的方向沿径向向外.。
清华电路基础答案第16章
PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators Chapter 16, Problem 1.Determine i (t ) in the circuit of Fig. 16.35 by means of the Laplace transform.Figure 16.35For Prob. 16.1.Chapter 16, Solution 1.Consider the s-domain form of the circuit which is shown below.222)23()21s (11s s 1s 1s 1s 1)s (I ++=++=++=⎟⎟⎠⎞⎜⎜⎝⎛=t 23sin e 32)t (i 2t -=)t (i A )t 866.0(sin e 155.1-0.5t1/s1sPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsFind v x in the circuit shown in Fig. 16.36 given v s .= 4u (t )V.Figure 16.36For Prob. 16.2.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsV )t (u )e 2e 24(v 38j 34s 125.038j 34s 125.0s 25.016)8s 8s 3(s 2s 16V s 32s 16)8s 8s 3(V 0V s V )s 4s 2(s)32s 16()8s 4(V 0s840V 20V s s 4V t )9428.0j 3333.1(t )9428.0j 3333.1(x 2x 2x x 2x 2x x x x −−+−++−=⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−+−+++−+−=+++−=+=++=++++−+=+−+−+−v x = V t 322sin e 26t 322cos e )t (u 43/t 43/t 4⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−−4s 8/s s 4PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsFind i (t ) for t > 0 for the circuit in Fig. 16.37. Assume i s = 4u (t ) + 2δ(t )mA. (Hint: Canwe use superposition to help solve this problem?)Figure 16.37For Prob. 16.3.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsIn the s-domain, the circuit becomes that shown below.42s+We transform the current source to a voltage source and obtain the circuit shown below.284s +84204030.2(15)15s A B s I s s s s s ++===++++40815204052,153153x A B −+====− 8/352/315I s s =++ 15852()()33t i t e u t −⎡⎤=+⎢⎥⎣⎦PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsThe capacitor in the circuit of Fig. 16.38 is initially uncharged. Find v 0(t ) for t > 0.Figure 16.38For Prob. 16.4.Chapter 16, Solution 4.The circuit in the s-domain is shown below.5451/o o V I I I sV s+=⎯⎯→= But 52o V I −=512.5525/2o o o V sV V s −⎛⎞=⎯⎯→=⎜⎟+⎝⎠2.5()12.5 V t o v t e −=PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators If i s (t ) = e t 2−u (t ) A in the circuit shown in Fig. 16.39, find the value of i 0(t).Figure 16.39For Prob. 16.5.Chapter 16, Solution 5.()()A )t (u t 3229.1sin 7559.0e orA)t (u e e e 3779.0e e e 3779.0e )t (i 3229.1j 5.0s )646.2j )(3229.1j 5.1()3229.1j 5.0(3229.1j 5.0s )646.2j )(3229.1j 5.1()3229.1j 5.0(2s 1)3229.1j 5.0s )(3229.1j 5.0s )(2s (s 2Vs I )3229.1j 5.0s )(3229.1j 5.0s )(2s (s 22s s s 22s 12s 21s 112s 1V t 2t 3229.1j 2/t 90t 3229.1j 2/t 90t 2o 222o 2−=++=−++++−+++−−−−++=−++++==−++++=⎟⎟⎠⎞⎜⎜⎝⎛+++=⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+++=−−°−−°−−or i o (t) = A )t (u t 27sin 72e t 2⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−s 2 2s 1+ I oPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsFind v (t ), t > 0 in the circuit of Fig. 16.40. Let v s =20 V.Figure 16.40For Prob. 16.6.Chapter 16, Solution 6.For t<0, v(0) = v s = 20 VFor t>0, the circuit in the s-domain is as shown below.1101000.1mF F sC s=⎯⎯→= 20210110s I s s==++ 20101V I s ==+ ()20()t v t e u t −=10 Ω 20sPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsFind v 0(t ), for all t > 0, in the circuit of Fig. 16.41.Figure 16.41For Prob. 16.7.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators The circuit in the s-domain is shown below. Please note, i L (0) = 0 and v o (0) = o becauseboth sources were equal to zero for all t<0.1 111112/2(21/)11o o V V s V V V s V s s−−=+⎯⎯→=+− (1) At node O,111(1/2)1/12/2o o o o V V V s V V s V s s s −+==⎯⎯→=+− (2) Substituting (2) into (1) gives112/(21/)(1/2)(2)o o s s s V V s s=++−+− 22(41)( 1.51) 1.51o s A Bs C V s s s s s s ++==+++++2241( 1.51)s A s s Bs Cs +=++++ We equate coefficients.s 2 :0 = A+ B or B = - A s: 4=1.5A + Cconstant: 1 = A, B=-1, C = 4-1.5A = 2.52222241 2.513/441.51(3/4)(3/4)44o x s s V s s s s s s −++=+=−+++⎛⎞⎛⎞++++⎜⎟⎜⎟⎝⎠⎝⎠3/43/4()()cos 4.9135sin 44t t v t u t e t e t −−=−+PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsIf v 0(0) = -1V,obtain v 0(t ) in the circuit of Fig. 16.42.Figure 16.42For Prob. 16.8.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators 1122F sC s⎯⎯→= We analyze the circuit in the s-domain as shown below. We apply nodal analysis.0314140211(4)o o o V V V s s s s V s s s−−−−−++=⎯⎯→=+4o A B V s s =++14187/2,9/244A B ====−− 7/29/24o V s s =−+ 479()()22t o v t e u t −⎛⎞=−⎜⎟⎝⎠4s 3sPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators Find the input impedance Z in (s) of each of the circuits in Fig. 16.43.Figure 16.43For Prob. 16.9.Chapter 16, Solution 9.(a) The s-domain form of the circuit is shown in Fig. (a). =+++=+=s 1s 2)s 1s (2)1s (||2Z in 1s 2s )1s (222+++(b) The s-domain equivalent circuit is shown in Fig. (b).2s 3)2s (2s 23)s 21(2)s 21(||2++=++=+ 2s 36s 5)s 21(||21++=++ =⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛++⋅=⎟⎠⎞⎜⎝⎛++=2s 36s 5s 2s 36s 5s 2s 36s 5||s Z in 6s 7s 3)6s 5(s 2+++ 2(a) (b)2/s 1PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsUse Thevenin’s theorem to determine v 0(t ), t > 0 in the circuit of Fig. 16.44.Figure 16.44For Prob. 16.10.Chapter 16, Solution 10.11Hs ⎯⎯→ and i L (0) = 0 (the sources is zero for all t<0). 1144F sC s ⎯⎯→= and v C (0) = 0 (again, there are no source contributions for all t<0).To find Z Th , consider the circuit below.21//(2)3Th s Z s s +=+=+PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators To find V Th , consider the circuit below.V244104044236123o Th Th s s V V s s s s Z s s s ====+++++++ ()o v t =Solve for the mesh currents in the circuit of Fig. 16.45. You may leave your results in the s-domain.Figure 16.45For Prob. 16.11.PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators In the s-domain, the circuit is as shown below.12101(1)44s I sI s=+− (1) 1215(4)044sI I s −++= (2) In matrix form,12110144150444s s I s I s s ⎡⎤+−⎡⎤⎢⎥⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥−+⎢⎥⎣⎦⎢⎥⎣⎦ 4s 49s 412++=∆ 11014050454044s s s s −∆==++ 2101541204s s s +∆==− )16s 9s (s 160s 504s 25.2s 25.0225s 40I 2211+++=+++=∆∆=16s 9s 104s 25.2s 25.05.2I 2222++=++=∆∆=1 s 10sPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsFind v o (t ) in the circuit of Fig. 16.46.Figure 16.46For Prob. 16.12.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators We apply nodal analysis to the s-domain form of the circuit below.o o o sV 24V s 3s V 1s 10+=+−+ 1s 15s 1510151s 10V )s s 25.01(o 2+++=++=++1s 25.0s C Bs 1s A )1s 25.0s )(1s (25s 15V 22o +++++=++++=740V )1s (A 1-s o =+==)1s (C )s s (B )1s 25.0s (A 25s 1522++++++=+Equating coefficients :2s : -AB B A 0=⎯→⎯+= 1s :C -0.75A C B A 25.015+=++= 0s : C A 25+=740A =, 740-B =, 7135C =4321s 233271554321s 21s 7401s 17404321s 7135s 740-1s 740V 222o +⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⋅++⎟⎠⎞⎜⎝⎛++−+=+⎟⎠⎞⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛−=t 23sin e )3)(7()2)(155(t 23cos e 740e 740)t (v 2t -2t -t -o =)t (v o V )t 866.0sin(e 57.25)t 866.0cos(e 714.5e 714.52-t 2-t -t +−s 3/sPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators Determine i 0(t) in the circuit of Fig. 16.47.Figure 16.47For Prob. 16.13.Chapter 16, Solution 13.Consider the following circuit.Applying KCL at node o,oo o V 1s 21s 12V 1s 2V 2s 1++=+++=+ )2s )(1s (1s 2V o +++=2s B 1s A )2s )(1s (11s 2V I o o +++=++=+=1A =, -1B =2s 11s 1I o +−+==)t (i o ()A )t (u e e -2t -t −2s11/s I oPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators Chapter 16, Problem 14.* Determine i 0(t) in the network shown in Fig. 16.48.Figure 16.48 For Prob. 16.14.* An asterisk indicates a challenging problem.Chapter 16, Solution 14.We first find the initial conditions from the circuit in Fig. (a).A 5)0(i o =−, V 0)0(v c =−We now incorporate these conditions in the s-domain circuit as shown in Fig.(b).4 Ω1 Ω(a)4/s41(b)PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators At node o,0s440V s 5s 2V 1s 15V o o o =+−+++− o V )1s (4s s 211s 5s 15⎟⎠⎞⎜⎝⎛+++=− o 2o 22V )1s (s 42s 6s 5V )1s (s 4s 2s 2s 4s 4s 10+++=+++++= 2s 6s 5)1s (40V 2o +++=s 5)4.0s 2.1s (s )1s (4s 5s 2V I 2o o ++++=+=4.0s 2.1s C Bs s A s 5I 2o +++++=s C s B )4.0s 2.1s (A )1s (4s 2++++=+Equating coefficients :0s : 10A A 4.04=⎯→⎯=1s : -84-1.2A C C A 2.14=+=⎯→⎯+=2s : -10-A B B A 0==⎯→⎯+=4.0s 2.1s 8s 10s 10s 5I 2o +++−+=2222o 2.0)6.0s ()2.0(102.0)6.0s ()6.0s (10s 15I ++−+++−==)t (i o ()[]A )t (u )t 2.0sin()t 2.0cos(e 10150.6t -−−PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators Find V x (s) in the circuit shown in Fig. 16.49.Figure 16.49 For Prob. 16.15.Chapter 16, Solution 15.First we need to transform the circuit into the s-domain.2s 5V V 2s 5V V ,But 2s s5V 120V )40s s 2(02s s 5sV V s 2V 120V 400102s 5V s /50V 4/s V 3V x o o x x o 2o o 2x o o o x o ++=→+−=+−−++==+−++−=+−+−+−We can now solve for V x .)40s 5.0s )(2s ()20s (5V 2s )20s (10V )40s 5.0s (202s s 5V 1202s 5V )40s s 2(22x 2x 2x x 2−+++−=++−=−+=+−−⎟⎠⎞⎜⎝⎛++++10 3V xs/42s 5+PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators* Find i 0(t ) for t > 0 in the circuit of Fig. 16.50.Figure 16.50 For Prob. 16.16.* An asterisk indicates a challenging problem.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsWe first need to find the initial conditions. For 0t <, the circuit is shown in Fig. (a).To dc, the capacitor acts like an open circuit and the inductor acts like a short circuit. Hence,A 1-33-i )0(i o L ===, V 1-v o =V 5.221-)1-)(2(-)0(v c =⎟⎠⎞⎜⎝⎛−=We now incorporate the initial conditions for 0t > as shown in Fig. (b).For mesh 1,02V s 5.2I s 1I s 122s 5-o21=++−⎟⎠⎞⎜⎝⎛+++(a)3 V2 ΩV o-1 V2V oPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators But,2o o I I V ==s5.22s 5I s 121I s 1221−+=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛+(1)For mesh 2,0s5.22V 1I s 1I s 1s 1o 12=−−+−⎟⎠⎞⎜⎝⎛++ 1s5.2I s 1s 21I s 1-21−=⎟⎠⎞⎜⎝⎛+++(2)Put (1) and (2) in matrix form.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−+=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++−+1s 5.2s 5.22s 5I I s 1s 21s 1-s 121s 1221s 32s 2++=∆, )2s (s 5s 42-2+++=∆3s 2s 2CBs 2s A )3s 2s 2)(2s (132s -I I 22222o +++++=++++=∆∆==)2s (C )s 2s (B )3s 2s 2(A 132s -222++++++=+Equating coefficients :2s :B A 22-+= 1s :C B 2A 20++= 0s : C 2A 313+=Solving these equations leads to7143.0A =, -3.429B =, 429.5C =5.1s s 714.2s 7145.12s 7143.03s 2s 2429.5s 429.32s 7143.0I 22o ++−−+=++−−+=25.1)5.0s ()25.1)(194.3(25.1)5.0s ()5.0s (7145.12s 7143.0I 22o ++++++−+==)t (i o []A )t (u )t 25.1sin(e 194.3)t 25.1cos(e 7145.1e 7143.0-0.5t -0.5t -2t +−PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators Chapter 16, Problem 17.Calculate i 0(t ) for t > 0 in the network of Fig. 16.51.Figure 16.51 For Prob. 16.17.Chapter 16, Solution 17.We apply mesh analysis to the s-domain form of the circuit as shown below.For mesh 3,0I s I s1I s 1s 1s 2213=−−⎟⎠⎞⎜⎝⎛+++ (1)For the supermesh,0I s s 1I )s 1(I s 11321=⎟⎠⎞⎜⎝⎛+−++⎟⎠⎞⎜⎝⎛+ (2)1PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators Adding (1) and (2) we get, I 1 + I 2 = –2/(s+1) (3)But –I 1 + I 2 = 4/s(4)Adding (3) and (4) we get, I 2= (2/s) – 1/(s+1) (5)Substituting (5) into (4) yields, I 1 = –(2/s) – (1/(s+1))(6)Substituting (5) and (6) into (1) we get,1s 2I s 1s 1s s 2)1s (s 1s 2322+−=⎟⎟⎠⎞⎜⎜⎝⎛++++−++js j5.05.1j s j 5.05.1s 2I 3−+++−+−=Substituting (3) into (1) and (2) leads to)1s (s )2s 2s (2I s 1s I s 1s -2232+++−=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+(4)232s)1s (4I s 1s I s 1s 2+−=⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛++ (5) We can now solve for I o . I o = I 2 – I 3 = (4/s) – (1/(s+1)) + ((–1.5+0.5j)/(s+j)) + ((–1.5–0.5)/(s–j)) or i o (t) = [4 – e –t + 1.5811e –jt+161.57˚ + 1.5811e jt–161.57˚]u(t)AThis is a challenging problem. I did check it with using a Thevenin equivalent circuit and got the same exact answer.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators (a) Find the Laplace transform of the voltage shown in Fig. 16.52(a). (b) Using that value of v s (t ) in the circuit shown in Fig. 16.52(b), find the value of v 0(t).Figure 16.52 For Prob. 16.18.Chapter 16, Solution 18.v s (t) = 3u(t) – 3u(t–1) or V s = )e 1(s3s e s 3s s −−−=−V)]1t (u )e 22()t (u )e 22[()t (v )e 1(5.1s 2s 2)e 1()5.1s (s 3V V V )5.1s (02VsV 1V V )1t (5.1t 5.1o ss o s o o o s o −−−−=−⎟⎠⎞⎜⎝⎛+−=−+==+→=++−−−−−−V s 2 ΩPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsIn the circuit of Fig. 16.53, let i (0) = 1 A, v 0(0) and v s = 4e t 2−u (t ) V. Find v 0(t ) for t > 0.Figure 16.53 For Prob. 16.19.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsAt the supernode,o 11sV s 1s V 22V ))2s (4(++=+−+o 1V s s1V s 12122s 2++⎟⎠⎞⎜⎝⎛+=++ (1)But I 2V V 1o += and s1V I 1+= 2s 2V s s )2s (s 2V V s )1V (2V V o o 111o +−=+−=⎯→⎯++= (2)Substituting (2) into (1)o o V s 2s 2V 2s s s 22s s 122s 2+⎥⎦⎤⎢⎣⎡+−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=−++ o V s 21s 1s 122s 2⎥⎦⎤⎢⎣⎡+⎟⎠⎞⎜⎝⎛=+−++ o V )2/1s (2s 6s 2)2s (24s 2+=++=+++2s B2/1s A )2/1s )(2s (6s 2V o +++=+++=333.3)25.0/()61(A =+−+−=, 3333.1)2/12/()64(B −=+−+−=2s 3333.12/1s 333.3V o +−+= Therefore,=)t (v o (3.333e -t/2 – 1.3333e -2t )u(t) V2PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsFind v 0(t ) in the circuit of Fig. 16.54 if v x (0) = 2 V and i (0) = 1A.Figure 16.54 For Prob. 16.20.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsWe incorporate the initial conditions and transform the current source to a voltage source as shown.At the main non-reference node, KCL givess 1s V 1V s 11V s 2)1s (1o o o ++=+−−+s 1s V )s 11)(1s (V s 21s s o o ++++=−−+ o V )s 12s 2(2s1s 1s s ++=−+−+ )1s 2s 2)(1s (1s 4s 2-V 22o +++−−=5.0s s CBs 1s A )5.0s s )(1s (5.0s 2s -V 22o +++++=+++−−=1V )1s (A 1-s o =+==)1s (C )s s (B )5.0s s (A 5.0s 2s -222++++++=−−Equating coefficients :2s : -2B B A 1-=⎯→⎯+=1s : -1C C B A 2-=⎯→⎯++=0s :-0.515.0C A 5.00.5-=−=+=222o )5.0()5.0s ()5.0s (21s 15.0s s 1s 21s 1V +++−+=+++−+==)t (v o []V )t (u )2t cos(e 2e 2-t -t −1/sPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsFind the voltage v 0(t ) in the circuit of Fig. 16.55 by means of the Laplace transform.Figure 16.55 For Prob. 16.21.PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsThe s-domain version of the circuit is shown below. 1 sAt node 1, o o o V s V s V s s V V V s )12()1(1021102111−++=⎯→⎯+−=− (1)At node 2,)12(2211++=⎯→⎯+=−s sV V sV V sV V o o o o(2)Substituting (2) into (1) giveso o o V s s s V s V s s s )5.12()12()12/)(1(10222++=−++++=5.12)5.12(1022++++=++=s s C Bs s A s s s V oCs Bs s s A ++++=22)5.12(10B A s +=0:2C A s +=20:-40/3C -20/3,B ,3/205.110:constant ===⎯→⎯=A A ⎥⎦⎤⎢⎣⎡++−+++−=⎥⎦⎤⎢⎣⎡+++−=222227071.0)1(7071.0414.17071.0)1(113205.1221320s s s s s s s s V o Taking the inverse Laplace tranform finally yields[]V )t (u t 7071.0sin e 414.1t 7071.0cos e 1320)t (v t t o −−−−=PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No partof this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators Find the node voltages v 1 and v 2 in the circuit of Fig. 16.56 using the Laplace transform technique. Assume that i s = 12e t −u (t )A and that all initial conditions are zero.For Prob. 16.22.Chapter 16, Solution 22.The s-domain version of the circuit is shown below. 4sAt node 1,s4V s 411V 1s 12s 4V V 1V 1s 1221211−⎟⎠⎞⎜⎝⎛+=+⎯→⎯−+=+ (1)At node 2,⎟⎠⎞⎜⎝⎛++=⎯→⎯+=−1s 2s 34V V V 3s 2V s 4V V 2212221 (2)Substituting (2) into (1),2222V 23s 37s 34s 41s 4111s 2s 34V 1s 12⎟⎠⎞⎜⎝⎛++=⎥⎦⎤⎢⎣⎡−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛++=+)8s 4s (CBs )1s (A )8s 4s )(1s (9V 222+++++=+++=)1s (C )s s (B )89s 47s (A 922++++++=PROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators Equating coefficients:B A 0:s 2+= A 43C CA 43C B A 470:s −=⎯→⎯+=++=-18C -24,B ,24A A 83C A 899:constant ===⎯→⎯=+=6423)87s (36423)87s ()8/7s (24)1s (2489s 47s (18s 24)1s (24V 2222++++++−+=+++−+=Taking the inverse of this produces:[])t (u )t 5995.0sin(e 004.5)t 5995.0cos(e 24e 24)t (v t 875.0t 875.0t 2−−−+−=Similarly,)89s 47s (F Es )1s (D )89s 47s )(1s (1s 2s 349V 2221+++++=+++⎟⎠⎞⎜⎝⎛++=)1s (F )s s (E )89s 47s (D 1s 2s 349222++++++=⎟⎠⎞⎜⎝⎛++Equating coefficients:E D 12:s 2+= D 436F F D 436or F E D 4718:s −=⎯→⎯+=++=0F 4,E ,8D D 833or F D 899:constant ===⎯→⎯=+=6423)87s (2/76423)87s ()8/7s (4)1s (8)89s 47s (s 4)1s (8V 2221++−+++++=++++=Thus,[])t (u )t 5995.0sin(e 838.5)t 5995.0cos(e 4e 8)t (v t 875.0t 875.0t 1−−−−+=Consider the parallel RLC circuit of Fig. 16.57. Find v(t) and i(t) given that v(0) = 5 and i(0) = -2 A.Figure 16.57For Prob. 16.23.PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsPROPRIETARY MATERIAL . © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educatorsThe s-domain form of the circuit with the initial conditions is shown below.At the non-reference node,sCV sL V R V C 5s2s 4++=++⎟⎠⎞⎜⎝⎛++=+LC 1RC s s s CV s sC 562LC1RC s s C6s 5V 2+++=But 880101RC 1==, 208041LC 1==222222)4s ()2)(230(2)4s ()4s (520s 8s 480s 5V ++++++=+++==)t (v V )t (u ))t 2sin(e 230)t 2cos(e 5(-4t -4t + )20s 8s (s 4480s 5sL V I 2+++==20s 8s C Bs s A )20s 8s (s 120s 25.1I 22++++=+++=6A =, -6B =, -46.75C =222222)4s ()2)(375.11(2)4s ()4s (6s 620s 8s 75.46s 6s 6I ++−+++−=+++−==)t (i 0t ),t (u ))t 2sin(e 375.11)t 2cos(e 66(-4t -4t >−−V 5C。