基本数学思想(1)(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本数学思想:教材架构与教学思考
一、基本数学思想的教材架构
数学思想是数学的灵魂,是数学科学发生和发展的根本。有了数学思想,数学知识便不再是孤立的。史宁中教授认为,“数学思想需要满足两个条件:一是数学产生、发展过程中所必须依赖的那些思想,二是学习过数学的人所具有的思维特征。基本数学思想主要有三种:抽象、推理和模型。整个数学学科就是建立在基本数学思想的基础上,并按照基本数学思想发展起来的。”
苏教版义务教育小学数学教材坚持用基本数学思想统整全部内容,规划合理的内容结构,侧重引导学生经历简单的数学抽象过程、推理过程、建立模型过程。
(一)以数学抽象为主线引入数学研究的对象
数学是研究数量关系和空间形式的科学,数学研究的对象是一种抽象的存在。教材在编写时,注重精心选择素材,创设情境,把客观世界中与数量和图形有关的事物或现象抽象成数学研究的对象。
1.数量与数量关系的抽象。
把数量抽象成数。数概念的形成与发展是“数与代数”学习的起点,整数、小数、分数的学习,是一个从具体事物和数量抽象为数的过程,是抽象水平不断提高的过程,学生认识数的过程也是逐步感悟抽象思想的过程。比如教学正整数的认识,教材按照“现实情境中的数量—实物(小棒、小方块等)表示数—计数器(或算盘)表示数—写数”的线索,引导学生经历数的抽象过程。再比如教学负整数的认识,教材选择温度计、海拔高度、收支盈亏、向不同方向走路等现实素材,从大量存在的具有相反意义的量中抽象出负数的意义。把数量抽象成数,并用符号表达,数学就有了研究的对象。
把数量多少关系抽象成数大小关系。抽象出研究对象不是根本,数学的本质是研究关系。数中最重要的关系是大小关系,大小关系是从数量里的多少关系抽象出来的。教材结合认识10以内的数,通过创设童话情境,先引导学生比较同类事物数量的多少,再抽象出数的大小,进而演变为一般的序关系(一个自然数加1就可以得到下一个比它大1的数)。有了数的大小关系,就能派生出自然数的加法,进而建构四则运算;有了数概念“序”的特性,就为后面建构大数概念的更高程度的抽象提供经验支撑。
把数抽象成字母。从算术的学习走向代数的学习,是学生学习数学的重要转折点。如果说数字符号是对生活中各种物体个数的抽象概括,那么字母则是对各种数字符号的抽象概括。教学用字母表示数,教材以“用式子表示摆三角形用小棒的根数”为载体,引导学生经历“具体事物--个性化地表示--学会数学地表示”的抽象过程,体验字母表示数的概括性和抽象性。
2.图形与图形关系的抽象。
几何学主要是研究几何体和几何图形的空间形式、位置关系和量的关系。把现实生活中与图形有关的事物抽象成平面图形,为几何学打开研究的大门。教材从学生熟悉的现实空间中的物体出发,引导学生在观察、操作、比较等活动中逐步舍弃其他属性,对其形状、大小、位置等几何形态进行抽象和概括,进而获得相应的表象,建立几何图形概念。比如教学认识长方体,教材引领学生经历了两个层次的抽象过程:观察并交流生
活中常见的长方体实物的过程,是学生舍弃它们的材质、颜色、用途等属性,对长方体的形状特征进行抽象的过程;从不同角度观察长方体模型的活动,是促进学生积极调度头脑中已形成的长方体表象,并试图以可视化的方式表示出来,实现用二维的几何图形表示三维的几何体,完成把物体抽象成几何图形的过程。“方向与位置”为研究图形关系打开大门。教学“认识方向”,教材通过创设现实情境,让学生在熟悉的环境中体验东、南、西、北、东南、东北、西南、西北,进而抽象成平面图,为进一步研究图形位置关系提供方法基础;教学“确定位置”,教材提供教室座位图,先让学生利用已有的经验描述小军的位置,再把日常生活中用行和列描述物体位置的经验抽象成有序的数对,过度到用数对表示平面上点的位置,为研究平面直角坐标系做好准备。
分类思想是由抽象思想派生出来的。分类为数学抽象活动提供必要的基础,教材对分类思想作了精心架构。在“数的运算”中,通过练习引导学生对式题进行分类,整体把握笔算方法;在“解决问题策略”中,引导学生经历分类列举的过程,感悟策略的价值;在“图形的认识”中,引导学生通过对图形进行分类,引入图形概念;在“数据的收集和整理”中,引导学生按不同的标准对数据进行分类,体会分类标准与分类结果之间的联系。等等。
(二)以数学推理为主线建构数学内容体系
推理是从一个或几个已知判断得出新判断。人们通过推理得到数学命题和算法,建构数学理论体系大厦。推理有两种形式,通过特例的分析引出普遍的结论叫归纳推理(包括类比推理),从普遍性结论或一般性的前提推出个别或特殊的结论叫演绎推理。在解决问题的过程中,归纳推理用于推断结论,演绎推理用于证明结论。数学的发展,既需要演绎推理,也需要归纳推理。
教材在编写时,注重处理好归纳推理与演绎推理的关系,坚持以推理思想为统领,形成数学概念,建立数学知识体系。
1.从特殊到一般。
内容结构的建立。教材编写注重整体性,突出数学思想在内容结构中的作用,促使学生由此及彼、举一反三地进行探索性学习。如“图形面积计算”的教学内容,教材以化归思想统领整个内容领域,通过类似的编排线索,促进学生迁移感悟。
数学知识的形成。受小学生知识经验和认知水平的限制,小学数学中大部分知识的形成和建立,教材都采用归纳(主要是不完全归纳)方式展开。有的是建立在类比例举之上的归纳,有的是建立在抽象分析之上的归纳。
数学规律的探索。教材除了注重让学生在知识的形成、发展中经历由具体到一般的抽象、概括过程外,还通过选择一些探索性的问题,让学生在解决问题过程中拓展学习内容,体会归纳思想。一是通过习题引导学生体会不同领域数学内容之间的联系与综合,积累对基本数学思想的认识。例如,六年级(下册)“总复习”单元第11题,学生在解决问题的过程中不难归纳出“在正方形里画1×1个、2×2个、3×3个……相同的尽量大的圆,圆面积的和都是正方形面积的78.5%。”尽管这一结论还需要进一步的证明,但这种由特殊现象归纳一般规律的过程却在学生头脑中留下了深刻的印记。二是安排