弧长及扇形面积计算公式 PPT课件
合集下载
《弧长和扇形面积》课件
面积为______
3
解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵△OBD,△OCE是等腰三角形,
∴∠BDO+∠CEO=∠ABC+∠ACB=120°,
∴∠BOD+∠COE=360°-(∠BDO+∠CEO)-(∠ABC+∠ACB)
=360°-120°-120°=12DB= × 3 × 3
2
60×32
3−
360
=
9 3
3
− .
2
2
记作:扇形OCED
新知探究 知识点1
S =πR2
分别计算下图中各扇形的面积
R
180° O
2
180
R
R 2
360
2
R 90°
O
2
90
R
R 2
360
4
45°
R
O
2
45
R
R 2
360
8
n°R
O
2
n
n
R
R 2
360
360
扇形面积公式:
半径为R 的圆中,圆心角为n°的扇形的面积是
解得
135×4²
R=4,∴此扇形的面积为
=6π(cm2).
360
随堂练习
1.如图,实线部分是由两条等弧组成的游泳池,且这两条弧所在
的圆的半径均为15 m.若每条弧所在的圆都经过另一个圆的圆心,
则游泳池的周长是 40π m.
解:如图,连接O1O2,CO1,CO2,DO1,DO2,
∵O1O2= CO1 = CO2 =15m,
3
解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵△OBD,△OCE是等腰三角形,
∴∠BDO+∠CEO=∠ABC+∠ACB=120°,
∴∠BOD+∠COE=360°-(∠BDO+∠CEO)-(∠ABC+∠ACB)
=360°-120°-120°=12DB= × 3 × 3
2
60×32
3−
360
=
9 3
3
− .
2
2
记作:扇形OCED
新知探究 知识点1
S =πR2
分别计算下图中各扇形的面积
R
180° O
2
180
R
R 2
360
2
R 90°
O
2
90
R
R 2
360
4
45°
R
O
2
45
R
R 2
360
8
n°R
O
2
n
n
R
R 2
360
360
扇形面积公式:
半径为R 的圆中,圆心角为n°的扇形的面积是
解得
135×4²
R=4,∴此扇形的面积为
=6π(cm2).
360
随堂练习
1.如图,实线部分是由两条等弧组成的游泳池,且这两条弧所在
的圆的半径均为15 m.若每条弧所在的圆都经过另一个圆的圆心,
则游泳池的周长是 40π m.
解:如图,连接O1O2,CO1,CO2,DO1,DO2,
∵O1O2= CO1 = CO2 =15m,
弧长及扇形的面积ppt课件
如图所示,扇形OAB的圆心角为60°,半径为1,将它向右 滚动到扇形O′A′B′的位置,点O到O′所经过的路线长
A.π B .4/3π C.5/3π D.2π
B' A
B
C' D
A
C
扇形的定义 如图,一条弧和经过这条弧的端点的两条半径所组成 的图形叫做扇形.
弧
A B
O
探究二
1.如图,圆的半径为R,圆心角为90°, 怎样计算扇形的面积呢?
∠BAC=60°.设⊙O的半径为2,求 B⌒C 的
长.
例2、 如图:在△AOC中,∠AOC=90°, ∠C=15°,以O为圆心,AO为半径的圆交AC于B 点,若OA=6, 求弧AB的长。
C
B
O
A
试一试:
如图:AB与⊙O相切于点B,AO的延长线交⊙O 于点C,连接BC,若∠ABC=120°,OC=3,求 弧BC的长.
B●
B
B2
B1
F'
U
A
BCD的边AB=8,AD=6,现将矩形ABCD 放在直线l上且沿着l向右作无滑动地翻滚,当它 翻滚至类似开始的位置时(如图所示),则顶点 A所经过的路线长是_________.
如图,半径为5的半圆的初始状态是直径平行于桌 面上的直线b,然后把半圆沿直线b进行无滑动滚动 ,使半圆的直径与直线b重合为止,则圆心O运动路 径的长度等于______.
1 4
π×(652-152)=1000π(cm2)
例题解析
例2 如图,正三角形ABC的边长为2,分别以A、B、C为 圆心,1为半径的圆两两相切于点O1、O2、O3,求弧O1O2、 弧O2O3、弧O3O1围成的图形的面积S(图中阴影部分).
弧长和扇形面积公式ppt课件
形的面积为___4____.
3
2、已知扇形的圆心角为300,面积为 3 cm2,则这 个扇形的半径R=_6_c__m.
3、已知扇形的圆心角为1500,弧长为 20 cm,则扇形
的面积为___2_4__0____c.m2
小结: 扇形面积公式涉及三个量 扇形面积 ,圆心角的度数 ,弧所在
的半径,知道其中两个量,就可以求第三个量。
360
2
=
0.24
1 2
0.6
3 0.3
≈0.91 m2
12
• 通过这两道题你有什么收获?
1.学会几何建模,既把实际问题转化为几何问题 2.转化思想
3.S弓=S扇—S△
0
0
S弓=S扇+S△ A
B
13
议一议:
1、本节课你学到了那些知识? 2、本节课你学到了那些数学思想和方法?
14
15
360 180
n (4)n°圆心角所对弧长是多少? ×π R 180
若设⊙O半径为R, n°的圆心角所对的弧长
l为 ,则
l nR
180
A
B
n°
O
3
1.已知弧所对的圆心角为900,半径是4,则弧
2 长为______
2. 已知一条弧的半径为9,弧长为8π ,那么
这条弧所对的圆心角为16_0_°__。
3. 钟表的轴心到分针针端的长为5cm,那么经过
40分钟,分针针端转过的弧长是( B )
A.
10 cm B.
3
20 cm C.
3
小结: 弧长公式涉及三个量
弧253长cm,D圆.心角5的03度c数m ,
弧所在的半径,知道其中两个量,就可以求第
3
2、已知扇形的圆心角为300,面积为 3 cm2,则这 个扇形的半径R=_6_c__m.
3、已知扇形的圆心角为1500,弧长为 20 cm,则扇形
的面积为___2_4__0____c.m2
小结: 扇形面积公式涉及三个量 扇形面积 ,圆心角的度数 ,弧所在
的半径,知道其中两个量,就可以求第三个量。
360
2
=
0.24
1 2
0.6
3 0.3
≈0.91 m2
12
• 通过这两道题你有什么收获?
1.学会几何建模,既把实际问题转化为几何问题 2.转化思想
3.S弓=S扇—S△
0
0
S弓=S扇+S△ A
B
13
议一议:
1、本节课你学到了那些知识? 2、本节课你学到了那些数学思想和方法?
14
15
360 180
n (4)n°圆心角所对弧长是多少? ×π R 180
若设⊙O半径为R, n°的圆心角所对的弧长
l为 ,则
l nR
180
A
B
n°
O
3
1.已知弧所对的圆心角为900,半径是4,则弧
2 长为______
2. 已知一条弧的半径为9,弧长为8π ,那么
这条弧所对的圆心角为16_0_°__。
3. 钟表的轴心到分针针端的长为5cm,那么经过
40分钟,分针针端转过的弧长是( B )
A.
10 cm B.
3
20 cm C.
3
小结: 弧长公式涉及三个量
弧253长cm,D圆.心角5的03度c数m ,
弧所在的半径,知道其中两个量,就可以求第
弧长及扇形面积的计算ppt课件
3.6 弧长及扇形面积的计算
1.半径为r的圆的周长是多少?面积是
多少?
C 2r S r2
2.什么叫做弧?什么叫做1°的弧?
圆上任意两点间的部分叫做弧.
整个圆的 1 叫做1°的弧. 弧是圆的一部分 360
3.什么叫做扇形?
一条弧和经过这条弧两端的两条半径 所围成的图形叫做扇形.
扇形是圆面的一部分
n 2r nr
360
180
知识点一 弧长公式
在半径为r的圆中,n°弧的长度为:
弧的度数或圆心角的度数
n°弧
弧长
l
nr
180
半径 A
r O
B
注意:“n°弧的长度”也可以说成
“n°的圆心角所对的弧的长度”.
例1. 如图所示为一段弯形管道,其中心线是一段圆弧 AB 已知 AB的圆心为O,半径OA=60 cm,∠AOB = 108°, 求这段弯管的长度.
作业布置
A:学案 B:《练习册》91-92页
(去掉1.3.4.8.14.15.17.19)
如图 ,已知⊙O的半径为r .思考下面的问题:
O
1°弧
O
60°弧
O
n°弧
(1)圆周上1°弧的长度是整个圆周长的多少? 1
怎样用圆的半径r表示 1°弧的长度呢? 360
1 2 r r
360
180
(2)怎样用圆的半径r表示 60°弧的长度呢?
60 2r r
360
3
(3)怎样用圆的半径r表示 n°弧的长度 l 呢?
分BD的长为20cm,求扇子的一面上贴纸部分的面
积。
分析:
转化思想
.
S S扇形BAC S扇形DAE
解:由题意得:n=120 °,
1.半径为r的圆的周长是多少?面积是
多少?
C 2r S r2
2.什么叫做弧?什么叫做1°的弧?
圆上任意两点间的部分叫做弧.
整个圆的 1 叫做1°的弧. 弧是圆的一部分 360
3.什么叫做扇形?
一条弧和经过这条弧两端的两条半径 所围成的图形叫做扇形.
扇形是圆面的一部分
n 2r nr
360
180
知识点一 弧长公式
在半径为r的圆中,n°弧的长度为:
弧的度数或圆心角的度数
n°弧
弧长
l
nr
180
半径 A
r O
B
注意:“n°弧的长度”也可以说成
“n°的圆心角所对的弧的长度”.
例1. 如图所示为一段弯形管道,其中心线是一段圆弧 AB 已知 AB的圆心为O,半径OA=60 cm,∠AOB = 108°, 求这段弯管的长度.
作业布置
A:学案 B:《练习册》91-92页
(去掉1.3.4.8.14.15.17.19)
如图 ,已知⊙O的半径为r .思考下面的问题:
O
1°弧
O
60°弧
O
n°弧
(1)圆周上1°弧的长度是整个圆周长的多少? 1
怎样用圆的半径r表示 1°弧的长度呢? 360
1 2 r r
360
180
(2)怎样用圆的半径r表示 60°弧的长度呢?
60 2r r
360
3
(3)怎样用圆的半径r表示 n°弧的长度 l 呢?
分BD的长为20cm,求扇子的一面上贴纸部分的面
积。
分析:
转化思想
.
S S扇形BAC S扇形DAE
解:由题意得:n=120 °,
28.5 弧长和扇形面积的计算课件(共27张PPT)
课堂小结
弧长和扇形面积
弧长公式
扇形面积公式
圆锥的侧面积为 πrl 圆锥表面积为 πrl+πr2 = πr(r+l)
同学们再见!
授课老师:
时间:2024年9月15日
解:设该圆锥的底面的半径为r,母线长为a.
可得r=10.
解得a=30.因此,该圆锥底面半径为10,母线长为30.
拓展提升
1.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.
180°
2.草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m,求它能喷灌的草坪的面积.解:因此,它能喷灌的草坪的面积为 πm2.
(1)半径为r的圆,周长是多少?(2)圆的周长可以看作是多少度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?
思考
你能总结出弧长公式吗?
C=2πr
360°
知识点2 弧长公式
弧长公式
圆的半径.
弧所对的圆心角的度数.
解读
1.公式中,n表示1°的n倍,180表示1°的180倍,n,180 不带单位.2.在弧长公式中,已知l,n,R中任意两个量,都可求出第三个量.
4π
B
4.如图,已知扇形OAB 的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是( )A.π-2 B.2π-4 C. 4π-2 D.4π-4
A
5.一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.
3.如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留小数点后两位).
解:如图,连接OA,OB,作弦AB的垂直平分线,垂足为D,交弧AB于点C,连接AC.∵OC=0.6m,DC=0.3m,∴OD=OC-DC=0.3m.∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线.∴AC=AO=OC.从而∠AOD=60°,∠AOB=120°.有水部分的面积S=S扇形-S△OAB=
弧长和扇形面积
弧长公式
扇形面积公式
圆锥的侧面积为 πrl 圆锥表面积为 πrl+πr2 = πr(r+l)
同学们再见!
授课老师:
时间:2024年9月15日
解:设该圆锥的底面的半径为r,母线长为a.
可得r=10.
解得a=30.因此,该圆锥底面半径为10,母线长为30.
拓展提升
1.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.
180°
2.草坪上的自动喷水装置能旋转220°,如果它的喷射半径是20m,求它能喷灌的草坪的面积.解:因此,它能喷灌的草坪的面积为 πm2.
(1)半径为r的圆,周长是多少?(2)圆的周长可以看作是多少度的圆心角所对的弧?(3)1°圆心角所对弧长是多少?
思考
你能总结出弧长公式吗?
C=2πr
360°
知识点2 弧长公式
弧长公式
圆的半径.
弧所对的圆心角的度数.
解读
1.公式中,n表示1°的n倍,180表示1°的180倍,n,180 不带单位.2.在弧长公式中,已知l,n,R中任意两个量,都可求出第三个量.
4π
B
4.如图,已知扇形OAB 的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是( )A.π-2 B.2π-4 C. 4π-2 D.4π-4
A
5.一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.
3.如图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留小数点后两位).
解:如图,连接OA,OB,作弦AB的垂直平分线,垂足为D,交弧AB于点C,连接AC.∵OC=0.6m,DC=0.3m,∴OD=OC-DC=0.3m.∴OD=DC.又AD⊥DC,∴AD是线段OC的垂直平分线.∴AC=AO=OC.从而∠AOD=60°,∠AOB=120°.有水部分的面积S=S扇形-S△OAB=
弧长和扇形面积的计算ppt课件
式 S扇形=
lr,与三角形的面积公式有些类似,可以把扇形
看作一个曲边三角形,把弧长看作底,r 看作高;(4)注
意区分扇形面积公式和弧长公式,其存在两方面不同:一是
分母不同,二是半径的指数不同.
28.5 弧长和扇形面积的计算
对点典例剖析
考
点
典例2 某摆盘的形状是扇形的一部分,如图所示是其几
清
单 何示意图(阴影部分为摆盘),通过测量得到 AC=BD=12 cm
∠BAB′=n°,根据题意,得 2π×2=
××
,解得
,∴∠BAB′=120°,∵ 点 C′为 BB′ 的中点,
n=120
28.5 弧长和扇形面积的计算
重
∴∠BAC′= ∠BAB′=60°,∴△BAC′为等边三角形
难
题 ,∵ 点 D 为 AC 的中点,∴ 点 D′为 AC′的中点,
型
[解析]如解析图,连接 OD,∵AC=4,AB=2,∴AC=2AB
重
难
题 ,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC
型
突 = − =2 ,∴OC=OD=OB= BC= ,过点 O 作
破
OM⊥CD 于点 M,在 Rt△OCM 中,∠C=30°,∴OM= OC=
π+ π
2
3
突
破
28.5 弧长和扇形面积的计算
重 ■题型二 求阴影部分的面积
难
例 2 如图,在△ABC 中,∠ABC=90°,AB=2,AC=4,
题
型 点 O为 BC 的中点,以点 O 为圆心,OB 长为半径作半圆
突
lr,与三角形的面积公式有些类似,可以把扇形
看作一个曲边三角形,把弧长看作底,r 看作高;(4)注
意区分扇形面积公式和弧长公式,其存在两方面不同:一是
分母不同,二是半径的指数不同.
28.5 弧长和扇形面积的计算
对点典例剖析
考
点
典例2 某摆盘的形状是扇形的一部分,如图所示是其几
清
单 何示意图(阴影部分为摆盘),通过测量得到 AC=BD=12 cm
∠BAB′=n°,根据题意,得 2π×2=
××
,解得
,∴∠BAB′=120°,∵ 点 C′为 BB′ 的中点,
n=120
28.5 弧长和扇形面积的计算
重
∴∠BAC′= ∠BAB′=60°,∴△BAC′为等边三角形
难
题 ,∵ 点 D 为 AC 的中点,∴ 点 D′为 AC′的中点,
型
[解析]如解析图,连接 OD,∵AC=4,AB=2,∴AC=2AB
重
难
题 ,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC
型
突 = − =2 ,∴OC=OD=OB= BC= ,过点 O 作
破
OM⊥CD 于点 M,在 Rt△OCM 中,∠C=30°,∴OM= OC=
π+ π
2
3
突
破
28.5 弧长和扇形面积的计算
重 ■题型二 求阴影部分的面积
难
例 2 如图,在△ABC 中,∠ABC=90°,AB=2,AC=4,
题
型 点 O为 BC 的中点,以点 O 为圆心,OB 长为半径作半圆
突
人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)
-
1353π6×0 152=375π(cm2).
9
能力提升
11.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分.图2中, 图形的相关数据:半径OA=2 cm,∠AOB=120°,则图2的周长为 83π ________cm.(结果保留π)
10
12.如图,在△ABC中,AC=4,将△ABC绕点C逆时针旋 转30°得到△FGC,则图43中π 阴影部分的面积为________.
第二十四章 圆
弧长和扇形面积
第一课时
知识展示
知识点 1 弧长公式 n°的圆心角所对的弧长 l 的计算公式为 l=n1π8R0 ,其中 R 为半径. 核心提示:在弧长公式中,已知 l、n、R 中的任意两个量,都可以求出第三个 量. 知识点 2 扇形的定义 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.
分析:先用扇形OAB的面积-三角形OAB的面积求出上面空白部分面积,再用扇形OCD的面积-三角形OCD的面积-上面空白部分的面
积7.,如即图可,求5分出.别阴以影【五部边分黑形的A龙面BC积D江.E的顶哈点尔为圆滨心,中以1考为半】径作一五个个圆,扇则图形中的阴影弧部分长的面是积之1和1为π__c___m___.,半径是18
2
知识点 3 扇形面积公式 (1)n°圆心角的扇形面积公式:S 扇形=n3π6R02 ,其中 R 为半径. (2)弧长为 l 的扇形面积公式:S 扇形=12lR,其中 R 为半径. 【典例】如图,半径为 12 的圆中,两圆心角∠AOB=60°、∠COD=120°,连接 AB、CD,求图中阴影部分的面积.
cm,则此扇形的圆心角是__________度. 71.2.如如图图,,分在别△以AB五C中边,形AACB=CD4E,的将顶△点AB为C圆绕心点,C逆以时11为针1半旋0 径转作30五°得个到圆△,FG则C,图则中图阴中影阴部影分部的分面的积面之积和为为________________.. 一列火车以6每.小时【28 江km的苏速度泰经州过10中秒通考过弯】道.如那么图弯,道所分对的别圆心以角为正___三_____角__度形.(π的取3.3个顶点为圆心, 98..一已段知铁扇边路形弯所长道在成圆为圆半弧 径半形为,4径,圆弧弧画长的为弧半6径π,,是则2三扇km形.段面积弧为_围_____成____.的图形称为莱洛三角形.若正三角 分 积析,:即先 可用 求形扇 出形 阴边影OA部长B的分面为的积面6-积三.c角m形,OAB则的面该积求莱出上洛面三空白角部分形6面π积的,再周用扇长形为OCD_的_面__积_-__三_角c形mOC. D的面积-上面空白部分的面
《弧长和扇形面积的计算》PPT课件
科学课件: .
/kejian/kexue/
物理课件: .
/kejian/wuli/
化学课件: .
/kejian/huaxue/ 生物课件: .
/kejian/shengwu/
地理课件: .
/kejian/dili/
历史课件: .
/kejian/lishi/
c
甲
问题2: 怎样来计算弯道的“展直长度”?
面积S扇=
4
cm2
3
.
(3)已知半径为2的扇形,面积为π,则这个扇形的弧长
=
4
3
.
(4)已知扇形的半径为5 cm,面积为20 cm2,则扇形弧长
为
8
cm.
(5)已知扇形的圆心角为210°,弧长是28π,则扇形的面
积为 336
.
5.如图,在四边形ABCD中,AB=CD,AD∥BC,以点B
为圆心,BA为半径的圆弧与BC交于点E,四边形AECD
知识讲解
1.认识扇形
扇形:一条弧和经过这条弧端点的两条半径所
组成的图形叫做扇形.
如图所示,在☉O中,由半径OA,OB和所组
成的图形为一个扇形.由半径OA,OB和
所
组成的图形也是扇形.
【思考】一个扇形对应几个圆心角?一个圆心角对应几个扇形?
在同一个圆中,一个扇形对应一个圆心角,反过来,一个圆心角对
范文下载: .
/fanwen/
试卷下载: .
/shiti/
教案下载: .
/jiaoan/
ppt论坛: . .cn
ppt课件: .
/kejian/
语文课件: .
/kejian/yuwen/ 数学课件: .
/kejian/kexue/
物理课件: .
/kejian/wuli/
化学课件: .
/kejian/huaxue/ 生物课件: .
/kejian/shengwu/
地理课件: .
/kejian/dili/
历史课件: .
/kejian/lishi/
c
甲
问题2: 怎样来计算弯道的“展直长度”?
面积S扇=
4
cm2
3
.
(3)已知半径为2的扇形,面积为π,则这个扇形的弧长
=
4
3
.
(4)已知扇形的半径为5 cm,面积为20 cm2,则扇形弧长
为
8
cm.
(5)已知扇形的圆心角为210°,弧长是28π,则扇形的面
积为 336
.
5.如图,在四边形ABCD中,AB=CD,AD∥BC,以点B
为圆心,BA为半径的圆弧与BC交于点E,四边形AECD
知识讲解
1.认识扇形
扇形:一条弧和经过这条弧端点的两条半径所
组成的图形叫做扇形.
如图所示,在☉O中,由半径OA,OB和所组
成的图形为一个扇形.由半径OA,OB和
所
组成的图形也是扇形.
【思考】一个扇形对应几个圆心角?一个圆心角对应几个扇形?
在同一个圆中,一个扇形对应一个圆心角,反过来,一个圆心角对
范文下载: .
/fanwen/
试卷下载: .
/shiti/
教案下载: .
/jiaoan/
ppt论坛: . .cn
ppt课件: .
/kejian/
语文课件: .
/kejian/yuwen/ 数学课件: .
《弧长和扇形面积的计算》PPT课件
第二步、然后逐渐加大距离至远眺图最远处的几 个框处于模糊与清晰之间的位置停止。
第三步、思想集中,认真排除干扰,精神专注, 开始远眺,双眼看整个图表,产生向前深进的感 觉,然后由外向内逐步辨认最远处几个框每一层 的绿白线条。
愿知识与您相伴 让我们共同成长 感谢您的阅读与支持
14.(10分)如图,每个小正方形的边长为1 cm,O,A,B都在小正方 形顶点上,扇形OAB是某个圆锥的侧面展开图. (1)计算这个圆锥侧面展开图的面积; (2)求这个圆锥的底面半径.
(1)由图可知,OB= 22+22=2 2,则弧 AB 的长为90π1×802 2= 2π,
∴面积为12×2 2× 2π=2π
由 20π=12108π0R,∴R=30,∴S 侧=12×20π×30=300π.S 全 =S 侧+S 底=300π+π·102=400π
11.(XXXX·聊城)把地球看成一个外表光滑的球体,假设沿地球赤道
绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16
cm,那么钢丝大约需要加长( A)
8.(3分)一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形, 那么此圆锥的底面圆的半径为_____1___.
9.(3 分)如图,⊙O 中,半径 OA=4,∠AOB=120°,用阴影部分的
扇形围成的圆锥底面圆的半径长是( B )
A.1 5
C.3
4 B.3 D.2
10.(8分)如果圆锥底面的周长是20π,侧面展开后所得扇形的圆心角 为120°,求该圆锥的侧面积和全面积.
4、如果视力不良,只能进到某一层时,不要立 即停止远眺,应多看一会儿,将此层看清楚后, 再向内看一层,如此耐心努力争取尽量向内看, 才能使眼的睫状肌放松。
5、双眼视力相近的,两眼可同时远眺;双眼视 力相差大的、将左右眼轮流遮盖,单眼远眺,视 力差的一只眼睛,其远眺时间要延长。
第三步、思想集中,认真排除干扰,精神专注, 开始远眺,双眼看整个图表,产生向前深进的感 觉,然后由外向内逐步辨认最远处几个框每一层 的绿白线条。
愿知识与您相伴 让我们共同成长 感谢您的阅读与支持
14.(10分)如图,每个小正方形的边长为1 cm,O,A,B都在小正方 形顶点上,扇形OAB是某个圆锥的侧面展开图. (1)计算这个圆锥侧面展开图的面积; (2)求这个圆锥的底面半径.
(1)由图可知,OB= 22+22=2 2,则弧 AB 的长为90π1×802 2= 2π,
∴面积为12×2 2× 2π=2π
由 20π=12108π0R,∴R=30,∴S 侧=12×20π×30=300π.S 全 =S 侧+S 底=300π+π·102=400π
11.(XXXX·聊城)把地球看成一个外表光滑的球体,假设沿地球赤道
绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16
cm,那么钢丝大约需要加长( A)
8.(3分)一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形, 那么此圆锥的底面圆的半径为_____1___.
9.(3 分)如图,⊙O 中,半径 OA=4,∠AOB=120°,用阴影部分的
扇形围成的圆锥底面圆的半径长是( B )
A.1 5
C.3
4 B.3 D.2
10.(8分)如果圆锥底面的周长是20π,侧面展开后所得扇形的圆心角 为120°,求该圆锥的侧面积和全面积.
4、如果视力不良,只能进到某一层时,不要立 即停止远眺,应多看一会儿,将此层看清楚后, 再向内看一层,如此耐心努力争取尽量向内看, 才能使眼的睫状肌放松。
5、双眼视力相近的,两眼可同时远眺;双眼视 力相差大的、将左右眼轮流遮盖,单眼远眺,视 力差的一只眼睛,其远眺时间要延长。
弧长和扇形面积-ppt课件
第二十四章
圆
24.4
弧长和扇形面积
感悟新知
知1-讲
知识点 1 弧长公式
1.弧长公式
在半径为 R 的圆中, n°的圆心角所对的
弧长 l 的计算公式为l=
.
感悟新知
知1-讲
特别提醒
●公式中,n表示1°的n 倍, 180 表示1°的180 倍,
n, 180 不带单位.
●题目若没有写明精确度,可以用含“π”的式子表
知3-讲
感悟新知
知3-讲
(2)圆锥的母线: 连接圆锥顶点和底面圆周上任意一点的
线段叫做圆锥的母线 .
(3)圆锥的高: 连接圆锥顶点与底面圆心的线段叫做圆锥
的高 .
感悟新知
知3-讲
特别提醒
1.圆锥的轴通过底面的圆心,并且垂直于底面 .
2.圆锥的母线长都相等 .
3.圆锥的母线l、高h及底面圆的半径r构成直角三角
∠ACB=90°,AC=BC=2 ,以点A为圆心,AC为半
径画弧,交AB于点E,以点B为圆心,BC为半径画弧,
交AB于点F,则图中阴影部分的面积是
(
)
A.π-2
B.2π-2
C.2π-4
D.4π-4
感悟新知
知2-练
思路导引:
感悟新知
知2-练
解:在等腰直角三角形ABC中,∠ACB=90 °,AC=BC=
求所得旋转体的全面积 .
知3-练
感悟新知
知3-练
思路导引:
感悟新知
解:(1)∵∠ C=90°, AC=6, BC=8,
∴ AB= + =10.
∴ S 底=π AC2=36π, S 侧=π× 6× 10=60π .
圆
24.4
弧长和扇形面积
感悟新知
知1-讲
知识点 1 弧长公式
1.弧长公式
在半径为 R 的圆中, n°的圆心角所对的
弧长 l 的计算公式为l=
.
感悟新知
知1-讲
特别提醒
●公式中,n表示1°的n 倍, 180 表示1°的180 倍,
n, 180 不带单位.
●题目若没有写明精确度,可以用含“π”的式子表
知3-讲
感悟新知
知3-讲
(2)圆锥的母线: 连接圆锥顶点和底面圆周上任意一点的
线段叫做圆锥的母线 .
(3)圆锥的高: 连接圆锥顶点与底面圆心的线段叫做圆锥
的高 .
感悟新知
知3-讲
特别提醒
1.圆锥的轴通过底面的圆心,并且垂直于底面 .
2.圆锥的母线长都相等 .
3.圆锥的母线l、高h及底面圆的半径r构成直角三角
∠ACB=90°,AC=BC=2 ,以点A为圆心,AC为半
径画弧,交AB于点E,以点B为圆心,BC为半径画弧,
交AB于点F,则图中阴影部分的面积是
(
)
A.π-2
B.2π-2
C.2π-4
D.4π-4
感悟新知
知2-练
思路导引:
感悟新知
知2-练
解:在等腰直角三角形ABC中,∠ACB=90 °,AC=BC=
求所得旋转体的全面积 .
知3-练
感悟新知
知3-练
思路导引:
感悟新知
解:(1)∵∠ C=90°, AC=6, BC=8,
∴ AB= + =10.
∴ S 底=π AC2=36π, S 侧=π× 6× 10=60π .
《弧长和扇形面积》课件ppt
24.4 弧长和扇形面积
第1课时
1.会推导出弧长公式及扇形面积公式。 2.会用弧长及扇形面积公式解决问题,提高数学运用能 力.
在田径二百米跑比赛中,每位运动员的起跑位置 相同吗?每位运动员弯路的展直长度相同吗?
(1)半径为R的圆,周长是多少? C=2πR
(2)圆的周长可以看作是多少度的圆心角所对的弧?
【解析】由弧长公式,可得弧AB的长
100 900 500 1570
180 (mm) 因此所要求的展直长度
L 2 700 157(0 m2m970)
答:管道的展直长度为2970mm.
跟踪训练
1.已知弧所对的圆心角为90°,半径是4,则弧长为__2__
2. 已知一条弧的半径为9,弧长为8 ,那么这条弧所对
(3)1°圆心角所对扇形面积是多少?
S 扇形
nR 2
360
A
B
O
A
B
O
O
l nR
180
S 扇形
nR 2
360
比较扇形面积与弧长公式, 用弧长表示扇形面积:
S扇形
1 lR 2
跟踪训练
1、已知扇形的圆心角为120°,半径为2,则这个扇形的 面积S扇形=__34__.
(3)1°圆心角所对弧长是多少? 若设⊙O半径为R,n°的圆心角
所对的弧长为 l nR
180
2R R
360 180
A
B
n°
(4)140°圆心角所对的弧长是多少?
O
140R 7R
180
9
例题
【例1】制造弯形管道时,要先按中心线计算“展直长 度”,再下料,试计算如图所示管道的展直长度L(单位: mm,精确到1mm)
第1课时
1.会推导出弧长公式及扇形面积公式。 2.会用弧长及扇形面积公式解决问题,提高数学运用能 力.
在田径二百米跑比赛中,每位运动员的起跑位置 相同吗?每位运动员弯路的展直长度相同吗?
(1)半径为R的圆,周长是多少? C=2πR
(2)圆的周长可以看作是多少度的圆心角所对的弧?
【解析】由弧长公式,可得弧AB的长
100 900 500 1570
180 (mm) 因此所要求的展直长度
L 2 700 157(0 m2m970)
答:管道的展直长度为2970mm.
跟踪训练
1.已知弧所对的圆心角为90°,半径是4,则弧长为__2__
2. 已知一条弧的半径为9,弧长为8 ,那么这条弧所对
(3)1°圆心角所对扇形面积是多少?
S 扇形
nR 2
360
A
B
O
A
B
O
O
l nR
180
S 扇形
nR 2
360
比较扇形面积与弧长公式, 用弧长表示扇形面积:
S扇形
1 lR 2
跟踪训练
1、已知扇形的圆心角为120°,半径为2,则这个扇形的 面积S扇形=__34__.
(3)1°圆心角所对弧长是多少? 若设⊙O半径为R,n°的圆心角
所对的弧长为 l nR
180
2R R
360 180
A
B
n°
(4)140°圆心角所对的弧长是多少?
O
140R 7R
180
9
例题
【例1】制造弯形管道时,要先按中心线计算“展直长 度”,再下料,试计算如图所示管道的展直长度L(单位: mm,精确到1mm)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
360 180
若设⊙O半径为R, n°的圆心角所对
的弧长为
A
l n 2R nR
360 180
B
n°
O
变形式:n=
R=
想一想
• 观察图3-37,某传送带的一个转动轮的半 径为10.
• (1)转动轮转动一周,传送带上的物品A 被传送了多少厘米?
• (2)转动轮转动1°,传送带上的物品A被 传送多少厘米?
(2)这只狗的最大活动区域有 多大? 9πm2
(3)如果这只狗只能绕柱子转
过no的角,那么它的最大活动 区域有多大?
n m2
40
圆的面积是πR2,
R 2
那么1o圆心角所对的扇形的面积是 360
no圆心角所对的扇形的面积是
S扇形
nR2
360
变形式:n=
R=
例2:已知扇形AOB的半径为12cm,∠AOB=120o,
大过口中学 焦云祥
教学目标
• 探索弧长计算公式和扇形面积的计算公式, 并能熟练应用;
已知⊙O的半径为R,⊙O的周长是多少? ⊙O的面积是多少?
C=2πR,
S⊙O=πR2
(1)圆的周长可以看作是多少度的圆心角所对的弧?
360 ° (2)1°圆心角所对弧长是多少?
1o的圆心角所对的弧长是 2R R
该扇形的半径为
24cm .
3. 已知扇形的圆心角为120o,半径为6,则扇形的 弧长是 ( B)
A. 3π B.4π C.5π
D.6π
P141 1 同步导学
P148页1,2, 3, 4
小结
• 知识点:弧长、扇形面积的计算公式 • 能力:弧长、扇形面积的计算公式的运用
弧长L nR
180
S扇形
nR 2
360
1 LR 2
达标测评
• 1、半径为4,弧长为6π的弧所对的圆心角 是;
• 2、一个扇形面积为120πc㎡,弧长为 60πcm,则该扇形的半径是 ;
• 3、已知两个扇形的半径比为3:1,圆心角 之比为1:1,则该扇形的弧长之比是
•
,面积之比是 ;
课后作业
(1)P141 2 (2)P142 3
求AB的长(结果精确到0.1cm)和扇形AOB的面积 (结果精确到0.1cm2)
解:AB的长 120 12 25.1 cm
180
Sቤተ መጻሕፍቲ ባይዱ形
120
360
122
150.7
cm2
因此,AB的长约为25.1 cm,
扇形AOB的面积约为150.7 cm2.
扇形所对的弧长 L nR
180
扇形的面积是
S扇形
nR 2
360
nR R
180 2
S扇形
1 2
LR
(1)当已知半径和圆心角
的度数,求扇形面积时,应
选用
S扇形
nR2
360
(2)当已知弧长L和半径R,
求扇形面积时,应选用
S扇形
1 2
LR
1. 一个扇形的圆心角为90o,半径为2,
则弧长= π
,扇形面积= 2π .
2. 一个扇形的弧长为20πcm,面积是240πc㎡,则
• (3)转动轮转动n°,传送带上的物品A被 传送多少厘米?
例1.制作弯形管道需要先按
中心线计算“展直长度”再
下料。试计算如图所示的管
A
110o
B
道的展直长度,即弧AB的长
O R=40mm
度(精确到0.1mm)
解: R 40mm,n 110o
AB nR 110 40 76.(8 mm)
180 180 因此,所求管道展直长度为76.8mm
R
(1)半径为R,圆心角为1o的弧长是 180
。
半径为10厘米的圆中,60o的圆心角所对的弧长是
5
3
(2)课本P142页:1, 2
在一块空旷的草地上有一根柱
子,柱子上栓着一条长3m的绳
no
子,绳子的一端栓着一只狗。
(1)这只狗的活动范围是个什
么图形?是个半径为3m的圆
若设⊙O半径为R, n°的圆心角所对
的弧长为
A
l n 2R nR
360 180
B
n°
O
变形式:n=
R=
想一想
• 观察图3-37,某传送带的一个转动轮的半 径为10.
• (1)转动轮转动一周,传送带上的物品A 被传送了多少厘米?
• (2)转动轮转动1°,传送带上的物品A被 传送多少厘米?
(2)这只狗的最大活动区域有 多大? 9πm2
(3)如果这只狗只能绕柱子转
过no的角,那么它的最大活动 区域有多大?
n m2
40
圆的面积是πR2,
R 2
那么1o圆心角所对的扇形的面积是 360
no圆心角所对的扇形的面积是
S扇形
nR2
360
变形式:n=
R=
例2:已知扇形AOB的半径为12cm,∠AOB=120o,
大过口中学 焦云祥
教学目标
• 探索弧长计算公式和扇形面积的计算公式, 并能熟练应用;
已知⊙O的半径为R,⊙O的周长是多少? ⊙O的面积是多少?
C=2πR,
S⊙O=πR2
(1)圆的周长可以看作是多少度的圆心角所对的弧?
360 ° (2)1°圆心角所对弧长是多少?
1o的圆心角所对的弧长是 2R R
该扇形的半径为
24cm .
3. 已知扇形的圆心角为120o,半径为6,则扇形的 弧长是 ( B)
A. 3π B.4π C.5π
D.6π
P141 1 同步导学
P148页1,2, 3, 4
小结
• 知识点:弧长、扇形面积的计算公式 • 能力:弧长、扇形面积的计算公式的运用
弧长L nR
180
S扇形
nR 2
360
1 LR 2
达标测评
• 1、半径为4,弧长为6π的弧所对的圆心角 是;
• 2、一个扇形面积为120πc㎡,弧长为 60πcm,则该扇形的半径是 ;
• 3、已知两个扇形的半径比为3:1,圆心角 之比为1:1,则该扇形的弧长之比是
•
,面积之比是 ;
课后作业
(1)P141 2 (2)P142 3
求AB的长(结果精确到0.1cm)和扇形AOB的面积 (结果精确到0.1cm2)
解:AB的长 120 12 25.1 cm
180
Sቤተ መጻሕፍቲ ባይዱ形
120
360
122
150.7
cm2
因此,AB的长约为25.1 cm,
扇形AOB的面积约为150.7 cm2.
扇形所对的弧长 L nR
180
扇形的面积是
S扇形
nR 2
360
nR R
180 2
S扇形
1 2
LR
(1)当已知半径和圆心角
的度数,求扇形面积时,应
选用
S扇形
nR2
360
(2)当已知弧长L和半径R,
求扇形面积时,应选用
S扇形
1 2
LR
1. 一个扇形的圆心角为90o,半径为2,
则弧长= π
,扇形面积= 2π .
2. 一个扇形的弧长为20πcm,面积是240πc㎡,则
• (3)转动轮转动n°,传送带上的物品A被 传送多少厘米?
例1.制作弯形管道需要先按
中心线计算“展直长度”再
下料。试计算如图所示的管
A
110o
B
道的展直长度,即弧AB的长
O R=40mm
度(精确到0.1mm)
解: R 40mm,n 110o
AB nR 110 40 76.(8 mm)
180 180 因此,所求管道展直长度为76.8mm
R
(1)半径为R,圆心角为1o的弧长是 180
。
半径为10厘米的圆中,60o的圆心角所对的弧长是
5
3
(2)课本P142页:1, 2
在一块空旷的草地上有一根柱
子,柱子上栓着一条长3m的绳
no
子,绳子的一端栓着一只狗。
(1)这只狗的活动范围是个什
么图形?是个半径为3m的圆