低频数字式相位测量仪(缪学进)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低频数字式相位测量仪

该系统由相位测量仪、数字式移相信号发生器和移相网络三个模块构成,分别由两块单片机独立地实现控制与显示功能。采用DDS技术生成两路正弦波信号,并通过改变存储器中数据读取的起始地址来实现数字移相的功能,用Ф-T变换技术来实现相位差的测量,使得显示分辨率精确到0.01º,测得的频率与相位差值送入LCD进行显示,加入红外键盘以及语音播报的功能,使得系统具有智能化、人性化的特色。

关键词:相位测量频率测量数字移相DDS语音播报

一方案论证与设计

1 相位测量方案

方案一:采用脉冲填充计数法。将正弦波信号整成方波信号,对两路方波信号进行异或操作之后输出脉冲序列的脉宽可以反映两列信号的相位差,以输入信号所整成的方波信号作为基频,经锁相环倍频得到的高频脉冲作为闸门电路的计数脉冲,由单片机对获取的计数值进行处理得到两路信号的相位差。

方案二:鉴相部分同方案一,将两路方波信号异或后与晶振的基准频率进行与操作,得到一系列的高频窄脉冲序列。通过两片计数器同时对该脉冲序列以及基准源脉冲序列进行计数,一路方波信号送入单片机外部中断口,作为控制信号控制两片计数器。得到的两路计数值送入单片机进行处理得相位差值。

对以上方案进行比较,方案一在所测频率较高时,受锁相环工作频率等参数的影响会造成相位差测量的误差,采用方案二由高精度的晶振产生稳定的基准频率,可以满足系统高精度、高稳定度的要求。

2频率测量方案

方案一:用专用频率计模块来测量频率,如ICM7216芯片,其内部带放大整形电路,可以直接输入正弦信号,外部振荡部分选用一块高精度晶振和两个低温度系数电容构成10MHz振荡电路,其转换开关具有0.01s,0.1s,1s,10s四种闸门时间,量程可以自动切换,待计数过程结束时显示测频结果。该方案外围硬件电路较为复杂。

方案二:利用可编程计数器来实现频率的测量,将被测信号转换为方波信号输入可编程计数器8254的某一路Clk端口,并将Gate端置为高电平,利用单

片机产生的定时中断来控制8254的计数,最后计数值送入单片机处理并输出。本设计中我们采用方案二。

3 数字移相信号发生器方案

在数字移相信号发生器模块电路中,首先要生成两路相同频率、不同相位的正弦波信号,目前DDS 已经是很完善的一种数字信号产生方案,所以在该部分,我们对产生正弦波信号的数字移相方案进行论证。

方案一:将正弦波量化为一张数据表分别存储于两片PROM E 2之中,通过单片机控制计数器来对存储器中的数据进行寻址,并经过两片D/A 转换芯片循环的输出该数据表,当两路D/A 转换芯片所获得的数据序列不同时,转换所得的两路正弦信号存在相位差,相位差值仅与数据地址的偏移量有关。

方案二:将参考正弦波转换为方波,以此信号为基准,延时后产生另一路同频率的方波,通过改变延时的长短来控制两个波形的相位差大小,最后通过波形变换电路将其还原为两路有相位差的正弦波输出。

比较以上方案,采用2817存储量化的正弦波数据,通过单片机可以较精确的控制移相的大小,实现1º相位差步进,且硬件电路较为简单,而方案二虽然也可以精确控制移相,但是相对而言硬件电路更为复杂,调试较为麻烦,因此采用方案一。

二 原理分析与硬件电路图

根据赛题要求的任务,该低频相位测量系统包括相位测量仪、数字式移相信号发生器和移相网络三个模块,由于三个模块相对独立,以下分别对其进行原理分析与电路设计。

1 相位差测量模块

(1)原理分析

输入两路同频率的正弦波信号,其波形表达式分别为:

)sin(111ϕω+=t V v m )sin(222ϕω+=t V v m

当两路信号的频率相同时,相角差2θϕϕ1=-是一个与时间无关的常数,将此两路正弦波信号经过放大整形成两路方波信号f1、f2,经过异或门输出一个脉冲序列A,与晶振产生的基准脉冲波B 进行与操作得到调制后的

波形C ,在一定的时间范围内对B 、C 中脉冲的个数进行计数得b N 、C N ,则其相位差计算公式为

C

N 360×

N 2

b ο

θ= 采用多个周期计数取平均值的方式以提高测相精度。系统框图如图2-1-2所示:

(2)原理电路

① 前级放大整形电路:

两列正弦波信号经过一级电压跟随器以提高测量仪的输入阻抗,选用高精度、低漂移型运放TLE2074使输入阻抗达到兆欧数量级,由LM311构成的迟滞回环比较器可以有效的避免在过零点时信号的干扰和抖动所引起的电压跳变,最后通过一级单门限电压比较器输出两路TT L电平信号,经异或门得到方波的脉冲序列。该前级放大整形电路的基本原理图如下:

②相位差测量电路

通过理论分析,基准频率越高,记得的窄脉冲个数越多,相位差的测量也越精确,受到8254极限工作频率的影响,选取8.000MHz的晶振,由单片机控制两片8254分别对两路脉冲进行计数,将8254内含的两路计数器进行级联以提高计数位数,对32位的计数结果进行浮点运算得相位差,其原理图如图2-1-4所示:

③相位极性判别电路

在图2-1-4所示的相位测量电路中,只 能给出相位差的大小,无法判断波形的超前 或者滞后,因此将波形整形电路的两路输出

方波送入D 触发器中进行相位极性判别,当0U 超前1U 时,Q 端输出高电平,反之输出低电平,极性判别的原理图如图2-1-5所示。

2 数字式移相信号发生器模块

(1)原理分析

首先要生成两路正弦波信号,在目前的波形生成方案中,最常用的是数字式直接频率合成技术(D DS),DDS 的工作原理是基于相位与幅度的对应关系,通过改变频率控制字来改变相位累加器的相位累加速度,然后在固定时钟的控制下取样,取样得到的相位值通过相幅转换得到的相位值所对应的幅度序列,通过数模转换以及低通滤波之后输出正弦波信号。

基本框图如下:

相幅转换的方式选用查表法,将正弦波的量化数据存储于两片PROM E 2

之中,

通过控制读取存储器数据的地址差,从而改变输出波形的相位差,每个周期取样360个点,相位差步进为1º。锁相环倍频的基频为900Hz ,输出正弦信号的频率范围为5Hz~23KH z,实际频率步进值为2.5Hz 。原理框图如下所示:

,由晶8254进

图2-2-1 DDS 工作原理

相关文档
最新文档