特高压直流输电技术118页PPT
合集下载
《高压直流输电》课件
![《高压直流输电》课件](https://img.taocdn.com/s3/m/7ec0ec4dba68a98271fe910ef12d2af90242a8d5.png)
针对高压直流输电控制系统的复杂性,研究更为高效、稳定的控制策略,如采用人工智能、神经网络等先进技术进行控制系统优化。
研究高压直流输电线路和换流站对周边电磁环境的影响,制定相应的防护措施和标准,降低对环境和人体的影响。
研究高压直流输电在电网中的稳定运行机制,通过优化无功补偿、有功滤波等技术手段,提高系统的稳定性和可靠性。
高压直流输电系统的核心,负责将交流电转换为直流电或反之。
换流站
直流输电线路
接地极
用于传输直流电,通常采用架空线或海底电缆。
为系统提供参考地电位,并泄放多余的电流。
03
02
01
01
02
03
04
实现交流电与直流电相互转换的核心元件。
换流阀
用于调整电压等级,使换流站能与不同电压等级的电网连接。
变压器
用于滤除换流过程中产生的谐波,减少对周围环境的干扰。
《高压直流输电》PPT课件
目录
高压直流输电概述高压直流输电的基本原理高压直流输电系统的构成与设备高压直流输电的优缺点与关键技术问题高压直流输电的工程实例与展望
01
高压直流输电概述
Chapter
总结词
高压直流输电是一种利用高压直流电进行远距离传输的输电方式,具有输送容量大、损耗小、稳定性高等特点。
详细描述
总结词
换流技术是高压直流输电的核心技术之一,涉及到整流和逆变两个过程。
详细描述
在整流过程中,交流电源转换为直流电源,通过控制晶闸管或绝缘栅双极晶体管的开关状态实现。逆变过程则是将直流电源转换为交流电源,同样通过控制开关状态实现。换流技术的关键在于保证电流的稳定和减小谐波干扰。
VS
高压直流输电的损耗主要包括线路损耗和换流损耗,提高效率是重要目标。
研究高压直流输电线路和换流站对周边电磁环境的影响,制定相应的防护措施和标准,降低对环境和人体的影响。
研究高压直流输电在电网中的稳定运行机制,通过优化无功补偿、有功滤波等技术手段,提高系统的稳定性和可靠性。
高压直流输电系统的核心,负责将交流电转换为直流电或反之。
换流站
直流输电线路
接地极
用于传输直流电,通常采用架空线或海底电缆。
为系统提供参考地电位,并泄放多余的电流。
03
02
01
01
02
03
04
实现交流电与直流电相互转换的核心元件。
换流阀
用于调整电压等级,使换流站能与不同电压等级的电网连接。
变压器
用于滤除换流过程中产生的谐波,减少对周围环境的干扰。
《高压直流输电》PPT课件
目录
高压直流输电概述高压直流输电的基本原理高压直流输电系统的构成与设备高压直流输电的优缺点与关键技术问题高压直流输电的工程实例与展望
01
高压直流输电概述
Chapter
总结词
高压直流输电是一种利用高压直流电进行远距离传输的输电方式,具有输送容量大、损耗小、稳定性高等特点。
详细描述
总结词
换流技术是高压直流输电的核心技术之一,涉及到整流和逆变两个过程。
详细描述
在整流过程中,交流电源转换为直流电源,通过控制晶闸管或绝缘栅双极晶体管的开关状态实现。逆变过程则是将直流电源转换为交流电源,同样通过控制开关状态实现。换流技术的关键在于保证电流的稳定和减小谐波干扰。
VS
高压直流输电的损耗主要包括线路损耗和换流损耗,提高效率是重要目标。
特高压直流输电工程一次系统设计 ppt课件
![特高压直流输电工程一次系统设计 ppt课件](https://img.taocdn.com/s3/m/6fbf4159fd0a79563d1e725a.png)
ppt课件
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
ppt课件
35
特点和作用:换流变压器
大型直流输电系统的换流变压器通常采用单相双绕组结 构。
隔离交、直流系统,避免直流电压进入交流系统。 提供换流阀所需的可控交流电压。 限制故障时的短路电流和控制换向期间阀电流的上升。 用于提供相差30度电气角的两个阀桥电源,减少低次谐 波尤其是5次及7次谐波。
ppt课件
继电器小室: 交流保护/ 交流场滤波器场测控及保护/
ppt课件
交流场:
开关刀闸/母线/交流进线/避雷器
换流变压器/
交流滤波器/阻波器/
电压电流测量/
31
3. 各设备的特点和作用
换流阀
换流阀是换流站中的主要设备,它的作用是把 交流电力变成直流电力,或者实现逆变换。
早期直流工程多采用汞弧阀,随着电力电子工 业的发展,晶闸管阀逐步取代了汞弧阀。根据触 发方式不同,晶闸管阀又可分为电触发晶闸管换 流阀和光触发晶闸管换流阀。
ppt课件
6
1.2 直流基本原理和主要部件构成 1)直流输电工程系统构成
直流输电工程的系统结构可分为两端(或端对端)直流输电系统和 多端直流输电系统两大类。
两端直流输电系统是只有一个整流站(送端)和一个逆变站(受端) 的直流输电系统,即只有一个送端和一个受端,它与交流系统只有 两个连接端口,是结构最简单的直流输电系统。
高压直流输电完美版PPT资料
![高压直流输电完美版PPT资料](https://img.taocdn.com/s3/m/5541ba6fd0d233d4b04e69b9.png)
直流电与交流电的对比
输送相同功率时,直流输电所用线材仅 为交流输电的2/3~l/2。
直流输电采用两线制,以大地或海水作回线,与 采用三线制三相交流输电相比,在输电线载面积相同 和电流密度相同的条件下,即使不考虑趋肤效应,也 可以输送相同的电功率,而输电线和绝缘材料可节约 1/3.
设两线制直流输电线路输送功率为Pd,则Pd=2UdId; 设三线制三相交流输电线路所输送的功率为Pa,
Pa 3UaIacos
对于超高压线路,功率因数一般较高,可取为 0.945.设直流输电电压等于交流输电电压的 最大值,即Ud= Ua,且Id=Ia,则:
Pd 2 2Ua Ia 1 Pa 3Ua Ia 0.945
在电缆输电线路中,直流输电没有电容电流
产生,而交流输电线路存在电容电流,引起损耗
在一些特殊场合,必须用电缆输电.例如 高压输电线经过大城市时,采用地下电缆;输 电线经过海峡时,要用海底电缆.由于电缆芯 线与大地之间构成同轴电容器,在交流高压输 线路中,空载电容电流极为可观.一条200kV 的电缆,每千米的电容约为0.2μF,每千米需 供给充电功率约3×103kW,在每千米输电线路 上,每年就要耗电2.6×107kW·h.而在直流输 电中,由于电压波动很小,基本上没有电容电 流加在电缆上.
100V.随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V.但要进一步提高大功率直流发电机的额定电压,存
在着绝缘等一系列压技,术困使难.得由于输不电能直距接给离直受流电到升压极,大使得的输电限距制离受,到极不大能的限满制,足不输能满送足输容送量容量增增长长和和输电输距离电增加的 要大求陆. 送电或互联并距网离.舟增山直加流输的电要工程求就属.于这一类.
高压直流输电技术优秀课件
![高压直流输电技术优秀课件](https://img.taocdn.com/s3/m/b3e0a85a0912a216147929ed.png)
但是汞弧阀制造技术复杂、价格昴贵、逆弧
故障率高、可靠性较差、运行维护不便等因素
,使直流输电的应用和发展受到限制。
二、直流输电技术的发展
第二阶段:晶闸管阀换流时期
20世纪70年代以后,电力电子技术和微电子技术的 迅速发展,高压大功率晶闸管的问世,晶闸管换流 阀和计算机控制技术在直流输电工程中的应用,这 些进步有效地改善了直流输电的运行性能和可靠性, 促进了直流输电技术的发展。
二、直流输电技术的发展
直流输电的发展与换流技术有密切的关系。
(特别与高电压、大功率换流设备的发展)
第一阶段:汞弧阀换流时期
1901年发明的汞弧整流管只能用于整流。
1928年具有栅极控制能力的汞弧阀研制成功,
它不但可用于整流,同时也解决了逆变问题。
因此大功率汞弧阀使直流输电成为现实。
1954年世界上第一个采用汞弧阀性直流输
但是IGBT功率小、损耗大,不利于大型直流输电 工程采用。最新研制的门极换相晶闸管(IGCT) 和大功率碳化硅元件,该元件电压高、通流能力 强、损耗低、可靠性高。
1949年~2020年我国发电装机容量、用电量图
一、发展特高压电网的必要性
2、发展特高压电网是电源结构调整和优化布局的必 然要求。
我国发电能源以煤、水为主。西部地区资源 丰富,全国四分之三以上经济可开发水能资源分布在 西南地区,煤炭资源三分之二以上分布在西北地区; 东部地区经济发达,全国三分之二以上的电力负荷集 中在京广铁路以东经济发达地区,未来的负荷增长也 将保持这一趋势。
高压直流输电技术优秀课件
目录
一、发展特高压电网的必要性
二、直流输电技术的发展
三、直流输电与交流输电的性 能比较
四、高压直流输电系统的结构 和元件
第四章特高压交直流输电与特高压电气设备PPT课件
![第四章特高压交直流输电与特高压电气设备PPT课件](https://img.taocdn.com/s3/m/848ceb9c1a37f111f0855b03.png)
特高压交直流输电
(三)特高压输电的特点
特高压电网具备长距离、大容量和低损耗的送电能 力,代表着当今输电技术的最高水平,是符合我国国 情的输电方式和未来电网的发展方向。
输电线路的II形等值电路
• 分裂导线的直径从0.8 m到1.2m,同时保持子导线 数和相间距离不变,输电线输电能力增加10%左右 ;子导线数从6增加到12,同时保持分裂导线直径 和相间距离不变,输电能力可增加5%左右;相间距 离从25m减少到15m,其他保持不变,输电能力可 增加12%以上。总体来看,调整分裂导线3个参数 在合理的范围,输电能力可增加大约25%。
(三)特高压输电的特点
1.输送容量大 一回1000千伏特高压输电线路的送电能力接近500万 千瓦,约为500千伏输电线路(88.5)的五倍左右。 ±800千伏直流特高压(4kA)输电能力可达到640万千 瓦,是±500千伏高压直流(3kA)的2.1倍,是±620千伏 高压直流的1.7倍。
特高压交直流输电
(1)大干扰电压稳定是指系统大扰动,如系统故障、发电 机跳闸或输电线路断开等事故后系统对电压的控制能力 。这种能力是由系统负荷特性、连续与离散控制和保护 的相互作用决定的。
(2)小干扰电压稳定是指系统的负荷逐渐增长变化时系统 控制电压的能力。这种形式的电压稳定性是由负荷特性 、连续作用的控制及给定瞬间的离散控制作用决定的。
特高压交直流输电
(三)特高压输电的特点 5.工程投资省 采用特高压输电技术,可以节省大量导线和铁塔材 料,从而降低建设成本。根据有关设计部门的计算, 1000千伏交流输电方案的单位输送容量综合造价约为 500千伏输电方案的73%,节省工程投资效益显著。另 外,采用特高压输电可减少线路回数及设备数量,有 利于提高供电可靠性,降低运行费用。
高压直流输电系统PPT课件
![高压直流输电系统PPT课件](https://img.taocdn.com/s3/m/fa001d18f6ec4afe04a1b0717fd5360cbb1a8d48.png)
交流必然三相切除,直流则可降压运行,且大都能取得 成功。
(3)过负荷能力
通常,交流输电线路具有较高的持续运行能力,受发热
条件限制的允许最大连续电流比正常输送功率大得多, 其最大输送容量往往受稳定极限控制。
直流线路也有一定的过负荷能力,受制约的往往是换流
站。通常分2h过负荷能力、10s过负荷能力和固有过负荷 能力等。前两者葛上直流工程分别为10%和25%,后者 视环境温度而异。
以下是维持高功率因数的几个原因:
在给定变压器和阀的电流和电压额定值的 条件下,使换流器的额定功率尽可能高;
减轻阀上的应力; 使换流器所连接的交流系统中设备的损耗
和电流额定最小; 在负荷增加时,使交流终端的电压降最小; 使供给换流器的无功功率费用最小。
控制特性
图4.1.2 理想的稳态伏安特性(Vd是在整流器上测量的值;
当电压降低时,也会面临换相失败和电压不稳定的风险。 这些和低电压条件下的运行状况有关的问题可通过引入 “依赖于电压的电流指令限制”(VDCOL)来防止。当 电压降低到预定值以下时,这个限制降低了最大容许直流 电流。VDCOL特性曲线可能是交流换相电压或直流电压 的函数。图示出了这两种类型的VDCOL。
Id
Vdorcos Vdoi cos Rcr RLRci
Pdr VdrId
P di VdiIdP drRLId 2
图3.1.1 HVDC输电联络线 (a)示意图;(b)等值电路;(c)电压分布。
高压直流系统通过控制整流器和逆变器的 内电势(Vdorcosα)和(Vdoicosγ)来控制 线路上任一点的直流电压以及线路电流 (或功率)。这是通过控制阀的栅/门极 的触发角或通过切换换流变压器抽头以控 制交流电压来完成的。
(3)过负荷能力
通常,交流输电线路具有较高的持续运行能力,受发热
条件限制的允许最大连续电流比正常输送功率大得多, 其最大输送容量往往受稳定极限控制。
直流线路也有一定的过负荷能力,受制约的往往是换流
站。通常分2h过负荷能力、10s过负荷能力和固有过负荷 能力等。前两者葛上直流工程分别为10%和25%,后者 视环境温度而异。
以下是维持高功率因数的几个原因:
在给定变压器和阀的电流和电压额定值的 条件下,使换流器的额定功率尽可能高;
减轻阀上的应力; 使换流器所连接的交流系统中设备的损耗
和电流额定最小; 在负荷增加时,使交流终端的电压降最小; 使供给换流器的无功功率费用最小。
控制特性
图4.1.2 理想的稳态伏安特性(Vd是在整流器上测量的值;
当电压降低时,也会面临换相失败和电压不稳定的风险。 这些和低电压条件下的运行状况有关的问题可通过引入 “依赖于电压的电流指令限制”(VDCOL)来防止。当 电压降低到预定值以下时,这个限制降低了最大容许直流 电流。VDCOL特性曲线可能是交流换相电压或直流电压 的函数。图示出了这两种类型的VDCOL。
Id
Vdorcos Vdoi cos Rcr RLRci
Pdr VdrId
P di VdiIdP drRLId 2
图3.1.1 HVDC输电联络线 (a)示意图;(b)等值电路;(c)电压分布。
高压直流系统通过控制整流器和逆变器的 内电势(Vdorcosα)和(Vdoicosγ)来控制 线路上任一点的直流电压以及线路电流 (或功率)。这是通过控制阀的栅/门极 的触发角或通过切换换流变压器抽头以控 制交流电压来完成的。
特高压输电技术PPT讲稿
![特高压输电技术PPT讲稿](https://img.taocdn.com/s3/m/afbf189d2cc58bd63086bd2b.png)
1974年将单相试验设备扩建为1000~15000kV 三相系统。
美国邦维尔电力局(BPA)有2处特高压试验站。
国外发展概况
•
意大利
全国各地参 加 1000kV 科研规划的 单位共有7 个试验场和 2个雷电记 录站。
意大利1000kV工程雷电冲击试验
国外发展概况
•
瑞典
查麦斯大学高电压试验场可进行交流 1000kV 电 气 试 验 , 试 验 场 内 建 有 240m 特 高 压 试验线段。另有180m的绝缘子试验线段。
特高压输电技术课件
电网的发展历程
• 输电电压一般分高压、超高压和特高压
高压(HV):35〜220kV; 超高压(EHV):330 〜750kV; 特高压(UHV):1000kV及以上。 高压直流(HVDC):±600kV及以下; 特高压直流(UHVDC):±750kV和±800kV。
根据国际电工委员会的定义:交流特高压是指 1000kV 以 上 的 电 压 等 级 。 在 我 国 , 常 规 性 是 指 1000kV以上的交流,800kV以上的直流。
国 外 发 展 概 况
国外发展概况
•
前苏联
1985年建成埃基巴斯图兹——科克切塔夫——库斯 坦奈特高压线路,全长900km,按1150kV电压投入运 行,至1994年已建成特高压线路全长2634km 。
运行情况表明:所采用的线路和变电站的结构基本 合理。特高压变压器、电抗器、断路器等重大设备经受 了各种运行条件的考验。
❖1989年建成±500kV葛洲坝-上海高压直流输电
线,实现了华中-华东两大区的直流联网。
我国电网的发展历程
❖2005年9月,中国在西北地区(青海官厅—兰州
东)建成了一条750kV输电线路,长度为140.7 km。输、变电设备,除GIS外,全部为国产。
美国邦维尔电力局(BPA)有2处特高压试验站。
国外发展概况
•
意大利
全国各地参 加 1000kV 科研规划的 单位共有7 个试验场和 2个雷电记 录站。
意大利1000kV工程雷电冲击试验
国外发展概况
•
瑞典
查麦斯大学高电压试验场可进行交流 1000kV 电 气 试 验 , 试 验 场 内 建 有 240m 特 高 压 试验线段。另有180m的绝缘子试验线段。
特高压输电技术课件
电网的发展历程
• 输电电压一般分高压、超高压和特高压
高压(HV):35〜220kV; 超高压(EHV):330 〜750kV; 特高压(UHV):1000kV及以上。 高压直流(HVDC):±600kV及以下; 特高压直流(UHVDC):±750kV和±800kV。
根据国际电工委员会的定义:交流特高压是指 1000kV 以 上 的 电 压 等 级 。 在 我 国 , 常 规 性 是 指 1000kV以上的交流,800kV以上的直流。
国 外 发 展 概 况
国外发展概况
•
前苏联
1985年建成埃基巴斯图兹——科克切塔夫——库斯 坦奈特高压线路,全长900km,按1150kV电压投入运 行,至1994年已建成特高压线路全长2634km 。
运行情况表明:所采用的线路和变电站的结构基本 合理。特高压变压器、电抗器、断路器等重大设备经受 了各种运行条件的考验。
❖1989年建成±500kV葛洲坝-上海高压直流输电
线,实现了华中-华东两大区的直流联网。
我国电网的发展历程
❖2005年9月,中国在西北地区(青海官厅—兰州
东)建成了一条750kV输电线路,长度为140.7 km。输、变电设备,除GIS外,全部为国产。
特高压直流输电技.ppt
![特高压直流输电技.ppt](https://img.taocdn.com/s3/m/ed520cec76eeaeaad1f330eb.png)
• 5. 土地和环保压力 • 输电走廊限制了输电线路的建设,沿海经济发达地区线路
走廊尤其紧张,规划建设的火电基地规模巨大,要求将其 电力输送往负荷中心。如果全部采用500KV及以下电压
• 等级的输电线路,则回数过多,线路走廊紧张的矛盾难以 解决。
• 6. 煤炭的运输 • 近年来,我国经济发达地区燃煤电厂发展较快,而电煤的
二、推动特高压输电发展的因数
从世界其他国家电网发展的历程看,推动超高压电网向特高 压电网发展的因数主要有以下六个方面:
1. 用电负荷的增长 按照引入新的更高输电电压等级的一般规律,当电网内用 电负荷增长达到现有最高输电电压等级引入时的4倍以 上时,开始建设更高电压等级的输电工程是经济合理的。
2. 发电机和发电厂规模经济性 不断增长的用电需求促进发电技术,包括火力、水力发电 技术向单位(KW)造价低、效率高的大型、特大型发 电机发展。发电厂的规模随大型和特大型机组的应用迅 速增大,从而进一步降低了发电厂的建设和运行成本, 形成6000~10000MW的发电中心。水力发电技术的发展 促进了在远离负荷中心的地区建设大型电站和阶梯电站
从而形成水力发电中心。从超高压和特高压各电压等级的输 电能力可看出,大型和特大型机组及相应的大容量发电厂 的建设更增加了对特高压输电的需求。
3. 燃料、运输成本和发电电源的可用性 未来的的燃料和运输成本以及各中燃料的可用性,对电源 的总体结构和各种发电电源在地域上的布局有重要影响。 在燃料运输成本上升,运力受制约而使燃料的保证率变低, 运输燃料的经济性不如输电的情况下,在燃料产地建设大 容量的发电厂,以特高压向负荷中心输电是经济合理的。
• 平均大容量输电距离,将超过500KM,西南水电送出到华 东的距离甚至超过2000KM。西电东送、南北互供的输电 容量在未来的15年将超过200GW。
走廊尤其紧张,规划建设的火电基地规模巨大,要求将其 电力输送往负荷中心。如果全部采用500KV及以下电压
• 等级的输电线路,则回数过多,线路走廊紧张的矛盾难以 解决。
• 6. 煤炭的运输 • 近年来,我国经济发达地区燃煤电厂发展较快,而电煤的
二、推动特高压输电发展的因数
从世界其他国家电网发展的历程看,推动超高压电网向特高 压电网发展的因数主要有以下六个方面:
1. 用电负荷的增长 按照引入新的更高输电电压等级的一般规律,当电网内用 电负荷增长达到现有最高输电电压等级引入时的4倍以 上时,开始建设更高电压等级的输电工程是经济合理的。
2. 发电机和发电厂规模经济性 不断增长的用电需求促进发电技术,包括火力、水力发电 技术向单位(KW)造价低、效率高的大型、特大型发 电机发展。发电厂的规模随大型和特大型机组的应用迅 速增大,从而进一步降低了发电厂的建设和运行成本, 形成6000~10000MW的发电中心。水力发电技术的发展 促进了在远离负荷中心的地区建设大型电站和阶梯电站
从而形成水力发电中心。从超高压和特高压各电压等级的输 电能力可看出,大型和特大型机组及相应的大容量发电厂 的建设更增加了对特高压输电的需求。
3. 燃料、运输成本和发电电源的可用性 未来的的燃料和运输成本以及各中燃料的可用性,对电源 的总体结构和各种发电电源在地域上的布局有重要影响。 在燃料运输成本上升,运力受制约而使燃料的保证率变低, 运输燃料的经济性不如输电的情况下,在燃料产地建设大 容量的发电厂,以特高压向负荷中心输电是经济合理的。
• 平均大容量输电距离,将超过500KM,西南水电送出到华 东的距离甚至超过2000KM。西电东送、南北互供的输电 容量在未来的15年将超过200GW。
高压直流输电PPT课件
![高压直流输电PPT课件](https://img.taocdn.com/s3/m/46171c5d6f1aff00bed51e8e.png)
巴西的伊泰普为两回±600kV,约800km长,容量6300MW
加拿大的纳尔逊河两回±500kV,约940km 4000MW
三峡——华东 三回±500kV,约900~1100km 7200MW
三峡——广东 一回±500kV 960km 3000MW
10
2、背靠背直流联网工程 3、跨海峡直流海底电缆工程
➢三峡-常州 三峡-广东 贵州-广东 灵宝背靠背直流输电 舟山 嵊泗 2006年12月19日开工,云南楚雄—广东 ±800kV,500万kW, 1438km,2009年单极投产,2010年双极投产 2007年5月21日,四川—上海±800kV特高压直流输电示范工程 在上海奠基。 向家坝—四川—(途径重庆、湖南、湖北、安徽、浙江)上 海奉贤,1600万kw,2000km,投资180亿,计划于2011年建成。
11
1.2 直流输电系统的构成
一.直流输电的基本概念
直流输电是将发电厂发出的交流电经过升压变压器后,又 换流设备(整流器)整成直流,通过直流线路送到受端, 再经换流设备(逆变器)换成交流供给交流系统。 按它与交流系统连接的节点数可分为 两端
多端
12
直流输电系统的构成
换流变 压器1
~
+ Id
整 流Vd1 器
4
据了解,目前世界上Байду номын сангаас有日本和俄罗斯两国拥有 1000千伏特高压交流电网,且都是短距离输电。 正负800千伏直流输电技术国际上尚无运行经验, 关键技术和设备有待进一步研究开发。南方电网采 用特高压输电技术,可以有效缓解长距离“西电东 送”输电走廊资源紧张局面,提高电网安全稳定水 平,输电能力也将明显提高。
➢英法海峡 ±270kV 72km 2000MW ➢波罗底海(瑞典-德国)单极450kV 海底250km,架空12km 600MW ➢日本纪伊 ±500kV 海底51km,架空51km 2800MW ➢巴坤(马来西亚) 三回±500kV,海底670km,架空660km 2130MW ➢舟山 嵊泗
加拿大的纳尔逊河两回±500kV,约940km 4000MW
三峡——华东 三回±500kV,约900~1100km 7200MW
三峡——广东 一回±500kV 960km 3000MW
10
2、背靠背直流联网工程 3、跨海峡直流海底电缆工程
➢三峡-常州 三峡-广东 贵州-广东 灵宝背靠背直流输电 舟山 嵊泗 2006年12月19日开工,云南楚雄—广东 ±800kV,500万kW, 1438km,2009年单极投产,2010年双极投产 2007年5月21日,四川—上海±800kV特高压直流输电示范工程 在上海奠基。 向家坝—四川—(途径重庆、湖南、湖北、安徽、浙江)上 海奉贤,1600万kw,2000km,投资180亿,计划于2011年建成。
11
1.2 直流输电系统的构成
一.直流输电的基本概念
直流输电是将发电厂发出的交流电经过升压变压器后,又 换流设备(整流器)整成直流,通过直流线路送到受端, 再经换流设备(逆变器)换成交流供给交流系统。 按它与交流系统连接的节点数可分为 两端
多端
12
直流输电系统的构成
换流变 压器1
~
+ Id
整 流Vd1 器
4
据了解,目前世界上Байду номын сангаас有日本和俄罗斯两国拥有 1000千伏特高压交流电网,且都是短距离输电。 正负800千伏直流输电技术国际上尚无运行经验, 关键技术和设备有待进一步研究开发。南方电网采 用特高压输电技术,可以有效缓解长距离“西电东 送”输电走廊资源紧张局面,提高电网安全稳定水 平,输电能力也将明显提高。
➢英法海峡 ±270kV 72km 2000MW ➢波罗底海(瑞典-德国)单极450kV 海底250km,架空12km 600MW ➢日本纪伊 ±500kV 海底51km,架空51km 2800MW ➢巴坤(马来西亚) 三回±500kV,海底670km,架空660km 2130MW ➢舟山 嵊泗
高压直流输电 直流输电新技术PPT课件
![高压直流输电 直流输电新技术PPT课件](https://img.taocdn.com/s3/m/f82b967ba5e9856a56126074.png)
高压直流三极输电技术 Tripole HVDC
2020/9/24
HVAC线路
HVDC线路
? 高压直流输电
3
3
chap.6 直流输电新技术
6.1 高压直流三极输电
提高交流输电传输容量的典型措施
➢新建交流输电线路; ➢改造为紧凑型交流输电线路 ; ➢提高导线允许温度; ➢利用电力电子技术,提高输送功率; ➢增大导线截面积; ➢提高输电电压等级。
➢ ±800kV直流的经济输电距离为2500km及以上。
4、降低线路损耗
➢相同条件下,1000kV线损是500kV的四分之一。 ➢相同条件下, ±800kV线损是±500kV的39%。
2020/9/24
14
14
chap.6 直流输电新技术
6.2.1 特高压电网建设的必要性
5、减少工程投资
单位输送容量综合造价: ➢1000kV输电方案约为500kV的四分之三。 ➢±800kV输电方案约为±500kV的四分之三。
高压直流三极输电
➢系统原理图
2020/9/24
8
8
chap.6 直流输电新技术
6.1 高压直流三极输电
三极直流输电原理
➢电流调制控制
a) 三极直流原理图
2020/9/24
Байду номын сангаас
9
b) 电流调制波形
9
chap.6 直流输电新技术
6.1 高压直流三极输电
三极直流输电的特点
➢较交流输电线路的传输容量提高近一倍; ➢较常规HVDC的传输容量提高37% ; ➢对线路进行有限改造; ➢设备利用率较常规HVDC的更高; ➢属于前瞻性研究,尚无规模性试验。
2020/9/24
2020/9/24
HVAC线路
HVDC线路
? 高压直流输电
3
3
chap.6 直流输电新技术
6.1 高压直流三极输电
提高交流输电传输容量的典型措施
➢新建交流输电线路; ➢改造为紧凑型交流输电线路 ; ➢提高导线允许温度; ➢利用电力电子技术,提高输送功率; ➢增大导线截面积; ➢提高输电电压等级。
➢ ±800kV直流的经济输电距离为2500km及以上。
4、降低线路损耗
➢相同条件下,1000kV线损是500kV的四分之一。 ➢相同条件下, ±800kV线损是±500kV的39%。
2020/9/24
14
14
chap.6 直流输电新技术
6.2.1 特高压电网建设的必要性
5、减少工程投资
单位输送容量综合造价: ➢1000kV输电方案约为500kV的四分之三。 ➢±800kV输电方案约为±500kV的四分之三。
高压直流三极输电
➢系统原理图
2020/9/24
8
8
chap.6 直流输电新技术
6.1 高压直流三极输电
三极直流输电原理
➢电流调制控制
a) 三极直流原理图
2020/9/24
Байду номын сангаас
9
b) 电流调制波形
9
chap.6 直流输电新技术
6.1 高压直流三极输电
三极直流输电的特点
➢较交流输电线路的传输容量提高近一倍; ➢较常规HVDC的传输容量提高37% ; ➢对线路进行有限改造; ➢设备利用率较常规HVDC的更高; ➢属于前瞻性研究,尚无规模性试验。
2020/9/24
特高压直流输电技术
![特高压直流输电技术](https://img.taocdn.com/s3/m/9e6c35a2dbef5ef7ba0d4a7302768e9951e76e81.png)
世界上第一个工业性直流输电工程(直流电压为100kV, 输送功率为20MW)
汞弧阀的工程应用
世界上共有12项汞弧阀直流工程投入运行: 首个工程——瑞典哥特兰岛直流工程 末个工程——加拿大纳尔逊河I期工程 最大容量——1600MW(美国太平洋联络线I期工程) 最高电压——±450kV(加拿大纳尔逊河I期工程) 最长距离——1362km(美国太平洋联络线)
中国已投运直流工程
工程名称
葛南直流 天广直流 三常直流 贵广I回 三广直流 灵宝背靠背及其扩建 三沪直流 贵广II回 高岭背靠背 德宝直流 呼辽直流 云广直流 向上直流 宁东直流 三沪II回 青藏直流 南汇风电场柔性直流 黑河背靠背
直流电压
±500kV ±500kV ±500kV ±500kV ±500kV 120/167kV ±500kV ±500kV ±125kV ±500kV ±500kV ±800kV ±800kV ±660kV ±500kV 400kV 30kV ±125kV
上海南汇风电场柔性直流输电工程
截止目前,中国直流工程:
➢ 已建成直流输电工程18项 ➢ 总输送容量4638万千瓦 ➢ 线路全长15008公里 ➢ 正在建设的HVDC工程有7个,HVDC-LIGHT工程有2个
在世界上率先建成±800kV和±660kV直流示范工程,中国已成为世界上投运直流输电工程最多、直流输电技术 应用最全面的国家,在高压直流输电领域实现了“中国创造”和“中国引领”。
(二)直流输电的兴起
交流输电在发展过程中也遇到了问题, ➢ 系统稳定问题使输送功率受到了限制, ➢ 无功问题限制跨海及地下电缆输电距离。
这样,人们又回忆起直流输电的许多优点,如没有运行稳定问题;线路造价低、损耗少,不存在无功问题等等 ,而继续加以研究运用。但在当时发电和用电的绝大部分均为交流电的情况下,要采用直流输电,必须进行换流才能 实现,因此,之后直流输电的发展就与换流技术发展建立了十分密切的关系。围绕换流技术的发展,直流输电的发展 经历了汞弧阀换流时期、晶闸管阀换流时期及全控型器件换流时期,人类社会发展也步入到现代社会…
汞弧阀的工程应用
世界上共有12项汞弧阀直流工程投入运行: 首个工程——瑞典哥特兰岛直流工程 末个工程——加拿大纳尔逊河I期工程 最大容量——1600MW(美国太平洋联络线I期工程) 最高电压——±450kV(加拿大纳尔逊河I期工程) 最长距离——1362km(美国太平洋联络线)
中国已投运直流工程
工程名称
葛南直流 天广直流 三常直流 贵广I回 三广直流 灵宝背靠背及其扩建 三沪直流 贵广II回 高岭背靠背 德宝直流 呼辽直流 云广直流 向上直流 宁东直流 三沪II回 青藏直流 南汇风电场柔性直流 黑河背靠背
直流电压
±500kV ±500kV ±500kV ±500kV ±500kV 120/167kV ±500kV ±500kV ±125kV ±500kV ±500kV ±800kV ±800kV ±660kV ±500kV 400kV 30kV ±125kV
上海南汇风电场柔性直流输电工程
截止目前,中国直流工程:
➢ 已建成直流输电工程18项 ➢ 总输送容量4638万千瓦 ➢ 线路全长15008公里 ➢ 正在建设的HVDC工程有7个,HVDC-LIGHT工程有2个
在世界上率先建成±800kV和±660kV直流示范工程,中国已成为世界上投运直流输电工程最多、直流输电技术 应用最全面的国家,在高压直流输电领域实现了“中国创造”和“中国引领”。
(二)直流输电的兴起
交流输电在发展过程中也遇到了问题, ➢ 系统稳定问题使输送功率受到了限制, ➢ 无功问题限制跨海及地下电缆输电距离。
这样,人们又回忆起直流输电的许多优点,如没有运行稳定问题;线路造价低、损耗少,不存在无功问题等等 ,而继续加以研究运用。但在当时发电和用电的绝大部分均为交流电的情况下,要采用直流输电,必须进行换流才能 实现,因此,之后直流输电的发展就与换流技术发展建立了十分密切的关系。围绕换流技术的发展,直流输电的发展 经历了汞弧阀换流时期、晶闸管阀换流时期及全控型器件换流时期,人类社会发展也步入到现代社会…
高压直流输电与柔性交流输电课件
![高压直流输电与柔性交流输电课件](https://img.taocdn.com/s3/m/c7ee8a01e55c3b3567ec102de2bd960590c6d99d.png)
应用场景比较
高压直流输电和柔性交流输电在不同应用场景中各有优势。
高压直流输电适用于远距离大容量电力输送、电网互联、城市供电等场景,能够 提高电网的稳定性和可靠性。而柔性交流输电适用于分布式电源接入、可再生能 源并网、城市配电网改造等场景,能够提高电网的灵活性和可调度性。
优缺点比较
高压直流输电和柔性交流输电各有优缺点,适用场景不同。
05
实际案例分析
高压直流输电典型案例
案例一
苏格兰到英格兰的HVDC 输电项目
案例二
魁北克到纽约的HVDC输 电项目
案例三
巴西的伊泰普水电站 HVDC输电项目
柔性交流输电典型案例
案例一
上海南汇风电场的柔性交流输电系统
案例二
丹麦的哥本哈根电网的FACTS应用
案例三
美国加州的San Gorgonio风电场的柔性交流输电 系统
案例对比分析
1 2
技术经济性分析
投资成本、运行维护费用、可靠性等方面的比较
环境和社会影响比较
对环境的影响、对当地经济的影响等方面的比较
3
未来发展趋势和前景展望
高压直流输电与柔性交流输电在未来电网发展中 的地位和作用
THANK YOU
高压直流输电与柔性交流输电课 件
• 高压直流输电技术介绍 • 柔性交流输电技术介绍 • 高压直流输电与柔性交流输电的比
较 • 高压直流输电与柔性交流输电的未
来发展 • 实际案例分析
01
高压直流输电技术介绍
高压直流输电的定义与特点
总结词
高压直流输电是一种利用直流电进行大容量、远距离电力传输的技术,具有输送容量大、损耗小、稳定性高等特 点。
高压直流输电具有输送功率大、控制性能好、受干扰影响小等优点,但设备成本高、损耗较大。而柔性交流输电具有响应速 度快、调节范围广、可实现快速控制等优点,但设备成本较高、对电能质量有一定影响。在实际应用中,应根据具体需求和 场景选择合适的输电方式。
超高压直流输电技术.ppt
![超高压直流输电技术.ppt](https://img.taocdn.com/s3/m/1a374b31de80d4d8d15a4f9e.png)
平波电抗器 低端换流变 高压阀厅 备用换流变
高端换流变
交流滤波器组
500kVGIS
主控楼 站用变
本期建设规模: 换流变压器28台,每台29.7万千伏安; 交流滤波器及无功补偿装置4组,总容 量390万千乏; 500kV出线3回,采用GIS设备;
二、直流输电技术的发展
近期将开工的直流工程
(1) 呼盟-辽宁直流工程 此工程计划近期开工。这是我国第八个长
二、直流输电技术的发展
第二阶段:晶闸管阀换流时期
第一个采用晶闸管阀的HVDC系统是加拿大1972年 建立的依尔河系统,运行电压80kV、输送容量为 320MW背靠背直流输电系统。目前,国外输送容量 最大的是1984年巴西建设伊泰普水电站±600kV超 高压直流输电工程,两回共6300MW,线路全长 1590km。
一、发展特高压电网的必要性
西部能源基地与东部负荷中心距东北离在800-
3000公里左右,远距离、大容量输电是我国未来
电网发展的必然趋西势北。
华北
煤电基地 水电基地 负荷中心
西藏
华中 南方
我国能源资源分布图
华东
台 湾
一、发展特高压电网的必要性
2、发展特高压电网是电源结构调整和优化布局的必然 要求。
距离、大容量高压直流输电工程。额定直流电 压为500kV、额定直流电流3kA、额定输送直 流功率3000MW。
直流线路西起内蒙呼盟、东至辽宁沈阳, 全长约908km。
通过此工程,内蒙地区的富裕能源将源源 不断地送往东北工业基地。
二、直流输电技术的发展
近期将开工的直流工程
(2) 宁东-山东直流工程 这将是是我国第九个长距离、大容量高压直流
20:14
1
高端换流变
交流滤波器组
500kVGIS
主控楼 站用变
本期建设规模: 换流变压器28台,每台29.7万千伏安; 交流滤波器及无功补偿装置4组,总容 量390万千乏; 500kV出线3回,采用GIS设备;
二、直流输电技术的发展
近期将开工的直流工程
(1) 呼盟-辽宁直流工程 此工程计划近期开工。这是我国第八个长
二、直流输电技术的发展
第二阶段:晶闸管阀换流时期
第一个采用晶闸管阀的HVDC系统是加拿大1972年 建立的依尔河系统,运行电压80kV、输送容量为 320MW背靠背直流输电系统。目前,国外输送容量 最大的是1984年巴西建设伊泰普水电站±600kV超 高压直流输电工程,两回共6300MW,线路全长 1590km。
一、发展特高压电网的必要性
西部能源基地与东部负荷中心距东北离在800-
3000公里左右,远距离、大容量输电是我国未来
电网发展的必然趋西势北。
华北
煤电基地 水电基地 负荷中心
西藏
华中 南方
我国能源资源分布图
华东
台 湾
一、发展特高压电网的必要性
2、发展特高压电网是电源结构调整和优化布局的必然 要求。
距离、大容量高压直流输电工程。额定直流电 压为500kV、额定直流电流3kA、额定输送直 流功率3000MW。
直流线路西起内蒙呼盟、东至辽宁沈阳, 全长约908km。
通过此工程,内蒙地区的富裕能源将源源 不断地送往东北工业基地。
二、直流输电技术的发展
近期将开工的直流工程
(2) 宁东-山东直流工程 这将是是我国第九个长距离、大容量高压直流
20:14
1